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Key Points:6

• We present a neural network architecture that utilizes both observations from the7

L1 point and solar disk, improving forecast reliability8

• Our neural network architecture learns reliable estimates of uncertainty in mul-9

tiple hour ahead forecasts10

• Instead of the conventional disturbance storm time (Dst) index we forecast the11

external component of geomagnetic storms, Est12
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Abstract13

Geomagnetic storms, which are governed by the plasma magnetohydrodynamics of the14

solar-interplanetary-magnetosphere system, entail a formidable challenge for physical for-15

ward modeling. Yet, the abundance of high quality observational data has been amenable16

for the application of data-hungry neural networks to geomagnetic storm forecasting. Al-17

most all applications of neural networks to storm forecasting have utilized solar wind ob-18

servations from the Earth-Sun first Lagrangian point (L1) or closer and generated de-19

terministic output without uncertainty estimates. Furthermore, forecasting work has fo-20

cused on indices that are also sensitive to induced internal magnetic fields, complicat-21

ing the forecasting problem with another layer of non-linearity. We address these points,22

presenting neural networks trained on observations from both the solar disk and the L123

point. Our architecture generates reliable probabilistic forecasts over Est, the external24

component of the disturbance storm time index, showing that neural networks can gauge25

confidence in their output.26

Plain Language Summary27

Geomagnetic storms are capable of damaging infrastructure like power grids and28

communication lines, motivating our need to forecast them. Solar phenomena produce29

geomagnetic storms, which occur when these phenomena reach Earth as bursts of the30

solar wind. Decades of satellite observations of both the solar wind near the Earth and31

of the Sun itself are promising for forecasting geomagnetic storms with algorithms known32

as neural networks. Several neural network architectures have been applied to geomag-33

netic storm forecasting, but their full potential remains unexplored. First, all existing34

neural networks have used measurements of the solar wind one hour upstream of the Earth35

or closer. While these observations are critical for understanding geomagnetic storm pro-36

gression, from them it is nearly impossible to forecast more than an hour in advance. We37

include observations of the Sun itself, which reach Earth much faster than the solar wind,38

thereby including information for forecasting further in advance. Second, all existing neu-39

ral networks have generated forecasts without uncertainty estimates, meaning that end-40

users (such as utilities or telecommunications companies) know little about forecast con-41

fidence. We present an architecture that generates estimates of uncertainty, and our re-42

sults demonstrate that neural networks learn how confident to be in their forecasts.43
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1 Introduction44

Mankind has experienced a number of blackouts caused by geomagnetically induced45

currents (GICs), which can result in millions of dollars of damages and leave millions with-46

out electricity (Bolduc, 2002; Love, Lucas, Kelbert, & Bedrosian, 2018). The possibil-47

ity of such disruptions has motivated the goal of forecasting GICs. All GICs in turn re-48

sult from geomagnetic storms, which generate the variation in Earth’s external field that49

induces GICs. The problem of forecasting GICs then amounts to forecasting geomag-50

netic storms. These storms result from the propagation of solar activity via the solar wind51

and its coupling to Earth’s magnetosphere. Given abundant observational data of the52

solar wind and disk as well as of Earth’s magnetic field, the application of data-hungry53

deep learning algorithms is suitable for the forecasting problem.54

1.1 Geomagnetic storms55

Geomagnetic storms have traditionally been quantified by indices such as the dis-56

turbance storm time (Dst in nT) or Kp (unitless) indices (e.g. Bartels, Heck, and John-57

ston (1939)), both of which register deviations from the quiet time horizontal compo-58

nent of Earth’s magnetic field. The basic mechanism of geomagnetic storm formation59

is the strengthening of Earth’s ring current in response to changing solar wind conditions,60

and this strengthened current system generates a magnetic field that counters Earth’s61

dipole, weakening it relative to quiet conditions (Daglis, Thorne, Baumjohann, & Orsini,62

1999). The solar wind parameters most important for strengthening the ring current are63

its southward component of the inter-planetary magnetic field (IMF), velocity, and plasma64

density, which all positively impact storm amplitude (Daglis et al., 1999; Gonzalez, Tsu-65

rutani, & De Gonzalez, 1999; Wolf et al., 1997). All solar wind activity that generates66

significant, rapid fluctuation in Earth’s external magnetic field poses a threat to ground-67

based conducting systems, such as power and communication lines, during geomagnetic68

storms.69

1.2 Why deep learning?70

Given the complexity of the underlying physics, which involves the magnetohydro-71

dynamics (MHD) and plasma physics of propagating solar activity through the solar wind72

and its subsequent interaction with Earth’s magnetosphere, a fully physical forward model73
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of the system would be both computationally expensive and poorly constrained. At the74

same time, given that we are aware of the important physical quantities responsible for75

geomagnetic storms, such a physical model is overkill for the problem of forecasting the76

low-order response of Earth’s magnetic field to solar activity.77

For this reason, the first approach to geomagnetic storm modeling took the form78

of simple empirical models that related the time rate of change of Dst to solar wind pa-79

rameters. The pioneering work was a three-term deterministic model developed by Bur-80

ton, McPherron, and Russell (1975), but its simplicity, while elegant, often generates in-81

accurate forecasts. Subsequent modeling has attempted to improve accuracy by adding82

more degrees of freedom. For example, while obtaining more predictive power, Temerin83

and Li (2006) added almost a dozen more terms with significantly more complex func-84

tional forms, sacrificing the simplicity of the initial model.85

Neural networks (NNs), which form the backbone of deep learning, are the logi-86

cal conclusion to the exercise of adding more and more heuristic functional forms, since87

the task of a NN is to learn the relevant functions rather than have them prescribed: even88

a NN with a single hidden layer and sufficient neurons is capable of approximating any89

continuous function to arbitrary precision (Leshno, Lin, Pinkus, & Schocken, 1993; Pinkus,90

1999). However, given that this sufficient number of neurons in a single layer network91

is typically unknown and potentially intractable, workers have found success by instead92

adding layers of neurons rather than neurons themselves. This composition of layers, in93

which neurons in a given layer operate on the outputs of neurons from the preceding one,94

is coined “deep learning”, and has met with unprecedented success in classification and95

regression problems. While still poorly understood beyond a heuristic sense, some work-96

ers hypothesize that deep neural networks are successful because many learning prob-97

lems are outcomes of hierarchical and compositional processes, which deep networks can98

efficiently reproduce (Brahma, Wu, & She, 2016; Lin, Tegmark, & Rolnick, 2017). Fur-99

thermore, Lin et al. (2017) demonstrate how the properties of symmetry, locality, and100

polynomial log-probability in many natural processes are efficiently learned by even rel-101

atively shallow (i.e., consisting of a handful of hidden layers) neural networks.102
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1.3 Prior applications of deep learning to geomagnetic storm forecast-103

ing104

Previous work with NNs has focused almost entirely on prediction of Dst or other105

indices of geomagnetic activity, such as the Kp and the auroral electrojet (AE) indices.106

Supplemental Table S1 provides a succinct review of the application of NNs to the fore-107

casting of Dst (Andriyas & Andriyas, 2015; Bala & Reiff, 2012; Gleisner, Lundstedt, &108

Wintoft, 1996; Jankovičová, Dolinskỳ, Valach, & Vörös, 2002; Kugblenu, Taguchi, & Okuzawa,109

1999; Lazzús, Vega, Rojas, & Salfate, 2017; Munsami, 2000; Pallocchia, Amata, Consolini,110

Marcucci, & Bertello, 2006; Revallo, Valach, Hejda, & Bochńıček, 2014; Sharifie, Lucas,111

& Araabi, 2006; Stepanova, Antonova, & Troshichev, 2005; Stepanova & Pérez, 2000;112

Wei, Zhu, Billings, & Balikhin, 2007; Wu & Lundstedt, 1996, 1997). These studies have113

applied a variety of architectures and data sources, but in generating forecasts for Dst,114

most have used the basic solar wind parameter measurements as well as prior values of115

Dst. All previous studies applying NNs to Dst forecasting to our knowledge have uti-116

lized observations made at the Earth-Sun L1 point or closer, with the exception of Chakraborty117

and Morley (2020), who include solar x-ray fluxes. Furthermore, almost all studies to118

date using NNs to forecast Dst (or any other geomagnetic storm index) have been de-119

terministic, generating predictions without any measure of uncertainty. Gruet, Chan-120

dorkar, Sicard, and Camporeale (2018) assess uncertainty in their forecasts via a Gaus-121

sian process model with fixed kernel parameters, and this process takes as input their122

deterministic NN forecasts. Chakraborty and Morley (2020) on the other hand use a deep123

long short term memory (LSTM) network to learn how to dynamically update the ker-124

nel parameters for a Gaussian process representation of the Kp index, which is how they125

generate probabilistic forecasts. Finally, while not utilizing neural networks, Gu, Wei,126

Boynton, Walker, and Balikhin (2019) generate probabilistic forecasts of the auroral elec-127

trojet (AE) index by considering output from an ensemble of 100 nonlinear autoregres-128

sive models trained on independently resampled subsets of their data.129

This work improves on previous advances by presenting the first application of prob-130

abilistic neural networks that explicitly generate measures of uncertainty in their out-131

put. Our networks are capable of learning how confident to be in their predictions, and132

in doing so improve forecast reliability. These networks take as input not just observa-133

tions from the L1 point but also observations of radiative phenomena on the solar disk.134
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Finally, instead of forecasting Dst, we focus on its external component, Est, which does135

not incorporate the effects of Earth’s subsurface conductivity structure.136

2 Data and Methods137

2.1 Probabilistic Neural Network Architecture138

Recently, recurrent architectures for time series regression have emerged that com-139

bine ridge functions with state vectors to create units with “memory”. The most suc-140

cessful of these has been the long short-term memory architecture (LSTM), introduced141

by Hochreiter and Schmidhuber (1997). The LSTM cell, as its name implies, uses new142

input data with both the previous output and previous internal state to update its in-143

ternal state and generate new output (Supplement, Text S6). This architecture has been144

applied to Dst forecasting by Gruet et al. (2018), but, like all previous applications of145

neural networks to storm forecasting (summarized in the Supplement, Table S1), the net-146

work generated deterministic output with no prediction of forecast uncertainty.147

ct

xt

zt

ct+1

xt+1

zt+1

γ(Wzt+b) γ(Wzt+1+b)

ct-1

zt-1

pEst(μ, σ)t+k pEst(μ, σ)t+k+1

LSTM

Figure 1: Schematic architecture for the deterministic network that learns parameters

over an output distribution for Est. Our output distribution is a Gaussian. Two full time

steps of network iteration are shown, with the portion of the network enclosing the LSTM

cell labeled “LSTM”.
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We present an architecture (Figure 1) in which the NN learns to assess uncertainty148

in its own forecast, thereby generating probabilistic forecasts. The two basic layers uti-149

lized within this architecture are LSTM and dense layers. The former is described above,150

and the latter is an implementation of the so-called “fully connected hidden layer”, which151

references the fact that each entry in z depends on all of the outputs from the preced-152

ing layer via W . That is, a dense layer that receives inputs x ∈ Rn from a preceding153

network layer in turn generates an output vector z ∈ Rm via the operation z = γ(W x+154

b) with W ∈ Rmxn and b ∈ Rm, where n is the dimensionality of the preceding hid-155

den layer, m is the dimensionality of the current hidden layer, and γ(.) is a nonlinear ac-156

tivation function that acts element-wise.157

Inputs into our NN architecture are fed directly to an LSTM cell, and outputs from158

the LSTM cell are fed through a series of fully-connected hidden layers. The outputs from159

the last hidden layer are parameters for an output distribution over Est. We choose to160

use a Gaussian output distribution and compare other alternatives in the Supplement161

(Text S3).162

The simplest cost function in this probabilistic framework is precisely the output

distribution itself evaluated as a likelihood of observed data y (i.e., Est at some time t+

k) with respect to the distribution parameters generated from the given input:

C(x, y) = − log p (y|µ(W,b,x), σ(W,b,x)) (1)

where the distribution parameters µ and σ depend on the network weights and biases163

and can thus be differentiated against them. However, when learning two-parameter dis-164

tributions, the parameter for scale often introduces leniency in the output distribution,165

allowing the network to expand uncertainty in its forecast rather than move its estimate166

for the center (see supplement Text S3).167

We found that utilizing a Gaussian output distribution with a regularized Gaus-

sian likelihood as the cost function performed well for geomagnetic storm forecasting.

Equation 2 shows the form for this modified log-likelihood in which α (y − µ)2 + β 1
σ2

are the terms that we have added, introducing α and β as additional hyper-parameters.

This regularization encourages the network to learn more reasonable estimates for µ, off-

setting the normalization by σ2, while also allowing the user to further incentivize (β >

–7–
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0) or penalize (β < 0) expanding forecast uncertainty.

CGaussian, regularized(y, µ, σ) = log
(√

2π σ
)

+
(y − µ)

2

2σ2
+ α (y − µ)

2
+ β

1

σ2
(2)

Other approaches have been formulated for learning uncertainty via neural networks, such168

as Bayes-by-Backprop (Blundell, Cornebise, Kavukcuoglu, & Wierstra, 2015), which rep-169

resents uncertainty in the network weights rather than in its output. Our implementa-170

tion of this approach was not useful for storm forecasting (Supplement Text S2).171

For all implementations, training, and testing of neural networks, we use Python172

wrappers for the learning framework TensorFlow (Abadi et al., 2015). This framework173

is capable of representing neurons and the functional operations relating them as well174

as numerically computing the relevant gradients to train the network. TensorFlow pro-175

vides an implementation of the high level deep learning Keras API (https://keras.io/),176

which allows for modular construction of networks from the layers described above. We177

also make use of the recently introduced TensorFlow Probability library, which provides178

a straightforward means of adding probability distributions as layers, allowing outputs179

from previous layers to be used as parameters for the distribution layers. These layers180

are compiled into a model that contains all the operations of the entire network as well181

as the particular cost functions and optimizers that dictate the learning process for given182

training inputs and outputs. We use the Adam optimizer for gradient update steps (Kingma183

& Ba, 2014). All neural network configuration and training parameters are listed in Sup-184

plement Text S4.185

2.2 Output Data186

Most geomagnetic storm forecasting thus far has emphasized prediction of Dst. How-187

ever, Dst is actually a sum of internal and external components (Equation 3), and the188

internal component, Ist, is generated by currents induced in Earth’s subsurface by vari-189

ation in the external component, Est (Maus & Weidelt, 2004),190

Dst(t) = Ist(t) + Est(t) (3)

and

Ist(t) =

∫ t

−∞
Q(t− τ)Est(τ)dτ, (4)

where Q(t − τ) is the impulse response that depends on subsurface electrical conduc-191

tivity σ, assuming that σ ≡ σ(r) varies only along radial direction. This decomposi-192
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tion is easier to express in frequency domain, in which Q(t) becomes the transfer func-193

tion that relates internal and external components such that ˜Ist(ω) = Q̃(ω)Ẽst(ω). Sub-194

sequently, Est and Ist can be computed as (Maus & Weidelt, 2004):195

Ẽst(ω) =
1

1 + Q̃(ω)
D̃st(ω) (5)

˜Ist(ω) =
Q̃(ω)

1 + Q̃(ω)
D̃st(ω) (6)

with knowledge of Q̃(ω) and observations of Dst. For more details about this decompo-196

sition and the induction transfer functions, including generalization to three-dimensional197

conductivity models, the reader is referred to Grayver, Kuvshinov, and Werthmüller (2020);198

Maus and Weidelt (2004); Olsen, Sabaka, and Lowes (2005).199

The problem of forecasting Dst is then actually two separate problems: the first200

is forecasting Est, and the second is learning Earth’s induction response, Ist. With a suit-201

able model of Earth’s subsurface conductivity structure, however, knowledge of Est is202

sufficient to reconstruct Ist and thereby Dst. Furthermore, because the external field is203

what responds to magnetospheric activity anyway, it is more natural to forecast Est than204

Dst. Therefore, we generate forecasts of Est, and the data accessed from NOAA were205

generated following the methodology of Maus and Weidelt (2004).206

This approach will be increasingly important as we attempt to forecast higher or-207

der structure in Earth’s external field. Est captures only the first zonal (dipole) com-208

ponent of external magnetic field variability, but significant variation exists on shorter209

spatial scales, where the interaction with local conductivity structures becomes more im-210

portant and complicated (Kelbert, 2020). Given that the ultimate goal of geomagnetic211

storm forecasting is to forecast GICs, it is important to note that GICs themselves de-212

pend strongly on local conductivity structures and local external magnetic field variabil-213

ity (Olsen & Kuvshinov, 2004; Püthe, Manoj, & Kuvshinov, 2014). The first step to fore-214

casting these higher order external field coefficients is forecasting a single external field215

coefficient, Est, which is the focus of this work.216

2.3 Input Data217

Two basic observation types relevant to geomagnetic storm forecasting have been218

made for the past few decades: the first includes measurements of the solar wind made219

in situ around the L1 point in the Earth-Sun system, and the second are measurements220

–9–
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made directly of the solar disk and corona. These two data streams provide related but221

temporally disjoint information. Radiative phenomena on the solar disk take under nine222

minutes to be observed at Earth, while the solar wind requires two to five days to prop-223

agate from the solar disk to the L1 point. The L1 point is only 1.5×106 km from Earth,224

however, which is approximately one hour travel time at typical solar wind speeds (mean225

solar wind speed is roughly 440 km s−1 from the OMNI dataset).226

Thus, while solar wind measurements near Earth’s magnetosphere are ultimately227

the most relevant quantities for accurate geomagnetic storm forecasting, using only ob-228

servations from the L1 point limits the forecast time to roughly an hour (Shprits, Vasile,229

& Zhelavskaya, 2019). On the other hand, solar activity is ultimately responsible for all230

geomagnetic storms, but identifying which phenomena on the solar disk have the poten-231

tial to cause geomagnetic storms and predicting the storm lag times and amplitudes re-232

sulting from those phenomena are not trivial tasks. Observations from the solar disk in-233

clude measurements of coronal mass ejections (CMEs) around the perimeter of the disk,234

images of the solar surface at various wavelengths, and surface radiative fluxes.235

Input data come from three sources: the OMNI, GOES, and SOHO LASCO CME236

datasets. All details on data preprocessing are briefly discussed in the supplement (Text237

S2).238

The low (hourly) resolution OMNI data include several solar wind and solar ob-239

servations, which we extracted for the years 1995-2018. During this time interval, mea-240

surements of the solar wind (SW) come from the WIND, IMP8, Geotail, and ACE satel-241

lite missions. The quantities that we use as input data from this dataset are the three242

components of the interplanetary magnetic field in geocentric solar magnetospheric (GSM)243

coordinates, SW velocity, SW particle density, SW temperature, and SW longitude and244

latitude incident on Earth’s magnetosphere. Because the OMNI dataset contains obser-245

vations from near-Earth (e.g., IMP8) and L1 (e.g., WIND, ACE) spacecraft, observa-246

tions are propagated to the bow shock by adding time shifts that account for the space-247

craft location and solar wind flow. These time shifts are included in the publicly avail-248

able dataset, and we utilize the observation time stamps as they are reported.249

The GOES mission provided two time series of x-ray fluxes integrated over the so-250

lar disk. One series covered the wavelengths from 0.5-4 Å, and the other series covered251

–10–
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wavelengths 1-8 Å. Given that these measurements vary over orders of magnitude, we252

take their logarithm as input. These data were reliably available from 1986 onwards.253

The LASCO SOHO CME database provides a catalogue of CMEs observed around254

the perimeter of the solar disk, with five basic quantities estimated for each event: cen-255

tral position angle, angular width, speed, mass, and kinetic energy. Three estimates of256

speed are reported in the catalogue, all of which we include as training input. We only257

consider CMEs for which all data fields are reported, and during hours with multiple events,258

we take only the event with the largest estimated kinetic energy. The estimates of mass259

and kinetic energy varied over orders of magnitude, so we instead take their logarithms260

as input. The database contains measurements from 1996-2018.261

We did not attempt to time shift observations of the solar disk to the bow shock262

as is done for satellite observations at the L1 point in the OMNI dataset. This time lag263

between the solar disk and Earth’s magnetosphere is precisely a learning problem of great264

interest that NN’s may be able to help solve.265

Previous observations of Est were included as input while forecasting future val-266

ues. In total then data is available roughly from 1996 through 2018. Of these 22 years,267

we take 18 years (approximately 158,000 hours) as training data, and 4 years for test-268

ing data (approximately 35,000 hours).269

We do not include derived physical quantities (e.g., solar wind pressure, which is270

computed from solar wind speed and proton density) as inputs because a successful neu-271

ral network should be able to itself derive the functional combinations of the fundamen-272

tal physical inputs that best predict the output.273

2.4 Evaluating network performance274

In most geomagnetic storm forecasting to date, forecast accuracy is assessed by met-275

rics such as the root mean square error and the Pearson correlation coefficient between276

forecasted and observed data. However, these statistics are generally not compared to277

those of a null hypothesis, for example persistence forecasting in which the best estimate278

for any time in the future is simply the last observed value. Due to the auto-correlative279

nature of the Est time series, persistence forecasting actually generates deceptively high280

correlations and low errors (Figure 3, Supplement Figure S8) (Shprits et al., 2019). In281

–11–
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fact, all the networks in Supplement Table S1 either underperform or barely outperform282

persistence forecasting as quantified by these two metrics. Furthermore, these metrics283

are computed over both quiet and disturbed times, while the ability to predict storms284

is the task of interest. Other than refining consideration of these metrics to only storm285

main phases, it is not obvious what metric best evaluates forecasting performance for286

models with deterministic output.287

With probabilistic networks, however, reliability curves provide a useful and eas-288

ily interpretable metric to evaluate forecast performance. Each curve corresponds to a289

threshold in Est, and the axes compare the observed probability of exceeding that thresh-290

old compared to the predicted probability. A perfectly reliable forecast would generate291

curves that fall on the 1:1 line through the origin for all thresholds. If the observed re-292

liability curve plots over the 1:1 line, then the forecast underestimates the occurrence293

of events exceeding that threshold, while if the reliability curve plots under the 1:1 line,294

the forecast is conservative and overestimates the occurrence of events exceeding the given295

threshold. Because these statistics are computed for thresholds in Est, the reliability as-296

sessment method by construction evaluates storm time forecasting separately from quiet297

time forecasting. We utilize reliability curves to assess forecast performance.298

Computing reliability curves requires binning data by intervals of predicted exceedance299

probabilities, which means that empirical statistics for infrequent, large storms will be300

less well constrained than smaller storms, particularly at large forecast probabilities. To301

assess uncertainty in the reliability curve computation, we use bootstrap resampling of302

forecasted and observed threshold exceedances to compute confidence intervals over ob-303

served threshold exceedances for a given bin of predicted threshold exceedance. Further-304

more, we compute consistency intervals that indicate for the amount of data in each bin305

the spread in forecasting skill that one might anticipate from a perfectly reliable fore-306

cast (Bröcker & Smith, 2007).307

3 Results and Discussion308

In general, our architecture is capable of learning meaningful and reliable measures309

of uncertainty in its forecasts, and our forecasts outperform the basic benchmark of per-310

sistence forecasting. We focus in our discussion on the performance of the six-hour ahead311

probabilistic forecasts because this forecast window is long enough that information from312

–12–
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the L1 point is insufficient to forecast storm arrivals, allowing us to evaluate whether our313

network is able to leverage information from the solar disk.314

3.1 Storm Case Studies315

We present and discuss in this section six hour ahead forecasts for three different316

storms: two caused by CMEs (Figure 2A & B) and one resulting from a co-rotating in-317

teraction region (CIR) (Figure 2C). One to six hour ahead forecasts, as well as detailed318

comparison of the networks trained with only L1 data and both L1 and solar disk in-319

puts, can be found in the Supplement.320

The first storm, in March of 2015, provides a prototypical example of a geomag-321

netic storm caused by a magnetic cloud emitted by the mass ejection visible as the spike322

in CME energy at the beginning of March 15 (Figure 2A, note that the axis is orders323

of magnitude) (Patel et al., 2019). The energetic mass ejection is associated with a peak324

in integrated x-ray fluxes, followed two days later by a relatively large geomagnetic storm325

beginning on March 17. The storm main phase is associated with a sustained southward326

IMF of roughly -20 nT and roughly doubled solar wind speeds. In this situation, given327

the clear connection between the mass ejection and the ensuing storm, we would expect328

a successfully trained network to be able to expand uncertainty in its forecast as con-329

ceivable storm arrival times approach, reflecting an understanding of the causal associ-330

ation between activity on the solar disk and geomagnetic storms. Yet, forecast uncer-331

tainties only expand when disturbed solar wind reaches the L1 point. At that time, the332

network becomes aware of the storm arrival and adjusts its output by dropping Est fore-333

casts and increasing forecast uncertainty (Figure 2A). The same is true for the smaller334

amplitude CME storm of October 13, 2016 in Figure 2B, where forecast uncertainty only335

grows as soon as the storm arrives at the L1 point. This storm is associated with the CME336

visible on October 10 (Patel et al., 2019), so the occurrence of other CMEs of similar mag-337

nitude (e.g. on October 9 and 11) demonstrates non-uniqueness that illustrates why the338

network struggles to identify geoeffective solar activity from the provided inputs.339

The final storm on July 4, 2015 was chosen because it corresponds to a CIR (Shen340

et al., 2017), as evidenced by a lack of sustained, southward IMF, a step increase in so-341

lar wind velocity, and relatively low amplitude storm-time Est (Figure 2C). The nature342

of CIR storms differs from those originating from CMEs (Zhang et al., 2007), so we sought343
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Figure 2: Six-hour-ahead probabilistic forecasts on testing data for two CME storms and

one CIR storm, as identified by Patel et al. (2019); Shen et al. (2017). Order of magni-

tude variability in x-ray flux (long channel is plotted) is exaggerated by ten times. The

black dashed line for Est is a persistence forecast. (a) Severe CME geomagnetic storm

(min Dst=-222 nT). Large amplitude variability in the southward component of the IMF

might be responsible for forecast variability as the storm enters the main phase. (b) In-

tense CME geomagnetic storm (min Dst=-104 nT). (c) Intense CIR geomagnetic storm

(min SYM-H=-87 nT). Order of magnitude variability in x-ray flux here is only exagger-

ated by five times.
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to investigate if the forecast for CIR storms differs from that for CME storms. Again,344

for the storm on July 4, the network is unable to preemptively expand forecast uncer-345

tainties in response to information from solar disk, demonstrating that inputs from the346

L1 point dominate the forecast. On July 11, the network mistakenly forecasts a storm347

main phase, likely in response to the increased solar wind speed that did not actually348

generate a substantial main phase.349

In all cases, the six hour ahead forecast fails to capture storm onset, during which350

the network’s forecasts tend to lag observations by the forecast length (thereby more closely351

tracking the persistence curve) until the storm arrives at the L1 point. At that point,352

the forecast begins to deviate from persistence as the network knows that a storm is oc-353

curring. This inability to predict storm onset indicates that the network is unable to uti-354

lize observations from the solar disk for storm arrival, which remains an open challenge.355

Recovery is generally well-predicted, and forecasts deviate from persistence, mean-356

ing that the network is not just taking the last observed Est value for its next forecast.357

Unlike previous results, our network is capable of generating meaningful estimates of un-358

certainty in its forecasts. In all cases, once the network detects the possible onset of a359

geomagnetic storm, it expands its forecast uncertainty, generally maintaining observed360

Est values within the 95% forecast confidence interval and providing reliable multiple361

hour ahead forecasts (see Supplement Text S5 for one to six hour ahead forecasts). Af-362

ter storm main phases, forecast uncertainties decrease during the generally well-predicted363

recovery phase. Given that the recovery phase is dictated by the internal dynamics of364

the ring current decay (and thereby independent of the solar wind state) (Daglis, 2007),365

its predictability is reasonable. Thus, our network exhibits forecast uncertainties that366

are consistent with where one would anticipate the greatest uncertainty in geomagnetic367

storm development with information from the L1 point, namely, the storm onset and main368

phase.369

3.2 Conventional Metrics of Forecast Skill370

In terms of the conventional forecasting skill assessments (i.e., forecast-observation371

Pearson correlation coefficients and root-mean-square errors, RMSE’s) for one to six hour372

ahead forecasts, our networks outperform all previous neural network forecasts for all373

forecasts lengths (Figure 3). However, given that persistence forecasting for Est results374
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in higher correlation coefficients and lower RMSE’s than for persistence forecasting of375

Dst, our improvements should not be compared with previous results for forecasting Dst376

but with persistence forecasting of Est. When considering all observations, we slightly377

underperform persistence forecasting of Est in terms of the correlation coefficient, while378

outperforming in terms of RMSE, which is consistently lower. During storm times, how-379

ever, our forecasting skill is much better than persistence forecasting in both metrics at380

all forecasting windows. The networks with both L1 and solar disk inputs always out-381

perform networks with only L1 inputs when evaluated over both quiet and storm times382

(Figure S8). However, the difference in skill is small, and when considering only storm383

times, the five to six hour ahead forecasts of networks with only L1 inputs achieve lower384

RMSE’s. This result is the opposite of that expected from incorporating observations385

from the solar disk, indicating that despite its causal connection and longer time lag, in-386

formation from the solar disk does not significantly improve storm forecast skill, even387

at longer forecast horizons for which observations from the L1 point are too close to be388

predictive. Finally, for particularly large storms exceeding Est ≤ -200 nT, a forecast sat-389

uration effect is observed (Figure S8), similar to that that occurs at smaller values with390

different cost functions (Supplement Text S3). This effect can be partially mitigated by391

fine-tuning of the cost function to further facilitate the forecasting of rare storms. How-392

ever, since there is only a handful of such events in the data, this behaviour of the net-393

work is natural.394

3.3 Forecast Reliability395

Reliabilities for four different storm thresholds generally overlap with the consis-396

tency intervals for each bin, demonstrating that our network generates reliable forecasts397

(Figure 4). For threshold of -75 and -100 nT, forecasted exceedance probabilities in the398

range of 0.7-0.9 tended to slightly underestimate observed exceedance rates, which is con-399

sistent with the observation that storm onsets remain difficult to predict exactly.400

Notably, the regularization of the cost function for a Gaussian output distribution401

significantly improves forecast reliability. Networks trained with unregularized Gaussian402

and Gumbel output distributions (Supplement Text S3) are unable move the location403

parameters of their forecasts during large amplitude storms, preferring instead to expand404

forecast uncertainty, meaning that peak storm times, while often within the 95% con-405

fidence interval, are only predicted at extremely low exceedance probabilities. This be-406
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Figure 3: Conventional metrics of forecasting skill for networks with both solar disk and
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havior explains why the reliability curves lack data to bin at high forecast probabilities407

and furthermore why storms are underestimated for lower exceedance probabilities (Fig-408

ure 4a).409
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Figure 4: (a) Reliability curves for the networks with a Gumbel output and cost (blue),

Gaussian output and cost (orange), and Gaussian output with regularized cost (green).

All curves are for a six hour ahead forecast for four Est thresholds in eleven bins. Ex-

ceedance was taken in the negative sense, i.e., taking values less than or equal to the given

threshold. Error bars show the 2.5-97.5 percentile range from bootstrapped resampling

(number of bootstrapped samples was 1000) within the bins of forecasted exceedance

probability. The envelopes show the 2.5-97.5 percentile range from consistency resampling

of a perfectly reliable forecast, demonstrating the conceivable range in reliable forecasts

given the number of data in each bin (Bröcker & Smith, 2007). Also shown is the relia-

bility curve from Gruet et al. (2018) for their six hour ahead Dst forecast, for which the

exceedance threshold is unspecified. (b) Reliability curves of 6 hour ahead forecast for

network trained on L1 data only compared with the network trained on both L1 and solar

disk inputs. These reliability curves are computed as in (a) above.410

Compared with the network trained on both L1 and solar disk inputs, the network411

with only L1 inputs expands uncertainty more during the storm main phase and412

less during recovery and quiet times, resulting in reliability curves that demonstrate413

reduced reliability for low amplitude storms but slightly higher reliability for larger414

amplitude storms (Figure 4b). For probable, high amplitude storms, then, the net-415

works with only L1 inputs are slightly more reliable, while for smaller amplitude416

storms the network with both L1 and solar disk inputs is more reliable. Thus, while417

some improvement in forecast reliability for smaller magnitude storms (Est thresh-418

olds of -50 and -75 nT) does seem to result from the incorporation of data from the419

solar disk (Figure 4b), the preceding discussion and the result that forecast behavior420

does not qualitatively change by adding solar disk inputs (Supplement Text S5) in-421

dicates that we are unable to successfully utilize observations from the solar disk to422

forecast storm arrival and amplitude.423

This shortcoming suggests that the information necessary for identifying geoeffective424

solar activity is lacking in the training data, and/or that the network architecture425

is inadequate for utilizing these data. For instance, the x-ray fluxes are integrated426

over the entire solar disk, but peaks in these fluxes can often be associated with flare427

events, which themselves often occur simultaneously with geoeffective mass ejections428

(Tobiska et al., 2013). Larger, more central flares are associated with larger geomag-429
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netic storms, so adding time series of flare occurrences with locations on the solar430

disk would complement the input series of x-ray fluxes and CMEs (Tobiska et al.,431

2013). Futhermore, the CME dataset only includes ejections visible around the rim432

of the solar disk, while geoeffective ejections occur towards the center. Thus, only433

centralized ejections that also emit an observable lobe beyond the rim of the solar434

disk could be reliably associated with geomagnetic storms, potentially rendering the435

CME database largely irrelevant for the problem of geomagnetic storm forecasting.436

Finally, integrated solar x-ray flux peaks from flares have been empirically related to437

solar wind speeds and geomagnetic storm amplitudes, thereby providing a means of438

learning lag times between solar activity and storm arrivals (Tobiska et al., 2013).439

However, LSTM networks struggle with learning lag times (Gers, Schraudolph, &440

Schmidhuber, 2002), so the network architecture we have utilized is not amenable to441

this task.442

4 Conclusions443

This work has demonstrated a NN architecture capable of learning reliable measures444

of uncertainty in its forecasts of geomagnetic storms. Learning uncertainty in NN445

output results in more useful probabilistic forecasts than learning uncertainty in446

the NN parameters, and the choice of output distribution and cost function has a447

large impact on the resulting reliability of the trained network. Specifically, adding448

regularizing terms in the likelihood cost function improves the forecast reliability by449

incentivizing networks to forecast more reasonable mean values rather than simply450

increasing forecast uncertainty.451

These neural networks utilize as inputs observations from both the solar disk and452

L1 point, slightly improving forecast reliability and skill with respect to networks453

trained only with L1 inputs. However, storm arrival and amplitude forecasting did454

not substantially improve from the inclusion of these data. Thus, leveraging time455

series of observations of the solar disk, which are often sparse, remains an open456

problem, and future network architectures must be carefully designed to utilize these457

data sources.458
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