
ETH Library

Decentralized Baseband
Processing for Massive MU-MIMO
Systems

Journal Article

Author(s):
Li, Kaipeng; Sharan, Rishi R.; Chen, Yujun; Goldstein, Tom; Cavallaro, Joseph R.; Studer, Christoph 

Publication date:
2017-12

Permanent link:
https://doi.org/10.3929/ethz-b-000455581

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Journal on Emerging and Selected Topics in Circuits and Systems 7(4), https://doi.org/10.1109/JETCAS.2017.2775151

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8950-6267
https://doi.org/10.3929/ethz-b-000455581
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/JETCAS.2017.2775151
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


TO APPEAR IN THE IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS 1

Decentralized Baseband Processing
for Massive MU-MIMO Systems

Kaipeng Li, Rishi Sharan, Yujun Chen, Tom Goldstein, Joseph R. Cavallaro, and Christoph Studer

Abstract—Achieving high spectral efficiency in realistic massive
multi-user (MU) multiple-input multiple-output (MIMO) wireless
systems requires computationally-complex algorithms for data
detection in the uplink (users transmit to base-station) and beam-
forming in the downlink (base-station transmits to users). Most
existing algorithms are designed to be executed on centralized
computing hardware at the base-station (BS), which results in
prohibitive complexity for systems with hundreds or thousands of
antennas and generates raw baseband data rates that exceed the
limits of current interconnect technology and chip I/O interfaces.
This paper proposes a novel decentralized baseband processing
architecture that alleviates these bottlenecks by partitioning the
BS antenna array into clusters, each associated with independent
radio-frequency chains, analog and digital modulation circuitry,
and computing hardware. For this architecture, we develop
novel decentralized data detection and beamforming algorithms
that only access local channel-state information and require low
communication bandwidth among the clusters. We study the asso-
ciated trade-offs between error-rate performance, computational
complexity, and interconnect bandwidth, and we demonstrate the
scalability of our solutions for massive MU-MIMO systems with
thousands of BS antennas using reference implementations on a
graphic processing unit (GPU) cluster.

Index Terms—Alternating direction method of multipliers
(ADMM), conjugate gradient, beamforming, data detection,
equalization, general-purpose computing on graphics processing
unit (GPGPU), massive MU-MIMO.

I. INTRODUCTION

MASSIVE multi-user (MU) multiple-input multiple-output
(MIMO) is among the most promising technologies for

realizing high spectral efficiency and improved link reliability
in fifth-generation (5G) wireless systems [3], [4]. The main
idea behind massive MU-MIMO is to equip the base-station
(BS) with hundreds or thousands of antenna elements, which
increases the spatial resolution and provides an energy-efficient

K. Li, Y. Chen, and J. R. Cavallaro are with the Department of Electrical
and Computer Engineering, Rice University, Houston 77251, TX (e-mail:
kl33@rice.edu; yujun.chen@rice.edu; cavallar@rice.edu).

R. Sharan was with the School of Electrical and Computer Engineering,
Cornell University, Ithaca 14853, NY, and is now at The MITRE Corporation,
McLean 22102, VA (e-mail: rrs72@cornell.edu).

T. Goldstein is with the Department of Computer Science, University of
Maryland, College Park 20740, MD (e-mail: tomg@cs.umd.edu).

C. Studer is with the School of Electrical and Computer Engineering,
Cornell University, Ithaca 14853, NY (e-mail: studer@cornell.edu; web: http:
//vip.ece.cornell.edu; corresponding author).

Parts of this paper have been presented at the 2016 GlobalSIP Conference [1]
and the Asilomar Conference on Signals, Systems, and Computers [2]. The
present paper contains a new ADMM-based data detection algorithm and a
generalized ADMM-based beamforming algorithm, as well as corresponding
reference implementations on a GPU cluster for the uplink and downlink.

A MATLAB simulator for decentralized baseband processing as proposed
in this paper is available on GitHub: https://github.com/VIP-Group/DBP

way to serve a large number of users in the same time-
frequency resource. Despite all the advantages of this emerging
technology, the presence of a large number of BS antenna
elements results in a variety of implementation challenges. One
of the most critical challenges is the excessively high amount of
raw baseband data that must be transferred from the baseband
processing unit to the radio-frequency (RF) antenna units at
the BS (or in the opposite direction). Consider, for example,
a 128 BS-antenna massive MU-MIMO system with 40MHz
bandwidth and 10-bit analog-to-digital converters (ADCs). For
such a system, the raw baseband data rates from and to the
RF units easily exceed 200Gbit/s. Such high data rates not
only pose severe implementation challenges for the computing
hardware to carry out the necessary baseband processing tasks,
but the resulting raw baseband data stream may also exceed
the bandwidth of existing high-speed interconnects, such as
the common public radio interface (CPRI) [5].

A. Challenges of Centralized Baseband Processing

Recent testbed implementations for massive MU-MIMO,
such as the Argos testbed [6], [7], the LuMaMi testbed [8],
and the BigStation [9], reveal that the centralized baseband
processing required for data detection in the uplink (users
communicate to BS) and downlink (BS communicates to users
using beamforming) is extremely challenging with current
interconnect technology. In fact, all of the proposed data
detection or beamforming algorithms that realize the full
benefits of massive MU-MIMO systems with realistic (finite)
antenna configurations, such as zero-forcing (ZF) or minimum
mean-square error (MMSE) equalization or beamforming [10],
rely on centralized baseband processing. This approach requires
that full channel state information (CSI) and all receive/transmit
data streams and all subcarriers (for wideband systems)
are available at a centralized node, which processes and
generates the baseband signals that are received from and
transmitted to the radio-frequency (RF) chains. To avoid such
a traditional, centralized baseband processing approach, existing
testbeds, such as the Argos testbed [6], rely on maximum-ratio
combining (MRC), which enables fully decentralized channel
estimation, data detection, and beamforming directly at the
antenna elements. Unfortunately, MRC significantly reduces the
spectral efficiency for realistic antenna configurations compared
to that of ZF or MMSE-based methods [10], which prevents
the use of high-rate modulation and coding schemes that fully
exploit the advantages of massive MU-MIMO.

http://vip.ece.cornell.edu
http://vip.ece.cornell.edu
https://github.com/VIP-Group/DBP


2 TO APPEAR IN THE IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

u
p

li
n

k
 c

h
a
n

n
e
l

. 
. 
.

. 
. 
.

d
e
co

d
e
r

detector

m
a
p
.

F
E

C

RF
m

a
p
.

F
E

C

RF

. 
. 

.

RF

RF

CHEST

. 
. 

.

d
o

w
n

li
n

k
 c

h
a
n

n
e
l

. 
. 
.

. 
. 
.

D
e
t.

D
e
c.

RF

D
e
t.

D
e
c.

RF

base station (BS) base station (BS)
users users

detectorRF

RF CHEST

F

. 
. 
.

. 
. 
.

. 
. 
.

. 
. 
.

F
E

C

CHEST

F

CHEST

RF

RF

. 
. 
.

. 
. 
.

RF

RF

. 
. 
.

. 
. 
.

beamformer

beamformer

. 
. 

.

. 
. 

.

Fig. 1. Overview of the proposed decentralized baseband processing (DBP) architecture. Left: Massive MU-MIMO uplink: U single-antenna users communicate
to the base-station (BS). The B BS antenna elements are divided into C clusters, which independently perform channel estimation (CHEST) and decentralized
data detection. Right: Massive MU-MIMO downlink: The BS performs decentralized beamforming; each of the C clusters only uses local channel state
information. In both scenarios, only a minimum amount of consensus information is exchanged among the clusters (indicated by the dashed green lines).

B. Decentralized Baseband Processing (DBP)

In this paper, we propose a decentralized baseband pro-
cessing (DBP) architecture as illustrated in Figure 1, which
alleviates the bottlenecks of massive MU-MIMO caused by
extremely high raw baseband data rates and implementation
complexity of centralized processing.1 We partition the B BS
antennas into C independent clusters, each having Bc antennas
for the cth cluster so that B =

∑C
c=1Bc. For simplicity, we will

assume clusters of equal size and set S = Bc which implies
SC = B. Each cluster is associated with local computing
hardware, a so-called processing element (PE), that carries
out the necessary baseband processing tasks in a decentralized
and parallel fashion. A central fusion node (“F” in Figure 1)
processes a small amount of consensus information that is
exchanged among the clusters and required by our decentralized
baseband algorithms (the dashed green lines in Figure 1).

Throughput the paper, we focus on time-division duplex-
ing (TDD), i.e., we alternate between uplink and downlink
communication within the same frequency band. In the uplink
phase, U users communicate with the BS. First, CSI is acquired
via pilots at the BS and stored locally at each cluster. Then,
data is transmitted by the users and decoded at the BS. In
the downlink phase, the BS transmits data to the U users. By
exploiting channel reciprocity, the BS performs decentralized
beamforming (or precoding) to mitigate MU interference (MUI)
and to focus transmit power towards the users. As for the uplink,
the C decentralized beamforming units only access local CSI.

The key features of the proposed DBP architecture can be
summarized as follows: (i) DBP reduces the raw baseband
data rates between each cluster and the associated RF chains.
In addition, the I/O bandwidth of each PE can be reduced
significantly as only raw baseband data from a (potentially
small) subset of antennas must be transferred on and off
chip. (ii) DBP lowers the computational complexity per PE by
distributing and parallelizing the key signal-processing tasks.
In addition to decentralizing channel estimation (CHEST),
data detection, and beamforming (or precoding), DBP enables
frequency-domain processing (e.g., fast Fourier transforms

1For the sake of simplicity, the BS illustration in Figure 1 only includes
the components that are relevant to the results in this paper.

for orthogonal frequency-division multiplexing) as well as
impairment compensation (e.g., for carrier frequency and
sampling rate offsets, phase noise, or I/Q imbalance) locally
at each cluster. (iii) DPB enables modular and scalable BS
designs; adding or removing antenna elements simply amounts
to adding or removing computing clusters and the associated
RF elements, respectively. (iv) DPB allows one to distribute
the antenna array and the associated computing hardware over
multiple buildings—an idea that was put forward recently in
the massive MU-MIMO context [11].

C. Relevant Prior Art

The literature describes mainly three methods that are related
to DBP: coordinated multipoint (CoMP), cloud radio access
networks (C-RAN), and testbeds that perform distributed
baseband processing across frequencies (or subcarriers). The
following paragraphs discuss these results.

1) Coordinated multipoint (CoMP): Coordinated multipoint
(CoMP) is a distributed communication technology to eliminate
inter-cell interference, improve the data rate, and increase the
spectrum efficiency for cell-edge users [12]. CoMP distributes
multiple BSs across cells, which cooperate via backhaul
interconnect to perform distributed uplink reception and down-
link transmission. CoMP has been studied for cooperative
transmission and reception [13], [14] in 3GPP LTE-A, and is
widely believed to play an important role in 5G networks [15]
along with other technologies, such as massive MU-MIMO [16].
Several algorithms for distributed beamforming with CoMP
have been proposed in [17]–[19]. The paper [17] proposes a
distributed precoding algorithm for multi-cell MIMO downlink
systems using a dirty-paper coding. The papers [18], [19]
propose distributed beamforming algorithms based on Gauss-
Seidel and alternating direction method of multipliers (ADMM).
These methods assume that the BSs in different cells have
access to local CSI and coordinate with each other with limited
backhaul information exchange. While these results are, in
spirit, similar to the proposed DBP approach, our architecture (i)
considers a decentralized architecture in which the computing
hardware is collocated to support low-latency consensus
information exchange, (ii) takes explicit advantage of massive



K. LI ET AL. 3

MU-MIMO (the other results in [17]–[19] are for traditional,
small-scale MIMO systems), and (iii) proposes a practical
way to partition baseband processing that is complementary to
CoMP. In fact, one could integrate DBP together with CoMP
to deal with both intra-cell multi-user interference and inter-
cell transmission interference more effectively, and to realize
decentralized PHY layer processing using our DBP and higher
layer (MAC layer, network layer, etc.) resource allocation and
coordination with CoMP schemes. In addition, we propose
more sophisticated algorithms that enable superior error-rate
performance compared to the methods in [18], [19].

2) Cloud radio access networks (C-RAN): The idea behind
C-RAN is to separate the BS into two modules, a remote radio
head (RRH) and a baseband unit (BBU), which are connected
via high-bandwidth interconnect. The RRHs are placed near the
mobile users within the cell, while the BBUs are grouped into
a BBU pool for centralized processing and located remotely
from RRH [20]–[22]. C-RAN and CoMP both coordinate data
transmission among multiple cells but with different physical
realizations. CoMP integrates each pair of radio heads with
associated BBU together and allows low-latency data transfer
between each radio head and its corresponding BBU. Different
BBUs are separately placed across multiple cells, entailing long
latency on coordination among BBUs. C-RAN, in contrast,
shifts the BBU coordination latency in CoMP to the data
transfer latency between RRHs and BBUs, since BBUs are now
grouped in a pool and can coordinate efficiently. Therefore,
whether CoMP or C-RAN is more appropriate depends on
whether BBU coordination or RRH-BBU data transfer is more
efficient in a real-world deployment. Analogously to CoMP,
we could integrate DBP together with C-RAN to exploit the
benefits of both technologies. For example, each RRH now
can be a large-scale antenna array (requiring higher RRH-BBU
interconnection bandwidth). The associated BBU itself may
rely on DBP and perform our algorithms to resolve intra-cell
multi-user interference, while coordinating with other BBUs
for inter-cell interference mitigation.

3) Distributed processing across frequencies: Existing
testbeds, such as the LuMaMi testbed [8], [23] and the BigSta-
tion [9], distribute the necessary baseband processing tasks
across frequencies. The idea is to divide the total frequency
band into clusters of subcarriers in orthogonal frequency-
division multiplexing (OFDM) systems where each frequency
cluster is processed concurrently, enabling high degrees of
parallelism [8], [9], [23]. Unfortunately, each frequency cluster
still needs access to all BS antennas, which may result in high
interconnect bandwidth. Furthermore, the frequency band must
somehow be divided either using analog or digital circuitry,
and frequency decentralization prevents a straightforward use
of other waveform candidates, such as single-carrier frequency-
division multiple access (SC-FDMA), filter bank multi-carrier
(FBMC), and generalized frequency division multiplexing
(GFDM) [24]. In contrast, our DBP architecture performs
decentralization across antennas, which is compatible to most
waveforms and requires data transmission only between a subset
of antennas and the clusters. We emphasize, however, that DBP
can be used together with frequency decentralization—in fact,
our reference GPU implementation results shown in Section VI

exploit both spatial decentralization and frequency parallelism.

D. Contributions
We propose DBP to reduce the raw baseband and chip I/O

bandwidths, as well as the signal-processing bottlenecks of
massive MU-MIMO systems that perform centralized baseband
processing. Our main contributions are as follows:
• We propose DBP, an novel architecture for scalable, TDD-

based massive MU-MIMO BS designs, which distributes
computation across clusters of antennas.

• We develop two decentralized algorithms for near-optimal
data detection in the massive MU-MIMO uplink; both
algorithms trade off error-rate performance vs. complexity.

• We develop a decentralized beamforming algorithm for
the massive MU-MIMO downlink.

• We perform a simulation-based tradeoff analysis between
error-rate performance, consensus data rate, and compu-
tational complexity for the proposed decentralized data
detection and beamforming algorithms.

• We present implementation results for data detection and
beamforming on a GPU cluster that showcase the efficacy
and scalability of the proposed DBP approach.

Our results demonstrate that DBP enables modular and scalable
BS designs for massive MU-MIMO with thousands of antenna
elements while avoiding excessively high baseband and I/O
data rates and significantly reducing the high computational
complexity of conventional centralized algorithms.

E. Notation
Lowercase and uppercase boldface letters designate column

vectors and matrices, respectively. For a matrix A, we indi-
cate its transpose and conjugate transpose by AT and AH

respectively. The M ×M identity matrix is denoted by IM
and the M ×N all-zeros matrix by 0M×N . Sets are denoted
by uppercase calligraphic letters; the cardinality of the A is
denoted by |A|. The real and imaginary parts of a complex
scalar a are <{a} and ={a}, respectively. The Kronecker
product is ⊗ and E[·] denotes expectation.

F. Paper Outline
The rest of the paper is organized as follows. Section II

details the DBP architecture and introduces the associated
uplink and downlink system models. Section III proposes two
decentralized data detection algorithms. Section IV proposes
a decentralized beamforming algorithm. Section V provides
performance and complexity results. Section VI discusses our
GPU cluster implementations. We conclude in Section VII. All
proofs are relegated to Appendix A.

II. DBP: DECENTRALIZED BASEBAND PROCESSING

We now detail the DBP architecture illustrated in Figure 1
and the system models for the uplink and downlink. We
consider a TDD massive MU-MIMO system and we assume
a sufficiently long coherence time, i.e., the channel remains
constant during both the uplink and downlink phases. In
what follows, we focus on narrowband communication; a
generalization to wideband systems is straightforward.



4 TO APPEAR IN THE IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

A. Uplink System Model and Architecture

1) Uplink system model: In the uplink phase, U single-
antenna2 user terminals communicate with a BS having B ≥ U
antenna elements. Each user encodes its own information
bit stream using a forward error correction (FEC) code and
maps the resulting coded bit stream to constellation points in
the set O (e.g., 16-QAM) using a predefined mapping rule
(e.g., Gray mappings). At each user, the resulting constellation
symbols are then modulated and transmitted over the wireless
channel (subsumed in the “RF” block in Figure 1). The transmit
symbols su, u = 1, . . . , U , of all U users are subsumed in the
uplink transmit vector su ∈ OU . The baseband-equivalent input-
output relation of the (narrowband) wireless uplink channel is
modeled as yu = Husu+nu, where yu ∈ CB is the received
uplink vector, Hu ∈ CB×U is the (tall and skinny) uplink
channel matrix, and nu ∈ CB is i.i.d. circularly-symmetric
complex Gaussian noise with variance N0 per complex entry.
The goal of the BS is to estimate the transmitted code bits
given (approximate) knowledge of Hu and the received uplink
vector yu. This information is then passed to the decoder,
which computes estimates for the data bits of each user.

2) Decentralized architecture: Consider the left-hand side
(LHS) of Figure 1. The proposed DBP architecture partitions3

the receive vector y into C clusters so that (yu)T =
[(yu1 )

T , . . . , (yuC)
T ] with yuc ∈ CBc and B =

∑C
c=1Bc.

As mentioned in Section I-B, we assume clusters of equal
size and set S = Bc. By partitioning the uplink channel
matrix (Hu)T = [(Hu

1 )
T , . . . , (Hu

c )
T ] row-wise into blocks of

dimension Hu
c ∈ CBc×U , c = 1, . . . , C, and, analogously, the

noise vector as (nu)T = [(nu1 )
T , . . . , (nuC)

T ], we can rewrite
the uplink input-output relation at each cluster as follows:

yuc = Hu
c s
u + nuc , c = 1, . . . , C. (1)

The goal of DBP in the uplink is to compute an estimate for
su in a decentralized manner: each cluster c only has access
to yuc , Hu

c , and consensus information (see Section III).
As shown in LHS of Figure 1, each antenna element is

associated to local RF processing circuitry; this includes analog
and digital filtering, amplification, mixing, modulation, etc. As
a consequence, all required digital processing tasks (e.g., used
for OFDM processing) are also carried out in a decentralized
manner. Even though we consider perfect synchronization and
impairment-free transmission (such as carrier frequency and
sampling rate offsets, phase noise, or I/Q imbalance), we note
that each cluster and the associated RF processing circuitry
would be able to separately compensate for such hardware
non-idealities with well-established methods [25]. This key
property significantly alleviates the challenges of perfectly
synchronizing the clocks and oscillators among the clusters.

3) Channel estimation: During the training phase, each
cluster c must acquire local CSI, i.e., compute an estimate
of Hu

c . To this end, U orthogonal pilots are transmitted from the
users prior to the data transmission phase. Since each cluster c
has access to yuc , it follows from (1) that the associated local

2A generalization to multi-antenna user terminals is straightforward but
omitted for the sake of simplicity of exposition.

3Other partitioning schemes may be possible but are not considered here.

channel matrix Hu
c can be estimated per cluster. The estimate

for the channel matrix (as well as yuc ) is then stored locally at
each cluster and not made accessible to the other clusters; this
prevents a bandwidth-intensive broadcast of CSI (and receive
vector data) to all clusters during the training phase.

4) Data detection: During the data transmission phase,
decentralized data detection uses the receive vector yuc , the
associated CSI Hu

c , and consensus information to generate an
estimate of the transmitted data vector su. This estimate is
then passed to the decoder which computes estimates for the
information bits of each user in a centralized manner; suitable
data detection algorithms are proposed in Section III.

B. Downlink System Model and Architecture
1) Downlink system model: In the downlink phase, the B

BS antennas communicate with the U ≤ B single-antenna user
terminals. The information bits for each user are encoded
separately using a FEC. The BS then maps the resulting
(independent) coded bit streams to constellation points in
the alphabet O to form the vector sd ∈ OU . To mitigate
MUI, the BS performs beamforming (BF) or precoding, i.e.,
computes a BF vector xd ∈ CB that is transmitted over the
downlink channel. Beamforming requires knowledge of the
(short and wide) downlink channel matrix Hd ∈ CU×B and the
transmit vector sd ∈ OU to compute a BF vector that satisfies
sd = Hdxd (see Section IV for the details). By assuming
channel reciprocity, we have the property Hd = (Hu)T [3], [4],
which implies that the channel matrix estimated in the uplink
can be used in the downlink. The baseband-equivalent input-
output relation of the (narrowband) wireless downlink channel
is modeled as yd = Hdxd+nd, where yd ∈ CU is the receive
vector at all users and nd ∈ CU is i.i.d. circularly-symmetric
complex Gaussian noise with variance N0 per complex entry.
By transmitting xd over the wireless channel, the equivalent
input-output relation is given by yd = sd + nd and contains
no MUI. Each of the users then estimates the transmitted code
bits from ydu, u = 1, . . . , U . This information is passed to the
decoder, which computes estimates for the user’s data bits.

2) Decentralized architecture: Consider the right-hand
side (RHS) of Figure 1. Since the partitioning of the BS
antennas was fixed for the uplink (cf. Section II-A), the
BF vector xd must be partitioned into C clusters so that
(xd)T = [(xd1)

T , . . . , (xdC)
T ] with xdc ∈ CBc . By using

reciprocity and the given antenna partitioning, each cluster c
has access to only Hd

c = (Hu
c )
T . With this partitioning, we

can rewrite the downlink input-output relation as follows:

yd =
∑C
c=1 H

d
cx

d
c + nd. (2)

The goal of DBP in the downlink is to compute all local BF
vectors xdc , c = 1, . . . , C, in a decentralized manner: each
cluster c has access to only sd, Hd

c , and consensus information
(see Section IV for more details).

As shown in the RHS of Figure 1, each antenna element is
associated to local RF processing circuitry. Analogously to the
uplink, the required analog and digital signal processing tasks
(e.g., used for OFDM modulation or impairment compensation)
can be carried out in a decentralized manner, which alleviates
the challenges of perfectly synchronizing the clusters.



K. LI ET AL. 5

3) Beamforming: In the downlink phase, decentralized
BF uses the transmit vector sd, decentralized CSI Hd

c , and
consensus information in order to generate BF vectors xdc that
satisfy sd =

∑C
c=1 H

d
cx

d
c . This ensures that transmission of

the vectors xdc removes MUI; a suitable algorithm is detailed
in Section IV.

III. DECENTRALIZED UPLINK: DATA DETECTION

We now propose two decentralized data detection algorithms
for the massive MU-MIMO uplink. We start by discussing
the general equalization problem and then, detail our novel
ADMM and CG-based data detection algorithms. To simplify
notation, we omit the uplink superscript u in this section.

A. Equalization-Based Data Detection

In order to arrive at computationally efficient algorithms for
decentralized data detection, we focus on equalization-based
methods. Such methods contain an equalization stage and a
detection stage. For the equalization stage, we are interested
in solving the following equalization problem

(E0) x̂ = arg min
s∈CU

g(s) + 1
2‖y −Hs‖22

in a decentralized manner. Here, the function g(s) is a convex
(but not necessarily smooth or bounded) regularizer, which
will be discussed in detail below. For the detection stage, the
result x̂ of the equalization problem (E0) can either be sliced
entry-wise to the nearest constellation point in O to perform
hard-output data detection or used to compute approximate
soft-output values e.g., log-likelihood ratio (LLR) values [26].

For zero-forcing (ZF) and minimum mean-squared error
(MMSE) data detection, we set the regularizer to g(s) = 0 and
g(s) = N0/(2Es)‖s‖22, respectively, where Es = E[|su|2] for
u = 1, . . . , U , is the expected per-user transmit energy.4 The
generality of the equalization problem (E0) also encompasses
more powerful data detection algorithms. In particular, we can
set g(s) = χ(s ∈ C), where χ(s ∈ C) is the characteristic
function that is zero if s is in some convex set C and infinity
otherwise. Specifically, to design data-detection algorithms that
outperform ZF or MMSE data detection, we can use the convex
polytope around the constellation set O, which is given by

C =
{∑|O|

i=1 αisi | (αi ≥ 0,∀i) ∧
∑|O|
i=1 αi = 1

}
.

For QPSK with O = {±1 ± i}, the convex set C is simply
a box with radius 1 (i.e., side length of 2) centered at
the origin. In this case, (E0) corresponds to the so-called
box-constrained equalizer [27] which was shown recently
to (often significantly) outperform linear ZF or MMSE data
detection [28], [29]. In addition, box-constrained equalization
does not require knowledge of the noise variance N0, which
is in stark contrast to the traditional MMSE equalizer. The
decentralized equalization algorithm proposed next enables the
use of such powerful regularizers.

4For the sake of simplicity, we assume an equal transmit power at each
user. An extension to the general case is straightforward.

B. Decentralized Equalization via ADMM

To solve the equalization problem (E0) in a decentralized
fashion, we make use of the ADMM framework [30]. We first
introduce C auxiliary variables zc = s, c = 1, . . . , C, which
allow us to rewrite (E0) in the equivalent form

(E0′) x̂ = arg min
s∈CU , zc=s, c=1,...,C

g(s) +
∑C
c=1

1
2‖yc −Hczc‖22 .

Note that the added constraints in (E0′) enforce that each local
vector zc agrees with the global value of s. As detailed in [30],
these constraints can be enforced by introducing Lagrange
multipliers {λc}Cc=1 for each cluster, and then computing a
saddle point (where the augmented Lagrangian is minimal for s
and z, and maximal for λ) of the so-called scaled augmented
Lagrangian function, which is defined as

L(s, z,λ) = g(s)

+
∑C
c=1

{
1
2‖yc −Hczc‖22 +

ρ
2‖s− zc − λc‖22

}
for some fixed penalty parameter ρ > 0. Here, we stack all
C auxiliary variables into the vector zT = [zT1 · · · zTC ] and
stack all C scaled Lagrange multiplier vectors into the vector
λT = [λT1 · · · λTC ], where zc,λc ∈ CU .

The saddle-point formulation of (E0′) is an example of
a global variable consensus problem [30, Sec. 7.1] and can
be solved using ADMM. We initialize s(1) = 0U×1 and
λ
(1)
c = 0U×1 for c = 1, . . . , C, and carry out the following

iterative steps:

(E1) z(t+1)
c = arg min

zc∈CU

1
2‖yc−Hczc‖22 +

ρ
2

∥∥s(t)−zc−λ(t)
c

∥∥2
2

(E2) s(t+1) = arg min
s∈CU

g(s) +
∑C
c=1

ρ
2

∥∥s− z
(t+1)
c − λ

(t)
c

∥∥2
2

(E3) λ(t+1)
c = λ(t)

c − γ
(
s(t+1) − z(t+1)

c

)
for the iterations t = 1, 2, . . . until convergence or a maximum
number Tmax of iterations has been reached. The parameter
ρ > 0 controls the step size and γ = 1 is a typical choice that
guarantees convergence. See [31] for a more detailed discussion
on the convergence of ADMM.

Steps (E1) and (E2) can be carried out in a decentralized and
parallel manner, i.e., each cluster c = 1, . . . , C only requires
access to local variables and local channel state information,
as well as the consensus vectors s(t) and s(t+1). Step (E2)
updates the consensus vector. While the vectors {z(t+1)

c } and
{λ(t)

c } for every cluster appear in (E2), it is known that this
can be computed using only the global average of these vectors,
which is easily stored on a fusion node [30]. The architecture
proposed in Section II can compute these averages and perform
this update in an efficient manner. We next discuss the key
details of the proposed decentralized data detection algorithm.

C. ADMM Algorithm Details and Decentralization

1) Step (E1): This step corresponds to a least-squares (LS)
problem that can be solved in closed form and independently
on each cluster. For a given cluster c, we can rewrite the



6 TO APPEAR IN THE IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

Algorithm 1 Decentralized ADMM-based Data Detection
1: Input: yc, Hc, c = 1, 2, . . . , C, ρ, γ, N0, and Es
2: Preprocessing:
3: if S ≤ U then
4: A−1

c = (HcH
H
c + ρIS)

−1

5: yreg
c = HH

c A−1
c yc

6: else
7: B−1

c = (HH
c Hc + ρIU )

−1

8: yreg
c = B−1

c HH
c yc

9: end if
10: ADMM iterations:
11: Init: λ(1)

c = 0, z
(1)
c = yreg

c , s
(1) =

(
N0
ρEs

+ C
)−1

(
∑C
c=1 z

(1)
c )

12: for t = 2, 3, . . . , Tmax do
13: λ

(t)
c = λ

(t−1)
c + γ(z

(t−1)
c − s(t−1))

14: if S ≤ U then
15: z

(t)
c = yreg

c +(s(t−1)−λ
(t)
c )−HH

c A−1
c Hc(s

(t−1)−λ
(t)
c )

16: else
17: z

(t)
c = yreg

c + ρB−1
c (s(t−1) − λ

(t)
c )

18: end if
19: w

(t)
c = z

(t)
c + λ

(t)
c

20: w(t) =
∑C
c=1 w

(t)
c // Consensus

21: s(t) =
(
N0
ρEs

+ C
)−1

w(t)

22: end for
23: Output: x̂ = s(Tmax)

minimization in Step (E1) in more compact form as

z(t+1)
c = arg min

zc∈CU

∥∥∥∥[ yc√
ρ(s(t) − λ

(t)
c )

]
−
[

Hc√
ρ IU

]
zc

∥∥∥∥2
2

,

which has the following closed-form solution:

z(t+1)
c = yreg

c + ρB−1c (s(t) − λ(t)
c ). (3)

Here, yreg
c = B−1c HH

c yc is the regularized estimate with
B−1c = (HH

c Hc + ρIU )
−1. To reduce the amount of recurrent

computations, we can precompute B−1c and reuse the result
in each iteration. For situations where the cluster size S is
smaller than the number of users U , we can use the Woodbury
matrix identity [32] to derive the following equivalent update:

z(t+1)
c = yreg

c + (IU −HH
c A−1c Hc)(s

(t) − λ(t)
c ). (4)

Here, yreg
c = HH

c A−1c yc is a regularized estimate of the
transmit vector with A−1c = (HcH

H
c + ρIS)

−1. This requires
the inversion of an S×S matrix, which is more easily computed
than the U×U inverse required by (3). We note that whether (3)
or (4) leads to lower computational complexity depends on U ,
S, and the number of ADMM iterations (see Section V-A).

2) Step (E2): This step requires gathering of local com-
putation results, averaging the sum in a centralized manner,
and distributing the averaged consensus information. To reduce
the amount of data that must be exchanged, each cluster only
communicates the intermediate variable w

(t)
c = z

(t+1)
c + λ

(t)
c ,

and only the average of these vectors is used on the fusion
node. This simplification is accomplished using the following
lemma; a proof is given in Appendix A-A.

Lemma 1. The problem in Step (E2) simplifies to

s(t+1) = arg min
s∈CU

g(s) + Cρ
2

∥∥s− v(t)
∥∥2
2

(5)

with v(t) = 1
Cw

(t) = 1
C

∑C
c=1 w

(t)
c and w

(t)
c = z

(t+1)
c +λ

(t)
c .

Computation of (5) requires two parts. The first part

corresponds to a simple averaging procedure to obtain v(t),
which can be carried out via sum reduction in a tree-like
fashion followed by centralized averaging. The second part is
the minimization in (5) that is known as the proximal operator
for the function g(s) [33]. For ZF, MMSE, and box-constrained
equalization with QAM alphabets, the proximal operator has
the following simple closed-form expressions:

(E2-ZF) s(t+1) = v(t)

(E2-MMSE) s(t+1) = CρEs

N0+CρEs
v(t)

(E2-BOX) s(t+1)
u = sgn(<{v(t)u })min{|<{v(t)u }|, r}

+ i sgn(={v(t)u })min{|={v(t)u }|, r}

for u = 1, . . . , U . Here, (E2-BOX) is the orthogonal pro-
jection of the vector v(t) onto the hypercube with radius
r that covers the QAM constellation. For BPSK, the prox-
imal operator corresponds to the orthogonal projection onto
the real line between [−r,+r] and is given by s

(t+1)
u =

sgn(<{v(t)u })min{|<{v(t)u }|, r}, u = 1, . . . , U .
After computation of (5), the consensus vector s(t+1) needs

to be distributed to all C clusters. In practice, we distribute w(t)

as soon as it is available, and the scaling steps to get s(t+1)

from w(t) are computed locally on each cluster after it
receives w(t). With this approach, no cluster waits for the
computation of s(t+1) on a central/master worker (fusion node)
before ADMM iterations proceed.

3) Step (E3): This step can be carried out independently in
each cluster after s(t+1) has been calculated.

We summarize the resulting decentralized ADMM procedure
for MMSE equalization in Algorithm 1. The equalization output
is the consensus vector x̂ = s(Tmax). Note that Algorithm 1
slightly deviates from the procedure outlined in Section III-B.
Specifically, Algorithm 1 performs the steps in the following
order: Step (E3), Step (E1), and Step (E2); this is due to the
fact that the global equalizer output x̂ results from Step (E2).
We note that re-ordering the steps as in Algorithm 1 has no
effect on the convergence and the equalization result.

We will analyze the algorithm’s complexity5 in Section V-A;
a GPU cluster implementation will be discussed in Section VI.

D. Decentralized Equalization via Conjugate Gradients

If the regularization function g(s) of (E0) is quadratic, as in
the case for MMSE equalization where g(s) = N0/(2Es)‖s‖22,
then we can solve (E0) with an efficient decentralized conjugate
gradient (CG) method [34]–[36]. Our method builds on the
CG algorithm used in [34] for centralized equalization-based
data detection in massive MU-MIMO systems. Our idea is to
break all centralized computations that rely on global CSI and
receive data (i.e., H and y) into smaller, independent problems
that only require local CSI and receive data (Hc and yc). The
centralized CG-based detector in [34] involves two stages: a

5The operataion HH
c A−1

c Hc on line 15 of Algorithm 1 could be computed
once in a preprocessing stage to avoid recurrent computations during the
iterations. Instead, in Algorithm 1 we directly compute HH

c A−1
c Hc(s(t−1)−

λ
(t)
c ) in each iteration because this approach requires only three matrix-vector

multiplications per iteration; precomputing HH
c A−1

c Hc requires two costly
matrix-matrix multiplications. Hence, our complexity analysis in Section V-A
refers to the procedure detailed in Algorithm 1.



K. LI ET AL. 7

Algorithm 2 Decentralized CG-based Data Detection
1: Input: Hc, c = 1, . . . , C, and yc, and ρ
2: Preprocessing:
3: yMRC

c = HH
c yc // Decentralized

4: yMRC =
∑C
c=1 y

MRC
c // Centralized

5: CG iterations:
6: Init: r(0) = yMRC,p(0) = r(0),x(0) = 0
7: for t = 1, . . . , Tmax do
8: Decentralized (each cluster c performs the same operation):
9: w

(t)
c = HH

c Hcp
(t−1)

10: Centralized (consensus on a centralized processing unit):
11: w(t) =

∑c
c=1 w

(t)
c // Consensus

12: Decentralized (each cluster c performs the same operations):
13: e(t) = ρp(t−1) +w(t)

14: α = ‖r(t−1)‖2/((p(t−1))He(t))
15: x(t) = x(t−1) + αp(t−1)

16: r(t) = r(t−1) − αe(t−1)

17: β = ‖r(t)‖2/‖r(t−1)‖2
18: p(t) = r(t) + βp(t−1)

19: end for
20: Output: x̂ = x(Tmax)

preprocessing stage for calculating the MRC output yMRC and
a CG iteration stage to estimate x̂.

In the preprocessing stage, we rewrite the MRC vector
yMRC = HHy as yMRC =

∑C
c=1 H

H
c yc, which decentralizes

the preprocessing stage. Specifically, each cluster computes
HH
c yc; the results of each cluster are then summed up in a

centralized manner to obtain the MRC output yMRC.
For the CG iteration stage, we need to update the estimated

transmit vector and a number of intermediate vectors required
by the CG algorithm (see [34] for the details). While most
operations are not directly dependent on global CSI H but on
intermediate results, the update of the following vector

e(t) =
(
ρI+HHH

)
p(t−1), (6)

requires direct access to the global channel matrix H and
thus, must be decentralized. Here, ρ = N0/Es for MMSE
equalization and ρ = 0 for zero-forcing equalization. It is key
to realize that the Gram matrix can be written as HHH =∑C
c=1 H

H
c Hc. Hence, we can reformulate (6) as

e(t) = ρp(t−1) +
∑C
c=1 H

H
c Hcp

(t−1). (7)

Put simply, by locally computing w
(t)
c = HH

c Hcp
(t−1) at each

antenna cluster, we can obtain the result in (7) by performing
the following centralized computations that do not require
global CSI: w(t) =

∑C
c=1 w

(t)
c and e(t) = ρp(t−1) +w(t).

The decentralized CG-based data detection algorithm is
summarized in Algorithm 2. The computations of e(t), x(t),
r(t), and p(t) do not require access to the (global) channel
matrix H and can be carried out in a centralized processing unit.
We must, however, broadcast the vector p(t) to each antenna
cluster before the decentralized update of w(t+1)

c in the next
iteration can take place. Alternatively, we can directly broadcast
the consensus vector w(t), so that each antenna cluster can
simultaneously compute their own copy of e(t), x(t), r(t), and
p(t) in a decentralized manner to ensure the local existence
of p(t) for updating w

(t+1)
c . With this alternative approach,

we can completely shift the complexity from the centralized
processing unit to each cluster, leaving the calculation of w(t)

as the only centralized computation in a CG iteration. This
approach also enables the concatenation of data gathering
and broadcasting, which can be implemented using a single
message-passing function (see Section VI for the details).6

IV. DECENTRALIZED DOWNLINK: BEAMFORMING

We now develop a decentralized beamforming algorithm
for the massive MU-MIMO downlink. We start by discussing
the general beamforming (or precoding) problem, and then
detail our ADMM-based beamforming algorithm. To simplify
notation, we omit the downlink superscript d.

A. Beamforming Problem

We solve the following beamforming problem

(P0) x̂ = arg min
x∈CB

‖x‖2 subject to ‖s−Hx‖2 ≤ ε,

which aims at minimizing the instantaneous transmit energy
while satisfying the precoding constraint ‖s−Hx‖2 ≤ ε. By
defining the residual interference as e = s − Hx̂, we see
that transmission of the solution vector x̂ of (P0) leads to
the input-output relation y = s + e + n with ‖e‖2 ≤ ε.
Hence, each user only sees their dedicated signal contaminated
with Gaussian noise n and residual interference e, whose
energy can be controlled by the parameter ε ≥ 0. By setting
ε = 0, this problem has a well-known closed-form solution
and corresponds to the so-called zero-forcing (ZF) beamformer,
which is given by x̂ = HH(HHH)−1s assuming that U ≤ B
and H is full rank. Our goal is to develop an algorithm that
computes the solution of (P0) in a decentralized fashion.

B. Decentralized Beamforming via ADMM

By introducing C auxiliary variables zc = Hcxc, c =
1, . . . , C, we can rewrite (P0) in the following equivalent form:

(P0′) x̂ = arg min
x∈CB

‖x‖2 subject to
∥∥s−∑C

c=1 zc
∥∥
2
≤ ε

and zc = Hcxc, c = 1, . . . , C.

Here, Hc is the downlink channel matrix at cluster c. The
solution to the beamforming problem (P0′) corresponds to a
saddle point of the scaled augmented Lagrangian function:

L(s, z,λ) = 1
2‖x‖

2
2 +

∑C
c=1

ρ
2‖Hcxc − zc − λc‖22 + X (z) ,

where X (z) is the characteristic function for the convex
constraint of the beamforming problem (P0), i.e., X (z) = 0
if ‖s −

∑C
c=1 zc‖2 ≤ ε and X (z) = ∞ otherwise. The

problem (P0) corresponds to a sharing consensus problem
with regularization [30, Sec. 7.3].

In order to arrive at a decentralized beamforming algorithm,
we now use the ADMM framework to find a solution to (P0′).
We initialize7 z

(1)
c = max{U/B, 1/C}s. We then perform the

6The Gram matrix Gc = HH
c Hc can be precomputed to avoid recurrent

computations (line 9 in Algorithm 2). However, practical systems only need a
small number of CG iterations, and HH

c Hcp(t−1) at line 9 is computed using
two matrix-vector multiplications, which avoids the expensive matrix-matrix
multiplication needed to form Gc.

7This initializer is a properly-scaled version of the MRC beamforming
vector and exhibits good performance for the considered channel model.



8 TO APPEAR IN THE IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

following three-step procedure until convergence or a maximum
number of iterations has been reached:

(P1) x(t+1)
c =arg min

xc∈CS

1
2‖xc‖

2
2 +

ρ
2

∥∥Hcxc − z
(t)
c − λ

(t)
c

∥∥2
2

(P2) z(t+1)=arg min
zc∈CU

C∑
c=1

ρ
2

∥∥Hcx
(t+1)
c −zc−λ(t)

c

∥∥2
2
+X (z)

(P3) λ(t+1)
c =λ(t)

c − γ
(
Hcx

(t+1)
c − z(t+1)

c

)
.

Here, zc is the local beamforming output and z is the consensus
solution of (P2). The parameter ρ > 0 affects the step size
and γ = 1 ensures convergence of the algorithm. While both
the Steps (P1) and (P3) can efficiently be computed in a
decentralized manner, it is not obvious how Step (P2) can be
decentralized. We next show the details to transform Step (P2)
into a form that requires simple global averaging.

C. ADMM Algorithm Details and Decentralization

1) Step (P1): Analogous to Step (E1), this step corresponds
to a LS problem that can be solved in closed form and
independently in every cluster. For a given cluster c = 1, . . . , C,
we can rewrite the minimization in (P1) as

x(t+1)
c = arg min

xc∈CS

∥∥∥∥[ √ρ(z(t)c + λ
(t)
c )

0S×1

]
−
[ √

ρHc

IS

]
xc

∥∥∥∥2
2

,

which has the following closed-form solution:

x(t+1)
c = A−1c HH

c (z(t)c + λ(t)
c ).

Here, A−1c = (HH
c Hc + ρ−1IS)

−1 requires the computation
of an S × S matrix inverse. If the cluster size S is larger than
the number of users U , then we can use the Woodbury matrix
identity [32] to derive the following equivalent update:

x(t+1)
c = HH

c B−1c (z(t)c + λ(t)
c ).

Here, B−1c = (HcH
H
c + ρ−1IU )

−1 requires the computation
of an U×U matrix inverse. We note that U , S, and the number
of iterations can determine which of the two x

(t+1)
c variations

leads to lower overall computational complexity.
2) Step (P2): The presence of the indicator function X (z)

makes it non-obvious whether this step indeed can be carried
out in a decentralized fashion. The next results show that a
simple averaging procedure—analogously to that used in Step
(E1) for decentralized data detection—can be carried out to
perform Step (E2); the proof is given in Appendix A-B.

Lemma 2. The minimization in Step (P2) simplifies to

z(t+1)
c = w

(t)
c +max

{
0, 1− ε

‖s−v(t)‖2

}(
1
C s− v(t)

)
(8)

with v(t) = 1
Cw

(t) = 1
C

∑C
c=1 w

(t)
c ;w

(t)
c = Hcx

(t+1)
c − λ

(t)
c .

For ε = 0, we get an even more compact expression

z(t+1)
c = w(t)

c + 1
C s− v(t), c = 1, . . . , C

Evidently (8) only requires a simple averaging procedure, which
can be carried out by gathering local computation results from
and broadcasting the averaged consensus back to each cluster.

Algorithm 3 Decentralized ADMM-based Beamforming
1: Input: s, Hc, c = 1, 2, . . . , C, ρ, and γ
2: Preprocessing:
3: if S ≤ U then
4: A−1

c = (HH
c Hc + ρ−1IS)

−1

5: else
6: B−1

c = (HcH
H
c + ρ−1IU )

−1

7: end if
8: ADMM iterations:
9: Init: z(1)c = max{U/B, 1/C}s, λ(1)

c = 0

10: x
(1)
c = A−1

c HH
c z

(1)
c (S ≤ U) or HH

c B−1
c z

(1)
c (S > U)

11: for t = 2, 3, . . . , Tmax do
12: m

(t−1)
c = Hcx

(t−1)
c

13: w
(t−1)
c = m

(t−1)
c − λ

(t−1)
c

14: w(t−1) =
∑C
c=1 w

(t−1)
c // Consensus

15: z
(t)
c = w

(t−1)
c + C−1(s−w(t−1))

16: λ
(t)
c = λ

(t−1)
c − γ(m(t−1)

c − z
(t)
c )

17: if S ≤ U then
18: x

(t)
c = A−1

c HH
c (z

(t)
c + λ

(t)
c )

19: else
20: x

(t)
c = HH

c B−1
c (z

(t)
c + λ

(t)
c )

21: end if
22: end for
23: Output: x̂ = [x

(Tmax)
1 ;x

(Tmax)
2 ; · · · ;x(Tmax)

C ]

3) Step (P3): This step can be performed independently in
each cluster after distributing w(t) and getting local z(t+1)

c .
The resulting ADMM-based decentralized beamforming

procedure is summarized in Algorithm 3, where we assume
ε = 0. To facilitate implementation of the decentralized
beamforming algorithm, we initialize z

(1)
c ,λ

(1)
c ,x

(1)
c and then

update the variables in the order of z
(t)
c ,λ

(t)
c ,x

(t)
c realizing

that the final output of the local beamformer is simply x
(Tmax)
c .

Note that Algorithm 3 slightly deviates from the step-by-step
beamforming procedure in Section IV-B. Specifically, we carry
out Steps (P2), (P3), and (P1), as the beamforming output
results from Step (P1). This re-ordering has no effect on
the algorithm’s convergence or beamforming result. We will
analyze the algorithm complexity8 in Section V-A and show
the reference implementation of Algorithm 3 in Section VI.

Remark 1. Although we propose a decentralized scheme
using CG for uplink data detection in Section III-D, a similar
decentralization method of CG is not applicable in the downlink.
Since we partition the uplink channel matrix H row-wise into C
blocks, we should similarly partition the downlink channel
matrix column-wise into blocks due to the channel reciprocity;
this prevents an expansion analogously to (7). Consequently,
we focus exclusively on ADMM-based beamforming.

V. RESULTS

We now analyze the computational complexity and consensus
bandwidth of our proposed algorithms. We also show error-rate
simulation results in LTE-like massive MU-MIMO uplink and
downlink systems. We investigate the performance/complexity

8The matrices Pc = A−1
c HH

c or Pc = HH
c B−1

c could be precomputed
to avoid recurrent computations within the ADMM iterations (at line 18 or 20
in Algorithm 3). Instead, we directly compute A−1

c HH
c (z

(t)
c + λ

(t)
c ) or

HH
c B−1

c (z
(t)
c +λ

(t)
c ), which only requires two matrix-vector multiplications;

precomputing Pc requires costly matrix-matrix multiplications. Hence, our
complexity analysis in Section VI refers to Algorithm 3.



K. LI ET AL. 9

TABLE I
COMPUTATIONAL COMPLEXITY OF CENTRALIZED AND DECENTRALIZED DATA DETECTION AND BEAMFORMING.

Algorithm Mode Preprocessing 1st iteration Subsequent iterations (each)

ADMM-DL
S × S TM 2US2 + 10

3
S3 − 1

3
S 4SU + 4S2 8SU + 4S2 + 6U + 1

AR C(2US2 + 10
3
S3 − 1

3
S) C(4SU + 4S2) C(8SU + 4S2 + 2U) + 4U + 1

U × U TM 2SU2 + 10
3
U3 − 1

3
U 4SU + 4U2 8SU + 4U2 + 6U + 1

AR C(2SU2 + 10
3
U3 − 1

3
U) C(4SU + 4U2) C(8SU + 4U2 + 2U) + 4U + 1

ADMM-UL
S × S TM 2US2 + 10

3
S3 + 4US + 4S2 − 1

3
S 2U 8SU + 4S2 + 4U

AR C(2US2 + 10
3
S3 + 4US + 4S2 − 1

3
S) 2U C(8SU + 4S2 + 2U) + 2U

U × U TM 2SU2 + 10
3
U3 + 4SU + 4U2 − 1

3
U 2U 4U2 + 6U

AR C(2SU2 + 10
3
U3 + 4SU + 4U2 − 1

3
U) 2U C(4U2 + 4U) + 2U

CG-UL TM 4SU + 2U 8SU + 6U 8SU + 12U
AR 4CSU + 2U C(8SU + 4U) + 2U C(8SU + 10U) + 2U

Centralized ZF-DL 6CSU2 + 10
3
U3 + 4CSU − 4

3
U

MMSE-UL 6CSU2 + 10
3
U3 + 4CSU − 1

3
U

trade-offs and show practical operating points of our decentral-
ized methods under various antenna configurations, providing
design guidelines for decentralized massive MU-MIMO BSs.

A. Computational Complexity

In Table I, we list the number of real-valued multiplications9

of our decentralized ADMM-based downlink beamforming
(ADMM-DL), ADMM-based uplink detection (ADMM-UL)
and CG-based uplink detection (CG-UL) algorithms. We also
compare the complexity to that of conventional, centralized ZF
downlink beamforming (ZF-DL) and MMSE uplink detection
(MMSE-UL). For all decentralized algorithms and modes,
for example, the “S × S mode” when S ≤ U and the
“U × U mode” when S > U , we show the timing (TM)
complexity and arithmetic (AR) complexity. We assume that
the centralized computations take place on a centralized PE
while decentralized computations are carried out on multiple
decentralized PEs. For the centralized computations, both the
TM and AR complexities count the number of real-valued
multiplications on the centralized PE. For the decentralized
operations, the TM complexity only counts operations that take
place on a single local processing unit where all decentralized
local processors perform their own computations in parallel
at the same time, thus reflecting the latency of algorithm
execution; in contrast, the AR complexity counts the total
complexity accumulated from all local processing units, thus
reflecting the total hardware costs. The complexity of our
methods depends on the number of clusters C, the number of
users U , the number of BS antennas S per antenna cluster,
and the number of iterations Tmax to achieve satisfactory error-
rate performance. We also divide the complexity counts into
three parts: preprocessing before ADMM or CG iterations, first
iteration, and subsequent iterations. The complexity in the first
iteration is typically lower as many vectors are zero.

Table I reveals that preprocessing for ADMM exhibits
relatively high complexity, whereas CG-based detection is
computationally efficient. The per-iteration complexity of

9We ignore data-dependencies or other operations, such as additions,
divisions, etc. While this complexity measure is rather crude, it enables insights
into the pros and cons of decentralized baseband processing.

ADMM is, however, extremely efficient (depending on the
operation mode). Overall, CG-based data detection is more
efficient than the ADMM-based counterpart, whereas the latter
enables more powerful regularizers. Centralized ZF or MMSE
beamforming or detection, respectively, require high complexity,
i.e., scaling with U3, but generally achieve excellent error-
rate performance [4]. We will analyze the trade-offs between
complexity and error-rate performance in Section V-D.

B. Consensus Bandwidth

The amount of data passed between the centralized process-
ing unit and the decentralized local units during ADMM or CG
iterations scales with the dimension of the consensus vector
w(t). For a single subcarrier, w(t) is a vector with U complex-
valued entries. If we perform detection or precoding for a total
of NCR subcarriers, then in each ADMM or CG iteration, we
need to gather U × NCR complex-valued entries from each
local processing unit for consensus vectors corresponding to
NCR subcarriers, and broadcast all NCR consensus vectors to
each local processor afterwards. Such a small amount of data
exchange relaxes the requirement on interconnection bandwidth
among decentralized PEs, and avoids the large data transfer
between the entire BS antenna array and BS processor in a
conventional centralized BS. However, as we will show with
our GPU cluster implementation in Section VI, the interconnect
latency of the network critically effects the throughput of DBP.

C. Error-Rate Performance

We simulate our decentralized data detection and beamform-
ing algorithms in an LTE-based large-scale MIMO system.10

For both the uplink and downlink simulations, we consider
OFDM transmission with 2048 subcarriers in a 20 MHz
channel, and incorporate our algorithms with other necessary
baseband processing blocks, including 16-QAM modulation
with Gray mapping, FFT/IFFT for subcarrier mapping, rate-5/6
convolutional encoding with random interleaving and soft-
input Viterbi-based channel decoding [37]. We generate the

10A simplified MATLAB simulator for DBP in the uplink and downlink is
available on GitHub at https://github.com/VIP-Group/DBP

https://github.com/VIP-Group/DBP


10 TO APPEAR IN THE IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C8-B64

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C16-B128

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S32-C8-B256

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

Bi
t e

rr
or

-r
at

e
U16-S32-C16-B512

 

 

MMSE
MRC
ADMM-D:Iter1
ADMM-D:Iter2
ADMM-D:Iter3
ADMM-D:Iter4
ADMM-D:Iter5

(a) Error-rate performance of decentralized ADMM uplink data detection.

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C8-B64

-10 0 10
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C16-B128

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S32-C8-B256

-10 0 10
10-3

10-2

10-1

100

SNR [dB]

Bi
t e

rr
or

-r
at

e

U16-S32-C16-B512

 

 

MMSE
MRC
CG-D:Iter1
CG-D:Iter2
CG-D:Iter3
CG-D:Iter4
CG-D:Iter5

(b) Error-rate performance of decentralized CG uplink data detection.

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C8-B64

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

U16-S8-C16-B128

-10 0 10
10-3

10-2

10-1

100

SNR [dB]

U16-S32-C8-B256

-10 -5 0 5 10 15
10-3

10-2

10-1

100

SNR [dB]

Bi
t e

rr
or

-r
at

e

U16-S32-C16-B512

 

 

ZF
MRC
ADMM-B:Iter1
ADMM-B:Iter2
ADMM-B:Iter3
ADMM-B:Iter4
ADMM-B:Iter5

(c) Error-rate performance of decentralized ADMM downlink beamforming.

Fig. 2. Bit error-rate (BER) performance of decentralized data detection and beamforming; we use the notation U − S − C −B (representing the number of
users U , antennas per clusters S, clusters C, and BS antennas B) as subtitle of each figure to indicate the corresponding system configuration.

channel matrices using the Winner-II channel model [38] and
consider channel estimation errors, i.e., we assume a single
orthogonal training sequence per user and active subcarrier.
For the sake of simplicity, we avoid rate adaptation, the use
of cyclic redundancy checks, and (hybrid) ARQ transmission
protocols.

In Figure 2, we show the coded bit error-rate (BER)
performance against average SNR per receive antenna for
decentralized ADMM detection (Figure 2(a)), for decentralized
CG detection (Figure 2(b)) in the uplink, and for decentralized
ADMM beamforming (Figure 2(c)) in the downlink. We
consider various antenna configurations. We fix the number
of users U = 16, and set S = 8 (for S ≤ U case) or S = 32
(for S > U case), and scale the total BS antenna number
B = S × C from 64 to 512 by choosing C = 8 and C = 16.

We see that for all the considered antenna and cluster con-
figurations, only 2-to-3 ADMM or CG iterations are sufficient
to approach the performance of the linear MMSE equalizer.
For the S > U case, even a single ADMM iteration enables
excellent BER performance for detection and beamforming
without exhibiting an error floor, which outperforms CG with
one iteration. We note that the amount of consensus information
that must be exchanged during each ADMM or CG iteration

is rather small. Hence, our decentralized data detection and
beamforming algorithms are able to achieve the error-rate
performance of centralized solutions (such as MMSE and
MRC data detection or ZF beamforming) without resulting
in prohibitive interconnect or I/O bandwidth—this approach
enables highly scalable and modular BS designs with hundreds
or thousands of antenna elements.

D. Performance/Complexity Trade-off Analysis

Figure 3 illustrates the trade-off between error-rate perfor-
mance and computational complexity of our proposed methods.
As a performance metric, we consider the minimum required
SNR to achieve 1% BER; the complexity is characterized by
the TM complexity and depends on the number of ADMM or
CG iterations (the numbers next to the curves). As a reference,
we also include the BER performance of centralized MMSE
data detection and ZF beamforming (dashed vertical lines).

For the uplink, Figures 3(a) and 3(b) show the trade-offs for
ADMM-based and CG-based data detection, respectively. We
see that only a few CG iterations are sufficient to achieve near-
MMSE performance whereas ADMM requires a higher number
of iterations to achieve the same performance. CG-based data



K. LI ET AL. 11

-5 0 5 10 15
0

1

2

3

4

5 x 104

iter2iter3
iter4
iter5

iter2
iter3

iter4
iter5

iter1iter2iter3iter4iter5

iter1
iter2iter3iter4iter5

Minimum SNR [dB] to achieve 1% BER

Ti
m

in
g 

(T
M

) C
om

pl
ex

ity

 

 

MMSE S8-C8
ADMM-D S8-C8
MMSE S8-C16
ADMM-D S8-C16
MMSE S32-C8
ADMM-D S32-C8
MMSE S32-C16
ADMM-D S32-C16

(a) UL ADMM-based data detection.

-5 0 5 10 15
0

1

2

3

4

5 x 104

iter3iter4iter5

iter2iter3iter4iter5

iter2

iter3

iter4

iter5

iter2

iter3

iter4

iter5

Minimum SNR [dB] to achieve 1% BER

Ti
m

in
g 

(T
M

) C
om

pl
ex

ity

 

 
MMSE S8-C8
CG-D S8-C8
MMSE S8-C16
CG-D S8-C16
MMSE S32-C8
CG-D S32-C8
MMSE S32-C16
CG-D S32-C16

(b) UL decentralized CG-based data detection.

-5 0 5 10 15
0

1

2

3

4

5

6 x 104

iter2iter3iter4iter5

iter2iter3iter4iter5

iter1

iter2

iter3

iter4

iter5

iter1

iter2

iter3

iter4

iter5

Minimum SNR [dB] to achieve 1% BER

Ti
m

in
g 

(T
M

) C
om

pl
ex

ity

 

 
ZF S8-C8
ADMM-B S8-C8
ZF S8-C16
ADMM-B S8-C16
ZF S32-C8
ADMM-B S32-C8
ZF S32-C16
ADMM-B S32-C16

(c) DL ADMM-based beamforming.

Fig. 3. Performance/complexity trade-off of decentralized data detection and beamforming in an LTE-like massive MU-MIMO system with U = 16 users.

detection exhibits the better trade-off here, and is the preferred
method. However, for scenarios such as U < S, ADMM-based
detection exhibits no error floor, even for a single iteration,
while CG-based data detection performs rather poorly at one
iteration. In addition, our ADMM-based method supports more
sophisticated regularizers (such as the BOX regularizer).

For the downlink, Figure 3(c) shows our proposed ADMM-
based beamformer. We see that only a few iterations (e.g., 2 to
3 iterations) are necessary to achieve near-optimal performance.
In addition, for small antenna cluster sizes (e.g., S = 8), the
complexity is comparable to CG-based detection; for large
antenna cluster sizes, the complexity is only 2× higher.

VI. GPU CLUSTER IMPLEMENTATION

General purpose computing on GPU (GPGPU) is widely
used for fast prototyping of baseband algorithms in the context
of reconfigurable software-defined radio (SDR) systems [35],
[39], [40]. We now present reference implementation results
of the proposed decentralized data detection and beamforming
algorithms on a GPU cluster to demonstrate the practical
scalability of DBP in terms of throughput. We consider a
wideband scenario, which enables us to exploit decentralization
across subcarriers and in the BS antenna domain. Fig. 4
illustrates the mapping of our algorithms onto the GPU cluster,
the main data flow, and the key computing modules. For all our
implementations, we use the message passing interface (MPI)
library [41] to generate C independent processes on C comput-
ing nodes in the GPU cluster, where each process controls a
GPU node for accelerating local data detection or beamforming
using CUDA [42]. Data collection and broadcasting among
GPUs nodes can be realized by MPI function calls over a high-
bandwidth Cray Aries [43] or Infiniband [44] interconnect
network. We benchmark our implementations for a variety of
antenna and cluster configurations to showcase the efficacy
and scalability of DBP to very large BS antenna arrays with
decentralized computing platforms.

A. Design Mapping and Optimization Strategies

We next discuss the implementation details and optimizations
that achieve high throughput with our decentralized algorithms.

GPU Node 1

GPU Node 2

GPU Node C

Local
Input

Ce
nt

ra
liz

ed
 C

on
tr

ol
G

en
er

at
e 

C
M

PI
 P

ro
ce

ss
es

Ce
nt

ra
liz

ed
 C

on
se

ns
us

 In
it.

M
PI

 A
llR

ed
uc

e

Stage I: 
Preprocessing

GPU Node 1

GPU Node 2

GPU Node C

Ce
nt

ra
liz

ed
 C

on
se

ns
us

 C
om

p.
M

PI
 A

llR
ed

uc
e

Stage II: Iterative ADMM/CG Computations

G
at

he
r

Global
Output

Local
Input

Local
Input

Br
oa

dc
as

t

Mat.
Mult.

Mat.
Inv.

CUBLAS Kernels
Mat.
Mult.

CUBLAS
Vec.
Add.

Vec.
Sub.

Vec.
Scale

Vec.
Dot Prod.

Customized Vector Operation Kernels

All threads finally have the dot product result

1     2    3    4    5    6     7    8    9   10  11  12  13  14  15  16Thread ID
Thread shuffle in a warp: __shfl_xor reduction for dot product

compute on local regs.
shuffle to other threads

Compute Flow

Fig. 4. Mapping of the algorithms on the GPU cluster. Each GPU node
performs local data detection (uplink) or beamforming (downlink) on C
CUDA GPUs using CUBLAS or customized kernel blocks as detailed in
Algorithms 1, 2, and 3. The bottom part illustrates the dot product kernel, in
which we use a warp shuffle [42] approach to minimize the processing latency.

1) Optimizing kernel computation performance: The local
data detection and beamforming computations in each cluster
are mapped as GPU kernel functions, which can be invoked
with thousands of threads on each GPU node to realize
inherent algorithm parallelism and to exploit the massive
amount of computing cores and memory resources. All of
our decentralized algorithms mainly require matrix-matrix
and matrix-vector multiplications. The ADMM methods also
involve an explicit matrix inversion step. Such computations
are performed efficiently using the cuBLAS library [45], a
CUDA-accelerated basic linear algebra subprograms (BLAS)
library for GPUs. We use the cublasCgemmBatched
function to perform matrix-matrix multiplications and matrix-
vector multiplications, and use cublasCgetrfBatched
and cublasCgetriBatched to perform fast matrix in-
versions via the Cholesky factorization followed by forward-
backward substitution [46]. For these functions, “C” implies that
we use complex-valued floating point numbers and “Batched”
indicates that the function can complete a batch of computations
in parallel, which are scaled by the batchsize parameter of



12 TO APPEAR IN THE IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

the function with a single function call. Since the local data
detection or beamforming problems are solved independently
for each subcarrier, we can group a batch of subcarriers
and process them together to achieve high GPU utilization
and throughput. For each data detection or beamforming
computation cycle, we define Nsym OFDM symbols, each
including Nsc subcarriers, as the total workload to be processed
by such Batched kernel function calls. We assume that the
channel remains static for Nsym symbols.

For the preprocessing stage, the matrix-matrix multiplications
and matrix inversions, which only depend on Hc, can be
calculated with batchsize = Nsc for Nsc subcarriers in
an OFDM symbol, and then broadcast to all Nsym symbols
inside GPU device memory to reduce complexity. For the
matrix-vector multiplications, we invoke cuBLAS functions
with batchsize=Nsc ×Nsym, because these computations
depend on transmit or receive symbols as well.

For all other types of computations, such as vector ad-
dition/subtraction and inner product calculations, we use
customized kernel functions. In this way, we can combine
several vector computation steps into a single kernel, and
take advantage of local registers or shared memories to
store and share intermediate results instead of using slower
GPU device memories and multiple cuBLAS functions. Vector
addition/subtraction for Nsc × Nsym number of U -element
vectors exposes explicit data parallelism and can proceed with
Nsc × Nsym × U GPU threads in parallel. However, the dot
product for each pair of U -dimensional vectors requires internal
communication among a group of U threads, each thread
controlling an element-wise multiplication, to be reduced to a
sum. A typical way for such a reduction is to resort to the shared
memory, an on-chip manageable cache with L1 cache speed,
where a certain group of U threads associated with a vector
sums up their element-wise multiplication results to a shared
variable atomically, for example, using the atomicAdd CUDA
function call. However, shared memory typically suffers from
higher latency (compared to that of local registers) and also
from possible resource competition among multiple threads.
In the CG-based data detector, we utilize the warp shuffle
technique, which is supported by Kepler-generation GPUs for
efficient register-to-register data shuffling among threads within
a thread warp [42], for faster parallel reduction. As shown in
Fig. 4, we use the __shfl_xor(var,laneMask) intrinsic,
which retrieves the register value of variable var from a certain
thread with lane ID source_id for the calling thread with lane
ID dest_id within the same warp, where source_id satisfies:
source_id XOR dest_id = laneMask, XOR indicating
bitwise exclusive or. In this way, the parallel sum reduction
for the inner product of two U -element vectors can be realized
by var=__shfl_xor(val,laneMask)+var in log2(U)
iterations on a reduction tree with initial laneMask = U ,
and laneMask reduced to half in each iteration. Finally, as
shown in Fig. 4, each of the U threads will have a copy
of the inner-product result stored in its own var, i.e., the
above process is actually an operation of allreduce rather
than reduce, which facilitates downstream computations in
which each thread requires the value of the inner product.
Here, we assume that the number of user antennas satisfies

TABLE II
PARALLELISM ANALYSIS AND MAPPING STRATEGIES.

Module Strategy Parallelism Memory1

Mat. mult. batch cuBLAS Nsc ×Nsym g,c,s,r
Mat. inv. batch cuBLAS Nsc ×Nsym g,c,s,r
Vec. +/-/scale multi-threading Nsc ×Nsym × U g,c,r
Vec. dot prod. warp shuffle Nsc ×Nsym × U g,c,r
GPU comm. MPI, RDMA Among C GPUs g

1g: global (device) memory; c: cache; s: shared memory, r: register

U ≤ warpsize = 32 and is a power of two, for example, U = 8
or U = 16. Otherwise, we can resort to the alternative vector
inner product solution by atomicAdd using shared memory.
The optimizations described above enable the computation of
each iteration using Nsc×Nsym×U threads using fast on-chip
memory resources and efficient inter-thread communication
schemes that avoid blocking.

2) Improving message passing efficiency: Message passing
latency is critical to the efficiency of our design. For our
decentralized algorithms, the consensus operations require data
collection and sharing among C GPU nodes. This can be
realized by MPI collective function calls for inter-process
communication among C controlling processes with messages
of size Nsc ×Nsym × U complex samples. More specifically,
we choose the MPI_Allreduce function to sum (and then
average) vectors across nodes. We then broadcast the resulting
consensus vector w to all local nodes within this single collec-
tive MPI function call. Typically, MPI_Allreduce operates
on the CPU’s memory and requires GPU arrays to be copied
into a CPU memory buffer before calling MPI_Allreduce.
To eliminate redundant memory copy operations, we take
advantage of CUDA-aware MPI [47] and GPUDirect remote
device memory access (RDMA) techniques [48], which enable
the MPI function to explicitly operate on GPU memories
without using a CPU intermediary buffer. This results in
reduced latency and higher bandwidth. Table II summarizes the
key mapping strategies, degrees of parallelism, and associated
memory usage for both intra-GPU computing modules and inter-
GPU communication mechanisms of our GPU implementations.

B. Implementation Results

We implemented our algorithms on a Navy DSRC Cray
XC30 cluster [49] equipped with 32 GPU nodes connected
by a Cray Aries network interface. Each node has a 10-core
Intel Xeon E5-2670v2 CPU and an Nvidia Tesla K40 GPU
with 2880 CUDA cores and 12 GB GDDR5 memory. The
Cray Aries network uses a novel Dragonfly topology that
enables fast and scalable network communication with a peak
all-to-all global bandwidth of 11.7 GB/s per node for the full
network [43]. The hybrid MPI and CUDA designs are compiled
by Nvidia’s nvcc compiler and the Cray compiler, and linked
with CUDA’s runtime library, the cuBLAS library, and the Cray
MPICH2 library. Our software implementations can be easily
reconfigured with new design parameters, such as number of
BS antennas, modulation schemes, etc, and recompiled in a
few seconds to enable high design flexibility. In what follows,



K. LI ET AL. 13

TABLE III
LATENCY (L) IN [MS] AND THROUGHPUT (T) IN [MB/S] FOR DECENTRALIZED DATA DETECTION AND BEAMFORMING (U = 16).

B 64 128 256 128 256 512 256 512 1024
C 8 16 32 8 16 32 8 16 32
S 8 8 8 16 16 16 32 32 32

Iter. L / T L / T L / T L / T L / T L / T L / T L / T L / T

ADMM-based decentralized uplink data detection

1 2.060 / 417.5 2.166 / 397.1 2.520 / 341.4 3.810 / 225.7 4.079 / 210.9 4.466 / 192.6 4.329 / 198.7 4.516 / 190.5 4.693 / 183.3
2 4.989 / 172.4 5.411 / 159.0 6.451 / 133.3 6.756 / 127.3 7.597 / 113.2 8.495 / 101.3 7.173 / 119.9 7.855 / 109.5 8.615 / 99.84
3 7.728 / 111.3 8.561 / 100.5 9.910 / 86.80 9.712 / 88.56 10.94 / 78.62 12.68 / 67.85 10.22 / 84.15 11.27 / 76.30 12.98 / 66.28
4 10.80 / 79.67 11.92 / 72.16 13.79 / 62.39 12.44 / 69.12 14.08 / 61.10 16.64 / 51.68 13.49 / 63.78 14.83 / 57.99 17.27 / 49.81
5 13.43 / 64.01 15.69 / 54.83 17.59 / 48.90 15.18 / 56.66 17.88 / 48.10 21.11 / 40.75 16.50 / 52.13 18.65 / 46.12 21.53 / 39.95

CG-based decentralized uplink data detection

1 3.516 / 244.7 4.077 / 211.0 4.594 / 187.2 3.811 / 225.7 4.325 / 198.9 4.960 / 173.4 4.232 / 203.3 4.729 / 181.9 4.984 / 161.8
2 5.078 / 169.4 6.192 / 138.9 6.574 / 130.8 5.597 / 153.7 6.160 / 139.6 7.190 / 119.6 6.207 / 138.6 7.067 / 121.7 7.150 / 112.8
3 6.567 / 131.0 8.250 / 104.3 8.490 / 101.3 7.323 / 117.5 8.436 / 102.0 9.310 / 92.39 7.841 / 109.7 9.100 / 94.52 9.314 / 86.58
4 8.080 / 106.5 10.02 / 85.87 10.79 / 79.70 9.243 / 93.06 10.22 / 84.12 11.91 / 72.20 9.775 / 88.00 10.90 / 78.94 11.45 / 70.43
5 9.787 / 87.88 11.97 / 71.85 12.74 / 67.52 11.07 / 77.69 11.95 / 71.99 14.03 / 61.30 11.93 / 72.08 13.27 / 64.82 13.61 / 59.25

ADMM-based decentralized downlink beamforming

1 0.744 / 1156 0.745 / 1155 0.746 / 1154 2.261 / 380.5 2.266 / 379.6 2.271 / 378.8 2.785 / 308.8 2.792 / 308.1 2.797 / 307.6
2 2.685 / 320.3 2.849 / 301.9 2.974 / 289.2 4.048 / 212.5 4.318 / 199.2 4.557 / 188.8 4.618 / 186.3 4.762 / 180.6 5.084 / 169.2
3 4.567 / 188.4 4.954 / 173.6 4.803 / 179.1 5.741 / 149.8 5.966 / 144.2 6.240 / 137.9 6.323 / 136.0 6.651 / 129.3 7.213 / 119.2
4 6.269 / 137.2 6.797 / 126.6 6.769 / 127.1 7.352 / 117.0 7.741 / 111.1 8.720 / 98.65 7.849 / 109.6 8.371 / 102.8 9.380 / 91.70
5 8.055 / 106.8 9.012 / 95.45 8.753 / 98.27 8.766 / 98.12 9.558 / 89.99 10.42 / 82.54 9.570 / 89.88 10.15 / 84.76 11.11 / 77.40

Centralized MMSE uplink data detection and ZF downlink beamforming (baseline implementations)

MMSE 3.755 / 229.1 5.371 / 160.2 8.607 / 99.94 5.371 / 160.2 8.607 / 99.94 15.04 / 57.20 8.607 / 99.94 15.04 / 57.20 27.97 / 30.75
ZF 4.063 / 211.7 5.936 / 144.9 9.698 / 88.70 5.936 / 144.9 9.698 / 88.70 17.18 / 50.06 9.698 / 88.70 17.18 / 50.06 32.19 / 26.72

we benchmark the latency (in milliseconds) and throughput (in
Mb/s) of our implementations based on CPU wall-clock time.

Table III summarizes the latency and throughput performance
of ADMM-based decentralized data detection, CG-based
decentralized data detection, and ADMM-based decentralized
beamforming, depending on the number of iterations Tmax.
We also include the performance of centralized MMSE data
detection and ZF beamforming designs based on our previous
results reported in [35] as a baseline.11 We consider a scenario
with 64-QAM, a coherence interval of Nsym = 7 symbols,
and Nsc = 1200 active subcarriers, which reflects a typical
slot of a 20 MHz LTE frame. We fix the number of users to
U = 16 and show results for three scenarios: (i) U > S with
S = 8, (ii) U = S = 16, and (iii) U < S with S = 32.
For each scenario, we vary the number of BS antennas as
B = CS for different cluster sizes C ∈ {8, 16, 32}. The
measured latency includes both kernel-computation and inter-
GPU message-passing latencies. The computation latency scales
up with local computation workload, while the average message-
passing latency is approximately 1 ∼ 2ms in each ADMM or
CG iteration and remains nearly constant for C ≤ 32 thanks
to the scalable Dragonfly topology of Cray Aries.

We see that by increasing the number of clusters C, and
hence the total number of BS antennas B, the achieved through-
put degrades only slightly; this demonstrates the excellent

11Centralized data detectors and beamformers for massive MU-MIMO have
been implemented on FPGAs and ASICs in, e.g., [50]–[52]. A direct and fair
comparison with our GPU implementations is, however, difficult.

scalability of DBP to large antenna arrays. In stark contrast,
centralized MMSE and ZF methods suffer from an orders-of-
magnitude throughput degradation when increasing the number
of BS antennas; this clearly shows the limits of centralized
data detection and beamforming methods. We also note that
for MIMO systems with a relatively small number of BS
antennas, such as, when B = 64 or B = 128, we see that
centralized data detection and precoding is able to achieve a
higher throughput than decentralized schemes. We emphasize,
however, that centralized processing assumes that one is able to
get the raw baseband data into the single, centralized computing
fabric at sufficiently high data rates. We furthermore we see that
for a given number of clusters C, the throughput for the S = 32
case is smaller than that of the S = 8 case. The reason for this
behavior is the fact that having a large number of antennas
per cluster S leads to a higher complexity associated with
larger Gram matrix multiplications in each local processing
unit while supporting more total BS antennas. For example,
for C = 32 and S = 32, we have B = 1024 BS antennas and
achieve relatively high throughput. We also see that the CG
detector achieves comparable or higher throughput than the
ADMM detector for most cases due to its lower computational
complexity. Quite surprisingly, the ADMM beamformer can
enable even higher performance than both ADMM and CG
detectors. In the S = 8 case, for example, over 1Gb/s
of beamforming throughput can be achieved using a single
ADMM iteration. This behavior is due to the fact that a single
ADMM beamforming iteration (Algorithm 3) only requires



14 TO APPEAR IN THE IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

local computations but no message passing, while ADMM
and CG detectors require message passing. This indicates that,
despite the optimizations described above, message passing
latency still has a crucial effect on performance and further
improvements in messaging may yield even higher data rates.

Remark 2. We emphasize these GPU cluster implementations
serve as a proof-of-concept to showcase the efficacy and
design scalability of DBP to large BS antenna arrays. The
achieved throughputs are by no means high enough for 5G
wireless systems, which is mainly a result of the relatively
high interconnect latency. Nevertheless, we expect that DBP
achieves throughputs in the Gb/s regime if implemented on
FPGA or ASIC clusters, which offer higher computing efficiency
and lower interconnect latency (e.g., using Xilinx’s GTY [53]
or Aurora protocols [54]) than that of GPU clusters.

Remark 3. Power efficiency is another key aspect of practical
BS designs. The thermal design power (TDP) of the Tesla
K40 GPU used in our implementation is 235W, leading to a
maximum power dissipation of C×235W with C fully-utilized
GPUs. While this is a pessimistic power estimate, we expect
that dedicated implementations on FPGA or ASIC will yield
orders-of-magnitude better performance per watt.

VII. CONCLUSIONS

We have proposed a novel decentralized baseband processing
(DBP) architecture for massive MU-MIMO BS designs that
mitigates interconnect and chip I/O bandwidth as well as
complexity and signal processing bottlenecks. DBP partitions
the BS antenna array into independent clusters which perform
channel estimation, data detection, and beamforming in a
decentralized and parallel manner by exchanging only a small
amount of consensus information among the computing fabrics.
The proposed data detection and beamforming algorithms
achieve near-optimal error-rate performance at low complex-
ity. Furthermore, our simple consensus algorithms have low
bandwidth requirements. Our GPU cluster implementation
shows that the proposed method scales well to BS designs
with thousands of antenna elements, and demonstrates that
DBP enables the deployment of modular and scalable BS
architectures for realistic massive MU-MIMO systems.

We see numerous avenues for future work. A rigorous
error-rate performance analysis of the proposed algorithms
is an open research topic. The integration of our intra-cell
decentralization schemes with inter-cell CoMP and C-RAN
frameworks is a direction worth to pursue in the future. The
development of decentralized algorithms for other 5G waveform
candidates, such as SC-FDMA, FMBC, or GFDM, is left for
future work. To alleviate the latency bottleneck, decentralized
feedforward architectures as in [55] should be investigated for
the downlink. Finally, an implementation of DBP on clusters
with computing fabrics that have low interconnect latency
and power consumption, such as FPGA or ASIC clusters,
or heterogeneous or hybrid processors and accelerators for
optimized workload deployment is part of ongoing work.

APPENDIX A
PROOFS

A. Proof of Lemma 1

We start by reformulating Step E2 as follows:

s(t+1) = arg min
s∈CU

g(s) +
∑C
c=1

ρ
2

∥∥∥s−w
(t)
c

∥∥∥2
2
, (9)

where we use the shorthand w
(t)
c = z

(t+1)
c + λ

(t)
c . Let v(t) =

1
Cw

(t) = 1
C

∑C
c=1 w

(t)
c . Then, we can complete the square in

the sum of the objective function of (9), which yields∑C
c=1

∥∥∥s−w
(t)
c

∥∥∥2
2
=C‖s‖22 − sHCv(t) − (v(t))HCs

+
∑C
c=1

∥∥∥w(t)
c

∥∥∥2
2
= C

∥∥s− v(t)
∥∥2
2
+K,

where we define the constant K =
∑C
c=1

∥∥∥w(t)
c

∥∥∥2
2
−C

∥∥v(t)
∥∥2
2
.

Since K is independent of the minimization variable s in (9),
we obtain the equivalent minimization problem in (5).

B. Proof of Lemma 2

We start by reformulating Step (P2) as follows:

z(t+1) = arg min
z∈CUC ,‖s−Dz‖2≤ε

1
2

∥∥∥w(t)
all − z

∥∥∥2
2
, (10)

where we define D = 11×C ⊗ IU , zT = [zT1 · · · zTC ], and
(w

(t)
all )

T = [(w
(t)
1 )T · · · (w(t)

C )T ] with w
(t)
c = Hcx

(t+1)
c −λ

(t)
c .

Now, observe that the minimization problem (10) is the orthog-
onal projection of w

(t)
all onto the constraint ‖s−Dz‖2 ≤ ε.

We have the following closed-form expression for z(t+1) [56]:

w
(t)
all +max

{
0, 1− ε

‖s−Dw
(t)
all ‖2

}
DH(DDH)−1(s−Dw

(t)
all ).

We can simplify this expression using the identity

(DDH)−1 = ((11×C ⊗ IU )(11×C ⊗ IU )
H)−1

= (C ⊗ IU )
−1 = C−1IU

and DHD = 1C×C ⊗ IU . With these results, we obtain the
following equivalent expression for z(t+1)

w
(t)
all +max

{
0, 1− ε

‖s−Dw
(t)
all ‖ 2

}
×

1

C

(
DHs− (1C×C ⊗ IU )w

(t)
all

)
,

which can be written using the per-cluster variables as

z(t+1)
c = w

(t)
c +max

{
0, 1− ε

‖s−v(t)‖2

}(
1
C s− v(t)

)
with v(t) = 1

Cw
(t) = 1

C

∑C
c=1 w

(t)
c ;w

(t)
c = Hcx

(t+1)
c − λ

(t)
c .

ACKNOWLEDGMENTS

The work of K. Li, Y. Chen, and J. R. Cavallaro was
supported in part by the US National Science Foundation (NSF)
under grants CNS-1265332, ECCS-1232274, ECCS-1408370,
and CNS-1717218. The work of R. Sharan and C. Studer was
supported in part by the US NSF under grants ECCS-1408006,
CCF-1535897, CAREER CCF-1652065, and CNS-1717559,



K. LI ET AL. 15

and by Xilinx, Inc. The work of T. Goldstein was supported
in part by the US NSF under grant CCF-1535902 and by the
US Office of Naval Research under grant N00014-17-1-2078.

REFERENCES

[1] K. Li, R. Sharan, Y. Chen, T. Goldstein, J. R. Cavallaro, and C. Studer,
“Decentralized Beamforming for Massive MU-MIMO on a GPU Cluster,”
in Proc. of IEEE Global Conf. on Signal and Information Processing,
Dec. 2016.

[2] K. Li, R. Sharan, Y. Chen, T. Goldstein, J. R. Cavallaro, and C. Studer,
“Decentralized data detection for massive MU-MIMO on a Xeon Phi
cluster,” in Proc. of Asilomar Conf. on Signals, Systems, and Computers,
Oct. 2016.

[3] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An
Overview of Massive MIMO: Benefits and Challenges,” IEEE J. Sel.
Topics in Sig. Proc., vol. 8, no. 5, pp. 742–758, Oct. 2014.

[4] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive
MIMO for next generation wireless systems,” IEEE Commun. Mag., vol.
52, no. 2, pp. 186–195, Feb. 2014.

[5] http://www.cpri.info, Common public radio interface.
[6] C. Shepard, H. Yu, N. Anand, E. Li, T. Marzetta, R. Yang, and L. Zhong,

“Argos: Practical Many-antenna Base Stations,” in Proc. of the 18th
Annual Intl. Conf. on Mobile Computing and Networking, Aug. 2012,
pp. 53–64.

[7] C. Shepard, H. Yu, and L. Zhong, “ArgosV2: A Flexible Many-antenna
Research Platform,” in Proc. of the 19th Annual Intl. Conf. on Mobile
Computing and Networking, Aug. 2013, pp. 163–166.

[8] J. Vieira, S. Malkowsky, K. Nieman, Z. Miers, N. Kundargi, L. Liu,
I. Wong, V. Öwall, O. Edfors, and F. Tufvesson, “A flexible 100-antenna
testbed for Massive MIMO,” in 2014 IEEE Globecom Workshops, Dec.
2014, pp. 287–293.

[9] Q. Yang, X. Li, H. Yao, Ji. Fang, K. Tan, W. Hu, J. Zhang, and Y. Zhang,
“BigStation: Enabling Scalable Real-time Signal Processing in Large
MU-MIMO Systems,” in Proc. of the ACM Conference on SIGCOMM,
Aug. 2013, pp. 399–410.

[10] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL
of Cellular Networks: How Many Antennas Do We Need?,” IEEE J. Sel.
Areas in Commun., vol. 31, no. 2, pp. 160–171, Feb. 2013.

[11] http://www.ni.com/white paper/52382/en/, 5G Massive MIMO Testbed:
From Theory to Reality.

[12] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H. P.
Mayer, L. Thiele, and V. Jungnickel, “Coordinated multipoint: Concepts,
performance, and field trial results,” IEEE Commun. Mag., vol. 49, no.
2, pp. 102–111, Feb. 2011.

[13] M. Sawahashi, Y. Kishiyama, A. Morimoto, D. Nishikawa, and M. Tanno,
“Coordinated multipoint transmission/reception techniques for LTE-
advanced,” IEEE Wireless Commun., vol. 17, no. 3, pp. 26–34, June
2010.

[14] D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata,
and K. Sayana, “Coordinated multipoint transmission and reception in
LTE-advanced: deployment scenarios and operational challenges,” IEEE
Commun. Mag., vol. 50, no. 2, pp. 148–155, Feb. 2012.

[15] V. Jungnickel, K. Manolakis, W. Zirwas, B. Panzner, V. Braun, M. Lossow,
M. Sternad, R. Apelfrojd, and T. Svensson, “The role of small cells,
coordinated multipoint, and massive MIMO in 5G,” IEEE Commun.
Mag., vol. 52, no. 5, pp. 44–51, May 2014.

[16] C. Choi, L. Scalia, T. Biermann, and S. Mizuta, “Coordinated multipoint
multiuser-MIMO transmissions over backhaul-constrained mobile access
networks,” in IEEE 22nd Int. Symp. on Personal, Indoor and Mobile
Radio Communications (PIMRC), Sep. 2011, pp. 1336–1340.

[17] W. W. L. Ho, T. Q. S. Quek, S. Sun, and R. W. Heath, “Decentralized
Precoding for Multicell MIMO Downlink,” IEEE Trans. on Wireless
Commun., vol. 10, no. 6, pp. 1798–1809, June 2011.

[18] T. M. Kim, F. Sun, and A. J. Paulraj, “Low-Complexity MMSE Precoding
for Coordinated Multipoint With Per-Antenna Power Constraint,” IEEE
Signal Processing Letters, vol. 20, no. 4, pp. 395–398, April 2013.

[19] C. Shen, T. H. Chang, K. Y. Wang, Z. Qiu, and C. Y. Chi, “Distributed
Robust Multicell Coordinated Beamforming With Imperfect CSI: An
ADMM Approach,” IEEE Trans. on Sig. Proc., vol. 60, no. 6, pp.
2988–3003, June 2012.

[20] M. Peng, Y. Li, Z. Zhao, and C. Wang, “System architecture and key
technologies for 5G heterogeneous cloud radio access networks,” IEEE
Network, vol. 29, no. 2, pp. 6–14, Mar. 2015.

[21] C. Liu, K. Sundaresan, M. Jiang, S. Rangarajan, and G. K. Chang,
“The case for re-configurable backhaul in cloud-RAN based small cell
networks,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 1124–1132.

[22] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S.
Berger, and L. Dittmann, “Cloud RAN for Mobile Networks - A
Technology Overview,” IEEE Commun. Surveys Tutorials, vol. 17, no.
1, pp. 405–426, 2015.

[23] S. Malkowsky, J. Vieira, K. Nieman, N. Kundargi, I. Wong, V. Owall,
O. Edfors, F. Tufvesson, and L. Liu, “Implementation of Low-latency
Signal Processing and Data Shuffling for TDD Massive MIMO Systems,”
in IEEE Workshop on Sig. Proc. Systems, Oct. 2016.

[24] E. N. Tunali, M. Wu, C. Dick, and C. Studer, “Linear large-scale
MIMO data detection for 5G multi-carrier waveform candidates,” in
49th Asilomar Conf. on Signals, Systems, and Computers, Nov. 2015,
pp. 1149–1153.

[25] T. M. Schmidl and D. C. Cox, “Robust frequency and timing
synchronization for OFDM,” IEEE Trans. on Commun., vol. 45, no. 12,
pp. 1613–1621, Dec. 1997.

[26] C. Studer, S. Fateh, and D. Seethaler, “ASIC Implementation of Soft-
Input Soft-Output MIMO Detection Using MMSE Parallel Interference
Cancellation,” IEEE J. of Solid-State Circuits, vol. 46, no. 7, pp. 1754–
1765, July 2011.

[27] P. H. Tan, L. K. Rasmussen, and T. J. Lim, “Box-constrained maximum-
likelihood detection in CDMA,” in Proc. of Intl. Zurich Seminar on
Broadband Communications. Accessing, Transmission, Networking, 2000,
pp. 55–62.

[28] C. Thrampoulidis, E. Abbasi, W. Xu, and B. Hassibi, “BER analysis of
the box relaxation for BPSK signal recovery,” in Proc. IEEE Intl. Conf.
on Acoustics, Speech and Signal Processing (ICASSP), Mar. 2016, pp.
3776–3780.

[29] C. Jeon, A. Maleki, and C. Studer, “On the performance of mismatched
data detection in large MIMO systems,” in IEEE Intl. Symposium on
Info. Theory (ISIT), July 2016, pp. 180–184.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
Optimization and Statistical Learning via the Alternating Direction
Method of Multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1,
pp. 1–122, Jan. 2011.

[31] M. Hong and Z.-Q. Luo, “On the linear convergence of the alternating
direction method of multipliers,” Math. Programming, pp. 1–35, 2016.

[32] N. J. Higham, Accuracy and stability of numerical algorithms, Siam,
2002.

[33] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge Univ.
Press, 2004.

[34] B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “Conjugate gradient-based
soft-output detection and precoding in massive MIMO systems,” in 2014
IEEE Global Communications Conference, Dec 2014, pp. 3696–3701.

[35] K. Li, B. Yin, M. Wu, J. R. Cavallaro, and C. Studer, “Accelerating
massive MIMO uplink detection on GPU for SDR systems,” in IEEE
Dallas Circuits and Systems Conf. (DCAS), Oct. 2015.

[36] T. Goldstein and S. Setzer, “High-order methods for basis pursuit,” UCLA
CAM Report, pp. 10–41, 2010.

[37] C. Studer, S. Fateh, C. Benkeser, and Q. Huang, “Implementation trade-
offs of soft-input soft-output MAP decoders for convolutional codes,”
IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 59, no. 11,
pp. 2774–2783, Nov. 2012.

[38] WINNER Phase II Model.
[39] K. Li, M. Wu, G. Wang, and J. R. Cavallaro, “A high performance

GPU-based software-defined basestation,” in Proc. 48th Asilomar Conf.
on Signals, Systems and Computers, Nov. 2014, pp. 2060–2064.

[40] M. Wu, S. Gupta, Y. Sun, and J. R. Cavallaro, “A GPU implementation
of a real-time MIMO detector,” in IEEE Workshop on Sig. Proc. Systems,
Oct. 2009, pp. 303–308.

[41] https://computing.llnl.gov/tutorials/mpi, Message passing interface.
[42] http://docs.nvidia.com/cuda, Nvidia CUDA programming guide.
[43] B. Alverson, E. Froese, L. Kaplan, and D. Roweth, “Cray XC Series

Network,” Cray Inc., White Paper WP-Aries01-1112 (2012).
[44] https://en.wikipedia.org/wiki/InfiniBand, infiniband.
[45] http://docs.nvidia.com/cuda/cublas, Nvidia cuBLAS library.
[46] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed, The

Johns Hopkins Univ. Press, 1996.
[47] https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware mpi/,

CUDA-aware MPI.
[48] http://docs.nvidia.com/cuda/gpudirect rdma, GPU Direct RDMA.
[49] https://navydsrc.hpc.mil, Navy DSRC, Cray XC30 User Guide.
[50] H. Prabhu, J. Rodrigues, L. Liu, and O. Edfors, “3.6 a 60pj/b 300Mb/s

128×8 massive MIMO precoder-detector in 28nm FD-SOI,” in IEEE
Intl. Solid-State Circuits Conf. (ISSCC), Feb. 2017, pp. 60–61.



16 TO APPEAR IN THE IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS

[51] M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer,
“Large-scale MIMO detection for 3GPP LTE: Algorithms and FPGA
implementations,” IEEE J. of Sel. Topics in Sig. Proc., vol. 8, no. 5, pp.
916–929, Oct. 2014.

[52] B. Yin, M. Wu, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer, “A
3.8 Gb/s large-scale MIMO detector for 3GPP LTE-Advanced,” in IEEE
Intl. Conf. Acoustics, Speech and Sig. Process. (ICASSP), May 2014, pp.
3879–3883.

[53] Xilinx High Speed Serial.
[54] Xilinx Aurora Protocol.
[55] C. Jeon, K. Li, J. R. Cavallaro, and C. Studer, “On the achievable rates

of decentralized equalization in massive MU-MIMO systems,” in IEEE
Intl. Symposium on Info. Theory (ISIT), June 2017, pp. 1102–1106.

[56] C. Studer, T. Goldstein, W. Yin, and R. G. Baraniuk, “Democratic
Representations,” arXiv preprint: 1401.3420, Apr. 2015.


