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Abstract

Infecting large portions of the global population, seasonal influenza is a major burden on

societies around the globe. While the global source sink dynamics of the different seasonal

influenza viruses have been studied intensively, its local spread remains less clear. In order

to improve our understanding of how influenza is transmitted on a city scale, we collected an

extremely densely sampled set of influenza sequences alongside patient metadata. To do

so, we sequenced influenza viruses isolated from patients of two different hospitals, as well

as private practitioners in Basel, Switzerland during the 2016/2017 influenza season. The

genetic sequences reveal that repeated introductions into the city drove the influenza sea-

son. We then reconstruct how the effective reproduction number changed over the course

of the season. While we did not find that transmission dynamics in Basel correlate with

humidity or school closures, we did find some evidence that it may positively correlated with

temperature. Alongside the genetic sequence data that allows us to see how individual

cases are connected, we gathered patient information, such as the age or household status.

Zooming into the local transmission outbreaks suggests that the elderly were to a large

extent infected within their own transmission network. In the remaining transmission net-

work, our analyses suggest that school-aged children likely play a more central role than

pre-school aged children. These patterns will be valuable to plan interventions combating
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the spread of respiratory diseases within cities given that similar patterns are observed for

other influenza seasons and cities.

Author Summary

As shown with the current SARS-CoV-2 pandemic, respiratory diseases can quickly

spread around the globe. While it can be important to understand how diseases spread

around the globe, local spread is most often the main driver of novel infections of respira-

tory diseases such as SARS-CoV-2 or influenza. We here use genetic sequence data along-

side patient information to better understand what drives the local spread of influenza by

looking at the 2016/2017 influenza season in Basel, Switzerland as an example. The genetic

sequence data allows us to reconstruct how the transmission dynamics changed over the

course of the season, which we then compare to trends in humidity and temperature and

times when schools were open or closed. Additionally, the genetic sequence data allows us

to see how individual cases are connected. Using patient information, such as age and

household status our analyses suggest that the elderly mainly transmit within their own

transmission network. Additionally, they suggest that school aged children, but not neces-

sarily pre-school aged children are important drivers of the local spread of influenza.

Introduction

With a large fraction of the population being infected annually and up to 650,000 deaths per

year, seasonal influenza causes a major burden on societies around the globe (https://www.

who.int/news-room/fact-sheets/detail/influenza-(seasonal)). Through rapid evolution, influ-

enza strains evade host immunity, allowing them to reinfect large fractions of a population

every year. In order to prevent infections, limited public health resources have to be stream-

lined as efficiently as possible [1]. The planning of interventions is dependent upon knowledge

of the dynamics of epidemic spread of influenza viruses in a city environment, which includes

understanding the drivers of the spread of seasonal influenza between individuals. Incidence

and prevalence data can be used to some extent to infer such dynamics. However, they lack the

information about how individual cases are epidemiologically related.

Phylogenetics allows us to see how individual cases are epidemiologically connected. This is

done by reconstructing the evolutionary relationship between temporally spaced samples of

genetic sequence data, isolated from different infected individuals. The resulting phylogenetic

tree displays how samples are related to each other, and branch lengths in calendar time dis-

play the elapsed time. The phylogenetic tree can therefore be interpreted as an approximation

of the transmission chain of the sampled cases. Such a view on part of the influenza transmis-

sion chain allows to further quantify the epidemiological dynamics which gave rise to the

observed phylogenetic tree using phylodynamic methods [2]. Phylogenetics and phylody-

namics thus allows us to elucidate past epidemiological dynamics [3, 4] or to infer migration

patterns [5, 6].

Several studies have used phylogenetic approaches to study how influenza and its subtypes

spread globally [7–11]. On an intermediate scale, college campuses have been studied by using

phylogenetics, revealing extensive mixing of influenza strains [12]. On the smallest scale, stud-

ies have been performed to investigate person-to-person transmission of influenza in house-

holds [13]. There is, however, a gap in studies that seek to describe transmission of influenza
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on a city scale. In contrast to college campuses, cities constitute highly heterogeneous societies

with various different living arrangements and vastly different social and age groups. This

means that lessons learnt about influenza transmission from college campuses are not neces-

sarily transferable to cities. Children, for example, have been repeatedly described to be over

proportionally affected by influenza. During the 2009 Influenza A/H1N1 pandemic, school-

aged children have been shown to have the highest seroprevalence of all age groups in the USA

[14]. A study on the incidence of seasonal influenza A/H3N2 in different age groups found

that incidence of influenza A/H3N2 was highest in children, without a strong difference

between school and preschool children [15]. A seroconversion study with samples collected

between 2009 and 2011 found strong age dependency for H1N1, but not H3N2 [16].

In an effort to fill that gap, we studied the local spread of influenza and the factors contrib-

uting to it in the city of Basel, Switzerland during the 2016/2017 Influenza season which was

dominated by Influenza A/H3N2. To do so, influenza samples together with the age and resi-

dential address were collected from around 663 patients from the University Hospital (USB),

the Children’s Hospital of Basel (UKBB) and patients of private practices from around the city.

85% of these sequences were from the USB and the UKBB and the rest from private practition-

ers around the city. Since these patients were sick enough to seek medical help, our dataset will

represent a sub sample of the overall population that was infected with influenza and experi-

enced more severe symptoms.

Around 200 of all patients also provided additional information through filling out a survey.

The survey asked questions about family status, financial status, and demographics. Details on

the data collection are provided in [17]. The spatial and survey data were analyzed in a differ-

ent study [18]. We here assess the importance of introductions of influenza into a city for seed-

ing a seasonal epidemic, the overall dynamics of transmission throughout the season, and

explore the impact of different age groups on the epidemic.

Methods and material

Data collection and sequencing

We collected all data in the 2016/17 influenza season as described in [17]. Sequencing was per-

formed as described in [19]. Raw Illumina reads were trimmed with Trimmomatic 0.36 [20].

Alignment of paired-end reads was done by using bowtie 2.2.3 [21], using strain A/New York/

18/2014 as a reference. The aligned reads were sorted by using samtools 1.2 [22]. Variants

were called and filtered by using lofreq 2.1.2 [23]. Variant calling was done for sites with a cov-

erage of at least 100. Sites with a coverage of less than 100 were assumed to be unknown and

were denoted as N, that is any possible nucleotide (Details on the exclusion of sequences are

described in S1 Text). Exact input specification can be found at https://github.com/nicfel/

FluBaselPhylo/tree/master/Sequences. The consensus sequences from this study were depos-

ited in GenBank (numbers MN299375-MN304713).

Timed phylogenetic tree based on the HA segment

We combined the Basel sequences with all sequences (as of the 17th of Juli 2018) from https://

www.gisaid.org sampled between January 1st 2016 and December 31st 2017 for which at least

the segments HA, NA and MP were available. We first aligned all consensus sequences using

muscle v3.8.3129. We then built an initial phylogeny from the HA segment alone by using

RaxML 8.2.1 [24] and obtained branch lengths in calendar time via timetree [25] using the

nextstrain pipeline [26]. The inferred time tree is available here https://github.com/nicfel/

FluBaselPhylo/tree/master/TimeTree. The tree was plotted using ggtree [27].
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Initial clustering based on nucleotide differences

We then calculated the average nucleotide difference between any of the sequences and

sequences from Basel. In order to split the dataset into manageable pieces, we first grouped

any two sequences from Basel together if they were within an average nucleotide difference of

0.0025 per position. If the full genome for two sequences was available, this would correspond

to about 32 different positions on the full genome. For an average clock rate of 2.9�10-3 per site

and year, this would correspond to a pairwise phylogenetic distance of just below 1 year. Sets

of sequences from Basel are only split into two groups if the two closest related sequences of

each group exceeds this distance. Based on this initial grouping, we added sequences that were

not from Basel to each cluster if they were at maximum 0.0025/2 mutations per position away

from any of the sequences from Basel. The factor of 2 is only to reduce the number of non-

Basel sequences in each of these initial clusters to be computationally tractable.

Phylogenetic trees of initial clusters

We next estimated rates of evolution for each genomic segment using the SRD06 model [28]

and a strict clock model from 200 full genome influenza A/H3N2 sequences sampled in Cali-

fornia, New York and Europe between 2010 and 2015 in Beast 2.5 [29]. These sequences were

downloaded from fludb.org, were not used otherwise and are an independent dataset. We

allowed each segment to have its own phylogeny in order to avoid reassortment to bias the esti-

mates of evolutionary rates. Each of the segments, as well as the first two and third codon posi-

tion was allowed to have its own rate scaler. We ran 10 independent MCMC chains each for

108 iterations and then combined them after a burn-in of 10%. These estimated evolutionary

rates are long-term rates of influenza A/H3N2. Since the effects of selection over short time

periods are smaller compared to longer time periods. The evolutionary rates can be expected

to be faster for shorter time windows [30]. We therefore expect the pairwise distances esti-

mated for our data from the 2016/17 outbreak using these rates to be an overestimate of the

actual divergence times. The xml and log files for the analysis can be found here https://github.

com/nicfel/FluBaselPhylo/tree/master/EvolutionaryRates.

We next reconstructed the phylogenetic trees of all initial clusters by using the full genomes

of all samples in the initial clusters. We fixed the evolutionary rates to be equal to the mean

evolutionary rates as estimated previously, with the mean evolutionary rate being 2.9 � 10−3

per site and year, as well as fixed the rates of the SRD06 site model to the rates estimates using

the influenza A/H3N2 datasets samples over many years. As a population prior, we used a con-

stant coalescent model with an effective population size being shared among all initial clusters.

We then estimated a distribution of phylogenies for each initial cluster, assuming that all seg-

ments share the same phylogeny. If reassortment happened, it would increase the distance

between samples. Due to using fixed evolutionary rates as estimated in the previous analysis,

reassortment will not bias evolutionary rates. Hence, reassortment events will increase the

pairwise distance between isolates separated by reassortment, but will not bias the distance

between isolates that are not.

Local cluster identification

To identify sets of sequences from Basel that were likely transmitted locally, we used the phylo-

genetic tree distributions for each initial cluster and reconstructed the ancestral states using

parsimony. We made some modifications to the standard algorithm for ancestral state recon-

struction. To reflect our prior belief that Basel is unlikely to act as a relevant source of influenza

on a global scale, we classified internal nodes that are not exclusively classified to be in Basel as

not in Basel. Since the flu season is only a few months long, we additionally assumed that
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lineages are unlikely to persist in Basel for more than 0.1 years without being sampled. To

reflect that assumption, we classified internal nodes that are more than 0.1 years from a sample

from Basel to be either in a location other than Basel, or to be in an unknown location. We

then defined sequences to be in the same local cluster if all their ancestors are inferred to be in

Basel. We get these local clusters for each iteration of the MCMC. From the grouping of

sequences into local clusters as described above, sequences can be classified into different local

clusters over the course of the MCMC. For the estimation of effective reproduction rates we

however require each sequence to be in a distinct local clusters. To do so, we randomly picked

an iteration of the MCMC and then chose the local clusters present in that iteration. In order

to account for uncertainty in the local transmission cluster assignment, we repeated each anal-

ysis 10 times with randomly chosen iterations. The exact workflow, including BEAST2 input

files can be found at https://github.com/nicfel/FluBaselPhylo/tree/master/LocalClusters.

While alternative model based approaches exist to reconstruct locations of internal nodes (e.g.

[31]), these approaches themselves make strict assumptions that are violated when studying

the spread of diseases on a city scale. Also, it is unknown how well they perform when migra-

tion between individual locations is very strong.

Estimation of the effective reproduction number and sampling probability

We then estimated the effective reproduction number through time as well as the sampling

proportions and phylogenies from all these local clusters jointly using BDSKY [32]. We

assumed the effective reproduction number to be piecewise constant in intervals of 2 days and

allowed it to change every 2 days. We then assumed the difference between the log effective

reproduction number in interval t (log Reff(t)) and in interval t-1 (log Reff(t-1)) to be distrib-

uted around N(0,σ), with σ being estimated in the MCMC [33]. Additionally, we assume the

log Reff at the most recent time interval and the one at the very last time interval to be normally

distributed in log space around N(-0.6931,0.1). This means that we assume the Reff to change

in a continuous way, which can lead to an underestimation of differences in Reff, if the Reff

changes abruptly. This adapted version of BDSKY is available on https://github.com/nicfel/

bdsky.

We assumed the rate at which an infected individual transitions to being non-infectious to

be 0.25 per day. The birth-death model assumes the number of samples over time to be infor-

mative about the population dynamics, meaning that the results can be biased if the sampling

proportion of individuals would change over time. Since we, however, followed the same pro-

cedure for inclusion of patients throughout the epidemic season, our assumption of sampling

over time should hold. The BDSKY model additionally conditions on survival [32], meaning

that it computes the probability of observing a phylogenetic tree conditional on observing at

least one lineage and assumes the host population to be unstructured. We further assume, as is

standard, that there is no transmission rate variability between individuals, such as would, for

example, be caused by having super spreaders. Additionally, we do not model the process of

how lineages are introduced into Basel and how this might change over time.

The weather data used for the correlation analysis was obtained from www.meteoblue.com.

This data is based on measurements of weather stations which are then used in simulations to

estimate local weather variables (see https://content.meteoblue.com/nl/specifications/data-

sources).

Defining connectedness between individuals

We define two individuals to be connected if their pairwise phylogenetic distance is less than

0.1 years. If we assume two individuals to be isolated at the same time, this cutoff would
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correspond to a common ancestor that was at most 18.25 days ago. Considering that the evolu-

tionary rates we used to perform these inferences are long term rates and therefore lower than

the actual short term rates [30], we expect that the cutoff values are effectively lower in reality.

This means that if we use a cutoff of 0.1 years, even individuals that are at an inferred pairwise

distance of 0.1 years are very likely more closely related than that. To avoid biases originating

from these cutoff values, we repeated all analyses that are based on cutoffs with of 0.05, 0.15,

0.2 and 0.3 years as the cutoff value.

Connectedness across age and family status groups

We estimate the average number of connections members from each of the six categorial age/

family status groups have, according to the above definition of connectedness. To do so, we

model the number of connections an individual from a group has as a negative binomial distri-

bution. This allows us to model the number of connections an individual from a group has,

while taking the variance of the relationship between the group label and the number of con-

nections into account. This is in contrast to, for example, the poisson or geometric models. We

assess overall model fit with an ANOVA and then perform Tukey contrasts, comparing all

pairs of age groupings [34]. We correct for multiple testing by using Schaffer’s method, which

is similarly conservative to bonferroni, but takes into account the dependencies enforced in a

linear modelling framework [35].

Age mixing patterns

To identify mixing patterns between the six categorial age/family status groups, we again use

the definition of connection of two patients.

We use two different approaches to estimate how different groups are connected to each

other. First, we use multinomial logistic regression to estimate the probability that a member

from one group is connected to a member from another group. As weights, we use the inverse

number of samples from each group. This implicitly assumes that individuals from each group

have the same probability of being infected. Children however might have higher rates of

infection, and we therefore expect this weighting to underestimate the role of children and to

overestimate the role of adults.

Second, we use a permutation approach. Between any two groups a and b, we compute the

probability of them being associated with one another as follows: For each combination of

groups a and b, we count the number of pairs that are associated with one another. We then

randomly permute the age labels 106 times. For each permutation, we calculate if the number

of pairs between these groups is greater or smaller than what we observed. From these values,

we then compute the probability that age groups a and b are positively (Pþab) or negatively (P�ab)
associated with one another as:

Pþab ¼
1

nrperm

Xnrperm

r¼1

Pairsobservedab > Pairsrandomab

P�ab ¼
1

nrperm

Xnrperm

r¼1

Pairsobservedab < Pairsrandomab

With Pairsobservedab the number of pairs we observe in the data and Pairsrandomab the number of pairs

we observe after we permute the group to patient labels. Because this test does not have an

underlying model for how many connections there are between individual groups, we here use

a Bonferroni correction instead of the Schaffer’s method to correct for multiple testing. In
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order to test the sensitivity of these estimates, we repeated this analysis using cut-off values of

0.05, 0.1, 0.15, 0.2 and 0.3 years.

Results

Introduction of new lineages into the city drive the local epidemic

We first assessed how the 663 sampled cases in Basel compare to 11,000 sequences sampled

from around the world between January 2016 and December 2017, by inferring a phylogenetic

tree using the hemagglutinin (HA) sequences. The Basel sequences span the existing global

diversity (see Fig 1a), suggesting strong exchange (most likely importation into Basel) of

viruses with other areas around the globe. We, however, did not find isolates in Basel that were

part of the same clade as the vaccine strain in that season (i.e. 3c2), which is consistent with

very few cases of this clade in that season (see Fig 1A).

The number of sampled sequences in Basel peaked at the end of 2016, with a smaller peak

at the beginning of February of 2017 (see Fig 1b). The sequenced cases were dominated by the

3c2 sub-clades A1, A1a and A3, and we observe that a peak in A1a cases mainly contributed to

the peak in February of 2017.

Basel sequences cluster into local transmission clusters within the global diversity (see

Materials and Methods). We obtained around 240 local clusters (see Fig 1c and https://

nextstrain.org/community/jameshadfield/basel-flu/1), suggesting that the sampled sequences

were the result of around 240 influenza introductions from areas outside of Basel. In order to

investigate if this number is a strict lower bound for the number of introductions, we use ran-

dom subsets of the 663 sequences to re-estimate the number of introductions. We find that the

number of estimated introductions grows approximately linearly with the number of

sequences in a subset (see Fig 1c). This suggests that with additional sampling effort, we would

have captured more introductions. With its own international airport, the airport of Zürich

nearby, and a major rail hub, Basel is well connected to the rest of Europe and the world. As

such, people working in Basel often do not live in the city and commute daily from elsewhere

in Switzerland, Germany and France. Basel is a tourist destination and often hosts interna-

tional conferences, attracting people from all over the world. This connectedness likely drives

these introductions of influenza into the city.

Quantification of the overall local epidemic following the introduction into

the city

After introduction into the city, we next study how influenza is transmitted locally. To get an

estimate of how long lineages persist locally, we additionally estimated the tree heights of local

transmission clusters that had at least 2 sampled sequences (see Fig 1e). We estimated that the

average tree height of a local outbreak clusters with at least 2 sampled sequences was around

30 days. These tree heights provide an estimate of the lower bound to how long lineages spread

locally on average and suggest that the average local transmission cluster persists for at least 1

month.

In order to quantify the amount of local transmission, we estimated the effective reproduc-

tion number (Reff) to be between 1 and 1.5 for most of the season, which agrees with previous

estimates of the effective reproduction number for seasonal influenza [36]. The Reff peaks in

December and in February (see Fig 1f) with the 95% credible interval excluding and Reff of 1 in

December. In January, we inferred a drop in the effective reproduction number with the esti-

mated median being below 1 (see Fig 1f).
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The trend in the overall number of cases is similar to the trends in other places in Switzer-

land (http://meldesysteme.bagapps.ch/sentinella/publikationen/2017%20Saisonbericht%

20Grippe%202016_2017_d.pdf), where doctoral consultations for influenza like illnesses also

peaked in early January. Further, these estimates are comparable to the overall trend of influ-

enza cases during the 2016/2017 season in Europe (https://ecdc.europa.eu/en/publications-

data/summary-influenza-2016-2017-season-europe).

Fig 1. The local spread of influenza H3N2 in Basel in the 2016/2017 season. A Time tree of HA segment reconstructed from sequences from

this study and sequences from around the world. The HA sequences sampled in this study (red) are dispersed across almost all clades present

between 2016–2018. This indicates that the diversity of samples in Basel is similar to the diversity of samples around the globe. B Number of

sequenced weekly cases for the three most abundant HA clades. The number of cases for the corresponding clade is shown in color and the

overall number of cases is shown in grey. C Number of introductions depending on how many random sequences from Basel are used. D

Estimated proportion of sampled individuals averaged over ten different BDSKY runs using different classifications of local sequences into local

clusters. Estimates for individual classifications are shown in S1 Fig. E Estimates of tree heights of local clusters, which can be used as a lower

bound to how long lineages persisted in the city. F Estimates of the effective reproduction number through time inferred from all local cluster

jointly by using BDSKY. The black line is the mean estimate and the red area denotes the 95% interval. The grey bars denote the number of cases

per week that were sequenced and used in the BDSKY analysis. G Comparison of the inferred effective reproduction number with temperature

and relative humidity and if a day is a school day or not. The effective reproduction number curves are averaged over the 10 different

classifications of sequences into local clusters. Comparisons for the individual random classifications are shown in S2 Fig.

https://doi.org/10.1371/journal.ppat.1008984.g001
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We next investigated potential factors determining the changes in Reff. The number of influ-

enza cases over the years show a strong seasonality, with the majority of cases occurring in the

winter months in both the northern and southern hemisphere [7]. Relative humidity and tem-

perature have been described to drive influenza transmission [37]. Additionally, the effect of

school closures on the spread of pandemic influenza has been discussed [38, 39]. Thus we

investigated potential correlations of Reff with temperature, relative humidity and school days

(i.e. days when children go to school). As we only studied one season, these correlations have

to be interpreted with caution, and analyses of other seasons are needed to confirm the poten-

tial correlations. Neither humidity nor school days showed a significant correlation: relative

humidity stayed fairly constant over the season, and both low and high Reff are found during

times when schools were open (Fig 1g and S4, S5 and S6 Figs). To account for autocorrelation,

we performed the correlation analysis, averaging the temperature, relative humidity and mean

number of school days over 4, 6, 8 and 10 days instead of just 2 days. We find the mean tem-

perature to be significantly correlated with the mean Reff in both scenarios (see S3 and S4 Figs).

Viral shedding of viruses has been shown previously to be increased at lower temperatures in

animal models [37] and higher absolute humidity has been shown to favor transmission on a

population level [40]. We here observe lower effective reproduction numbers at lower tempera-

tures. The correlation of the effective reproduction number with the temperature however is

not necessarily causal, as it, for example, could be due to social behavior being different at lower

temperatures. Also, the computed p-values could be inflated due to unaccounted autocorrela-

tion, artificially inflating the number of independent data points that are actually in the datasets.

Along with the Reff, we co-estimated the sampling probability, that is the probability of an

infected individual being sampled. Since we followed the same procedure for inclusion of

patients throughout the epidemic season [17], we assumed that this probability is constant

throughout the influenza season. We estimated the sampling probability to be between 3% and

5% (see Fig 1d and S2 Fig). In contrast to the Reff estimates, this value is more sensitive to the

procedure of clustering of sequences into sets of locally transmitted sequences (see S2 Fig). Addi-

tionally, the prior probability on the effective reproduction number, as well as the assumed

becoming un-infectious rate can influence this estimate [41]. With 663 samples from different

patients included in this analysis, this would suggest that between 13260 and 22100 people in

Basel or between 8% and 13% of its population of about 171000 were infected with influenza

H3N2 during the 2016-17 season. The city limits of Basel are however in reality not fixed and the

metropolitan area around the city is substantially larger than the city itself. Furthermore we have

sampled patients who went to a doctor or hospital in the city of Basel, but live in the surrounding

areas or other parts of the world. We therefore expect the estimate of between 8% and 13% to be

an estimate for the upper bound of the number of infected people, rather than the true percent-

age of infected individuals. These estimates of the overall attack rate of seasonal influenza in

Basel are broadly consistent (though on the lower end) with estimates of the attack rate derived

from un-vaccinated individuals [42], which range from approximately 20% in children to 10%

in adults and assuming a vaccination rate of 12% in the 2016/2017 season in Switzerland [43].

Overall, our analyses suggest that transmission occurred with an effective reproduction

number varying between 1-1.5 throughout the season, overall infecting at most 8–13% of the

population.

Importance of age groups and family status in the local epidemic spread

After having determined the importance of introductions of influenza into the city and the

overall rate at which influenza is spread in the city, we next studied the effect that age and fam-

ily status has on the overall spread. Fig 2a and 2b and show the patient age distribution within
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our samples. In order to study the role of age and family status in spreading influenza, we next

subdivided our Basel patients into four different age groups, preschoolers (<7 years old),

school-aged children (7 to 17 years), adults (18 to 65 years) and the elderly (>65 years old).

We further categorized adults into three subgroups corresponding to family status: adults for

whom we know that they live in the same household as children, adults for whom we know

that they do not and adults for whom we do not have this information. We thus have overall

six different categories of patient groups.

For each individual infected with influenza in each of these categorical groups, we deter-

mined the number of patients with influenza viruses isolated below a certain phylogenetic dis-

tance. This number, we then define as the number of connections a patient has. A connection

exists if the pairwise phylogenetic distance between viruses isolated from two patients is at

most 0.1 years. We then evaluate the mean number of connections of a negative binomial dis-

tribution for all individuals from each of the six groups. We later repeated the analyses using

different cutoff values. This way of defining two viral isolates to be connected is therefore done

independently of the above used definition of local transmission clusters. Using pairwise dis-

tances allows us to use distance in the transmission chain. Defining two individuals as con-

nected if they are from the same cluster, on the other hand, only says if two sequences

originated from the same introduction. Additionally, we confirm with a simulation that the

average number of connections we observe empirically are similar to the number of connec-

tions we would expect when simulating under a simple SIR model with a 4% sampling propor-

tion (see S9 Fig).

We find that school-aged children are on average connected to more individuals, than pre-

schoolers (see Fig 2c). This difference is statistically significant after multiple hypothesis testing

at a cutoff value of 0.1 years, but not other cutoff values. We further, but not significantly, find

that adults that reported to live in the same household as children are on average connected to

more patients than those that do not live in the same household as children. For the elderly, we

find that they have significantly more connections compared to adults with unknown house-

hold status, adults without children, and preschoolers. They do not have more connections on

average compared to adults living in the same household as children and school aged children.

In summary, there is signal for school children and elderly having more connections to other

Fig 2. Age distribution and differences in the number of connections to other patients that members of the

different categorical patient groups have. A Distribution of patient ages in this study in age group intervals of 10

years. B Proportion of different age groups in this study compared to in the city of Basel. C Model-based confidence

intervals for the difference in average number of connections between each pair of age groups from a negative

binomial model. Upper and lower bounds represent 95% confidence intervals for the average fold-difference in

connection number between two groups corrected for multiple hypothesis testing using the Tukey method. This

means that confidence intervals that do not include 1 are statistically significant. We see that the average connection

number for elderly patients is twice the average connection number for preschoolers, adults without children, and

adults with unknown status. These values are estimated for a cutoff values of 0.1 years. Estimates for different cutoff

values are shown in S7 Fig. Also, the estimates of the mean number of connections in each group are shown in S8 Fig.

https://doi.org/10.1371/journal.ppat.1008984.g002
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individuals compared to the three groups unknown household status, adults without children,

and preschoolers. The adult living in the same household as children group show tendencies

to be connected more in average than the latter three groups, though the data is not informa-

tive enough, respectively we do not have enough data, to provide strong evidence for that.

That school aged children and elderly are connected to more individuals than the other

groups can have different explanations. The most obvious one is that individuals of these

groups are more likely to participate in transmission events, either as a donor or recipient;

alternatively, strong mixing within a group and a higher probability of visiting a doctor upon

infection and therefore a higher sampling probability could act as an explanation (if members

from any group are equally likely to transmit or receive influenza to and from members of any

other group, higher sampling probability would increase to number of connections of every

group and not just one). Indeed, sampling cases from the Hospital and private practitioners

will lead to more severe cases being more likely included in the analysis. In paticular, the

elderly and pre-school aged children are overrepresented in our dataset compared to their rela-

tive proportion in the population of Basel (see Fig 2A).

In order to assess the potential explanations, we investigated how strongly or weakly differ-

ent age groups are connected with each other. In particular, instead of just looking at how

many patients from any age groups an individual is connected to, we now assess how patients

from age groups are connected between each other. We did so using two different approaches.

First, we estimated the probability that an individual from a group is connected to a member

from the same or a different group by using multinomial logistic regression with the inverse

number of samples from each group as weights. Second, we use permutation testing to esti-

mate the probability that the number of connections between different groups is significantly

higher or lower than expected if all groups would be equally connected. To do so, we again use

the definition of a connection between pairs of patients from the last section.

For both approaches, we find that mostly school-aged children are associated with other

school-aged children, and the elderly are associated with other elderly people. We additionally

find some indication of higher association between children of any age and adults living in the

same household as children than children of any age and adults without children (see Fig 3).

Adults living in the same household as children, on the other hand, are estimated to have low

association to other adults without children and much higher association to children, whereas

adults without children are mostly associated to other adults without children (see Fig 3a).

Increased sampling of the elderly relative to the other age groups is likely to occur, since the

elderly are more likely to visit a doctor when in case of infections with influenza [44]. The

elderly are indeed over-represented in this study (see Fig 2b). Thus, strong mixing within

group and high sampling, might explain the increased connectivity of the elderly.

The second group that we found to have many connections to other patients where school-

aged children (see Fig 2c). When looking to which groups these were connected, we found

them to be associated with other school-aged children. However, they are unlikely to suffer

from more symptoms than preschoolers [45] and therefore should not be overrepresented in

our dataset compared to pre-schoolers. Also, based on Fig 2b, we do not see evidence for over-

sampling of this group compared to preschoolers. We therefore interpret our results as school-

aged children being involved in more transmission events compared to the other patient

groups, including preschoolers. Furthermore, adults living in the same household as children

might get mainly infected by the children and not by other adults, which does however not

mean that adults do not play a crucial role in introducing novel lineages into the city. Indeed,

children have been previously reported to be a strong driver of influenza transmission [14, 15,

39].
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These interpretations however are based on the analysis of influenza isolates from one sea-

son and city and will therefore need to be repeated in different seasons and cities to get a more

complete understanding of the transmission patterns of influenza across age groups.

Discussion

In absence of deep knowledge of the important drivers of the local spread of SARS-CoV-2,

governments around the world resorted to closing down societies to reduce the burden of

COVID-19. Better understanding of how a disease is spread can help optimizing non-pharma-

ceutical interventions in order to reduce the burden on societies, while still effectively reducing

transmission.

One of the diseases that are major reoccurring burdens on societies are seasonal influenza

viruses. Seasonal influenza annually infects a large portion of the global population and while

its global spread has been studied extensively, its local spread remains largely unstudied. Our

results are based on one of the most densely sampled genetic datasets of influenza sequences to

date. Additionally, we connected the genetic information to patient information such as age

for all and more personal information for a subset of the patients, providing unparalleled reso-

lution to study how influenza spreads locally. The 2016/17 season for which we collected data

was dominated by influenza A/H3N2. Based on this data, we observe that hundreds of intro-

ductions initiate the seasonal influenza epidemic in the studied city of Basel, that the overall

spread varies throughout the season, and that school aged children seem to play a more impor-

tant role in local outbreaks than preschoolers, while elderly have their own transmission

chains.

Fig 3. Mixing of different age groups. Here we show the mixing patterns between the different categorial patient groups. In

contrast to Fig 2, we here ask between which groups connections exists and not just if individuals within these groups have more or

less connections than individuals within other groups. We define pairs of patients to be connected if their pairwise phylogenetic

distance was below 0.1 years. Results for other thresholds are shown in S10 and S11 Figs. A Probability that an individual from the

group in each row is connected to a random individual from the group in a column. These probabilities were calculated by using the

inverse number of samples from each group as weights. Upper and lower bounds correspond to 95% confidence intervals around the

estimated probability. B The color of each tile in the heatmap corresponds to the p-value for either positive (red) or negative (blue)

associations. These p-values are bonferroni corrected for the number of comparisons (42). We estimate these p-values by randomly

permuting the group to patient labels and then comparing the number of pairs of interactions we observe in the data vs. when

randomly permuting.

https://doi.org/10.1371/journal.ppat.1008984.g003
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It will be interesting to see how these results transfer to other cities and seasons with poten-

tially other social structure or other geographical location. In particular, the subtypes that cir-

culate and their ability to escape host immunity and seasons dominated by different influenza

types may influence mixing patterns. For the future, it will be particularly interesting to see if

seasons where other subtypes such as influenza A/H1N1 or influenza B dominate show the

same or differing patterns that we observed. While such studies on a population level requires

great effort in recruiting patients as well as in sequencing viruses, they can greatly improve our

understanding of how influenza spreads locally. This will hopefully allow us to streamline pub-

lic health interventions in the most efficient way possible, and thus, help to reduce the great

burden on societies caused by the seasonal flu.

Supporting information

S1 Text. Quality criteria for sequences used in this study.

(PDF)

S1 Fig. Estimates of the sampling proportion for different classifications of sequences into

local clusters. Each histogram shows an inferred sampling proportion based on a classification

of sequences into local clusters. Since these classifications are dependent on which iteration of

the MCMC was used for the classification into local clusters, we repeated the analysis using 10

different random iterations. Each subplot shows the estimated sampling proportion when

using one of these classifications. The dotted red line shows the median estimate of the sam-

pling proportion over all iterations.

(TIF)

S2 Fig. Estimates of the effective reproduction number over time using different classifica-

tions of sequences into local clusters. Each subplot shows the inferred effective reproduction

number when using a different iteration of the MCMC for the assignment of Basel sequences

into local clusters.

(TIF)

S3 Fig. Estimated p-values for correlation between the effective reproduction number and

temperature, relative humidity and school days. Here we show the estimated p-values for

the correlation between the effective reproduction number and temperature, relative humidity

and school days estimated when the data was averaged over different number of days (x-axis).

The estimate p-values are shown for two different time intervals (in different colors). For the

orange line, estimates for 1 November 2016 until 1 March 2017 were used and for the blue

line, estimated from December until February were used. These plots were generated using the

effective reproduction number averaged over 10 different classifications of sequences into

local clusters. The equivalent plots for generated using the effective reproduction number esti-

mates of each individual subset is shown in S5 Fig.

(TIF)

S4 Fig. Estimated correlation coefficients between the effective reproduction number and

temperature, relative humidity and school days. Here we show the estimated correlation

coefficients for the correlation between the effective reproduction number and temperature,

relative humidity and school days estimated when the data was averaged over different number

of days (x-axis). The estimate p-values are shown for two different time intervals (in different

colors). For the orange line, estimates for 1 November 2016 until 1 March 2017 were used and

for the blue line, estimated from December until February were used. These plots were gener-

ated using the effective reproduction number averaged over 10 different classifications of
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sequences into local clusters. The equivalent plots for generated using the effective reproduc-

tion number estimates of each individual subset is shown in S6 Fig.

(TIF)

S5 Fig. Estimated p-values for correlation between the effective reproduction number and

temperature, relative humidity and school days. Here we show the estimated p-values for

the correlation between the effective reproduction number and temperature, relative humidity

and school days estimated when the data was averaged over different number of days (x-axis).

The estimate p-values are shown for two different time intervals (in different colors). For the

orange line, estimates for 1 November 2016 until 1 March 2017 were used and for the blue

line, estimated from December until February were used. The different lines of the same color

show the p-values estimates using the effective reproduction number estimates of individual

classifications of sequences into local clusters.

(TIF)

S6 Fig. Estimated correlation coefficients between the effective reproduction number and

temperature, relative humidity and school days. Here we show the estimated correlation

coefficients for the correlation between the effective reproduction number and temperature,

relative humidity and school days estimated when the data was averaged over different number

of days (x-axis). The estimate p-values are shown for two different time intervals (in different

colors). For the orange line, estimates for 1 November 2016 until 1 March 2017 were used and

for the blue line, estimated from December until February were used. The different lines of the

same color show the p-values estimates using the effective reproduction number estimates of

individual classifications of sequences into local clusters.

(TIF)

S7 Fig. Fold difference between the average number of connection of individuals from the

different groups. Plots are analogue to Fig 2c, but for different thresholds: 0.05 years in plot

A, 0.1 years in plot B (analogue to Fig 2c), 0.15 years in plot C, 0.2 years in plot D and 0.3 years

in plot E.

(TIF)

S8 Fig. Average number of patients and individual from a group is connected to. Each sub-

plot shows the average number of connected individuals a patient from the group shown by

the color is connected to. Upper and lower bounds correspond to 95% confidence intervals

around the average. We consider two patients to be connected if the pairwise phylogenetic dis-

tance between the influenza viruses sequenced from them is below a certain threshold. These

thresholds are 0.05 years in plot A, 0.1 years in plot B, 0.15 years in plot C, 0.2 years in plot D

and 0.3 years in plot E.

(TIF)

S9 Fig. Average number of patients and individual from a group is connected to for differ-

ent thresholds. Here, we compare the average number of connections (y-axis) of an individual

patient to other patients for different threshold (x-axis) between what we observe empirically

and what we observe in simulations. We ran the simulations using either a reproduction num-

ber of 1 or 1.25, a becoming uninfectious rate of 0.25 per day and a sampling proportion of

4%.

(TIF)

S10 Fig. Probability that an individual from the group in each row is connected to an indi-

vidual from the group in a column. Plots are analogue to Fig 3a, but for different thresholds:
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0.05 years in plot A, 0.1 years in plot B, 0.15 years in plot C, 0.2 years in plot D and 0.3 years in

plot E.

(TIF)

S11 Fig. Mixing of different age groups when using different cutoff values. Plots are ana-

logue to Fig 3b, but for different thresholds. The thresholds in years are given on top of each

subfigure. Unless very large thresholds are used, the elderly are estimated to be positively asso-

ciated with other members from the same group. School aged children are associated with

other school aged children except for very low thresholds where the number of pairs is very

low. Elderly being negatively associated with pre-school aged children shows up only at lower

thresholds.

(TIF)
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