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ABSTRACT  

Over the past years, liquid-liquid phase separation has emerged as a ubiquitous principle of cellular organi-
sation implicated in many biological processes ranging from gene expression to cell division. The formation 
of biological condensates, like the nucleolus or stress granules, by liquid-liquid phase separation is at its core 
a thermodynamic equilibrium process. However, life does not operate at equilibrium, and cells have evolved 

multiple strategies to keep condensates in a non-equilibrium state. In this review, we discuss how these non-
equilibrium drivers counteract solidification and potentially detrimental aggregation, and at the same time en-
able biological condensates to perform work and control the flux of substrates and information in a spatial 
and temporal manner. 

 
 
  



Cells are amazing mini-reactors, crowded with DNA, RNA, proteins, lipids and metabolites. To avoid 
chaos and to make intracellular reactions efficient, cells have evolved several strategies to compart-
mentalise and organize their content. In eukaryotic cells, intracellular membranes form specialised orga-
nelles that separate, for example, transcription in the nucleus from translation in the cytosol, or sequester 
respiratory chain enzymes in mitochondria. In addition, the cytoskeleton provides ‘highways’ that allow for 
the directed transport of, e.g., RNA or vesicles to the distal end of cells, and positions membrane-

bounded organelles such as the endoplasmic reticulum.  
In recent years, it has become clear that there is yet another organising principle: the formation of mem-
braneless organelles by liquid-liquid phase separation (LLPS) (1,2). In brief, LLPS describes the phenom-
enon that some biomolecules, such as proteins or nucleic acids, undergo dynamic self-association to 
form condensates within the surrounding cyto- or nucleoplasm. Examples include the nucleolus, nuclear 
speckles, stress granules or centrosomes. The role of LLPS in organising cellular content is ubiquitous, 
and critical for many biological processes in all cells, from bacteria to humans. This suggests that the pro-
cess of biomolecular condensation is evolutionary ancient, and that phase-separated structures might 
have organized cellular components since the beginning of life (3-5).  
 
LLPS-competent molecules have a certain solubility limit, and if this limit is exceeded, they reversibly con-
densate. Such behaviour is favoured because separating the cellular milieu into two regions, one of high 
component concentration and one diluted, minimizes the free energy of the system (6,7). In this respect, 
LLPS is, at its core, a thermodynamic equilibrium phenomenon. Yet, at equilibrium, the second principle 
of thermodynamics forbids any form of activity, such as directional molecular processing. Thus, in the ab-
sence of external energy input, condensates cannot perform any cellular work. In fact, they might even 
pose a danger since LLPS-mediated structures are prone to form irreversible, potentially detrimental ag-
gregates (8). However, life does not operate at equilibrium and energy-consuming processes have 
evolved that keep condensates away from equilibrium. In this review, we discuss how cells exploit such 
non-equilibrium drivers not only as a protective mechanism but also to perform work, e.g., to regulate the 
flux of substrates and information, or to control biochemical reactions in a spatial or temporal manner. 
Thus, these non-equilibrium processes endow condensates with biological functions beyond a mere role 
in organizing a cell’s content.  
 

Physical principles of condensation 
 
Interactions between molecules, e.g., between proteins, or proteins and nucleic acids, are characterised 
by the affinity or ‘strength’ of individual interactions, and the ‘valency’, which describes the number of in-
teractions one molecule can undergo with its partners. The formation of many biomolecular condensates 
by LLPS is based on weak, multivalent interactions: components need to have a valency of at least three 
to establish a branched, interconnected meshwork (Figure 1) (9,10), and interactions generally have to be 
weak (in the high nanomolar to low micromolar range) to keep the condensates readily reversible and liq-
uid-like. Interactions can involve globular domains or unstructured protein regions harbouring low amino 
acid sequence complexity (e.g., unusually rich in glutamine, asparagine, glycine, serine etc.), blocks of 



opposite charge, or cation-pi interactions (between aromatic amino acids such as tyrosine and cations 
like arginine) (1,11). Theoretically, condensates can also form at valencies below three, for example when 
entropy favours dense packing of large, inert entities accompanied by the un-packing of smaller mole-
cules, a phenomenon referred to as ‘depletion interaction’ (12). However, since depletion interactions of 
colloidal particles are not specific, it is unclear whether they play a significant role in biology.  
 

Condensates assemble when the concentration of at least one of their key components crosses its critical 
saturation limit. The result is the formation of liquid-like ‘droplets’ where the components can concentrate 
over their surrounding environment by several orders of magnitude.  Following the law of mass action, an 
“initial equilibrium” that partitions components within the droplet and in the soluble phase outside the 
droplet is established rapidly, until the soluble pool is again below the solubility limit (7,13). Once an equi-
librium is reached, there is no longer any net flux of components into or out of the droplet, although – due 
to the weak, short-lived nature of the interactions - passive exchange of components between the droplet 
phase and the soluble phase can still occur. 
 
This “initial equilibrium” state persists if all components keep their original conformations and interactions. 
However, most biological LLPS systems display additional ‘ripening’ behaviours (Figure 2): after the two 
liquid phases are phase-separated, often nucleated by a multitude of sites, the system still tries to mini-
mize the interface between phases, and thus the free energy associated with the surface tension. To do 
so, smaller droplets can either fuse, or undergo a process called ‘Ostwald ripening’ where smaller drop-
lets dissolve and their components associate to larger ones until, ideally, a single droplet remains (4,14). 
Another ripening behaviour is a kinetically slow solidification process that turns liquid-like droplets over 
time into irreversible aggregates (15,16). While the structural principles underlying this droplet aging re-
main poorly understood, one possibility is that in the initial liquid-like state the condensate components 
are not yet in an optimal sterical conformation and only a fraction of all possible inter-molecular interac-
tions are formed. Over time, aligning - or deforming - them into more favourable conformations could then 
promote the formation of additional and stronger interactions (17). We are only beginning to understand 
what protein features (18) or factors in the cellular environment could promote these transformations, 
however, an increase in the percentage of occupied interaction sites would lead to a solidification, which 
confers rigidity to the denser meshwork limiting exchange of its components. A “final equilibrium” - or min-

imal free-energy state - is reached when a maximum of interactions is established without generating 
strain. Solidification has been observed in several biological systems, including centrosomes (19,20), 
germ granules (21,22), enhancer condensates (23) and heterochromatin (24). For some of these sys-
tems, a gel-like material state seems to be beneficial and presumably supports biological function by 
providing mechanical stability, by increasing component retention times (25) or as a means of celluar 
adaption (26). But in many cases the benefit of solidification is unclear, and the process might be rather 
detrimental. In this light, the aging behaviour of phase-separated condensates has gained a lot of atten-
tion as it might underly the aggregation phenomena seen in a multitude of age-dependent aggregation 
diseases, including a large group of neurodegenerative diseases (8,27,28). For example, alpha-synuclein 



(29) or TDP-43 (30) and FUS (31), critical drivers of Parkinson’s disease or amyotrophic lateral sclerosis 
(ALS), respectively, can undergo LLPS and over time transform into irreversible aggregates in vitro. 
 
Biological condensates are heterogenous 
 
Biological condensates, or membraneless organelles, are built from different types of macromolecules, 

and contain a large number of distinct components. For example, the stress granule proteome was esti-
mated to consist of at least several hundred different proteins and a large number of distinct RNAs (32-
35). Among them, ‘primary’ components (also called ‘scaffolds’) have the ability to undergo phase separa-
tion whereas ‘secondary’ factors (or ‘clients’) cannot phase-separate by themselves, but nonetheless can 
be selectively recruited to condensates via interaction with the primary components, and in consequence 
enrich significantly in the organelle (2,9). Given the compositional complexity of membraneless organelles 
such a classification is obviously a simplification. Secondary factors can regulate, enhance or decrease 
phase separation and thereby dramatically influence the overall condensation result (6,36-38). Im-
portantly, the heterogeneity of condensates can also lead to non-intuitive differences in the behaviour of 
their constituents. For example, both primary and secondary components can have very different ex-
change rates, ranging from rapid exchange and liquid-like behaviour to very slow turnover, as if they were 
‘solid’ components of a given organelle (38-40). Likely these behaviours depend on the strength and va-
lency of interactions of a given component with its partners, but potentially also the size and diffusional 
ability of a component within the LLPS meshwork. 
 
Differences in biochemical component properties can also lead to further un-mixing and formation of 
‘droplets within droplets’. This can induce the establishment of distinct sub-compartments with different 
material and thermodynamic characteristics. Gel-like or even fibrillar cores are, for instance, found in the 
nucleolus (41) or in stress granules (32) and surrounded by more liquid compartments. The inverted situ-
ation is found in P-granules, prominent RNA-containing organelles present during development where a 
shell of gel-like MEG-3 granules forms around, and thereby locally stabilizes a liquid core of phase-sepa-
rated PGL-3, which by itself is intrinsically labile (39). 
 
Regulation of biological condensates 

 
The formation of LLPS condensates is critically regulated by the concentration of its constituents. In a bio-
logical context, this is exemplified by P-bodies and stress granules, whose formation depends on the 
availability of non-translated, ribosome-free mRNA (42). However, changing protein or RNA levels within 
a cell, either by new synthesis or degradation, is slow and energetically costly. It is therefore of im-
portance that besides changing the component concentration, condensation can also be controlled by 
changing the strength or valency of interactions, or more generally, by shifting the critical saturation 
threshold. In cells, this can be triggered by changes in temperature, crowding and also pH, which can oc-
cur during heat shock, nutrient starvation or changes in growth state. These altered conditions can di-
rectly induce changes in protein conformation to expose interaction sites and to promote the formation of 



condensates (43-45). Thus, in particular stress situations the altered cellular environment is ‘sensed’ to 
shift the condensation threshold and propensity -without altering component concentrations- in order to 
respond and survive stress situations (46,47). 
 
Furthermore, several energy-consuming, enzymatic processes modulate condensation. Post-translational 
modifications can change the physical and chemical properties of amino-acids, and thus have the poten-

tial to alter interaction strengths (48-51). For example, arginine methylation and phosphorylation systems 
have been described that prevent or promote condensation, or acutely dissolve existing condensates, 
thus acting as on-off switches for membraneless organelles. This includes protein kinase A (PKA), which 
prevents formation of P-bodies when nutrients are abundant by directly phosphorylating the P-body regu-
lator Pat1 (37,52), and the DYRK3 kinase triggers the disassembly of several membraneless organelles 
during mitosis (53,54). In addition, post-translational modification could also be used to fine-tune cellular 
condensates, and recruitment of kinases was postulated to control and limit the size of individual conden-
sates (6). 
  
Another critical set of regulators of cellular condensation include protein chaperones and RNA helicases. 
These enzymes are prominently associated with different membraneless organelles, in particular larger 
condensates like the nucleolus or stress granules (32,55,56). In general, the main task of these enzymes 
is to constantly remodel protein-protein, protein-RNA and RNA-RNA interactions, and to shield exposed 
surfaces (57-60). Heat Shock Proteins such as Hsp70, Hsp90 and Hsp60 (GroEL in bacteria, CCT in eu-
karyotes) remodel proteins through their ATPase cycle and thus promote folding or disaggregation of con-
densate components (61,62). Thus, they can ultimately change interaction patterns and efficiently modu-
late the critical concentration threshold that is required for condensation. As a consequence, members of 
these protein families were shown to be important regulators of both assembly and disassembly of mem-
braneless organelles. In addition, they can keep condensates in a liquid and reversible state (32,60,62-
66), and chaperone malfunction, for example during ageing, has been linked to aggregation diseases and 
neurodegeneration (28,67).  
 
How do condensates at equilibrium and non-equilibrium execute function beyond mere assem-
bly? 

 
Phase separation has now been intimately linked to many important cellular processes, but the holy grail 
remains to understand the function(s) of biological condensates: do they merely act as glue, sticking to-
gether molecules in order to build larger assemblies, or can they accomplish more than that?  
 
In the following, we discuss several types of condensate functions (Figure 3). Some of them, like the spa-
tially localized enrichment of macromolecules in a membraneless organelle, could -in principle- occur at 
thermodynamic equilibrium. At thermodynamic equilibrium, components can continuously exchange be-
tween condensates and the soluble phase, yet by definition, the net fluxes remain zero. However, as dis-
cussed, cells employ a whole set of energy-consuming enzymes that keep condensates away from 



reaching equilibrium (7,68). For one thing, this can regulate condensate dynamics or prevent the ripening 
or solidification of condensates avoiding that their components enter into a non-reactive state with no ex-
change of molecules with the surrounding medium.  
However, energy input procures more than the regulation of condensate assembly or reversibility. The 
injection of energy into condensates by enzymatic processes offsets condensates from equilibrium, yet, at 
the same time, condensates steadily try to return to their equilibrium state. A crucial consequence is that 

condensates now exist in a non-equilibrium steady-state that is intrinsically different from an equilibrium 
one: it can generate actual net fluxes, which can be exploited to drive downstream processes. Thus, en-
ergy-fuelled condensates can perform biochemical work, transmit directional information, or even power 
the translocation of macromolecules in a spatial and temporal manner. 
 
Buffering of concentration changes  
 
In a simple model, phase-separating molecules have a concentration-dependent solubility limit. Conden-
sates form if the concentration exceeds this solubility limit, and grow until the concentration of the soluble 
pool is sufficiently reduced (4,7). If the total concentration of a component further increases, a new equi-
librium is rapidly reached yet the concentration of the soluble phase remains constant. It is therefore ‘buff-
ered’ against concentration changes. In consequence, cells could use phase separation to dampen con-
centration fluctuations and keep the concentration of soluble components constant. However, it has been 
recently demonstrated that biological, multi-component systems are more complex, and that saturation 
concentrations and partitioning coefficients depend on the cellular context and interaction networks 
(36,69,70). Nevertheless, buffering by LLPS could counteract variability or stochasticity in various steps of 
gene expression reducing the ‘noise’ in cellular protein levels. Indeed -and despite the fact that phase 
separation processes in cells are generally kept away from equilibrium-, it was recently demonstrated that 
membraneless compartments can effectively reduce protein concentration noise in a living system (71).  
 
 
Concentration hubs as highly selective reaction centres 
Once formed, condensates act as concentration hubs that sequester both the phase-separating compo-
nent and other interacting proteins or nucleic acids, away from a homogenous distribution. However, con-

densates are biochemically selective: they enrich for some proteins while excluding others (19,36,72,73). 
This has major biological consequences: first, concentrating enzymatic activities and their substrates can 
influence their enzymatic activity that, by the law of mass action, depends on the concentrations of both 
enzyme and substrate (74-80).  
Second, formation of condensates can control protein or RNA localization in a spatial and temporal man-
ner. As an example, for the diverse set of RNA condensates this could mean that if a transcript enters a 
specific condensate, it will be selectively modified by enzymes or RNA-binding proteins enriched therein. 
Condensate formation can therefore speed up and alter RNA modification rates, RNA unfolding, and the 
remodeling of mRNA-protein (mRNP) complexes. Conversely, selective sequestration into condensates 



can also prevent that enzymes and substrates see each other and thus slow down or even completely in-
hibit enzymatic reactions (81). For instance, mRNAs could be hidden or stored away in cytoplasmic RNP 
granules preventing their access to the translation machinery (82-84). However, given the constant ex-
change between the phase-separated condensate and the soluble phase at steady state, complete inhibi-
tion will require low exchange rates and high partition coefficients in a condensate. 
 

Phase separation is further important for the formation and function of super-enhancers, where highly dy-
namic nano-condensates of transcription factors and the mediator complex coalesce on specific DNA se-
quence elements, and subsequently sequester the transcription machinery to promote transcription (85-92). 
Thus, phase separation on super enhancers provides an elegant explanation for the highly co-operative pro-
cesses that are required to bring together many protein factors in order to allow for a highly selective tran-
scriptional activation of developmentally important enhancer and promoter DNA elements. 
 
 
Signalling cascades and gradients 
 
Formation of condensates requires multivalent interactions at component concentrations above a certain 
threshold. If either the concentration or the interaction strength of primary condensate components is ac-
tively and selectively enhanced or diminished, e.g., by post-translational modifications such a phosphory-
lation, condensates can from or disassemble in a spatially and temporally controlled manner (7,14,68). 
This can result in spatial condensate gradients or other non-homogenous distributions of condensates 
that however need to be actively maintained and replenished by energy-consuming processes (93). Cells 
have adopted this concept to amplify or transmit information. 
   
For example, P-granules in C. elegans are not evenly distributed, and they concentrate at the posterior 
end of the one-cell embryo, which is essential for proper embryonic development. This spatial gradient is 
achieved by the permanent, phosphorylation-dependent granule dissolution occurring at the anterior pole 
of the embryo (94-96). Another example is the proposed channelling of nascent mRNA transcripts 
through a series of condensates formed from transcription initiation or elongation factors, and RNA poly-
merase II itself. Here, changes in the phosphorylation pattern of RNA polymerase II promote transfer be-

tween initiation and elongation condensates, which ultimately enhances and drives directionality of the 
process (97-99). 
 
Like other concentration hubs, such actively induced condensates can have emergent properties as ex-
emplified by cellular signaling cascades: local phosphorylation-induced phase separation of upstream sig-
nalling factors enriches the downstream signaling components beyond a critical threshold to form conden-
sates initiating a signaling cascade (100). Examples include PAR-mediated clustering of factors for early 
DNA damage response (31,101,102), signaling factor clustering to create asymmetric daughter cells in 
bacteria (103), clustering of T-cell receptors for nucleation of actin polymerisation (104), or condensation 



of centrosome components for microtubule nucleation (19,105). The observed stimulation of signaling ac-
tivity in such hubs can exceed what is expected merely based on the increase in local concentration, 
probably by prolonging residence and interaction times in condensates (106).  
 
ATPases drive and orchestrate substrate flux through membraneless organelles 
 

While the flow of information is rather abstract, condensates can also orchestrate the directional flux of 
actual molecules if they receive input from energy-consuming enzymes. For example, mRNAs are sent 
through a series of condensates, from transcription and splicing to export through the nuclear pore, and 
ultimately storage or decay in P-bodies and stress granules (107-109). Along their life, mRNA molecules 
are chaperoned by diverse proteins. In particular, the family of DEAD-box ATPases (DDXs) is not only a 
chaperone or passive companion, but rather acts as a global regulator of mRNA flux through these con-
densates. Many DDXs possess low complexity sequences that allow them to undergo phase-separation 
in the ATP- and RNA-bound form, which results in RNA accumulation in the condensate. DDX ATPase 
activity triggers condensate dissolution and release of the RNA substrate, that can then transit to another 
granule. In addition, DDXs can control condensates and RNA accumulation in trans by remodeling phase-
separated structures (56,66). Mutations that abrogate DDX ATPase activity prevent release of the RNA, 
and thus halt or diminish the flux of RNA, resulting in increased or even ectopic RNA accumulation and 
condensate formation (56,63,83,110-112). Since mRNAs and mRNPs can be specifically modified by 
condensate-enriched enzymes or RNA-binding proteins, the mRNA particle leaving a condensate will be 
distinct from the one that entered. Such active processes keep the condensates away from equilibrium 
and can generate directional and irreversible fluxes. Thus, energy-consuming enzymes like DDXs not 
only regulate condensate formation and turnover – they have the potential to orchestrate and regulate the 
flux of genetic information in a spatial and temporal manner.  
 
Concluding remarks 
 
Slowly, we are beginning to realize how pervasively phase separation is hard-coded in the cellular prote-
ome. A large number of proteins - up to 75%, depending on the species - contain intrinsically disordered 
sequences. While not all intrinsically disordered protein domains function in condensation, many of them 

contain sequences of low amino acid complexity and thus have the potential to promote liquid-liquid 
phase separation. Equally surprisingly, cells keep the majority of their proteins slightly above their intrinsic 
solubility threshold (16,113). Cells thus operate at the solubility limit, which could explain why upon en-
ergy depletion or during stress, the cytoplasm can convert from a fluid state to a more gel-like or solid 
state (114-117). This transformation is likely influenced by phase separation of some components of the 
proteome carrying aggregation-prone sequences that are normally kept soluble by energy-consuming 
processes. While this cytoplasmic transformation might be important for cells to enter a quiescent state or 
to remain dormant it also poses a potential risk, since phase-separated condensates can mature over 
time into irreversible, potentially toxic aggregates akin to aggregates observed in age-dependent aggre-
gation diseases. For example, in vitro reconstituted condensates of purified proteins like FUS, implicated 



in ALS, quickly ‘age’ into more solid, aggregated forms, whereas FUS solidification is not observed in 
young and healthy cells (15,25,31).  
The implications are two-fold: first, given their potentially detriment, phase separations must provide huge 
benefits to the cell, otherwise the bulk of low complexity sequences would have been lost over evolution. 
And second, kinetically unstable condensates pose a major challenge, and cells constantly counteract 
spontaneous condensation, and once formed, prevent condensate maturation and ageing to avoid con-

version into irreversible aggregates. To keep these processes in check, evolution has created energy-
consuming solutions and machineries. 
 
Biomolecular condensates are found in both pro- and eukaryotes, and the cellular usage of LLPS as an or-
ganizational principle is thus likely evolutionarily ancient. It is tempting to speculate that molecular conden-
sates appeared even before the beginning of life to allow for the selective concentration of specific macro-
molecules in the primordial soup (3-5). Turning such condensates into a living system would then necessi-
tate the addition of non-equilibrium drivers, that could utilize free energy from the environment to create or-
dered structures and ultimately evolve an ability to self-replicate. In this regard, the nucleolus might be the 
closest remnant of such an ancestral condensate efficiently producing ribosomes around the genetic material 
coding for ribosomal RNA, which in an early RNA world might have acquired the ability to self-replicate even 
prior to the evolution of membrane-bounded cells.  
  
Throughout the tree of life biomolecular condensates are widely used in a large number of biological pro-
cesses, probably because they are an elegant combination of efficiency and flexibility. Interactions within 
condensates often rely on short, unstructured domains, that unlike complex three-dimensional protein 
folds can easily change and evolve. Thus, biological condensates might have the ability to readily add 
new factors or enzymes to their inventory and thereby attain new functionality. Furthermore, membrane-
less organelles, in contrast to their membrane-enclosed counterparts, do not need to evolve complex 
transport machineries to take up new components and they are highly dynamic and can form de novo. 
This enormous flexibility might outweigh the constant energetic demands to keep condensates away from 
equilibrium and to prevent potential deleterious aggregation. Their dynamics and ease of regulation 
makes them also particularly suitable to rapidly respond to changes in the environment and to orchestrate 
changes in metabolism or gene expression during times of stress. Why would cells otherwise want to 

keep some sticky glue in their belly? 
 
  



SUMMARY POINTS 

1. Liquid-liquid phase separation is an equilibrium phenomenon which excludes a net flux of macromolecules 
between condensates and the surrounding environment. 
 

2. Reaching the lowest free energy at equilibrium is potentially detrimental since it can lead to solidification and 
aggregation of condensates. 

3.     Cells have evolved energy-consuming mechanisms to keep condensates in a non-equilibrium steady-state. 
These mechanisms include phosphorylation cycles, protein chaperones and RNA helicases.  

4.     Beyond keeping condensates in a liquid-like state, non-equilibrium drivers enable condensates to perform 
work. Cells make us of this to control biochemical reactions and the flux of substrates and information in a 
spatial and temporal manner. 
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FIGURE LEGENDS  
 
Figure 1: Valency: molecules with at least three interactions can form phase-separated networks.  
 
Figure 2: Liquid-liquid phase separation is a thermodynamic equilibrium process. In cells, energy input 
keeps phase separated condensates away from equilibrium, which enables them to perform work and 

prevents their potentially detrimental solidification.   
 
Figure 3: Examples for equilibrium and non-equilibrium functions of biological condensates. For details, 
see text.   
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