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Abstract. Eastern Boundary Upwelling Systems (EBUS)
are highly productive ocean regions. Yet, substantial dif-
ferences in net primary production (NPP) exist within and
between these systems for reasons that are still not fully un-
derstood. Here, we explore the leading physical processes
and environmental factors controlling NPP in EBUS through
a comparative study of the California, Canary, Benguela, and
Humboldt Current systems. The NPP drivers are identified
with the aid of an artificial neural network analysis based
on self-organizing-maps (SOM). Our results suggest that in
addition to the expected NPP enhancing effect of stronger
equatorward alongshore wind, three factors have an inhibit-
ing effect: (1) strong eddy activity, (2) narrow continental
shelf, and (3) deep mixed layer. The co-variability of these 4
drivers defines in the context of the SOM a continuum of 100
patterns of NPP regimes in EBUS. These are grouped into 4
distinct classes using a Hierarchical Agglomerative Cluster-
ing (HAC) method. Our objective classification of EBUS re-
veals important variations of NPP regimes within each of the
four EBUS, particularly in the Canary and Benguela Current
systems. Our results show that the Atlantic EBUS are gener-
ally more productive and more sensitive to upwelling favor-
able winds because of weaker factors inhibiting NPP. Pertur-
bations of alongshore winds associated with climate change
may therefore lead to contrasting biological responses in the
Atlantic and the Pacific EBUS.

1 Introduction

Eastern boundary upwelling systems (EBUS), i.e. the Cali-
fornia, Humboldt, Canary, and Benguela upwelling systems,
are among the most productive marine ecosystems in the
world and have long been recognized for supporting some
of the world’s major fisheries (Pauly and Christensen, 1995;
Bakun, 1990, 1996; Carr, 2001; Carr and Kearns, 2003;
FAO, 2009). The high productivity supports a large export
of organic carbon, not only vertically (Muller-Karger et al.,
2005) but also laterally into the open ocean, enhancing het-
erotrophic processes there (e.g.Arı́stegui et al., 2004). De-
spite the upwelling of carbon rich-waters to the surface, the
high organic carbon export tends to make these systems ei-
ther neutral or small sources of CO2 to the atmosphere (see
e.g. Chavez and Takahashi, 2007). Thus, identifying what
controls biological production within EBUS is not only crit-
ical to the understanding of functioning of these ecosystems,
but is also essential for more accurate assessments of the ma-
rine carbon cycle at regional and global scales.

The basic mechanism responsible for the high productiv-
ity in EBUS is well understood: equatorward winds along
the eastern boundaries of the Atlantic and Pacific force an
offshore Ekman transport, which drives upwelling of deep
nutrient-rich water into the euphotic zone, where favorable
light conditions sustain phytoplankton growth (Allen, 1973;
Brink, 1983a). Nevertheless, individual EBUS show substan-
tial differences in chlorophyll standing stock and net primary
production (NPP) for reasons that remain not fully under-
stood (Carr, 2001). The comparison of different EBUS pro-
vides a framework for generalizing individual observations
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and developing a unified conceptual model of coastal up-
welling production regimes. Furthermore, by examining the
contrasts between the different EBUS one can gain insight
into how different environmental conditions can alter the sen-
sitivity of biological production to climate change associ-
ated wind perturbations (Bakun, 1990; Shannon et al., 1992;
Schwing and Mendelssohn, 1997; Mendelssohn, 2002; Mc-
Gregor et al., 2007).

While numerous studies have focused on specific EBUS
in order to elucidate their particular dynamics (Hickey, 1998;
Barton et al., 1998; Mittelstaedt, 1983; Fennel, 1999; Brink,
1983b), less effort has been devoted to identify common
patterns and contrasting features between various EBUS
(Mackas et al., 2006). This is at least partially due to the
lack of homogeneous and sufficiently dense observational
coverage over the different EBUS. Yet, recent measurements
of ocean color by satellite remote sensing has made it pos-
sible to map the near-surface chlorophyll distribution and
spurred the development of empirical models that estimate
NPP from such satellite data (Longhurst et al., 1995; Carr,
2001; Behrenfeld and Falkowski, 1997; Marra et al., 2003;
Kahru et al., 2009). During the last decade, several satellite
data based studies investigated statistical correlations relat-
ing biological production in EBUS to various physical and
environmental properties. The most extensive work in this
regard was done byCarr(2001) andCarr and Kearns(2003)
who examined some potential NPP drivers that they sepa-
rated into local forcing processes such as upwelling favor-
able winds and large-scale circulation related factors like
the depth of the thermocline. Yet, the statistical analyses
in these studies have been performed over each upwelling
system separately, which makes it difficult to generalize the
results and to easily interpret the differences between EBUS.
More recently,Patti et al.(2008) investigated the relationship
between surface chlorophyll and several physical and envi-
ronmental factors at various sites along the 4 major EBUS.
They found that near-surface concentrations of nitrate to-
gether with the width of the continental shelf explain up to
70 % of the total variance of surface chlorophyll across the
different sites.Rossi et al.(2008, 2009) explored the rela-
tionship between biological activity and the intensity of hori-
zontal mixing in the major EBUS and found a strong negative
correlation between the magnitude of lateral stirring and sur-
face chlorophyll standing stocks across the 4 upwelling sys-
tems. Finally,Gruber et al.(2011) analyzed satellite based
estimates of biological production in the major EBUS with
a focus on the role of mesoscale activity. They found that
upwelling strength together with the mesoscale eddy activity
explain up to 65 % of the total variance of NPP in the 4 sys-
tems. Additionally, their results indicate that eddies reduce
NPP in EBUS substantially.

While these studies provided many insights into the po-
tential factors controlling NPP in EBUS, many aspects such
as the relative importance of the different drivers as well the
nature of their relationship to NPP are still not fully under-

stood. This is, at least partially, due to the linear data analysis
techniques used in those studies, which may not be suited to
extract interpretable patterns from non linear data sets. In
particular, these techniques fail to identify relevant drivers
when many of them are highly correlated (Harrell, 2001; Co-
hen et al., 2002; Belsley et al., 1980; Gotelli and Ellison,
2004). Moreover, linear statistics are inappropriate to explain
complex dependencies with threshold effects such as inhi-
bition and limitation behaviors in biological and ecological
systems. Therefore, given the complexity and the possibly
non-linear dynamics driving EBUS, more sophisticated tools
are needed to properly explore their functioning and uncover
their variability.

Here we use self-organizing maps (SOM), a class of un-
supervised artificial neural networks adept at pattern recog-
nition and classification also known as Kohonen maps (Ko-
honen, 1989, 2000). SOM provide a powerful analysis and
visualization approach for studying structure in complex data
sets and have a number of advantages over traditional statisti-
cal methods like principal component analysis (PCA) (Astel
et al., 2007) and empirical orthogonal functions (EOF) (Liu
et al., 2006). First and foremost, they accommodate non-
linear correlations in the data (Dayhoff, 1990). In addition,
SOM are more robust in handling noisy and missing data,
and they do not require prior assumptions about the data,
such as equality of variances or distribution normality (Chen
and Ware, 1999).

Finally, we use the characterization of EBUS to provide an
objective framework for categorizing these ecosystems based
solely on the mechanisms controlling biological production.
Although previous review studies byHill et al. (1998), Brink
(2005) andMackas et al.(2006) investigated in detail com-
mon features and processes at work in EBUS, to our knowl-
edge no objective classification of these ecosystems based
on their production regimes has been proposed. The main
focus of this paper is then two-fold: (i) to identify the most
relevant drivers of NPP in EBUS and how they affect the bio-
logical activity, and (ii) to provide an objective classification
of EBUS based on their respective production regimes.

2 Methods

2.1 Data description

In addition to the alongshore wind stress, the Ekman suc-
tion induced by the curl of the wind stress (McCreary et al.,
1987), the topography of the continental shelf (Batteen et al.,
2007; Patti et al., 2008; Marchesiello and Estrade, 2009;
Lachkar and Gruber, 2011a), the local density stratification
in the upper ocean (Marchesiello and Estrade, 2009) and
the mesoscale eddy activity (Rossi et al., 2008; Marchesiello
and Estrade, 2009; Gruber et al., 2011) have been consid-
ered as potential drivers for coastal NPP. Additional variables
were considered in this study such as nitrate concentrations

Biogeosciences, 9, 293–308, 2012 www.biogeosciences.net/9/293/2012/



Z. Lachkar and N. Gruber: Biological production in eastern boundary upwelling systems 295

Table 1. List of variables and sources of the datasets.

Variable Name Abreviation Data set

Net Primary Production NPP SeaWiFS – AVHRR
Upwelling Index UWI QuikSCAT
Ekman suction velocity Ekmw QuikSCAT
Photosynthetically Available Radiation PAR SeaWiFS
Sea Surface Temperature SST AVHRR
Eddy Kinetic Energy EKE AVISO
Nitrate concentration at 50 m Ntr50 WOA2001
Mixed Layer Depth MLD deBoyer Montegut 2004
Shelf Width SHW ETOPO2

at 50 m, Sea Surface Temperature (SST), and Photosynthet-
ically Available Radiation (PAR). Table1 shows the list of
variables used here.

We used satellite derived observations of: (1) monthly
wind stress from QuikSCAT data set on a 25 km grid, (2)
monthly chlorophyll-a concentrations from SeaWiFS data
on a 9 km grid, (3) monthly PAR also from SeaWiFS, (4)
monthly SST from AVHRR on a 9 km grid, and (5) monthly
eddy-kinetic energy (EKE) from AVISO on a Mercator
1/3◦ grid estimated from the geostrophic velocity anoma-
lies calculated from merged Topex/Poseidon/ERS/Jason-
1/ENVISAT maps. Satellite observations cover 41 months
from August 1999 to December 2002. Given that the main
focus of this study is to identify NPP drivers, this represents a
sufficient amount of data to derive statistically significant re-
sults although covering a relatively short period. Net primary
production was computed from chlorophyll-a, SST, and PAR
using the Vertically Generalized Production Model (VGPM)
(Behrenfeld and Falkowski, 1997). NPP inferred from such
models are associated with a substantial amount of uncertain-
ties and biases, particularly in coastal waters (see e.g.Kahru
et al., 2009). However, such potential biases in NPP are rel-
atively inconsequential for our analyses, as long as they tend
to be proportional to NPP. This is because our analysis fo-
cuses on relationships rather than the absolute magnitude of
NPP. This is supported by our finding that when we use the
NPP model proposed byCarr (2001) in a separate experi-
ment, our results did not change significantly.

An upwelling index (UWI), defined as the offshore com-
ponent of Ekman transport along the coasts (a mass flux per
meter of coastline) was calculated using the QuikSCAT wind
stress and taking into account the local orientation of the
coast. We also calculated the Ekman suction velocity us-
ing the curl of the wind stress. Monthly data of nitrate con-
centration at 50 m was derived from the World Ocean At-
las 2001 climatology (Conkright et al., 2002), and we used
a monthly climatology of mixed layer depth (MLD) from
de Boyer Mont́egut et al.(2004). The use of climatologi-
cal monthly data for nitrate concentration and mixed layer
depth is due to the lack of observations of these two pa-

rameters covering the period of the study for the 4 EBUS.
Finally, the shelf width was estimated as the offshore ex-
tent of 200 m isobath using the bathymetry file ETOPO2
from NGDC (National Geophysical Data Center) (Smith and
Sandwell, 1997).

Data were analyzed for each of the four eastern boundary
upwelling systems, extending from the coastline to 500 km
offshore in the zonal direction and from 24◦ N to 48◦ N for
the California Current System, from 12◦ N to 34◦ N for
the Canary Current System, from 10◦ S to 34◦ S for the
Humboldt Current System, and from 10◦ S to 30◦ S for the
Benguela Current System. These boundaries were chosen
to include as much of these upwelling systems as possible,
but to exclude other features that are unrelated to coastal up-
welling, such as the Agulhas rings in the Benguela Current
System. The offshore extension of EBUS in our analysis is
identical to the one previously used byCarr (2001). Chang-
ing slightly this definition by limiting our analysis to the first
400 km offshore did not have any significant impact on the
results. For EKE the values in the nearshore 50 km were not
included, as their errors are substantially larger. These er-
rors are essentially associated with the tidal signal correction
(Matsumoto et al., 2000; Volkov et al., 2007), but can also
result from the land contamination in the atmospheric cor-
rections (Volkov et al., 2007). Data were then averaged over
1◦ bins in meridional direction and over the 500 km coastal
strip (see Fig.1). The shelf width data (90 meridional bins)
were repeated over time in order to produce a vector with
the same dimensionality as the time-series variables. The
monthly climatological data (mixed layer depth and nitrate
concentration) were also repeated in time to cover the full
period. Therefore, the input data base that we explore here
contains 41 (months)×90 (meridional bins)= 3690 obser-
vations of 9 different variables (NPP + 8 potential drivers).

2.2 Self-organizing maps

During the last decade, the method of Self-organizing maps
(SOM) has been used successfully in various areas of geo-
sciences such as climate variability (Cavazos, 2000; Reusch
et al., 2007; Leloup et al., 2007), physical oceanography
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296 Z. Lachkar and N. Gruber: Biological production in eastern boundary upwelling systems

Table 2. Pearson correlation coefficient (r) between the potential drivers and NPP.

UWI EKE MLD SHW PAR SST Ekmw Ntr50 NPP

UWI 1 −0.12 −0.29 0.1 0.52 0.33 0.04 0.44 0.55
EKE – 1 −0.1 −0.04 −0.14 0.01 −0.09 −0.16 −0.22
MLD – – 1 0.02 −0.58 −0.48 −0.22 −0.34 −0.27
SHW – – – 1 0.05 0.19 −0.14 −0.08 0.19
PAR – – – – 1 0.4 0.11 0.27 0.45
SST – – – – – 1 0.29 0.40 0.08
Ekmw – – – – – – 1 0.55 0.17
Ntr50 – – – – – – – 1 0.47
NPP – – – – – – – – 1

Fig. 1. Annual mean net primary production (NPP) in g C m−2 yr−1 for the California, Canary, Humboldt and Benguela systems. The NPP
is computed from chlorophyll-a, SST, and PAR using the Vertically Generalized Production Model (VGPM) (Behrenfeld and Falkowski,
1997). The black lines indicate for each EBUS the limits of the 500 km offshore coastal band used in this study.

(Richardson et al., 2002; Liu and Weisberg, 2005) and en-
vironmental applications (Park et al., 2001, 2003; Saraceno
et al., 2006; Solidoro et al., 2007). The SOM implements
a nonlinear, topology-preserving mapping from a higher di-
mensional feature space to a lower (usually 2) dimensional
grid of computational units called neurons. This means that
similar objects (in our case EBUS observations) are mapped
close together on the grid (Fig.2). The topology conservation
property of SOM is ensured by a neighborhood relation con-
necting adjacent neurons on the map. Each map unit or neu-

ron is associated with a reference or prototype vector, made
of as many components as the number of variables in the
dataset, so that it can be seen as a local summary or general-
ization of similar observations. For instance, each neuron in
this study corresponds to a specific pattern of EBUS produc-
tion regimes, consisting of a particular level of NPP and the
associated potential drivers.

SOM learn by an iterative process, whereby input data
are presented successively to the map. Observations are as-
sociated with their best representative neurons, called best

Biogeosciences, 9, 293–308, 2012 www.biogeosciences.net/9/293/2012/
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High dimensional 
observation space

SOM 2D lattice

Fig. 2. A sketch showing the geometry of the SOM two-
dimensional lattice with 100 neurons and the correspondence be-
tween SOM and the input space. Thanks to SOM’s topography
preservation property, neurons associated with similar observations
in the input space are close to each other on the map.

matching units (BMUs). Following an unsupervised learn-
ing procedure, the training algorithm adjusts the prototype
vectors associated with neurons of the map at each iteration
step in such a way to better match the input data distribution
(Kohonen, 1989, 2000). At the end of the training phase,
the SOM approximates the probability density function of
the input data. For more details of the SOM training al-
gorithm, seeKohonen(2000) for theoretical considerations
andRichardson et al.(2003) for examples of applications of
SOM in oceanography.

In practice, when using a SOM one has to decide a pri-
ori the size of the map, i.e., the number of the neurons of
the map, and a few parameters of the training algorithm.
No theoretical principle for the choice of the map size ex-
ists (Richardson et al., 2003). Rather, the number of neurons
depends on the complexity of the problem and on the total
number of observations. Here, we use a 10×10 rectangular
map with 100 neurons. Using slightly different sizes does not
affect the results noticeably. A hexagonal cell structure was
chosen because it favors neither the horizontal nor the verti-
cal direction (Kohonen, 2000) (Fig. 2). The weights of the
neurons were initialized using the linear method described in
Kohonen(2000). Finally, we opted for a Gaussian neighbor-
hood function as it has a lower topographic error ensuring a
better mapping.

2.3 Selection of drivers

In order to capture the key processes controlling NPP in
EBUS, we should provide SOM with the most relevant
drivers explaining the NPP variability. We started first by as-
sessing the relationship of each predictor variable with NPP
in a bivariate sense. Pearson correlation coefficients were
calculated for the eight variables and are presented in Table2.
The upwelling index has the strongest linear relationship to

NPP (r = 0.55), while SST has the weakest (r = 0.08). De-
spite the low magnitude of the latter relationship, it is still
statistically significant. Yet, a simple ranking of correlation
coefficients can not be used to determine the relative impor-
tance of individual drivers as these coefficients are inappro-
priate to describe correlations for multivariate data. There-
fore, we used a stepwise multilinear regression to better as-
sess the statistical significance of the relationship between
NPP and the potential drivers. This analysis showed that
all the 8 potential drivers have a statistically significant cor-
relation with NPP. Yet, ranking the relative importance of
variables using a stepwise linear regression can be mislead-
ing because of the relatively high correlations between many
drivers potentially conveying the same information. A re-
view of the correlations in Table2 reveals, indeed, a strong
interdependence between the predictors.

To circumvent the problem of redundancy in the data, we
used a feature selection method (Liu and Motoda, 1998) to
reduce the number of potential drivers and retain only the
most important predictors or features that contribute to the
information content of the data. Feature selection consists in
compressing the data through elimination of redundant or ir-
relevant features. FollowingLaine and Simil̈a (2004) and
Laha (2005) we used a SOM-based algorithm to perform
this task (see supplementary information for details). Two
subsets of drivers emerge: these include the upwelling in-
dex and nitrate concentration at 50 m depth, in addition to
three common drivers: the eddy kinetic energy, the mixed
layer depth and the continental shelf width. As shown pre-
viously in Table2, nitrate availability at 50 m is strongly
correlated with the upwelling strength. The source of this
tight correlation is that the high concentrations of nitrate in
EBUS are actually largely a consequence of the upwelling-
favorable winds. Therefore, we decided to use the latter, i.e.,
upwelling strength, as an NPP driver. It is worth noting that
neither SST nor PAR appears in the best set of drivers, al-
though both are involved in the NPP computation following
the VGPM. This is because both are strongly correlated with
the upwelling index and the mixed layer depth (Table2), and
hence add little independent information to describe NPP
variability. Next, we explore the map trained with this set
of drivers, i.e., upwelling strength, shelf-width, eddy-kinetic
energy, and mixed layer depth and we investigate their rela-
tionship to the NPP.

3 Results

3.1 SOM-derived NPP patterns

The SOM analysis produces a continuum of coastal up-
welling production patterns representing the range of pro-
duction regimes in the input data and displays them in a two-
dimensional output map (Fig.3). The continuum of patterns
ranges from those with very low NPP at the top right corner

www.biogeosciences.net/9/293/2012/ Biogeosciences, 9, 293–308, 2012
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Fig. 3. Visualization of EBUS production patterns on the SOM. Each neuron corresponds to a prototype of production regime defined by a
given combination of NPP and the 4 drivers. For comparison between different variables, data is normalized between 0 and 1.

1% (37 obs)

Fig. 4. Frequency of occurrence of the SOM patterns. The area
of the black hexagons inside each neuron is proportional to the fre-
quency of the pattern it represents.

of the map to very high NPP in the bottom left corner. This
gradual change in production regimes is associated with con-
tinuous changes in the NPP drivers across the map, with the
upwelling index, the mixed layer depth and the shelf width
reaching their maximum values in the bottom left, top right
and bottom right corners, respectively. The eddy kinetic en-
ergy, on the other hand, shows an absolute and a secondary
maximum in the interior of the map. The frequency of occur-
rence of the different patterns (classes) ranges from 0.14 %
for the least common neuron to about 3.5 % for the most
common (Fig.4) The top area of the map corresponds to
the most densely populated region in the observation space
with the first row representing about 20 % of the total obser-
vations. Overall, observations are continuously distributed
across the map with no empty neurons. However, the pres-
ence of neurons with relatively low density suggests the ex-
istence of natural boundaries among the data separating dis-
tinct clusters.

3.2 On the relationship between drivers and NPP

A better qualitative understanding of the different correla-
tions in the data can be derived from a visual inspection of

Biogeosciences, 9, 293–308, 2012 www.biogeosciences.net/9/293/2012/
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Fig. 5. Component planes of the SOM. Each plane shows the distribution of one variable across the map.

the component planes depicting the variability of each pa-
rameter on the map (Fig.5). Consistent with previous anal-
yses and the canonical view, NPP and the upwelling index
show a strong coherence. The bottom left corner charac-
terized by very productive upwelling conditions is also the
map area where the upwelling index is the largest. Cor-
respondingly, relatively unproductive conditions in the top
right corner of the map are associated with weak wind forc-
ing. This confirms that, to first order, NPP variations in the
EBUS are driven by differences in alongshore wind strength
(Carr, 2001; Carr and Kearns, 2003). Yet, when further ex-
amining the map, exceptions to this rule arise. For instance,
in the bottom left quarter of the map, several neurons have
similar NPP although those along the left side (neurons F1 to
I1) have a substantially higher upwelling index than the ones
near the bottom (neurons J2 to J5) of the map. This suggests
that NPP is enhanced below the second diagonal of the map
and limited above this line due to one of the three remain-
ing drivers. With low values above the second diagonal line
and high values below, only the shelf width can explain this
contrasting NPP response to wind forcing. Therefore, these
results suggest that narrow continental shelves are associated
with reduced coastal NPP. For neurons G6–G8 to J6–J8 in the
bottom right quarter, NPP shows a local minimum, whereas
neither the upwelling index nor the shelf width have local
extrema in this area of the map. In contrast, the eddy kinetic
energy has a local maximum matching the area of relatively
low NPP near the bottom right corner. This implies that the
eddy kinetic energy is a discriminating driver in this area and
that intense eddy activity is associated with lower production.
Finally, deep mixed layers also appear to play an inhibiting
role, as the regions with the deepest mixed layers tend to be
the least productive.

For a better understanding of the relationship between the
NPP and its drivers, we plotted for each of the four drivers
their relationship to the NPP across the map (Fig.6). While
there is a clear linear correlation between the upwelling in-
dex and NPP, the relationship between the three remaining
drivers and NPP is of a different nature. That is, the effect
of these drivers on the NPP starts to be important only when
they reach extreme values. For instance, the shelf width ap-
pears to restrict NPP only when it is very narrow, whereas a
wide shelf does not lead systematically to high production.
Similarly, when the eddy kinetic energy or the mixed layer
depth are low or moderate, neither of them seem to have any
clear impact on the production. But when they are high, NPP
tends to be low. The relationship between these three drivers
and NPP is therefore asymmetric and can be viewed as a limi-
tation relationship. Because of this asymmetry, we shall term
these drivers inhibiting factors in contrast to the upwelling
index which is the primary driver for NPP in EBUS.

In summary, SOM analysis identified a continuum of
classes of physical conditions enhancing or inhibiting bio-
logical production. Next, we use these findings to provide an
objective classification of production regimes in EBUS and
we investigate the similarities and differences between the
four major EBUS.

3.3 A production regime based classification of EBUS

The co-variability of the alongshore wind together with the
three inhibiting factors provides an objective framework to
define a typology of coastal upwelling ecosystems on the ba-
sis of their production regimes. While SOM provided al-
ready a first classification of these regimes into 100 patterns,
a further clustering is needed for a more synthesized repre-
sentation of the biological production in EBUS. To this end,

www.biogeosciences.net/9/293/2012/ Biogeosciences, 9, 293–308, 2012
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Fig. 6. The relationship of NPP to the drivers:(a) upwelling index,(b) shelf width,(c) eddy kinetic energy, and(d) mixed layer depth
among SOM neurons.

we use the Hierarchical Agglomerative Clustering (HAC)
method (Jain and Dubes, 1988). HAC treats each neuron as
a singleton cluster (i.e., a class of one object) and then suc-
cessively combines pairs of clusters based on their similarity
until all clusters have been merged into a single cluster that
contains all neurons.

An HAC clustering can be graphically represented by a
tree structure (dendrogram) as shown in Fig.7. Each merger
of two clusters is represented by a node. The length of each
branch connecting two consecutive nodes reflects the similar-
ity between the clusters that were merged. This allows for the
cutting of the dendrogram where the gap between two suc-
cessive combinations is largest as such large gaps arguably
separate “natural” clusterings, i.e. classes. Applying this cri-
terion retains four classes, with the key separating character-
istics being shelf width and upwelling strength, respectively.
Consequently, the four classes retained here correspond to
the four combinations of high and low values of these two pa-
rameters (Fig.7). Class 1 groups together observations with a
relatively wide shelf and strong upwelling index, i.e., strong
alongshore wind. These conditions correspond to neurons in
the bottom left corner of the map (Fig.8). These neurons are
also characterized by low eddy kinetic energy and shallow
mixed layers. Combining favorable upwelling conditions
with generally weak inhibiting factors, this class has the most
productive conditions with a NPP of 545±267 g C m−2 yr−1

(mean±1-standard deviation) (Fig.9). Class 2 groups to-
gether observations with a wide shelf, but relatively weak

upwelling. These correspond to neurons in the bottom right
corner of the map, i.e. neurons characterized by moderate to
relatively high eddy kinetic energy and shallow mixed layers
(Fig. 8). Having relatively weak forcing and low to moderate
inhibiting factors, the biological production in this class is
relatively low (300±160 g C m−2 yr−1) (Fig. 9). Class 3 en-
compasses regions with a narrow continental shelf and weak
upwelling. These are neurons in the top right corner of the
map, which are also characterized by deep mixed layers and
moderate levels of eddy kinetic energy (Fig.8). Due to rel-
atively weak wind forcing and strong limiting factors, the
upwelling conditions grouped in class 3 are the least produc-
tive with a mean NPP of only 200±65 g C m−2 yr−1 (Fig. 9).
Finally, class 4 combines regions with a narrow continen-
tal shelf and moderate wind forcing. These are neurons in
the top left quarter of the map, which exhibit moderate to
high eddy kinetic energy and shallow mixed layers (Fig.8).
Due to relatively strong limiting factors and only moderate
wind forcing, the biological production associated with these
upwelling conditions is generally low with a mean value of
310±140 g C m−2 yr−1, i.e. close to that of Class 2 (Fig.9).

For a better characterization of these classes we plotted
their spatial distributions in the four EBUS (Fig.10). The
spatial distribution of each class results from the dominant
distributions of observations it contains. Class 1 is mainly
made of observations from the southern and central Canary
Current System and from the central Benguela Current sys-
tem. This very productive class contains also observations
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Fig. 8. The distribution of the 4 classes presented in Fig.7 on SOM.

from the northernmost part of the Humboldt Current System.
Class 2, distinguished by a wide shelf and relatively high
eddy kinetic energy, corresponds to upwelling conditions ob-
served in the southern California Current System, southern
Benguela Current System and in various places of the Ca-
nary system. Class 3 that has the deepest mixed layer and the
weakest wind forcing contains primarily winter observations

in the northern California and Canary current systems, and in
the central and southern Humboldt current system. Finally,
class 4 characterized by a narrow shelf and moderate to high
eddy activity, dominates in most of the California and Hum-
boldt current systems, as well as in the northernmost part of
the Benguela current system.

3.4 Comparison of the four EBUS

Our previous analysis reveals substantial variations of pro-
duction regimes within each of the four EBUS. That is, no
EBUS is made of one single class. The Canary and the
Benguela current systems are spatially the most variable
EBUS (i.e. they contain all classes), whereas the California
and the Humboldt current systems are defined by only 2 to
3 classes. Our analysis also reveals that the closest EBUS to
the Canary current system in terms of its production regime
is the Benguela current system, while the Humboldt current
system resembles more the California one. This becomes
evident when inspecting a projection of the EBUS onto the
SOM (Fig.11). The Canary and the Benguela current sys-
tems on the one hand, and the California and Humboldt cur-
rent systems on the other hand occupy common or very close
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Class 1 Class 2

Class 3 Class 4

Fig. 9. Mean (grey bars) and± standard deviation (blue error bars) of upwelling index, eddy kinetic energy, mixed layer depth, shelf width
and net primary production associated with each of the 4 classes presented in Fig.7.
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Fig. 11. Distribution of the Canary, California, Humboldt and Benguela Current systems on the SOM. The grey shading corresponds to the
fraction of observations associated with each neuron.

areas on the map, which can be interpreted as a high degree
of similarity.

Figure11 also shows that the Canary and the Humboldt
current systems on the one hand, and the California and the
Benguela current systems on the other hand are complemen-
tary, meaning each pair fills nearly the entire map while hav-
ing little in common. This implies that each of these two
pairs represents nearly the whole diversity of production pat-
terns observed in the four systems. The sketch in Fig.12
summarizes and illustrates these findings with a graphical
representation of the four EBUS, their respective production
regimes and their degree of similarity.

4 Discussion

4.1 The mechanisms inhibiting biological production

A key finding of our analysis is that three factors may inhibit
NPP once they become strong. These factors are (i) narrow
continental shelf, (ii) deep mixed layers, and (iii) high levels
of eddy activity. We next discuss the possible mechanisms
that may explain our results.

Our finding suggesting that a narrow continental shelf
may inhibit NPP can be interpreted by considering the ef-
fect of shelves on nutrient retention. Using idealized mod-
els, Austin and Lentz(2002) andMarchesiello and Estrade
(2009) showed that wide continental shelves result in an

offshore displacement of the upwelling cell, producing an
area over the inner-shelf where the circulation has almost
no cross-shore transport. This prevents nutrients from be-
ing advected offshore, trapping the nutrients in the inner-
shelf region. This is consistent with the cold SST tongues
observed away from the coast in the regions of the Canary
system where the continental shelf is particularly wide, sig-
naling an upwelling occurring farther offshore (Barton et al.,
1977; Demarcq and Faure, 2000). This is also in agreement
with recent current observations on the West Florida shelf
which revealed in the case of a shallow and wide continen-
tal shelf the presence of a surface convergent flow that might
favor nutrient trapping within the inner shelf (Liu and Weis-
berg, 2007). In addition, wide continental shelves also tend
to prevent the nutrients from getting lost vertically. By trap-
ping the exported organic nutrients at the shallow seafloor,
where most of these nutrients are remineralized before get-
ting buried, these nutrients quickly find their way back into
the shallow water column, where they are soon upwelled
again. When shelves are narrow, nutrients tend to get lost
to the open and deep part of the ocean, resulting in lower
overall nutrient levels in the waters that upwell, and hence
lower NPP. Iron limitation is an additional mechanism that
has been proposed to explain the role of continental shelf
width (Chase et al., 2007). These authors argued that wide
shelves tend to better retain river-derived iron, resulting in
higher concentrations of this critical micronutrient in coastal
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Fig. 12. A sketch illustrating the similarities and differences be-
tween the major EBUS. Pie sectors correspond to the 4 EBUS con-
sidered. For NPP and each of the 4 drivers, arrows point to ar-
eas where these variables reach maximum values (also indicated
by saturated colors on the concentric circles). The area of each
sector is proportional to the variability of the corresponding EBUS
while overlapping sectors illustrate EBUS common features. The
sketch shows that the Canary and Humboldt current systems on the
one hand and the California and Benguela current systems on the
other hand are complementary, meaning each pair represents most
of the variability of the 4 EBUS while having little in common.
Conversely, the Canary and Benguela current systems on one hand
and the California and Humboldt current systems on the other hand
are the most similar systems. The Canary and Benguela current
systems have in common very productive coastal upwelling condi-
tions driven by strong alongshore wind and enabled by a relatively
wide continental shelf, low eddy activity and shallow mixed layer.
In contrast, the California and Humboldt current systems share in
common the least productive conditions with relatively weak along-
shore wind, narrow shelf, moderate eddy activity and deep mixed
layer. Finally, the region of overlap between the Canary and Cali-
fornia current systems indicates similar conditions in the two sys-
tems characterized by relatively wide shelf and moderate to high
eddy activity. Similarly, the overlapping area between the Benguela
and Humboldt current systems illustrates common observations be-
tween these two systems characterized by narrow shelf and moder-
ate alongshore wind.

systems with wide shelves and high freshwater input. How-
ever, since runoff freshwater inputs are generally very low
in the four EBUS considered in this study (Mackas et al.,
2006), this latter mechanism is likely to play a minor role in
the differences of biological production discussed here.

The potential role of deep mixed layers in inhibiting NPP
is likely a result of mixed layer depths regulating the average
amount of light that a phytoplankton in the mixed layer is ex-
posed to (Sverdrup, 1953). This is important in EBUS, since
the physical circulation maintains quasi nutrient-replete con-
ditions throughout most of the upwelling season, such that
the light resource becomes a key limiting factor for phy-
toplankton growth during this period, particularly in the

slope =2.45 ±0.34

slope =1.08 ±0.13

slope =1.83 ±0.11

Fig. 13. The relationship between NPP and upwelling index (UWI)
for strongly inhibited conditions (red circles), weakly inhibited con-
ditions (blue circles), and intermediate conditions (green circles).
The dashed lines show the corresponding linear regression lines.

nearshore area (Gruber et al., 2006). Under such conditions,
deep mixed layers will tend to inhibit high rates of NPP, as
has been shown in previous studies (e.g.Platt et al., 1991;
Obata et al., 1996).

The inhibiting impact of meso- and submesoscale pro-
cesses on NPP is less straightforward to explain, particularly
since it contradicts recent findings for the open ocean, where
such processes were found to enhance NPP (Falkowski et al.,
1991; McGillicuddy et al., 1998). It is in line, however, with
recent modeling (Marchesiello and Estrade, 2009; Gruber
et al., 2011) and observational (Rossi et al., 2008) studies
that focused on the eddy-induced mixing and lateral disper-
sion in coastal upwelling systems. Using regression analyses
of satellite data in combination with numerical model sim-
ulations,Gruber et al.(2011) confirmed the reducing effect
of mesoscale processes on NPP and interpreted this as the
result of a nutrient leakage mechanism, by which upwelled
nutrients are more efficiently removed from the nearshore
regions by eddy-induced subduction and offshore transport.
Additionally, Lachkar and Gruber(2011a) found that the
mesoscale activity reduces the water residence times in the
nearshore area, which tends to lower the efficiency by which
nutrients are used in the euphotic layer. The contrasting eddy
activity between the different EBUS has no single explana-
tion. Differences in vertical stratification, wind forcing and
bottom topography probably all contribute to the observed
variability of the eddy activity (Hallberg and Gnanadesikan,
2006; Meredith and Hogg, 2006; Hogg et al., 2008; March-
esiello and Estrade, 2009).
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4.2 Impact of inhibiting factors

Our results suggest that the strength of the inhibiting fac-
tors could modulate the sensitivity of NPP to changes in
wind forcing. In order to test this hypothesis, we split the
data according to the strength of the inhibiting factors into
three categories: (i) weakly inhibited conditions with low
eddy kinetic energy (<mean−0.5 ·σ ) and wide continental
shelf (>mean+0.5·σ ), (ii) strongly inhibited conditions with
high eddy kinetic energy (>mean+0.5·σ ) and narrow shelf
(<mean−0.5 · σ ), and (iii) intermediate conditions for the
rest of the observations. We did not include the depth of the
mixed layer in our criterion for the separation of weakly and
strongly inhibited conditions because observations with large
MLD show very limited variability in upwelling strength and
NPP, which prevents detecting statistically significant differ-
ences in their relationship. Figure13 reveals that observa-
tions with strong inhibiting factors indeed show the lowest
sensitivity of NPP to wind forcing. The slopes of a linear
regression of NPP on the upwelling index vary from 1.08
(±0.13) for the strongly limited subset to 2.45 (±0.34) for
the weakly limited subset. The differences in the slopes be-
tween the three subsets are statistically significant at the 95 %
level. What does this imply with regard to the sensitivity of
NPP to changes in upwelling, such as predicted to occur in
response to climate change (e.g.Bakun, 1990)? The majority
of conditions with strong inhibiting factors are found in the
California and Humboldt upwelling systems. Therefore, one
may expect a weaker sensitivity of the production to wind
forcing changes in the Pacific EBUS. Figure14suggests that
NPP in the Atlantic EBUS is, indeed, more sensitive to wind
forcing. This implies that under comparable alongshore wind
intensification there may be a larger NPP response in the At-
lantic EBUS than in the Pacific EBUS. Of course, this tenta-
tive prediction would fail if the inhibiting factors, namely the
eddy activity and the mixed layer depth, undergo a substan-
tial increase in response to intensified winds as well. Results
from a recent comparative modeling study of the California
and Canary upwelling systems are, however, consistent with
our first prediction as they reveal that similar upwelling in-
tensification lead indeed to larger NPP increase in the Ca-
nary current system relative to the California current system
(Lachkar and Gruber, 2011b). However, this hypothesis still
needs to be further confirmed by extending the investigation
to the Benguela and Humboldt upwelling systems.

5 Summary and conclusions

We investigated the major environmental factors controlling
biological production using a SOM based approach. Our aim
has been to identify the leading drivers and modulating fac-
tors for NPP and to provide an objective classification and
comparison of EBUS based on their production regimes.

slope = 2.43 ±0.18

slope = 1.07 ±0.08

Fig. 14. The relationship between NPP and upwelling index (UWI)
for the Pacific (red circles) and the Atlantic (green circles) EBUS
observations. The dashed lines show the corresponding linear re-
gression lines.

Because of their high mutual correlations, many potential
drivers and factors were eliminated by SOM’s feature selec-
tion algorithm, halving the initial number of drivers from 8
to 4. Those retained are (i) alongshore wind, expressed in
terms of an upwelling index, (ii) eddy kinetic energy, (iii)
continental shelf width and (iv) mixed layer depth. SOM ag-
gregated these 4 drivers and NPP into 100 patterns of physi-
cal and environmental conditions favoring or inhibiting NPP.
While confirming the dominant role of upwelling-favorable
alongshore wind in controlling the level of NPP in EBUS,
our analysis revealed that the three remaining factors may
strongly inhibit the biological production when reaching ex-
treme values.

Grouping the 100 patterns of the SOM with a HAC clus-
tering method led to a typology of EBUS made of 4 distinct
classes of production regimes. These are composed of one
highly productive class dominating the central Benguela and
the central and southern part of the Canary current system, in
addition to three less productive classes dominating most of
the California and Humboldt current systems as well as the
northern part of the Canary system and northern and south-
ern Benguela current system. Despite substantial variability
in patterns within each of the four EBUS, a similarity analy-
sis revealed that the Atlantic EBUS on the one hand and the
Pacific EBUS on the other hand show fundamental contrasts.
The distinction relies on the strength of the inhibiting fac-
tors, namely the shelf width and eddy kinetic energy, which
are generally much stronger in the Pacific EBUS than in the
Atlantic EBUS. Therefore, our results suggest that climate
change driven increase in the upwelling favorable winds may
lead to a stronger biological response in the Atlantic com-
pared to the Pacific EBUS, with major implications for the
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biogeochemical cycles and fisheries in these marine ecosys-
tems. This clearly merits further in-depth investigation in-
volving global and regional models.

Supplement related to this article is available online at:
http://www.biogeosciences.net/9/293/2012/
bg-9-293-2012-supplement.pdf.
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