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Using Human Ratings for Feedback Control: A
Supervised Learning Approach with Application to

Rehabilitation Robotics
Marcel Menner, Lukas Neuner, Lars Lünenburger, and Melanie N. Zeilinger

Abstract—This article presents a method for tailoring a para-
metric controller based on human ratings. The method leverages
supervised learning concepts in order to train a reward model
from data. It is applied to a gait rehabilitation robot with the goal
of teaching the robot how to walk patients physiologically. In this
context, the reward model judges the physiology of the gait cycle
(instead of therapists) using sensor measurements provided by
the robot and the automatic feedback controller chooses the input
settings of the robot to maximize the reward. The key advantage
of the proposed method is that only a few input adaptations are
necessary to achieve a physiological gait cycle. Experiments with
nondisabled subjects show that the proposed method permits
the incorporation of human expertise into a control law and to
automatically walk patients physiologically.

Index Terms—Human feedback-based control, human-
centered robotics, learning and adaptive systems, rehabilitation
robotics.

I. INTRODUCTION

HUMANS can perform very complex tasks that are dif-
ficult to achieve with autonomous systems. The depen-

dency on human supervision or expertise still restricts efficient
operation of many complex systems. An important domain
where human expertise is usually needed is rehabilitation
robotics, where we consider the robot-assisted gait trainer
Lokomat® [1] in this paper, see Fig. 1. Robotic systems like the
Lokomat have recently been introduced in gait rehabilitation
following neurological injuries with the goal of mitigating the
limitations of conventional therapy [2]–[6]. However, training
with such robots still requires the supervision and interaction
of experienced therapists [1].

Gait rehabilitation with the Lokomat currently requires
physiotherapists to manually adjust the mechanical setup and
input settings, e.g., the speed of the treadmill or the range of
motion, in order to bring patients into a physiological and safe
gait cycle. Therapists have to be trained specifically for the
device and acquire substantial experience in order to achieve
good input settings. Although there are guidelines for their
adjustment [7], it remains a heuristic process, which strongly
depends on the knowledge and experience of the therapist.
Automatic adaptation of input settings can reduce the duration
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Fig. 1. Lokomat® gait rehabilitation robot (Hocoma AG, Volketswil, CH).

of therapists’ schooling, improve patient training, make the
technology more broadly applicable, and can be more cost
effective. In this work, we propose a method to automatically
adapt the input settings. Although the motivation behind this
work is in the domain of rehabilitation robotics, the proposed
method addresses general human-in-the-loop scenarios, where
expert knowledge can improve system operation.

In this paper, we propose a two-step approach to achieve
automatic input adaptations: First, we define a feature vector
to characterize the gait cycle and postulate a reward model
to judge the physiology of the gait cycle using the feature
vector. The reward model is trained with therapists’ ratings
using a supervised learning technique, where the feature vector
is obtained from sensor measurements provided by the robot.
The sensor measurements are the angle, torque, and power of
both the hip and knee joints of the robot. Second, we use the
gradient of the reward model to determine input adaptations
that achieve the desired gait cycle. This involves a steady-state
model to relate the gradient of the reward model with respect
to the feature vector (high dimensional) to input settings (low
dimensional) that adjust the gait cycle. A key component in
the proposed formulation is that the reward model and its
gradient are formulated as functions of the feature vector rather
than the input settings. The high dimensionality of the feature
vector allows us to use one model for all human subjects with
very different body types, which enables very efficient online
application of the proposed method. In order to train both
the reward model and the steady-state model, we collected



data with various physiological and non-physiological input
settings from 16 nondisabled subjects. The subjects were
instructed to be passive while being walked by the robot in
order to imitate patients with limited or no ability to walk in
the early stages of recovery. Experiments with ten nondisabled
subjects highlighted the ability of the proposed method to
improve the walking pattern within few adaptations starting
from multiple initially non-physiological gait cycles.

Related Work

Adaptive control strategies have been the subject of a body
of research in robotic gait trainers with the goal of improving
the therapeutic outcome of treadmill training [8]–[13]. The
work in [8] presents multiple strategies for automatic gait
cycle adaptation in robot-aided gait rehabilitation based on
minimizing the interaction torques between device and patient.
Biomechanical recordings providing feedback about a patient’s
activity level are introduced in [9], [10]. Automated synchro-
nization between treadmill and orthosis based on iterative
learning is introduced in [11]. In [12], a path control method is
proposed to allow voluntary movements along a physiological
path defined by a virtual tunnel. An algorithm to adjust
the mechanical impedance of an orthosis joint based on the
level of support required by a patient is proposed in [13].
Further research in the domain of rehabilitation robotics is
presented, e.g., in [14], [15]. In [14], the human motor system
is modeled and analyzed as approximating an optimization
problem trading off effort and kinematic error. In [15], a
patient’s psychological state is estimated to judge their mental
engagement. Different from the work in rehabilitation robotics
presented in [8]–[15], we present a method for input setting
adaptation of a rehabilitation robot based on a feedback
controller, which is derived from human ratings.

In the following, we discuss research directions related to
the techniques employed in the proposed approach.

Gait cycle classification is often used to distinguish human
subjects according to two classes [16]–[19], e.g., young/elderly
or healthy/impaired. In [16], a supervised learning method
for automatic recognition of movement patterns is presented
to discriminate gait patterns of young and elderly people. In
order to improve classification performance, [17] employs a
kernel-based principle component analysis for the extraction
of features. Gait patterns are also used to diagnose diseases
that symptomatically cause gait abnormalities, e.g., [18], [19].
Different from [16]–[19], this paper does not aim to identify
or classify human individuals but to generalize from data of
multiple individuals by classifying gait patterns according to
their physiology. Further, the obtained classifier is not used
to predict discrete/binary classes but as a continuous reward,
which is maximized using feedback control.

Reinforcement learning uses a trial and error search to find
a control policy [20]–[28]. The framework proposed in [21]
allows human trainers to shape a policy using approval or
disapproval. In [22], human-generated rewards in a reinforce-
ment learning framework are employed for a 2-joint velocity
control task. In [23], a policy shaping method is presented
where human feedback is not used as a reward signal but

directly as a label for the policy. In [24], human preferences
are learned through ratings based on a pairwise comparison
of trajectories with the goal of reducing human feedback. In
[25], a robot motion planning problem is considered, where
users provide a ranking of paths that enable the evaluation
of the importance of different constraints. In [26], a method
is presented that actively synthesizes queries to a user to
update a distribution over reward parameters. In [27], user
preferences in a traffic scenario are learned based on human
guidance by means of feature queries. In [28], human ratings
are used to learn a probability distribution of individual
preferences modeled as a Markov decision process. While a
reinforcement learning approach could in principle be applied
to the considered problem, the online application of these
methods typically requires a few hundred human ratings to
learn a policy. This is infeasible when working with a patient,
where a comparatively small number of feedback rounds has
to be sufficient. The main difference between our method and
reinforcement learning is that we do not use trial and error
search but we build a reward model that is maximized online.

Inverse optimal control and inverse reinforcement learning
aim at learning a reward model or cost model from demon-
strations of human behavior [29]–[46]. Inverse optimal control
methods model demonstrations to be the result of an optimal
control problem [33]–[40] and often aim at transferring human
expertise to an autonomous system, e.g., for humanoid loco-
motion [33], [34], identifying human movements [35]–[37],
robot manipulation tasks [38], or autonomous driving [39]. In
inverse reinforcement learning [41]–[46], demonstrations are
typically modeled to be the result of probabilistic decision-
making in a Markov decision process. The fundamental dif-
ference between the proposed method and inverse optimal con-
trol/inverse reinforcement learning methods is the utilization
of ratings instead of demonstrations to learn a reward model.

II. HARDWARE DESCRIPTION & PROBLEM DEFINITION

The Lokomat® gait rehabilitation robot (Hocoma AG,
Volketswil, CH) is a bilaterally driven gait orthosis that is
attached to the patient’s legs by Velcro straps. In conjunction
with a bodyweight support system, it provides controlled
flexion and extension movements of the hip and knee joints
in the sagittal plane. Leg motions are repeated based on
predefined but adjustable reference trajectories. Additional
passive foot lifters ensure ankle dorsiflexion during swing.
The bodyweight support system partially relieves patients from
their bodyweight via an attached harness. A user interface
enables gait cycle adjustments by therapists via a number of
input settings [1], [10].

Input Settings: One important task of the therapist operating
the Lokomat is the adjustment of the input settings to obtain
a desirable gait trajectory. A total of 13 input settings can be
adjusted to affect the walking behavior, which are introduced
in Table I. In this work, we propose a method that can
automate or assist the therapists in the adjustment of the input
settings by measuring the gait cycle.



TABLE I
INPUT SETTINGS OF THE LOKOMAT

Input Setting & Description Step-size Range
Hip Range of Motion (Left & Right) 3◦ 23◦, 59◦
Defines the amount of flexion and extension
Hip Offset (Left & Right) 1◦ -5◦, 10◦
Shifts movements towards extension or flexion
Knee Range of Motion (Left & Right) 3◦ 32◦, 77◦
Defines amount of flexion
Knee Offset (Left & Right) 1◦ 0◦, 8◦
Shifts movement into flexion for hyperextension correction
Speed 0.1km/h 0.5km/h, 3km/h
Sets the treadmill speed
Orthosis speed 0.01 0.15, 0.8
Defines the orthosis and affects walking cadence
Bodyweight Support continuous 0kg, 85kg
Defines carried weight for unloading
Guidance Force 5% 0%, 100%
Sets amount of assistance
Pelvic 1cm 0cm, 4cm
Defines lateral movement

A. State-of-the-Art Therapy Session

The current practice of gait rehabilitation with the Lokomat
includes the preparation and setup of the patient and device,
actual gait training, and finally removing the patient from the
system [7]. Gait training is further divided into three phases:
1. Safe walk: The patient is gradually lowered until the

dynamic range for the bodyweight support is reached. The
purpose of this first phase is to ensure a safe and non-
harmful gait cycle.

2. Physiological walk: After ensuring safe movements, the
gait cycle is adjusted so that the patient is walked phys-
iologically by the robot.

3. Goal-oriented walk: The gait cycle is adjusted to achieve
therapy goals for individual sessions while ensuring that
the patient’s gait remains physiological.
In this paper, we focus on the physiological walk. In a

state-of-the-art therapy session, therapists are advised to follow
published heuristic guidelines on how to adjust the input
settings based on observations (visual feedback) in order to
reach a physiological walk. Three examples of the heuristic
guidelines are as follows: If the step length does not match
walking speed, then the hip range of motion or treadmill speed
should be adjusted; if the heel strike is too late, then the
hip offset or the hip range of motion should be decreased;
if the foot is slipping, then the orthosis speed or the knee
range of motion should be decreased. An extended overview of
heuristics can be found in [7]. This heuristic approach requires
experience and training with experts, which incurs high costs
and limits the availability of the rehabilitation robot due to the
small number of experienced experts. The proposed method
aims to alleviate this limitation as described in the following.

B. Technological Contribution

We propose a method for automatically suggesting suitable
input settings for the Lokomat based on available sensor
measurements in order to walk patients physiologically. The
proposed framework can be used for recommending input

Recommender
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Fig. 2. Overview of the proposed method as a recommendation system. The
novel technology (dashed lines) augments the state-of-the-art control loop of a
therapist and the Lokomat. Sensor measurements of angle, torque, and power
of both hip and knee joints provided by the Lokomat are used to compute
recommendations for the input adaptations.

settings for therapists, automatic adaptation of input settings,
or as an assistive method for therapists during schooling
with the Lokomat. Fig. 2 illustrates the proposed method as
a recommendation system. The method is derived assuming
that the mechanical setup of the Lokomat is done properly,
such that the purpose of adapting the input settings is the
improvement of the gait cycle and not corrections due to an
incorrect setup.

III. CONTROLLER DESIGN BASED ON HUMAN RATINGS

This section describes the proposed human feedback-based
controller. In the setup considered, input settings s ∈ Rm of
the controlled system lead to a gait cycle represented by a
feature vector x ∈ Rn in steady-state:

x = f(s), (1)

where f is an unknown function. For the considered applica-
tion, the input settings s are given in Table I and the feature
vector x is composed of statistical features of measurements,
which characterize the gait cycle and are further discussed in
Section IV. Here, the notion of a steady-state means that any
transients due to an input adaptation have faded. The control
objective is to find input settings s? for which x? = f(s?)
represents a desired system state, i.e., a physiological gait
cycle in the considered application.

Control Law and Conceptual Idea: The method is based on
a reward model, reflecting the control objective, and a steady-
state model, associating a feature vector with an input setting.
The reward model is a function that assigns a scalar value to
the feature vector estimating an expert rating of the ”goodness”
of the feature vector. The reward thereby provides a direction
of improvement for the feature vector, which is mapped to a
change in input settings via the steady-state model.

We define the control law in terms of input adaptations ∆s:

∆s = f−1(α∆x + x)− s,

where ∆x is the direction of improvement, f−1 : Rn → Rm
is the steady-state model (the inverse mapping of f in (1)),
and α > 0 is the gain of the control law. We compute ∆x as
the gradient of the reward model r(x) ∈ R, i.e.,

∆x = ∇xr(x).



Fig. 3 shows an example of a reward model and indicates
how its gradient is used for feedback control using the steady-
state model. Both models r(x) and f−1(·) are inferred from
data. In order to train the reward model, we utilize ratings on
an integer scale as samples of the reward model, i.e., ri =
1, ...S, where ri = 1 is the worst and ri = S is the best
rating. Additionally, we train a steady-state model f−1(·) to
relate the direction of improvement suggested by the reward
model to the corresponding input adaptation (bottom part of
Fig. 3). In order to build both the reward model and the steady-
state model, N training samples are collected. Each training
sample with index i consists of a feature vector xi, the input
settings si, and the corresponding rating ri ∈ {1, ..., S}:

{xi, si, ri}Ni=1. (2)

Note that throughout this paper, the feature vector x is
normalized using collected data xi such that the collected
data are zero-mean with unit-variance in order to account for
different value ranges and units, cf., [47].

Outline: The reward model is trained with the feature
vector xi and its corresponding rating ri in (2) using a
supervised learning technique (Section III-A). The resulting
reward model is then used to compute the gradient ∇xr(x)
as direction of improvement. Finally, a steady-state model
relates this direction of improvement with necessary changes
in input settings s. The steady-state model is computed using
a regression technique (Section III-B).

A. Reward Model using Supervised Learning

The first step of the framework is the learning of a reward
model reflecting the physiology of the gait based on supervised
learning techniques [47]. The reward model is a continuous
function, i.e., it provides a reward for all x, whereas observa-
tions xi are potentially sparse.

In view of the considered application, we postulate a reward
model of the form:

r(x) = 0.5xTWx + wTx + b, (3)

where W = WT ≺ 0, w ∈ Rn, and b ∈ R are the parameters
to be learned from expert ratings given in the form of integers
on a scale from 1 to S. The rationale for selecting a quadratic
model with negative definite W is the observation that the
gait degrades in all relative directions when changing input
settings from a physiological gait. Important properties of this
reward model are that a vanishing gradient indicates that global
optimality has been reached and its computational simplicity.
This motivates the gradient ascent method for optimizing
performance.

In order to learn W , w, and b in (3), we construct S − 1
classification problems. These S − 1 classification problems
share the parameters W , w, and b of the reward model and
the corresponding classification boundaries are given by

rl(x) = 0.5xTWx + wTx + bl

b2

b1

∇xr(x)∇xr(x)

x1
x2

∆x∆x
xx

x + ∆xx + ∆x

x1

x2
f−1

∆s∆s
ss

s + ∆ss + ∆s

s1

s2

Fig. 3. Top: Example of reward model with gradient vector ∇xr(x) where
x = [x1 x2]T and projected level sets onto the x1−x2 plane. The example
shows a case of three ratings ri = 1, 2, 3 separated by two classification
boundaries indicated as solid black and dashed black ellipses. Bottom: Steady-
state model to compute ∆s from ∆x where s = [s1 s2]T.

for all l = 1, ..., S − 1 with bl = b− l− 0.5 separating the S
different ratings such that rl(xi) > 0 if ri > l+ 0.5. Further,
for each data sample i and each l, we define

yli =

{
1 if ri > l + 0.5

−1 else.

Hence, an ideal reward model with perfect data and separation
satisfies

ylir
l(xi) ≥ 0

∀ i = 1, ..., N
∀ l = 1, ..., S − 1.

(4)

In order to allow for noisy data and imperfect human feedback,
(4) is relaxed to find rl(x) that satisfies (4) ”as closely as
possible” by introducing a margin ξli ≥ 0. This approach is
closely related to a Support Vector Machine, cf., [47], with
a polynomial kernel function of degree two. The functions
rl(x) correspond to S−1 classification boundaries in a multi-
category classification framework. The parameters W , w,
and b of the reward model (3) are computed by solving the
following optimization problem using L1 regularization:

minimize
W ,w,bl,b,ξli

S−1∑
l=1

N∑
i=1

ξli + λ1 · (‖W ‖1 + ‖w‖1) (5a)

subject to ylir
l(xi) ≥ 1− ξli, ∀ i = 1, ..., N (5b)

ξli ≥ 0, ∀ l = 1, ..., S − 1 (5c)

rl(xi) = 0.5xT
i Wxi + wTxi + bl (5d)

bl = b− l − 0.5 (5e)

W = WT ≺ 0 (5f)



where λ1 > 0 controls the trade-off between minimizing
the training error and model complexity captured by the
norm ‖W ‖1 =

∑n
j=1

∑n
k=1 |Wjk| (elementwise 1-norm) and

‖w‖1, which is generally applied to avoid overfitting of a
model and is sometimes also called lasso regression [47].

B. Feedback Control using Reward Model

The second step of the proposed framework is to exploit
the trained reward model for feedback control. The idea is
(i) to use the gradient of the reward model as the direction
of improvement and (ii) to relate this gradient to a desired
change in inputs with a steady-state model.

(i) Gradient of reward model: The gradient of the inferred
reward model is the direction of best improvement. The control
strategy is to follow this gradient in order to maximize reward.
The gradient of the quadratic reward model in (3) is

∆x = ∇xr(x) = Wx + w.

(ii) Mapping of gradient to setting space with steady-state
model: In order to advance the system along the gradient
direction, we relate the direction of improvement ∆x to a
change in input settings with a steady-state model f−1. We
use a first order approximation s = f−1(x) ≈ Mx + m
with M ∈ Rm×n, m ∈ Rm to compute the change in input
settings ∆s as

∆s = M(α(Wx + w) + x) + m− s, (6)

where α can be interpreted as feedback gain or the learning
rate in a gradient ascent method. The steady-state model is
estimated as the least squares solution of the data in (2):

minimize
M ,m

N∑
i=1

‖si −Mxi −m‖22 + λ2 · (‖M‖1 + ‖m‖1)

(7)

where, again, we use λ2 > 0 to control the trade-off between
model fit and model complexity.

Using the quadratic reward model in (3) and the linear
steady-state model in (7), the application of the proposed con-
trol strategy (6) requires only matrix-vector multiplications,
which is computationally inexpensive and can be performed
online, cf., Algorithm 1 for an overview of the method.
Additionally, as will be shown empirically, the application
requires only few online input adaptations.

Algorithm 1 Training and Application of the Method
Training . rating needed

1: Collect data set in (2).
2: Compute reward model W ,w, b with (5) and steady-state

model M ,m with (7).
Online Algorithm . no rating needed

3: do
4: Obtain feature vector x from measurement.
5: Apply adaptation ∆s = M(α(Wx+w)+x)+m−s.
6: Wait until steady state is reached.
7: while stopping criterion not fulfilled . cf. Section IV-D

Remark 1: As we will show in the analysis in Section V,
the linear mapping s ≈ Mx + m yields sufficient accuracy
for the considered application. For more complex systems,
one might consider a different steady-state model, e.g., higher
order polynomials or a neural network to approximate f−1.

Remark 2: In principle, reinforcement learning could be
applied to directly learn physiological settings. The proposed
two-step and model-based method, in contrast, makes use of
the higher dimensionality of the feature vector to characterize
the gait cycle. Its key advantage is that less samples are
required online and thus, less steps to find physiological
settings, which is essential for the considered application.

Remark 3: The proposed method iteratively approaches the
optimal settings s? with the gradient ascent method. This is
important for the considered application to cautiously adapt
the input settings of the robot with a human in the loop.

Remark 4: It is also possible to determine the direction
of improvement using second-order derivatives of the reward
model, e.g., using a Newton-Raphson method. However, as
numerical second-order derivatives would be more noisy, we
choose first-order derivatives, which are simple and yield a
more stable estimate of the best (local) improvement.

IV. ADAPTATION OF GAIT REHABILITATION ROBOT TO
WALK PATIENTS PHYSIOLOGICALLY

In this section, we show how to apply the method presented
in Section III to automatically adapt, or recommend a suitable
adaptation, of the Lokomat’s input settings in order to walk
patients physiologically. A core element is the reward model
that has been built on therapists’ ratings and is used to judge
the physiology of the gait. For simplicity, we adjust settings
for the left and right leg symmetrically. This does not pose a
problem for the presented study with nondisabled subjects but
might be revisited for impaired subjects in future work.

In this work, we focus on physiological walk and exclude
the guidance force and the pelvic input settings as they are
mainly used for goal-oriented walk [7]. This exclusion is valid
for physiological walk where the guidance force and pelvic
settings are kept constant at 100% and 0cm, respectively.
Hence, there are seven input settings that are considered in
the application of the method.

Safety: The proposed method is implemented to augment
a previously developed safety controller that ensures safe
operation of the Lokomat. This safety controller intervenes
if the input settings exceed nominal ranges for forces and
positions of the robot’s joints. An additional contingency
controller stops the robot when the deviation of the measured
gait trajectory and the desired gait trajectory becomes too
large. In this way, the overall behavior is guaranteed to have
the necessary safety requirements for patient and robot, yet
among the safe input settings, the ones that improve the gait
cycle are chosen. The reader is referred to [48] for a more
detailed description of the Lokomat’s safety mechanisms.

A. Gait Cycle

The walking of a human is a repetitive sequence of lower
limb motions to achieve forward progression. The gait cycle



describes such a sequence for one limb and commonly defines
the interval between two consecutive events that describe the
heel strike (initial ground contact) [49]. The gait cycle is
commonly divided into two main phases, the stance and the
swing phase. The stance phase refers to the period of ground
contact, while the swing phase describes limb advancement.
Fig. 4 illustrates the subdivision of these two main phases of
the gait cycle into multiple sub-phases, beginning and ending
with the heel strike. This results in a common description of
gait using a series of discrete events and corresponding gait
phases [49]. We focus on four particular phases of the gait
cycle, which are emphasized in Fig. 4:
• Heel strike (HS): The moment of initial contact of the

heel with the ground.
• Mid-stance (MS): The phase in which the grounded leg

supports the full body weight.
• Toe off (TO): The phase in which the toe lifts off the

ground.
• Mid-swing (SW): The phase in which the raised leg

passes the grounded leg.

B. Evaluation of Gait Cycle and Data Collection

We derive the reward model based on the four phases.
For evaluating the four gait phases, we introduce a scoring
criterion in consultation with experienced therapists:
Rating 1: Safe, but not physiological.
Rating 2: Safe, not entirely physiological gait cycle.
Rating 3: Safe and physiological gait cycle.

Data Collection: A total of 16 nondisabled subjects partic-
ipated in the data collection. The 16 subjects were between
158cm - 193cm (5’2” - 6’4”) in height, 52kg - 93kg (115lbs
- 205lbs) in weight, and aged 25 - 62. Informed consent for
the use of the data has been received from all human subjects.
The data collection for each subject involved an evaluation
of the four gait phases by therapists for several input settings
in order to collect data in a wide range of gait cycles. The
nondisabled subjects were instructed to be passive throughout
the data collection, i.e., they were walked by the robot. This
allowed us to collect data for both physiological and non-
physiological gait cycles. Measurements of the Lokomat were
recorded for all evaluations. For each subject, the experienced
therapists first manually tuned the input settings to achieve
rating 3 for all four phases (Set 0 in Table II), where the
resulting input settings are referred to as initial physiological
gait (IPG). Table II shows the input settings used in the data
collection as deviations from the initial physiological gait.
Each subject walked for approximately 60 seconds for each
set of input settings, while the therapist provided evaluations
of the walking pattern. The assessment started after a transient
interval of approximately 15 seconds to ensure that the walking
has reached a steady state. Note that the input settings resulting
in a physiological gait pattern varied between subjects.

The scoring criterion and the consideration of the four
phases, as well as the data collection protocol were introduced
in consultation with clinical experts from Hocoma (U. Costa
and P. A. Gonçalves Rodrigues, personal communication, Nov.
05, 2017). As a result, we obtained the chosen input settings,

Stance Swing

HS FF MS HO TO SW HS

Fig. 4. Gait phases in order: Heel strike, foot flat (FF), mid-stance, heel off
(HO), toe off, mid-swing. Both FF and HO phase are not rated in this work,
but presented for consistency with the literature [49].

TABLE II
INPUT SETTING FOR DATA COLLECTION

Set Input Settings Value
0 Initial Set IPG
1 Hip Range of Motion IPG + 6◦
2 Hip Range of Motion IPG + 12◦
3 Hip Range of Motion IPG – 6◦
4 Hip Range of Motion IPG – 12◦
5 Hip Offset IPG + 4◦
6 Hip Offset IPG + 8◦
7 Hip Offset IPG – 5◦
8 Hip Range of Motion, Hip Offset IPG + 12◦ / IPG – 3◦
9 Hip Range of Motion, Hip Offset IPG + 12◦ / IPG + 3◦

10 Hip Range of Motion, Hip Offset IPG – 12◦ / IPG – 3◦
11 Hip Range of Motion, Hip Offset IPG – 12◦ / IPG + 3◦
12 Knee Range of Motion IPG + 6◦
13 Knee Range of Motion IPG + 12◦
14 Knee Range of Motion IPG – 9◦
15 Knee Range of Motion IPG – 15◦
16 Knee Offset IPG + 4◦
17 Knee Offset IPG + 8◦
18 Knee Range of Motion / Knee Offset IPG + 15◦ / IPG + 6◦
19 Knee Range of Motion / Knee Offset IPG + 21◦ / IPG + 6◦
20 Speed IPG + 0.5km/h
21 Speed IPG + 1.0km/h
22 Speed IPG – 0.5km/h
23 Speed IPG – 1.0km/h
24 Orthosis Speed IPG + 0.03
25 Orthosis Speed IPG + 0.05
26 Orthosis Speed IPG – 0.03
27 Orthosis Speed IPG – 0.05
28 Bodyweight Support IPG + 15%
29 Bodyweight Support IPG + 30%
30 Bodyweight Support IPG – 15%
31 Bodyweight Support IPG – 30%

the corresponding ratings on an integer scale from 1 to 3,
and the recording of measurements of the Lokomat. Next, we
discuss the computation of the feature vector from the recorded
measurements.

Feature Vector: We use the gait index signal of the Lokomat
as an indicator to identify progression through the gait cycle.
The gait index is a sawtooth signal and is displayed in the
bottom plot in Fig. 5. It is used to determine the time-windows
of the four phases, cf., the dashed lines in Fig. 5. The time-
windows are used to compute the feature vector, composed
of statistical features for power, angle, and torque for both
hip and knee joints, cf., Table III. The result is one feature
vector for each phase: xHS,xMS,xTO,xSW ∈ R12. The
Lokomat provides measurements of all the signals listed in
Table III synchronized by the gait index signal, which makes
the computation of the features simple.
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Fig. 5. Top: Joint angles. Bottom: Segmentation of time signals into four
phases using the gait index with HS in 34.5%-47.5%, MS in 47.5%-65.5%,
TO in 84.5%-92.5%, and SW in 9.5%-21.5% of one period of the gait index.
The falling edge of the gait index does not align with the biomechanical
definition of a gait cycle but enables separation of the gait cycle into phases.

TABLE III
VALUES FOR FEATURE VECTOR

# Joint Signal Unit Feature
x1 hip joint power Nm/s mean
x2 hip angle rad min
x3 hip angle rad max
x4 hip angle rad range
x5 hip torque Nm mean
x6 hip torque Nm variance
x7 knee joint power Nm/s mean
x8 knee angle rad min
x9 knee angle rad max
x10 knee angle rad range
x11 knee torque Nm mean
x12 knee torque Nm variance

Remark 5: For each subject, the data collection takes around
one hour, including rating the gait cycle. As described in
Algorithm 1, the application of the control law does not
include further training and the control law is therefore not
personalized to the subject.

Remark 6: Initially, we defined more features than the
twelve in Table III, e.g., frequency domain features, which
the supervised learning problem in (5) with L1 regularization
discarded. In order to reduce the problem dimension in the
online algorithm, we discarded them as well.

C. Reward Model and Steady-State Model for Lokomat

Given the data set, we apply the method in Section III to
learn four reward models. We obtain a reward model for each
of the four phases represented as W j , wj , and bj from solving
(5), where j ∈ {HS,MS,TO,SW}.

The steady-state model M ∈ R7×48, m ∈ R7 in (7) is
computed by stacking the features of the four phases:

x =
[
xT
HS xT

MS xT
TO xT

SW

]T
.

D. Control Law for Gait Rehabilitation Robot

Once the four reward models and the steady-state model
are trained using the data in (2), the controller automatically

chooses input setting adaptations given the current measure-
ments, i.e., it does not require ratings from therapists. The
input adaptation ∆s is computed as

∆s = M


α(WHSxHS + wHS) + xHS

α(WMSxMS + wMS) + xMS

α(WTOxTO + wTO) + xTO

α(W SWxSW + wSW) + xSW

+ m− s.

While ∆s yields continuous values, the input settings are
adjusted in discrete steps, cf., the step-sizes in Table I. We aim
to change one setting at a time, which is common practice for
therapists [7] and eases the evaluation. The following suggests
a method to select one single adaptation from ∆s.

Input Setting Selection & Stopping Criterion: In order to
select one single discrete change in input setting, we normalize
∆s to account for different value ranges and different units
per individual setting and select the input corresponding to the
largest in absolute value:

k? = arg max
k=1,...,7

∣∣∣∣ ∆sk

s̄k − sk

∣∣∣∣
with associated index k?, where the normalization s̄k−sk is the
range of the input setting k in Table I. Hence, the algorithm
chooses one adaptation with step-size in Table I. The input
adaptation is stopped when the largest normalized absolute
value of change is smaller than a pre-defined parameter β,
i.e.,

∣∣∆sk?/(s̄k? − sk
?

)
∣∣ ≤ β. This indicates closeness to the

optimum, i.e., that a physiological gait is reached.

V. MODEL EVALUATION IN SIMULATION

We first analyze the algorithm in simulation to investigate
the model quality. In this simulation study, we compare two
reward models: One that uses ratings on an integer scale from
1 to 3 (S = 3 in (5)) and one that uses only binary ratings,
i.e., good and bad (S = 2 in (5)). For the case S = 3, we
use the collected ratings without modification. For the case
S = 2, we combine the data points with rating 1 and rating 2
as samples of a bad gait and use the data points with rating 3
as samples of a good gait.

A. Evaluation Metrics and Results

In order to evaluate the trained models, we split the experi-
mentally collected data into training (80%) and validation data
(20%). This split is done randomly and repeated 500 times to
assess the robustness of the models. This technique is known
as 5-fold cross validation [50] and ensures that the validation
data are not biased by training on the same data.

1) Evaluation of Reward Model: We evaluate the accuracy
of the reward model trained with three ratings, i.e., S = 3,
by computing the pairwise difference in estimated rewards
r(xi) − r(xj) for two data samples i and j, classified with
respect to their ratings ri and rj . The metric is motivated by
the fact that two different ratings should be distinguishable.
We define ∆r̄nm as

∆r̄nm =
1

|In||Im|
∑
i∈In

∑
j∈Im

(r(xi)− r(xj)) , (8)



where In = {i|ri = n} is an index set of data points with
ratings ri = n. If the trained reward model and data were
perfect, ∆r̄nm = n−m with zero standard deviation.

We evaluate the accuracy of the reward model trained with
binary ratings, i.e., S = 2, by computing the classification
accuracy of good versus bad ratings:

p̄good/bad =
1

|Igood||Ibad|
∑

i∈Igood

∑
j∈Ibad

Ir(xi)>r(xj) (9)

with Ir(xi)>r(xj) = 1 if r(xi) > r(xj) and Ir(xi)>r(xj) = 0,
otherwise, and Igood = I3 and Ibad = I1 ∪ I2 = {i|ri =
1 or ri = 2}.

Fig. 6 reports statistical values of both ∆r̄nm in (8) for
evaluating the reward model with S = 3 and p̄good/bad in (9)
for evaluating the reward model with S = 2 over the 500 splits
of training and validation data. For the reward model computed
with S = 3, the overall deltas in estimated rewards match
the deltas in ratings very closely with 2.00 for ∆r̄31, 0.97
for ∆r̄32, and 1.04 for ∆r̄21. For the reward model computed
with S = 2, the overall classification accuracy (r(xi) > r(xj)
if ri > rj) is 92.5%.

2) Evaluation of Steady-State Model: The steady-state
model is evaluated using the prediction error ēk defined as

ēk =
1

N

N∑
i=1

|ski −Mk?xi −mk|, (10)

where k is the index of the input setting and Mk? is the kth
row of matrix M and mk is the kth entry of vector m. As we
use normalized values for the input settings with ski ∈ [0, 1],
the error ēk can be interpreted as a percentage offset from the
correct input setting.

Table IV reports mean and standard deviation of the errors
ēk in (10) over the 500 random splits of training and validation
data for all input settings k. It shows an overall average error of
4.17% and that the errors for all input settings are consistently
lower than 6%.

3) Evaluation of Overall Algorithm: We evaluate the per-
formance of the overall algorithm by comparing the collected
data with the output of the algorithm. Let the changes in input
settings during data collection for all data samples i = 1, ...N
be ∆sexi = sex − si, where si are the input settings of data
point i and sex are the physiological settings, which are set by
the therapist at the beginning of the data collection. Note that
sex depends on the subject, however, we omit this dependency
in the notation for ease of exposition. It is also important to
note that sex are not the only possible physiological input
settings. We compare the input adaptation proposed by our
algorithm ∆si against the deviation from the physiological
settings ∆sexi , where we can have three different outcomes:

Case 1 (Same Setting & Same Direction): The algorithm
selects the input adaptation in the same direction as during
data collection, which is known to be a correct choice as it is
closer to the physiological settings sex.

Case 2 (Same Setting & Opposite Direction): The algorithm
selects the same setting but in the opposite direction as during
data collection, which is likely to be an incorrect choice.

Evaluation of reward model with three ratings

Heel Strike Mid-Stance Toe Off Mid-Swing Overall

1

1.5

2

∆r̄31 ∆r̄32 ∆r̄21

Evaluation of reward model with binary ratings

Heel Strike Mid-Stance Toe Off Mid-Swing Overall

80%

90%

100%

p̄good/bad

Fig. 6. Evaluation of reward models for individual phases and overall.
The mean over 500 splits of training and validation data, along with the
median, 25th and 75th percentiles, and maximum and minimum values are
indicated by a diamond, a line, box edges, and whiskers, respectively. Top:
Pairwise difference in estimated rewards ∆r̄31, ∆r̄32, and ∆r̄21. Bottom:
Classification accuracy p̄good/bad.

TABLE IV
MEAN AND STANDARD DEVIATION OF STEADY-STATE MODEL

sk Setting Error ēk

s1 Hip Range of Motion 0.0578± 0.0019
s2 Hip Offset 0.0370± 0.0008
s3 Knee Range of Motion 0.0547± 0.0021
s4 Knee Offset 0.0324± 0.0009
s5 Speed 0.0307± 0.0009
s6 Orthosis Speed 0.0315± 0.0010
s7 Bodyweight Support 0.0542± 0.0017

Overall 0.0417± 0.0186

Case 3 (Different Setting): The algorithm selects a different
input adaptation, the implications of which are unknown and
could be either correct or incorrect, which cannot be evaluated
without closed-loop testing.

We compute the percentage of data points falling in each
case for each setting k and for ∆sexi = 0 (no adaptation), i.e.,
pkC1, pkC2, and pkC3 for Case 1, Case 2, and Case 3, respectively,
where pkC1+pkC2+pkC3 = 1. If the algorithm replicated the data
collection perfectly, then pkC1 = 1 for all settings k. Given the
discrete and unique setting selection, the overall algorithm has
15 options to choose from: An increase in one of the seven
settings by one unit, a decrease in one of the seven settings
by one unit, or no adaptation. Hence, random decision-making
yields a probability of p = 1/15 ≈ 6.7% for each option.

Table V reports mean and standard deviation of the per-
centage values of the three cases. The algorithm chooses
the input adaptations for hip range of motion, hip offset,
knee range of motion, and knee offset very often when
their adaptation leads to sex (86.7%–100.0%). Also, it often
chooses no adaptation when the gait is physiological, with
input settings sex. Table V also shows that decision-making
with the proposed algorithm is more ambiguous for the input
adaptations of speed, orthosis speed, and bodyweight support.
Overall, the algorithm proposes a setting that is closer to sex

(Case 1) in 80.7% and 80.6% for the reward models trained



TABLE V
EVALUATION OF OVERALL ALGORITHM IN SIMULATION

Three ratings (1, 2, or 3) S = 3
sk Setting pkC1 in % pkC2 in % pkC3 in %

No Adaptation 77.6± 3.6 - 22.4± 3.6
s1 Hip Range of Motion 86.7± 1.8 0 13.3± 1.8
s2 Hip Offset 96.4± 1.0 0 3.6± 1.0
s3 Knee Range of Motion 91.0± 1.7 0 9.1± 1.7
s4 Knee Offset 100.0± 0.0 0 0
s5 Speed 71.1± 2.8 0 29.0± 2.8
s6 Orthosis Speed 33.3± 3.7 3.5± 1.6 63.2± 3.8
s7 Bodyweight Support 55.6± 3.8 0 44.5± 3.8

Overall accuracy 80.7± 1.0 0.3± 0.1 19.0± 1.0

Binary ratings (good or bad) S = 2
sk Setting pkC1 in % pkC2 in % pkC3 in %

No Adaptation 76.8± 3.7 - 23.2± 3.7
s1 Hip Range of Motion 88.6± 1.7 0 11.4± 1.7
s2 Hip Offset 95.6± 1.1 0 4.4± 1.1
s3 Knee Range of Motion 90.0± 2.0 0 10.0± 2.0
s4 Knee Offset 100.0± 0.0 0 0
s5 Speed 71.3± 2.9 0 28.7± 2.9
s6 Orthosis Speed 32.1± 3.8 2.9± 1.4 65.0± 3.9
s7 Bodyweight Support 53.9± 3.9 0 46.2± 3.9

Overall accuracy 80.6± 1.1 0.2± 0.1 19.2± 1.0

with S = 3 and S = 2, respectively. The algorithm suggests
a probably incorrect input adaptation in less than 1% (Case
2). In around 19%, the algorithm suggests a different input
adaptation (Case 3).

Remark 7: The same evaluation using exclusively kinematic
features (x2, x3, x4, x8, x9, x10 in Table III) yields slightly
different results with overall pC1 = 79.1% ± 1.0%, pC2 =
0.2% ± 0.1%, and pC3 = 20.6% ± 1.0% for binary ratings.
A purely kinematic feature vector might be important when
working with impaired patients, where power/torque features
might be an indication of individual impairments rather than
a characterization of a physiological gait.

B. Discussion

The rewards predicted with the reward model trained with
three ratings (two classification boundaries at 1.5 and 2.5),
match the true ratings very closely. The reward model trained
with binary ratings (one classification boundary at 2.5) is
able to distinguish good from bad gait patterns confidently
with an overall classification accuracy of more than 90%. The
steady-state model shows an average error of 5%. As we will
show in Section VI, this accuracy suffices for the considered
application. For example, the expected error of 3.07% of s5

translates into an error in treadmill speed of 0.075m/s and
the expected error of 5.78% of s1 translates into an error in
hip range of motion of 2.08◦, which is less than one input
setting step-size, cf., Table I. Even though another model may
increase accuracy, it may come at the expense of increased
complexity in the computation. Our linear model only requires
matrix-vector multiplication, which can easily be implemented
on the controller of the Lokomat and is chosen as a suitable
compromise of simplicity and accuracy.

The evaluation of both components, the reward model and
the steady-state model, in simulation allow us to conclude that

TABLE VI
TEST SCENARIOS OF EXPERIMENT

Scenario: Observations Therapists’ heuristic rules (expectation)
1: Limited foot clearance, Increase knee range of motion

foot dropping (s3 ↑)
2: Short steps Increase hip range of motion, speed

(s1 ↑, s5 ↑)
3: Foot dragging Decrease speed, increase orthosis speed

(s5 ↓, s6 ↑)
4: Large steps, Decrease hip range of motion, hip offset

late heel strike (s1 ↓, s2 ↓)
5: Short steps, Increase hip range of motion, hip offset

hip extension (s1 ↑, s2 ↑)
6: Bouncing Decrease speed, bodyweight support

(s5 ↓, s7 ↓)
7: Foot slipping Decrease knee range of motion,

orthosis speed (s3 ↓, s6 ↓)
8: Knee buckling Increase knee range of motion,

bodyweight support (s3 ↑ ,s7 ↑)
9: Large steps, Decrease hip range of motion, increase hip

early heel strike offset, increase speed (s1 ↓, s2 ↑, s5 ↑)
10: Large steps, late heel Decrease hip range of motion, hip offset,

strike, foot slipping knee range of motion, orthosis speed
(s1 ↓, s2 ↓, s3 ↓, s6 ↓)

they provide suitable models for the considered application.
For the overall algorithm, Case 1 is known to result in an
improved physiology of the gait cycle. Case 3, however, does
not imply that the suggested adaptation will not lead to an
improved gait cycle as there may be multiple different input
adaptations that lead to a physiological gait (not only sex). In
these cases, we do not know if the suggested adaptation would
have led to an improvement in gait without closed-loop testing.
Hence, the probabilities 80.7% and 80.6% of Case 1 for the
two reward models can be interpreted as a lower bound for
the overall improvement. The relatively low standard deviation
for all settings indicates that the learning is robust against
variation in the training data. The use of binary ratings eases
the data collection and has been shown to perform similarly
well. Therefore, we proceed with closed-loop testing of the
algorithm using a reward model trained with binary ratings.

VI. EXPERIMENTAL RESULTS - CLOSED-LOOP TESTING

The proposed algorithm was implemented as a recommen-
dation system on the Lokomat for closed-loop evaluation. We
implemented the algorithm using the reward model trained
with binary ratings (good and bad) of the gait cycle. It is
important to note, that no data from the respective test person
was used for training of the reward or the steady-state model.

A. Experiment Setup

We conducted experiments with ten nondisabled subjects
and ten different sets of initial non-physiological gait cycles
(test scenarios). Table VI describes the ten test scenarios and
outlines input adaptations that therapists are expected to make
(according to the heuristic guidelines). Scenario 1 through 8
are very common observations of a patient’s gait cycle on the
Lokomat. Scenario 9 and 10 are combinations of the more
common flaws and are included to challenge the algorithm
with more complex scenarios.



The selected scenarios cover the most common observa-
tions of the gait cycle of a passive subject (without muscle
activity) on the Lokomat and, therefore, are expected to ade-
quately evaluate the proposed algorithm experimentally (with
nondisabled subjects). The initial input settings to achieve
non-physiological gait patterns (scenarios and observations
in Table VI) were chosen manually and purposefully by
experienced therapists individually for each subject until the
respective observation was present. The guidance force was
set to 100% for all trials, i.e., the subjects were walked by the
Lokomat. The treadmill speed was varied between 1.4km/h
and 2.3km/h.

We conducted 63 experimental trials with the proposed algo-
rithm in closed-loop with the ten nondisabled subjects, where
each subject underwent at least five trials. The difference in
the number of experimental trials is due to each subject’s
availability. However, the test scenarios were chosen so that
each scenario was tested comparably often. Similarly to the
data collection, the subjects were instructed to be as passive
as possible. Two therapists assessed the input adaptations
suggested by the algorithm and rated whether the gait was
physiological. The therapists implemented the input adapta-
tions until the algorithm indicated that a physiological gait
cycle had been reached. Additionally, the therapists indicated
when they thought that a physiological gait had been reached
and the algorithm should be stopped.

B. Results

Fig. 7 illustrates eight representative trials with the first
subject. It contains four types of information and is separated
by therapist in columns and by test scenario in rows:

i) The gait cycle rating rgait (y-axis), calculated as the sum
of the individual phase ratings rgait = rHS+rMS+rTO+
rSW, over the number of input adaptations (x-axis);

ii) the applied input adaptations and their direction, e.g., s1 ↑
represents an increase of Setting 1 by one unit;

iii) a statement from the therapists about the algorithm’s
suggested input adaptation, i.e., agreement with the sug-
gestion as check mark X, disagreement as cross 7, and
uncertainty about the suggestion as question mark ?; and

iv) the reaching of a physiological gait judged by the therapist
with square markers � (for the usage as recommendation
system) and by the algorithm with diamond markers �
(for the usage as automatic adaptation system).

In all eight illustrated experiments, the algorithm provides
a reliable, although not monotonic, improvement in the phys-
iology of the gait. The input adaptations suggested by the
algorithm led to a physiological gait for both the usage as
recommendation system (square marker) and automatic adap-
tation system (diamond marker) in less than 10 adaptations
with an overall rating of greater than or equal to 11, where
12 is the maximum possible rating. The input adaptations
during the test of Scenario 1 with both therapists (first row) are
similar to the heuristic guidelines in Table VI, i.e., an increase
in the knee range of motion (s3 ↑). The input adaptations
for Scenario 2 (second row) are different from the heuristic
guidelines. Here, the algorithm converges to a kinematically

Scenario 1: Limited foot clearance, foot dropping

6

7

8

9

10

11

12

7 7

!

!

?

7

!

!

?

s5
↓
s1
↓
s3
↑
s3
↑
s1
↓
s2
↓
s3
↑
s6
↓
s6
↓

g
ai
t
cy
cl
e
ra
ti
n
g
r g

a
it

!

! 7

! !

?

s3
↑
s3
↑
s5
↓
s3
↑
s3
↑
s6
↓

Scenario 2: Short steps

6

7

8

9

10

11

12

! !

?

!

! !

! !

s5
↓
s5
↓
s5
↓
s2
↓
s2
↓
s6
↓
s2
↓
s6
↓

ga
it
cy
cl
e
ra
ti
n
g
r g

a
it 7 7

7

!

!

!

s5
↓
s5
↓
s5
↓
s2
↓
s2
↓
s6
↓

Scenario 9: Large steps, early heel strike
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Scenario 10: Large steps, late heel strike, foot slipping
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Fig. 7. Experimental evaluation of the closed-loop recommendation system.
Averaged for the eight experiments, a physiological gait was reached after 6.0
input adaptations (until square marker). The diamond marker indicates that
the algorithm assessed the gait as physiological (stopping criterion).

different but physiological gait that is achieved through a
slower treadmill speed and input settings that are adjusted
accordingly. For Scenario 9 and 10 (third and fourth row), the
algorithm achieved a physiological gait through adaptations
that are similar to the heuristic guidelines. In all illustrated
cases, the algorithm converges to a physiological gait.



TABLE VII
SUMMARY OF ALL EXPERIMENTAL TRIALS

Physiology of gait
Subject (body type) Trials APT improved not degraded

1 (193cm, 93kg, male) 8 6.0 65% 92%
2 (195cm, 100kg, male) 5 3.8 89% 100%
3 (163cm, 53kg, female) 6 6.8 68% 98%
4 (175cm, 85kg, female) 5 4.8 58% 92%
5 (172cm, 68kg, female) 9 4.9 57% 89%
6 (190cm, 85kg, male) 5 7.4 54% 97%
7 (167cm, 85kg, male) 6 7.2 60% 93%
8 (180cm, 75kg, male) 5 7.0 60% 83%
9 (167cm, 64kg, female) 7 5.7 65% 97%

10 (161cm, 48kg, female) 7 6.9 71% 92%
Overall 63 6.0 63% 93%

Table VII summarizes all 63 experimental trials with ten
subjects. On average, after a proposed input adaptation, the
gait cycle improved in 63% and did not degrade in 93% of
adaptations. The latter percentage is important as sometimes,
changing an input setting by only one unit is too small to
make a noticeable change in the gait cycle and a couple of
consecutive adaptations are necessary, e.g., for the orthosis
speed (s6). Most importantly, a physiological gait cycle was
reached for all trials within 6.0 adaptations per trial (APT) on
average for all subjects combined, and between 3.8 and 7.4
for each individual subject.

C. Discussion

In general, the algorithm reached a physiological gait cycle
within very few adaptations. This is achieved as the proposed
algorithm reasons about the gait cycle using the reward model
in a higher dimensional feature space rather than the space of
input settings. As a result, the controller does not rely on trial
and error search and, therefore, does not require to be tuned
individually for each patient, which makes the approach more
efficient, e.g., compared to classical reinforcement learning
methods. The majority of times, the therapists agreed with the
suggestions from the algorithm, i.e., the suggested adaptations
were conform with the heuristic tuning guidelines and their
experience. Consequently, the resulting gait cycle was mostly
kinematically similar to the one that the therapists would have
chosen. In some notable instances, the therapists disagreed or
were uncertain about the proposition and were surprised by
the improvement in the gait cycle, e.g., Row 1, Therapist 1,
Adaptation 6; Row 2, Therapist 1, Adaptation 3; or Row 4,
Therapist 2, Adaptation 4 in Fig. 7. These instances are
examples of situations where the algorithm chooses input
adaptations, which were unknown to the therapists. In these
cases, the resulting gait cycle was sometimes kinematically
different to the heuristic guidelines, e.g., a gait with slower
treadmill speed. Table VII shows that the algorithm is able
to cope with various body types with similar results for all
individuals.

It is worth noting that the differences between similar
scenarios with two different therapists in Fig. 7 and the same
initial input settings do not necessarily lead to the same
adjustment of input settings. This observation can be explained

as the physiology of the gait does not only depend on the
chosen input settings but also on the hardware setup, e.g., the
tightness of the straps, which differs slightly between thera-
pists. However, even though the hardware was setup slightly
differently by the two therapists, the algorithm managed to find
input settings that walk the subject physiologically, indicating
a certain robustness to slight variations in the hardware.

VII. CONCLUSION AND FUTURE WORK

This paper has derived a supervised learning-based method
utilizing human ratings for learning parameters of a feedback
controller. The approach was applied to the Lokomat robotic
gait trainer with the goal of automatically adjusting the input
settings to reach a physiological gait cycle by encapsulating
the therapists’ expertise in a reward model. Feedback control
was enabled by this reward model and a steady-state model,
which allows for converting desired changes in gait into input
adaptations. Experiments with human subjects showed that the
therapists’ expertise in the form of ratings of four gait phases
provides sufficient information to discriminate between phys-
iological and non-physiological gait cycles. Furthermore, the
provided adaptations led to an improvement of the gait cycle
towards a physiological one within fewer than ten adaptations.
The physiological gait cycle was partly reached by changes
in input settings that domain experts would not have chosen
themselves, suggesting that the proposed method might also be
capable of generalizing from ratings and proposing improved
settings for unseen scenarios. This observation remains to be
confirmed with more data in future work.

Future work involves the data collection, evaluation, and
validation of the proposed method with impaired patients. This
will include the assessment of asymmetric gait adaptations
for the right and left legs, which can readily be achieved by
considering one feature vector for each leg. Further, physical
limitations and/or constraints in the patients’ movements could
be assessed online using sensor measurements of the Lokomat
and considered for the selection of input settings.
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