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Abstract
The claims development result (CDR) is the difference between the best estimate predictions of the
ultimate claim in 2 successive years. With best estimate reserves it is often argued that CDR’s in
consecutive years should fluctuate randomly around zero. However, in practice one frequently
observes that CDR’s in a given line of business have the same sign over several consecutive years. We
show that this is a phenomenon which is not unusual and to be expected in situations of change.
Moreover, we show how situations of change can adequately be described by a model, taking into
account the evolving external information.
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1. Introduction

1.1. A fundamental question

Accurate claims reserves are essential for an insurance company. If the reserves are wrong, the
premiums will be wrong, which would have serious consequences on the profitability. Claims
reserves are by far the most important item on the liability side of the balance sheet. They have a big
impact on the profit and loss account of a given calendar year and a change of the reserves by a small
percentage of say 3% might well change the yearly result from positive to negative and vice versa.

For these reasons the management wants to be confident that the actuarial reserves are best esti-
mates, that is, reserves, which are neither optimistic nor pessimistic, neither on the prudent nor on
the aggressive side. In order to calculate best estimate reserves at time t the available information
needs to be taken into account. At time t+ 1 more information is available and the best estimate
reserves need to be updated accordingly. The difference between two successive best estimate
predicitons is the claims development result (CDR). An easy and obvious first check for management
is to look at the CDR’s over several consecutive years. As long as the CDR’s in different years
fluctuate around zero, there is no reason to question that the reserves are best estimates. But as soon
as the CDR in a certain line of business (lob) has the same sign over several consecutive years, be it
negative or positive, the management and/or the executive directors responsible for the profitability

*Correspondence to: Annina Saluz, ETH Zurich, RiskLab, Department of Mathematics, 8092 Zurich, Switzerland.
Tel: + 41 44 632 68 30. Fax: +41 44 632 15 23. E-mail: annina.saluz@math.ethz.ch

351

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S174849951400013X
Downloaded from https:/www.cambridge.org/core. University of Basel Library, on 30 May 2017 at 20:47:32, subject to the Cambridge Core terms of use, available

mailto:annina.saluz@math.ethz.ch
https:/www.cambridge.org/core/terms
https://doi.org/10.1017/S174849951400013X
https:/www.cambridge.org/core


of the lob might become suspicious. If the CDR’s are negative, the actuaries will be blamed to be
responsible for the resulting losses in the profit and loss account. If the CDR’s are positive they will
be blamed that the company has missed profitable opportunities because of too high and not
competitive premiums due to pessimistic reserves.

However, do CDR’s with the same sign over several consecutive calendar years necessarily mean that
the reserves are not best estimates? Are CDR’s with the same sign over several consecutive calendar
years a contradiction to best estimate reserves? This is the fundamental question we are going to
discuss in this paper.

In order to answer this question we have to model situations of change in a mathematical way. A suitable
modelling of realistic situations of change is a second aim of the paper. For this purpose we will consider
Bayesian models with calendar year effects. For related structural ideas on the behaviour of best esti-
mates and the updating process, we refer to Arjas (1989). In a recent paper on dependence modelling in
claims run-off triangles Merz et al. (2013) define a log-normal model that allows to model calendar year
effects. Moreover, their paper gives a summary on existing literature on calendar year effects modelling.
An example for a Bayesian claims reserving model is the Bayesian model for the chain ladder (CL)
method introduced by Gisler & Wüthrich (2008). Bühlmann et al. (2009) derive a recursive formula for
the estimation of the CL factors in the model of Gisler & Wüthrich. The updating of the CL factors in
this recursive procedure is based on new data. This is the usual way of Bayesian modelling: one has one
prior distribution and one considers the posterior distribution, given the data. More literature on
Bayesian claims reserving is, for instance, given in De Alba (2002) or Wüthrich & Merz (2008).

In contrast to many other reserving models we suggest a model that allows to update a priori
assumptions due to new external information. We provide a recursive procedure with explicit for-
mulas for the updating of the parameters. In our recursive procedure the parameter updates are not
only based on new data, but also based on new external information. In other words, we consider
models, in which the prior distribution can be modified dynamically. As stated in De Jong &
Zehnwirth (1983) external (or subjective) information is of crucial importance in times of rapid
change. De Jong & Zehnwirth (1983) use a state space model where the updating process is done via
Kalman filter equations. It is not the primary goal of our paper to introduce a new reserving method
or to start a discussion on different reserving methods, but rather to give an answer to the funda-
mental question. Nevertheless, the framework introduced in section 3.3 is of interest on its own as it
allows to model several realistic situations of a changing environment. We believe that this kind of
modelling could also be beneficial in pricing and other areas.

Organisation of the paper: In the remainder of this section we introduce the problem from a
mathematical point of view. In section 2 we look at an example from pricing, where the basic
properties to be discussed can most simply be explained. Then we will introduce in section 3.2 a
simple model for reserving, where we can explicitly calculate the best estimate reserves. We provide a
numerical example to illustrate the results. Finally, in section 3.3 we present a more general model
that allows to model many realistic situations of a changing environment. In both models for
reserving the a priori assumptions can be updated due to new external information.

1.2. Best estimate reserves

In claims reserving one usually considers a claims development triangle or trapezoid:

Dt ¼ Xi;j : i ¼ 0; ¼ ; t; j ¼ 0; ¼ ; J; i + j≤ t
� �

; (1)
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where Xi,j denotes the incremental claim (incurred or paid claims) of accident year i at the end of
development year j. Let Ci,j be the corresponding cumulative claim and denote by Ui the ultimate claim
amount of accident year i. If all claims are settled at the end of development year J≤ t then Ui = Ci,J.

The outstanding liabilities of accident year i≥ t − J at the end of calendar year t are defined by

RðtÞ
i :¼

XJ
j¼t�i +1

Xpaid
i;j ¼ Ui�Cpaid

i;t�i;

where Xpaid
i;j are the incremental claim payments of accident year i in development year j and Cpaid

i;t�i the
cumulative claim payments of accident year i until the end of calendar year t.

For claims reserving one has to predict these outstanding liabilities, which is equivalent to predicting
the ultimate claim, that is bRðtÞ

i ¼ bUðtÞ
i �Cpaid

i;t�i;

where bUðtÞ
i is a predictor of the ultimate claim Ui at the end of calendar year t.

Best estimate reserves are reserves that are as accurate as possible and for best estimate reserves
the expected value of the CDR is zero. In mathematical terms one has to be a bit more precise.
Denote by At the σ-algebra containing all information available at time t. Best estimate reserves of
accident year i at time t are then defined as the reserves minimising the conditional mean square error
of prediction (msep):

msepRðtÞ
i jAt

bRðtÞ
i

� �
¼ E bRðtÞ

i �RðtÞ
i

� �2����At

� �
and are given by bRðtÞ

i ¼ E RðtÞ
i

���At

h i
¼ E UijAt½ ��Cpaid

i;t�i: (2)

The best estimate reserve at the end of calendar year t is then the sum over all accident years:

bRðtÞ ¼
Xt

i¼t�J +1

bRðtÞ
i :

Remarks.

∙ The available information At might consist of two components At ¼ σ Dt; I tð Þ where Dt are the
observed data until time t and where I t denotes some additional external information,
independent of the data such as observations and expert opinions with regard to legal and
economic developments. In the actuarial literature often only the information contained in the
data Dt is considered. However, we believe that additional available information should also be
taken into account. In mathematical terms the sequences At : t ¼ 0; 1; ¼f g as well as
Dt : t ¼ 0; 1; ¼f g and I t : t ¼ 0; 1; ¼f g are filtrations.

∙ E UijAt½ � is not exactly known at time t, as it depends itself on unknown parameters. For instance,
in the CL model of Mack (1993) E UijAt½ � depends on the unknown CL factors fj, which have to be
estimated from the data. Thus, to be strict, the best estimate reserve is only an estimate of the
conditional expected value of the outstanding liabilities. However, we would like to study a model
where best estimate reserves can explicitly be calculated in order to show that CDR’s with the same
sign over several consecutive calendar years are not a contradiction to best estimate reserves. This
means that even if we know the parameters exactly, CDR’s with the same sign over several
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consecutive calendar years are a phenomenon that is to be expected in certain situations. Therefore,
it will be assumed that the best estimate reserves as defined in equation (2) are exactly known.

1.3. The martingale argument

The CDR of accident year t− J≤ i≤ t −1 in the financial statement of calendar year t is defined by

CDRðtÞ
i :¼ bRðt�1Þ

i �Xpaid
i;t�i�bRðtÞ

i ; (3)

where Xpaid
i;t�i denotes the incremental claim payments of accident year i in calendar year t. This can

also be written as

CDRðtÞ
i ¼ bUðt�1Þ

i �bUðtÞ
i :

Since bUðtÞ
i ¼ E UijAt½ �;

the sequence bUðtÞ
i : t ¼ i; i + 1; ¼

n o
(4)

is a martingale with respect to the filtration ðAtÞt2N . Hence the sequence

CDRðtÞ
i : t ¼ i + 1; i + 2; ¼

n o
;

representing CDR’s in consecutive years, consists of increments of a martingale. Therefore, these
CDR’s are uncorrelated and have expected value zero. From this fact it is often concluded that
CDR’s having the same sign over several consecutive calendar years are a strong indication that the
reserves are not best estimates.

Remark.

Also with a martingale it is not necessarily unlikely that the increments have the same sign over several
consecutive years. This is, in particular, the case if the distribution of the CDR’s is strongly skewed to
the left and if the probability of a positive CDR is much higher than 0.5. This can be the case in special
lob such as product liability with potential large incurred but not reported claims occurring with a small
probability. But even if the distribution is symmetric around zero and if we assume that CDR’s of
different calendar years are independent, within a long-time horizon of say 50 years there is, for
instance, a probability of 54.4% to have a consecutive period of 6 or more years with the same sign of
the CDR. However, such long-time horizons are not considered in insurance, and for a reasonable time
horizon of say 10 years this probability reduces to 9.4%. Thus, the martingale argument is not a very
strict argument from a mathematical point of view but it reinforces the general belief, that CDR’s with
the same sign over several consecutive years are a contradiction to best estimate reserves.

1.4. Observations in practice

In practice, however, one often observes the same sign of the CDR over several consecutive years.
A striking example was the claims development after the mid-1990s in the line motor liability
in Switzerland. Most of the Swiss insurance companies experienced a negative CDR over a longer
period of about 8 consecutive years. The reason was the emergence of a new phenomenon called
“whiplash”. It is mainly observed after rear-end collisions. The victims complain about permanent
pain, chronic fatigue, loss of concentration and inability to work. However, as a peculiarity of this
phenomenon, there is no objective medical injury that could be diagnosed by a medical doctor and
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that would explain these symptoms. Because of this lack of an observable medical indication the
courts did not acknowledge a disability for such cases for a long time. But after a decision at the
Swiss Federal court, the court practice began gradually to change. This was the beginning of a long
process leading to a permanently increasing claims load, which was impossible to predict and that
manifested itself only with time. For instance, there are many rear-end collisions, but fortunately
most of them turned out to be harmless and only a small percentage developed to a case with long-
term injury. However, at the beginning, there was no claims experience allowing to estimate neither
this percentage nor the expected claim amount of the corresponding claims. There was also a change
in the whole environment. For instance, more and more lawyers and law offices began to specialise
on whiplash cases which itself increased the number of persons claiming for a disability. Or the
advocates of the victims were not prepared to settle a claim in the hope that time works in favour of
the victims and that they can get a higher amount at a later settlement date. It was also a cultural
issue, as the whiplash phenomenon was mainly observed in the German speaking part of Switzerland
and was practically non-existent in the French and Italian speaking part. The question was whether
or when it would spill over to these parts of Switzerland, too. Fortunately it did not.

What are best reserve estimates in such periods of change and what should a reserving actuary do? We
claim that it is not sufficient just to look at the claims triangle. In the paid claims triangle there is usually
hardly seen any change at the early years of such a period and the new situation is reflected in the claims
data only gradually and with a delay. In the incurred triangles one might observe an increase in the
newer diagonals. However, such a new situation is also a challenge for the claims adjusters and there is
a big uncertainty in their case estimates and as a consequence in the information observed in the newer
diagonals of the incurred triangle. One of the authors has experienced other situations where the claims
adjusters overreacted at the beginning. We claim that best practice is to communicate closely with the
claims department, to take their judgement and evaluation as an expert opinion, which is permanently
updated based on the development at the claims front (verdicts, court practice, etc.) and on the observed
data in the claims triangles. In the motor liability example of the mid-1990s it took several years
until the situation stabilised and the new court practice was reflected in the claims data, and hence
the resulting CDR’s were negative over several years. In 2008, there was another decision at the
Swiss Federal court with the effect that courts have become much more reluctant to attribute a
permanent disability after an accident with whiplash indications. After that there was observed a similar
development of the CDR’s in the opposite direction.

The Swiss motor liability example shows that also with best reserving practice the CDR’s can have
the same sign over a longer period. The question arises whether we have overseen something in the
martingale argument? The answer is yes, we have overseen something.

There is nothing wrong in the mathematics and the sequence fbUðtÞ
i : t ¼ i; i + 1; ¼ g, as defined in

equation (4), is a martingale. However, one has to be careful in the interpretation what this martingale
property exactly means and what conclusions one can draw from the martingale argument. The point is
that the claim payments and the claims development depend on “hidden”, not directly observable,
characteristics describing the “state space” at different times such as legal and economic environment.
These “hidden” characteristics are best modelled in a Bayesian way as random variables. The martingale
argument only holds in the average over these state space characteristics. But what we observe in a claims
development triangle are conditional observations, that is, claims data generated on the condition that a
specific but unknown realisation of the state space variables is given. The observed CDR’s resulting from
best estimates based on such conditional observations are no longer increments of a martingale with
expected value zero. This fact will become more clear when looking at some concrete examples.
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2. An example from pricing

The Poisson-Gamma model is a well-known model for experience rating based on observed claim
frequencies and was for instance the basis for constructing the Bonus-Malus scheme in motor
liability in Switzerland (see Bichsel, 1964).

Assume we have a portfolio of risks numbered i = 1,2,…, I and denote by Ni,j the claim number of
risk i in year j. Each risk is characterised by its risk characteristic ϑi which is a realisation of a random
variable Θi.

Model Assumptions 2.1 (Poisson-Gamma)
i) Conditionally, given Θi = ϑi, the random variables Ni,j (j = 1,2,…) are independent and Poisson
distributed with Poisson parameter ϑiλ0.
ii) The random variables Θi are independent and Gamma distributed with E[Θi] = 1 and
Var(Θi) = γ − 1.
iii) Ni,j and Nk,l are independent for i≠ k.

Denote by Dt ¼ Ni;j : j ¼ 1; 2; ¼ ; t; i ¼ 1; 2; ¼ ; I
� �

the observations up to year t. Based on
these observed data we want to predict for each risk i next years claim number. The following
theorem is well-known from credibility literature (see, for instance, Bühlmann & Gisler, 2005,
Chapter 2).

Theorem 2.2 The best prediction of Ni,t +1 given Dt under Model Assumptions 2.1 is given bybNi;t +1 ¼ αtNi;t + ð1�αtÞλ0;
where

Ni;t ¼ 1
t

Xt
j¼1

Ni;j and αt ¼ tλ0
tλ0 + γ

:

Remarks.

∙ The individual risk characteristics ϑi are drawn at the very beginning from a first “urn” as
realisations of independent and identically distributed Gamma random variables.

∙ The sequence bNi;t : t ¼ 1; 2; ¼
n o

is a martingale with respect to ðDtÞt2N and it holds that

E bNi;t +1�Ni;t + 1

���Ni;1; ¼ ;Ni;t

h i
¼ 0: (5)

This means that for an infinitely large portfolio there is a balance between forecasted and future
claim frequency in all sub-portfolios of drivers having the same claim experience Ni,1,…,Ni,t. This
is the best we can achieve for a risk-adjusted pricing. However, the left-hand side of equation (5) is
an expected value over the whole Θ space.

∙ But the martingale property does not hold for the observations of a specific driver i. A specific
driver i has its specific risk characteristics Θi = ϑi drawn from a first urn, and the observed claim
numbers Ni,j of this particular driver are independent and Poisson distributed with Poisson
parameter ϑiλ0. We then have

E bNi;t +1�Ni;t +1

���Ni;1; ¼ ;Ni;t;Θi

h i
¼bNi;t + 1�E Ni;t +1

��Θi
	 


¼αt Ni;t�λ0
� �

+ λ0 1�Θið Þ;
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which is in general different from zero. Moreover,

E bNi;t +1�Ni;t +1

���Θi

h i
¼ αt λ0Θi�λ0ð Þ + λ0 1�Θið Þ

¼ λ0 1�αtð Þ 1�Θið Þ:

Thus, our best estimate predictor has conditional on Θi an upward (Θi<1) or downward (Θi>1)
bias for all years t. This bias decreases when the observed number t of years increases.

In reserving we do not have a portfolio of different similar claims triangles and we are not interested
in the mean over these triangles. We are rather looking at one specific triangle with given hidden state
space characteristics comparable to a specific driver in the pricing example. Conditional on this
hidden risk characteristics the best estimate reserves are no longer unbiased, and this bias can have
the same sign over several consecutive calendar years. If the 1-year process variance is small com-
pared to this bias, we will observe a CDR with the same sign over several consecutive years. In
section 3 we will consider examples from reserving.

3. Examples from reserving

3.1. Basic Bayesian framework

It is our personal belief, based on many years of practical experience of one of the authors, that
reserving is as much art as science. By this we mean that a good reserving actuary in practice should
not only analyse claims data from a claims triangle. There is much more information available which
one could and should take into account. The lawyers and claims adjusters in the company will have
some knowledge about changes in legislation, about claims handling, claims processes and the
assessment of case estimates by the claims adjusters. Economists will have some opinion about the
future development of economic factors. In short, there is a lot of expert knowledge available in a
company from which one can learn something about the expected future claim payments. Beside the
data in the triangle this expert knowledge should also be taken into account when calculating best
estimate claims reserves.

In mathematical terms such a situation can best be modelled in a Bayesian framework, which is
predestinated to deal with a priori knowledge on the one hand and observed claims data on the
other. In such a framework the best estimate reserve is given by equation (2). Often there is no
explicit formula for equation (2) and in this case a good approximation could be to use credibility
theory instead. There is one difference to the credibility models usually considered in the literature:
the a priori information does also change in time. In suitable models this can still be handled by
recursive estimators.

The basic Bayesian framework considered in this paper is a multiplicative model with the Bayesian
structure given below in Model Assumptions 3.1. Recall that I t denotes the external information at
time t and Dt is defined as in equation (1). By calendar year effect we mean that

E Xi;j
��Ψ; I t

	 
 ¼ E Xi;j
��Ψi + j

	 
 ¼ μiγjΨi + j; t≥0:

Since the Ψt are multiplicative factors to be applied on the conditional expected value of all elements
of a diagonal, they are also called diagonal effects. We denote by Ψ = {Ψ0,Ψ1,…} the set of diagonal
effects in all calendar years t 2 N.
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Model Assumptions 3.1 (Bayes Model with Diagonal Effects) Conditionally, givenΨ and I t for any
t≥0, the increments Xi,j are independent and there exist constants μi, 0≤ i≤ t, and γj, 0≤ j≤ J, with
∑jγj = 1 such that

E Xi;j jΨ; I t
	 
 ¼ μiγjΨi + j:

Here {γj, j = 0,…, J} is the incremental payment pattern and {βj, j = 0,…, J} with βj ¼
Pj

k¼0 γk the
cumulative payment pattern.

Remark.

If Ψt = 1 for all t≥0, then there are no calendar year effects and if we omit the external information
I t in Model Assumptions 3.1 we obtain the basic assumptions of the Bornhuetter–Ferguson (BF)
model (see, for instance, Wüthrich & Merz, 2008). The best estimate reserve for accident year i at
time t is then given by

bRi ¼ 1�βt�ið Þμi

which is the BF reserve formula.

Under Model Assumptions 3.1 the best estimate reserve of accident year i at the end of calendar year
t is given by

bRðtÞ
i ¼E RijI t;Dt½ � ¼ E E RijI t;Dt;Ψ½ �jI t;Dt½ �

¼μi
XJ

j¼t�i +1

γjE Ψi + j
��I t;Dt

	 

; ð6Þ

and the best estimate of the total reserve at the end of calendar year t is

bRðtÞ ¼
Xt

i¼t�J + 1

bRðtÞ
i

¼
Xt

i¼t�J + 1

μi
XJ

j¼t�i +1

γjE Ψi + j
��I t;Dt

	 


¼
XJ
k¼1

E Ψt + kjI t;Dt½ �
XJ
j¼k

γjμt + k�j

0@ 1A: ð7Þ

Hence to find the best estimate reserve bRðtÞ we have to determine

Ψ tð Þ
t +k ¼ E Ψt + kjI t;Dt½ �

for k = 1,…, J. Note that Ψ tð Þ
t + k is the best k-year prediction of Ψt +k at time t.

One year later there are the observations of the diagonal of the next calendar year t+ 1 and possibly
updated external information I t + 1 available. With these new informations we get the updated
forecasts of Ψ t +1ð Þ

t + k .
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From equation (7) it follows that the total CDR in calendar year t +1 is given by

CDRt +1 ¼E
Xt
i¼0

Ui

�����I t;Dt

" #
�E

Xt
i¼0

Ui

�����I t + 1;Dt + 1

" #

¼
Xt

i¼t�J +1

μi
XJ

j¼t�i + 1

γjΨ
ðtÞ
i + j�

Xt
i¼t�J + 1

Xi;t�i +1�
Xt

i¼t�J +2

μi
XJ

j¼t�i + 2

γjΨ
ðt +1Þ
i + j

¼
Xt + J

k¼t +1

ΨðtÞ
k

XJ
j¼k�t

μk�jγj�
XJ
j¼1

Xt + 1�j;j�
Xt + J

k¼t + 2

Ψðt + 1Þ
k

XJ
j¼k�t

μk�jγj

¼
XJ
l¼1

ΨðtÞ
t + l

XJ
j¼l

μt + l�jγj�
XJ
j¼1

Xt + 1�j;j�
XJ
l¼2

Ψðt +1Þ
t + l

XJ
j¼l

μt + l�jγj: ð8Þ

In the special case where μi = μ for all i, equations (7) and (8) simplify to

bRðtÞ ¼ μ
XJ
k¼1

ΨðtÞ
t +kð1�βk�1Þ;

CDRt +1 ¼ Ψðt +1Þ
t +1 μð1�β0Þ�

XJ
j¼1

Xt + 1�j;j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference between updated forecast and observations

+
XJ
k¼1

ΨðtÞ
t +k�Ψðt + 1Þ

t +k

� �
μð1�βk�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

change in update

(9)

¼ ΨðtÞ
t + 1μð1�β0Þ�

XJ
j¼1

Xt + 1�j;j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference between forecast and observations

+
XJ
k¼2

ΨðtÞ
t +k�Ψðt +1Þ

t + k

� �
μð1�βk�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

change future

: (10)

In the following we consider two specific models within this basic Bayesian framework in which we
can explicitly calculate best estimate reserves.

3.2. One Jump Model

We consider the simple situation with a stable period in the years t≤ s0 − 1 with no diagonal
effects observable in the claims triangles and with no indication that this situation will change
in the future. However, in the year s0, there is a change in the environment (e.g. legislation),
which leads to a change of the expected value of the total claim payments in each “cell” {(i,j):
i + j≥ s0} by some unknown factor Ψs0 . There is no indication that further changes will incur
after year s0. After calendar year s0 the situation is again stable. This situation is reflected by the
following model.

Model Assumptions 3.2 (One Jump Model)
i) Conditionally, given Ψ and I t for any t≥ 0, the Xi,j are independent and normally distributed with

E½Xi;j jΨ; I t� ¼ μiγjΨi + j; VarðXi;j jΨ; I tÞ ¼ μiη
2
j σ

2;

where
PJ

j¼0 γj ¼
PJ

j¼0 η
2
j ¼ 1:

ii) For t≤ s0 − 1, conditionally on I t and Dt, Ψl = 1 for l≤ t and

E½Ψt + l j I t;Dt� ¼ 1; l≥ 1:
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iii) For t≥ s0, conditionally, given I t and Dt�1

Ψl ¼1; l≤ s0�1;

Ψl ¼Ψs0 ; s0 ≤ l ≤ t;

E½Ψt + l j I t;Dt� ¼E½Ψs0 j I t;Dt�; l≥ 0;

where Ψs0
jðI t;Ds0�1Þ¼d Ψs0

jðI s0
;Ds0�1Þ � Nðm; τ2Þ.

Remarks.

∙ The stable situation without diagonal effect in the period t≤ s0 − 1 and no indication for a change
in the future is modelled by ii) (Ψl = 1 for l≤ t and prediction E½Ψt + l j I t;Dt� ¼ 1 for future years).

∙ The change of future payments by an unknown factor due to the change of the environment in the
year s0 is modelled by Ψs0 j ðI s0 ;Ds0�1Þ � Nðm; τ2Þ in iii). Note that this means a change of the
“expert opinion” with regard to the years t≥ s0.

∙ The stable situation with no further changes after the year s0 is modelled by
Ψs0 j ðI t;Ds0�1Þ¼d Ψs0 j ðI s0 ;Ds0�1Þ and the fact that there is no indication for a change in the
future by E½Ψt + l j I t;Dt� ¼ E½Ψs0 j I t;Dt� for l≥ 0.

In order to simplify the formulas we assume in the following that s0≥ J.

Proposition 3.3 Under Model Assumptions 3.2 Ψs0 is conditioned on Ds0 + l and I s0 + l , l≥0,
normally distributed with

Ψðs0 + lÞ
s0 ¼E½Ψs0 j I s0 + l;Ds0 + l� ¼ αs0 + lDs0 + l + ð1�αs0 + lÞm;

qðs0 + lÞs0 ¼VarðΨs0 j I s0 + l;Ds0 + lÞ ¼ ð1�αs0 + lÞτ2;
where

Ds0 + l ¼

Ps0 + l
t¼s0

PJ
j¼0

Xt�j;j
γj
η2jPs0 + l

t¼s0

PJ
j¼0

μt�jγ
2
j

η2j

and αs0 + l ¼

Ps0 + l
t¼s0

PJ
j¼0

μt�jγ
2
j

η2jPs0 + l
t¼s0

PJ
j¼0

μt�jγ
2
j

η2j
+ σ2

τ2

:

Remark.

Proposition 3.3 still yields the credibility estimator if we drop the normality assumption for Ψs0 and
the Xi,j. In a distribution-free approach, it is the best linear approximation to the Bayes estimator and
in this sense still a best estimate. However, it is then no longer exact Bayesian and a best estimate as
defined in equation (2).

Proof of Proposition 3.3:

In the One Jump Model 3.2 we have exact credibility, that is, the credibility estimator is exact
Bayesian (see, e.g. Jewell, 1974a, 1974b or Bühlmann & Gisler, 2005). If γj≠ 0 for j = 0,…, J, then
the random variables

Yi;j ¼ Xi;j

μiγj
; i + j≥ s0;
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fulfil the assumptions of the Bühlmann–Straub model with weights wi,j = μiγj
2/(σ2ηj

2). The formula
then follows from the Bühlmann–Straub credibility formula. For incurred claims some of the γj might
be zero. The formula can then be derived with the regression credibility model (see Theorem 8.4 in
Bühlmann & Gisler, 2005) by using the observation vector Xðs0 + lÞ with all observations from
calendar year s0 to calendar year s0 + l as elements, where the regression equation is given by
E½Xi;j jΨs0 � ¼ μiγjΨs0 and where the conditional covariance matrix of Xðs0 + lÞ given Ψs0 is diagonal
with diagonal elements VarðXi;j jΨs0Þ ¼ μiη

2
j σ

2.

The predictors ΨðtÞ
s0 and the variances qðtÞs0 can also be calculated recursively (see Theorem 9.6 in

Bühlmann & Gisler, 2005):

Proposition 3.4 We have the following recursive formulas:

i) For t≤ s0 − 1

ΨðtÞ
s0 ¼ 1:

ii) For t = s0

Ψðs0Þ
s0 ¼ ~αs0

PJ
j¼0

Xs0�j;j
γj
η2j

ws0
+ ð1�~αs0Þm; qðs0Þs0 ¼ ð1�~αs0Þτ2;

where

~αs0 ¼
ws0

ws0 +
σ2

τ2

and ws0 ¼
XJ
j¼0

μs0�j

γ2j
η2j

:

iii) For t>s0

ΨðtÞ
s0 ¼ ~αt

PJ
j¼0

Xt�j;j
γj
η2j

wt
+ ð1�~αtÞΨðt�1Þ

s0 ; qðtÞs0 ¼ ð1�~αtÞqðt�1Þ
s0 ;

where

~αt ¼ wt

wt + σ2

qðt�1Þ
s0

and wt ¼
XJ
j¼0

μt�j

γ2j
η2j

:

With Proposition 3.4 we can also find an explicit formula for the CDR. For simplicity we consider
the case with μi≡ μ. By using equations (9) and (10) we obtain:

∙ for t + 1≤ s0�1

CDRt + 1 ¼ μð1�β0Þ�
XJ
j¼1

Xt +1�j;j

¼ difference between forecast and observations;
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∙ for t + 1 ¼ s0

CDRs0 ¼ Ψðs0Þ
s0 μð1�β0Þ�

XJ
j¼1

Xs0�j;j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference between updated forecast and observations

+ 1�Ψðs0Þ
s0

� �
μ
XJ
k¼1

ð1�βk�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
change in update

¼ μð1�β0Þ�
XJ
j¼1

Xs0�j;j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference between forecast and observations

+ 1�Ψðs0Þ
s0

� �
μ
XJ
k¼2

ð1�βk�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
change future

;

and

1�Ψðs0Þ
s0 ¼ 1�m + ~αs0 m�

PJ
j¼0

Xs0�j;j
γj
η2j

ws0

0BBB@
1CCCA;

∙ for t + 1>s0

CDRt + 1 ¼ Ψðt +1Þ
s0 μð1�β0Þ�

XJ
j¼1

Xt + 1�j;j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference between updated forecast and observations

+ ΨðtÞ
s0 �Ψðt +1Þ

s0

� �
μ
XJ
k¼1

ð1�βk�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
change in update

¼ ΨðtÞ
s0 μð1�β0Þ�

XJ
j¼1

Xt +1�j;j|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
difference between forecast and observations

+ ΨðtÞ
s0 �Ψðt + 1Þ

s0

� �
μ
XJ
k¼2

ð1�βk�1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
change future

;

and

ΨðtÞ
s0 �Ψðt +1Þ

s0 ¼ ~αt +1 ΨðtÞ
s0 �

PJ
j¼0

Xt +1�j;j
γj
η2j

wt + 1

0BBB@
1CCCA:

We observe that in the case t +1> s0 the second terms “change in update” and “change future”
respectively, converge to 0 as t→∞ since the weights ~αt + 1 ! 0. On the other hand, the difference
between (updated) forecast and observations depends more on the volatility of the data.

Next, we want to consider the sign of the CDR over several consecutive calendar years in the period
starting at year s0 + 1. What we will observe are conditional data generated by the model, given a
specific realisation of Ψs0 . For this reason we first investigate the behaviour of the conditional
expected value E½ΨðtÞ

s0 j I s0 ;Ds0�1;Ψs0 �.

With the estimator ΨðtÞ
s0 in Proposition 3.3 and from E½Dt j I s0 ;Ds0�1;Ψs0 � ¼ Ψs0 , t≥ s0, it follows that

E ΨðtÞ
s0 �Ψðt +1Þ

s0

��I s0 ;Ds0�1;Ψs0

h i
¼ ðαt�αt +1ÞðΨs0�mÞ:
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We then obtain for the conditional expectation of the CDR for t+ 1> s0:

E CDRt + 1jI s0 ;Ds0�1;Ψs0½ �

¼ μð1�β0Þð1�αtÞðm�Ψs0 Þ +E ΨðtÞ
s0 �Ψðt +1Þ

s0

��I s0 ;Ds0�1;Ψs0

h i
μ
XJ
k¼2

ð1�βk�1Þ

¼ μð1�β0Þð1�αtÞðm�Ψs0 Þ + ðαt + 1�αtÞ m�Ψs0ð Þμ
XJ
k¼2

ð1�βk�1Þ

¼ ðm�Ψs0Þμ ð1�β0Þð1�αtÞ + ðαt +1�αtÞ
XJ
k¼2

ð1�βk�1Þ
 !

: ð11Þ

If βj≤ 1 for all j, or γj≥ 0 for all j, respectively, then the second factor in equation (11) is positive since
αt is increasing in t. Moreover, this second factor decreases in t since 1 − αt and αt +1 − αt are
decreasing. In the limit for t→∞, it vanishes. In addition, we can see from equation (11) that the
absolute value of the conditional expectation of the CDR is larger if more weight is given to the tail,
that is, for long-tailed lob the bias is higher.

Hence, we have found the following result with regard to the behaviour of the conditional expected
value of the CDR in the case where γj≥0 for all j:

∙ The sign of E CDRt + 1 j I s0 ;Ds0�1;Ψs0½ � is the same for all t +1≥ s0 + 1.

∙ The absolute value of E CDRt + 1 j I s0 ;Ds0�1;Ψs0½ � is the bigger, the bigger j m�Ψs0 j is.

∙ The absolute value of E CDRt + 1 j I s0 ;Ds0�1;Ψs0½ � is the bigger, the longer the development is. In
other words, the absolute value of E CDRt + 1 j I s0 ;Ds0�1;Ψs0½ � is bigger, if the development pattern
(βj)0≤ j≤ J increases slower to βJ = 1.

∙ The absolute value of E CDRt + 1 j I s0 ;Ds0�1;Ψs0½ � is decreasing in t.

∙ In the limit for t→∞ the CDR is conditionally unbiased.

3.2.1. Numerical example
For the example we choose a special case of the above model in which μi≡ μ and ηj

2 = γj. In this case
the formula for ΨðtÞ

s0 simplifies to

ΨðtÞ
s0 ¼ αt

1
μðt�s0 + 1Þ

Xt
l¼s0

XJ
j¼0

Xl�j;j + ð1�αtÞm; t≥ s0;

where

αt ¼ μðt�s0 + 1Þ
μðt�s0 + 1Þ + σ2

τ2

:

We choose the following parameters

μ ¼ 10; 000; σ ¼ 4; m ¼ 1:02; τ ¼ 0:02;

and the development pattern γj given in Table 1.

In our simulation of the specific observed triangle we start with a 10× 10 triangle and we assume
the jump occurs in calendar year s0 = 10. We then add calendar years and calculate the CDR
for time s0 = 10 to time t = 21. The true diagonal effect to be considered as a specific realisation of
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Ψs0 is given by ψ s0 = 1.05. Hence, we consider a rather extreme situation where Ψs0 deviates
substantially from the a priori expert’s expectation of m = 1.02. Of course, if the realisation ψ s0
coincides with m, then there is no systematic bias in the CDRt for t≥ s0 + 1, and the bigger the
deviation of ψ s0 from m, the bigger is this bias. The simulated incremental claims data is given
in Table 2.

In Table 3 the CDR’s are given with the splits in the terms “change future”, “difference between
forecast and observations”, “difference between updated forecast and observations” and “change in
update”. Moreover, we give the conditional expected value of the CDR, which is always negative in
this example. In the CDR we observe negative values in 5 consecutive years. More precisely, we have
10 times a loss in the 12 years from calendar years 10–21. This is also illustrated in the plots in
Figure 1 and Figure 2. From the table and from the figures one can see that in this specific example
the deviation of the forecasts from the observations in the newest diagonal contributes much more to
the observed CDR than the effect of the parameter update for future years.

The predictions ΨðtÞ
s0 are given in Table 3 and a corresponding plot is given in Figure 3.

Table 1. Development pattern γj.

j 0 1 2 3 4 5 6 7 8 9

γj 0.2 0.23 0.12 0.11 0.09 0.07 0.058 0.05 0.043 0.029

Table 2. Incremental claims.

0 1 2 3 4 5 6 7 8 9

0 1,930 2,426 1,208 1,266 903 946 636 480 389 169
1 2,185 2,372 1,099 1,110 932 793 516 452 462 362
2 2,406 2,334 1,304 959 819 696 525 466 550 294
3 2,035 2,548 1,272 1,159 1,149 871 459 324 473 375
4 2,199 2,559 1,437 1,152 1,038 657 681 575 290 283
5 2,169 2,486 1,237 951 1,052 660 692 537 496 307
6 2,164 2,277 1,564 1,035 1,098 822 459 462 597 322
7 1,918 2,495 958 1,289 862 825 663 648 484 332
8 2,347 2,186 1,267 1,123 954 892 526 492 534 281
9 2,366 2,614 1,251 1,052 961 952 597 596 607 384
10 2,138 2,581 1,408 1,291 990 758 541 581 532 308
11 1,958 2,564 1,182 1,119 739 762 609 503 347 412
12 2,068 2,540 1,389 1,181 989 895 605 552 527 343
13 1,752 2,627 1,267 1,378 788 847 517 560 337
14 1,674 2,355 1,326 1,142 1,064 497 543 420
15 2,245 2,176 1,172 994 1,143 770 456
16 1,980 2,425 1,285 1,067 854 880
17 1,992 2,420 1,420 1,020 1,010
18 2,024 2,387 1,229 1,521
19 2,488 2,687 1,361
20 1,979 2,498
21 1,816
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For illustrative purposes we have only considered one realisation of a claims triangle with the
given diagonal effect ψ s0 in the above example. We additionally simulate 10,000 triangles with
this diagonal effect and consider the conditional distribution of the CDR. It is important to keep the
diagonal effect fixed, because in the situation considered we have exactly one effect and therefore we
should not average over different effects.

We give boxplots of the realised values of the CDR in the simulations in Figure 4. The conditional
expected value is negative and we observe that it gets closer to zero in later calendar years. In the first
few calendar years after the jump, it is likely to observe negative CDR’s.

Table 3. CDR, change future (Future), difference between forecast and observations (Forecast), difference
between updated forecast and observations (Up forecast), change in update (Update), conditional expected value
of the CDR and predictions ΨðtÞ

s0 .

t CDRt Future Forecast Up forecast Update E½CDRt j I s0 ;Ds0�1;Ψs0 � ΨðtÞ
s0

10 − 1,563 −718 − 845 − 560 − 1,003 − 923 1.036
11 − 479 − 92 − 387 − 351 − 128 − 273 1.040
12 − 181 − 38 − 143 − 128 −53 − 218 1.042
13 − 459 − 26 − 433 − 423 −36 − 180 1.043
14 − 897 − 88 − 808 − 773 − 124 − 154 1.048
15 194 8 187 184 11 − 134 1.047
16 − 281 − 26 − 256 − 245 −36 − 118 1.049
17 − 112 − 1 − 111 − 111 − 1 − 106 1.049
18 − 270 − 26 − 244 − 233 −37 −95 1.050
19 129 − 32 162 175 −45 −87 1.052
20 − 198 − 9 − 189 − 186 −12 −80 1.052
21 − 425 − 15 − 410 − 404 −21 −74 1.053
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Figure 1. Claims development result (CDR) and split in “difference between updated forecast and
observations” plus “change in update” and E½CDRt j I s0 ;Ds0�1;Ψs0 �.
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In practice, there are usually several consecutive jumps, often going into the same direction over a period of
years. Such situations reinforce the fact of having the same sign of the CDR over several consecutive years.
In the next section we give a more general framework in order to model such cases more adequately.

3.3. Normal–Normal Model

In the real world, the process with regard to change of legislation is longer and not as simple as in the
One Jump Model 3.2. For instance, there can be a first pending process on a lower court, then a first
verdict followed by other processes and other verdicts possibly on the next higher courts, and
sometimes the legal question is even brought to the highest Swiss Federal court whose verdicts have a
precedent-setting character. All this can take several years. In the mathematical set-up this means that
one has several consecutive jumps going in the same direction and thus reinforcing the fact of having
the same sign of the CDR over several consecutive years.

Moreover, in the real world there can be several sources and events (change of legislation, economic
factors and so on) that lead to a diagonal effect. Some of them lead to an additive change (jump) in
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Figure 2. Claims development result (CDR) and split in “difference between forecast and
observations” plus “change future”.
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the diagonal effects, others to a multiplicative one or to a combination of both. For instance, the
impact of economic factors such as consumer price inflation on Ψt could possibly be modelled by an
autoregressive process meaning that

Ψt ¼ ρΨt�1 + ð1�ρÞ +Δt;

where the Δt are i.i.d. with E[Δt] = 0 (see also Shi et al., 2012).

The following model is quite general and allows to mathematically describe situations, where the
diagonal effect Ψt can change dynamically in every calendar year in an additive or multipli-
cative manner or both. By dynamically we mean that the parameters aðtÞt + l (multiplicative) and bðtÞt + l
(additive) in Model Assumptions 3.5 depend on the information at time t and are therefore adjusted
over time.

Model Assumptions 3.5 (Normal–Normal Model)

i) Conditionally, given Ψ and I t; the Xi,j are independent and normally distributed with

E Xi;j
��Ψ; I t

	 
 ¼ E Xi;j
��Ψi + j

	 
 ¼ μiγjΨi + j;

Var Xi;j

��Ψ; I t
� � ¼ μiη

2
j σ

2; ð12Þ

where
PJ

j¼0 γj ¼
PJ

j¼0 η
2
j ¼ 1.

−2000

−1000

0

1000

2000

calendar year

10 11 12 13 14 15 16 17 18 19 20 21

Figure 4. Boxplot of CDRt, with 10,000 simulations, ψ s0 ¼ 1:05.
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ii) Conditionally, given I t and Dt�1, Ψt is normally distributed with

Ψðt;t�1Þ
t :¼E½Ψt j I t;Dt�1� ¼ aðtÞt Ψðt�1Þ

t�1 + bðtÞt ;

qðt;t�1Þ
t :¼VarðΨt j I t;Dt�1Þ ¼ aðtÞt

� �2
qðt�1Þ
t�1 + δ2

ðtÞ
t ;

for t≥0 and Ψð�1Þ
�1 ¼ 1 and qð�1Þ

�1 ¼ τ2.

iii) Conditionally, given I t and Dt,

ΨðtÞ
t + l :¼ E½Ψt + l j I t;Dt� ¼ aðtÞt + lΨ

ðtÞ
t + l�1 + b

ðtÞ
t + l; l≥ 1;

and aðtÞt + l ≥0 and bðtÞt + l are σðI t;Dt�1Þ measurable for l≥0.

iv) For 0≤ l≤ t, Ψt�l j ðI t;Dt�lÞ has the same distribution as Ψt�l j ðI t�l;Dt�lÞ.

Remarks.

∙ The aðtÞt + l, b
ðtÞ
t + l and δ2

ðtÞ
t + l steering the change from Ψt to Ψt + l also depend on I t. Consider, for

instance, the situation where there is a change of legislation in some year t and one expects that the
incremental claim payments Xi,j in future calendar years i + j> t will increase by some percentage,
but one is uncertain about the exact value of this percentage. Such situations can be taken into
account by a suitable choice of bðtÞt + l and δ2

ðtÞ
t + l.

∙ Note that by assumption iii), at time t we include the possibility of expected jumps and/or trends in
the future.

∙ In the incurred triangle, there are several possible situations such as the introduction of new
guidelines in the claims department, staff fluctuation, changes in legislation, which can lead to
higher uncertainties in the case estimates. Such situations can be taken into account by replacing
the variance assumption (12) in the model by

Var Xi;j
��Ψ; I t

� � ¼ μiη
2
j σ

2c2
ðtÞ

i + j; (13)

where c2
ðtÞ

i + j are constants depending on the external information I t and c2
ðtÞ

i + j ¼ c2
ði + jÞ

i + j for i + j≤ t.

∙ Special cases:

− If we assume that the diagonal effects are given by
Ψt ¼ 1 +Δt; E½Δt j I t� ¼ 0;

with independent Δt then the diagonal effects of different calendar years are independent. This
can be modelled by choosing aðtÞt + l � 0 and bðtÞt + l � 1 for l≥ 0 and all t.

− The stationary ARð1Þ process
Ψt + l ¼ ρΨt + l�1 + ð1�ρÞ +Δt + l; (14)

can be modelled by choosing aðtÞt + l � ρ, bðtÞt + l � ð1�ρÞ and τ2 ¼ δ2=ð1�ρ2Þ. The formula for
Ψðt;t�1Þ

t is then a weighted average between the last prediction and the initial estimate 1:

Ψðt;t�1Þ
t ¼ ρΨðt�1Þ

t�1 + ð1�ρÞ:

Similarly for the quadratic loss qðt;t�1Þ we have the weighted average

qðt;t�1Þ ¼ ρ2qðt�1Þ
t�1 + ð1�ρ2Þτ2:
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∙ In practice one also needs to estimate the parameters γj and μi. But as already mentioned in section
1.2 this is not an essential point for the message of this paper and we therefore assume that they
are known.

In the following theorem we show that under Model Assumptions 3.5 there exists a recursive
procedure to calculate the predictors Ψ tð Þ

t and the corresponding conditional msep’s:

qðtÞt ¼ VarðΨt j I t;DtÞ ¼ E Ψt�ΨðtÞ
t

� �2����I t

� �
:

Theorem 3.6 (recursive procedure, Normal–Normal Model) Under Model Assumptions 3.5 ΨðtÞ
t + k

and qðtÞt can be calculated by the following recursive procedure:

i) Initialisation:

Ψð�1Þ
�1 ¼ 1; qð�1Þ

�1 ¼ τ2:

ii) For t≥0:

a)
Update in the newest diagonal:

ΨðtÞ
t ¼ αtXt + 1�αtð ÞΨðt;t�1Þ

t ;

where

αt ¼ wt

wt + κt
; with wt ¼

Xminð J;tÞ

j¼0

μt�j

γ2j
η2j

; κt ¼ σ2

qðt;t�1Þ
t

;

Xt ¼ 1
wt

Xminð J;tÞ

j¼0

γj
η2j

Xt�j;j

and

qðtÞt ¼ ð1�αtÞqðt;t�1Þ
t :

b)
Forecast of future diagonal effects: for k≥1:

ΨðtÞ
t +k ¼ aðtÞt + kΨ

ðtÞ
t + k�1 + b

ðtÞ
t + k:

Remarks.

∙ If we drop the normal assumptions and do not make any distributional assumptions, Theroem 3.6
still yields the credibility estimators.

∙ Special cases:

- For independent diagonal effects Ψt = 1 +Δt, with Δt j I t � Nð0; δ2ðtÞt Þ, we get the predictors

ΨðtÞ
t ¼ αtXt + ð1�αtÞ; where αt ¼ wt

wt + σ2

δ2
ðtÞ

t

:

As in this case the diagonal effects of different calendar years are independent, ΨðtÞ
t depends

only on the observations of calendar year t.
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- In case of the AR(1) process (14) we obtain

ΨðtÞ
t ¼αtXt + ð1�αtÞ ρΨðt�1Þ

t�1 + ð1�ρÞ
� �

;

qðtÞt ¼ð1�αtÞ ρ2qðt�1Þ
t�1 + ð1�ρ2Þτ2

� �
:

Proof of Theorem 3.6: The formulas for ΨðtÞ
t and qðtÞt follow from the posterior distribution of Ψt,

given I t and Dt:

fΨt j I t ;Dt / exp �
Ψt�Ψðt;t�1Þ

t

� �2
2qðt;t�1Þ

t

0B@
1CA Y

i + j¼t

exp �
Xi;j�μiγjΨt

� �2
2μiη2j σ

2

0B@
1CA

/ exp � 1
2

Ψ2
t

X
i + j¼t

μiγ
2
j

η2j σ
2
+

1

qðt;t�1Þ
t

 !
�2Ψt

X
i + j¼t

γjXi;j

η2j σ
2
+
Ψðt;t�1Þ

t

qðt;t�1Þ
t

 ! ! !
:

Hence we obtain

ΨðtÞ
t ¼ E ΨtjI t;Dt½ � ¼

P
i + j¼t

γjXi;j

η2j σ
2 + Ψðt;t�1Þ

t

qðt;t�1Þ
tP

i + j¼t

μiγ
2
j

η2j σ
2 + 1

qðt;t�1Þ
t

¼ αtXt + ð1�αtÞΨðt;t�1Þ
t

and

qðtÞt ¼ VarðΨt j I t;DtÞ ¼ 1P
i + j¼t

μiγ
2
j

η2j σ
2 + 1

qðt;t�1Þ
t

¼ ð1�αtÞqðt;t�1Þ
t :

As in section 3.2 one can derive a formula for the conditional expected value of the CDR. For the
CDR we obtain under Model Assumptions 3.5 from equation (8)

CDRt +1 ¼ Ψðt +1Þ
t + 1

XJ
j¼1

μt +1�jγj�
XJ
j¼1

Xt +1�j;j +
XJ
k¼1

ΨðtÞ
t + k�Ψðt +1Þ

t + k

� �XJ
j¼k

μt + k�jγj:

In the appendix we derive the following formula for the conditional expected value of the CDR

E CDRt +1jI t +1;Dt;Ψ½ �

¼ Ψðt + 1;tÞ
t +1 �Ψt +1

� � XJ
j¼1

μt +1�jγj + αt +1
XJ
k¼2

Yk
l¼2

aðt +1Þt + l

XJ
j¼k

μt +k�jγj

0@ 1A
+
XJ
k¼1

ΨðtÞ
t

Yk
l¼1

aðtÞt + l�
Yk
l¼1

aðt +1Þt + l

 !
+
Xk
l¼1

bðtÞt + l
Yk

n¼l +1

aðtÞt +n�bðt +1Þt + l

Yk
n¼l + 1

aðt +1Þt +n

 ! !

´
XJ
j¼k

μt +k�jγj;

where Ψ = {Ψ0,Ψ1,…}. The cases of interest are the situations where the diagonal effects change in
the same direction (increase or decrease) over several years. It is likely that in such situations the
effects are underestimated (as in the example of motor liability in Switzerland) and in such a case the
conditional expected value of the CDR has the same sign over several consecutive years. More details
on this are given in the appendix.
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4. Concluding remarks

The primary aim of this paper was to show that the same sign of the CDR over several consecutive
calendar years is not a contradiction to best estimate reserves. This has already been achieved by
considering the One Jump Model 3.2.

More realistic situations can be mathematically well described by the Normal–Normal Model 3.5
introduced in section 3.3. This model is quite general and covers a variety of real-life situations.

Impacts of changes in the claims’ environment are usually first detected in the incurred claims figures,
whereas they often only appear in the paid triangle with a time lag. The reason is that the claims’
adjusters can react much quicker to such changes by adjusting their case estimates accordingly,
which is then seen as a diagonal effect in the incurred triangle. For this reason reserving actuaries are
usually looking at both, the paid and the incurred triangle. It might happen that the claims adjusters
overreact in their case estimates. However, it will not be possible to see, whether and to which
extent an observed trend in the newest diagonal of the incurred triangle is systematic or due
to “overreaction”. But the actuary will know that there is a higher uncertainty in the incurred
claims figures, which can be taken into account by the time-dependent parameters c2ðtÞi + j as given in
equation (13). For the best estimate reserves it turns out from Theorem 3.6 by replacing σ2 by σ2ct

2(t),
that the higher the uncertainty, the less weight is given to the observations in the newest diagonal.
This result reflects what we expect and what is also done in practice, although more by intuition than
in a systematic way.

In our model we have assumed that there is the same diagonal factor for all elements of a diagonal.
There can be situations, where this not the case, for instance, if a change of legislation only has an
impact on bodily injury claims. Our modelling framework can be extended to such situations by
assuming that the diagonal effects are random vectors rather than random variables. But this is
beyond the aim and the scope of this paper.

In this paper we have considered full Bayesian models in order to be able to explicitly calculate
best estimate reserves defined as the posterior expected values of future claim payments. One
might object that a normal distribution is not a realistic assumption for claims data but one can
easily drop the distributional assumptions and switch to a corresponding credibility model and
credibility estimators. But this is again out of the primary goal and scope of this paper. The
same holds for μi and γj, which were assumed to be known. Of course, in practice one will have to
estimate them.

We want to emphasise once more that in our model the expert opinion changes over time. This idea
can also be found in De Jong & Zehnwirth (1983). However, in most of the actuarial literature on
Bayes- and credibility models there is only one a priori distribution not changing over time. We
believe that models that allow for changing expert opinions over time have a big potential to bring
models nearer to the processes in the real world and to solve problems in practice, not only for
reserving but also for pricing and other applications.
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Appendix

As in the case of the One Jump Model 3.2, we want to study the signs of consecutive CDR’s in the
Normal-Normal Model 3.5. For this purpose we consider a conditional expected value of the CDR.
Recall the CDR under Model Assumptions 3.5:

CDRt + 1 ¼ Ψðt + 1Þ
t +1

XJ
j¼1

μt +1�jγj�
XJ
j¼1

Xt + 1�j;j +
XJ
k¼1

ΨðtÞ
t +k�Ψðt + 1Þ

t +k

� �XJ
j¼k

μt +k�jγj

and conditionally on Ψ = {Ψ0,Ψ1,…} we get

E CDRt + 1jI t +1;Dt;Ψ½ � ¼ð1�αt + 1Þ Ψðt +1;tÞ
t +1 �Ψt + 1

� �XJ
j¼1

μt +1�jγj

+
XJ
k¼1

ΨðtÞ
t + k�E Ψðt + 1Þ

t +k

���I t +1;Dt;Y
h i� �XJ

j¼k

μt + k�jγj:
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Note that for k≥1

ΨðtÞ
t + k ¼ΨðtÞ

t

Yt +k
l¼t + 1

aðtÞl +
Xt + k
l¼t +1

bðtÞl
Yt + k

n¼l +1

aðtÞn ;

Ψðt +1Þ
t +k ¼Ψðt +1Þ

t +1

Yt +k
l¼t + 2

aðt +1Þl +
Xt + k
l¼t +2

bðt +1Þl

Yt + k
n¼l +1

aðt +1Þn ;

and hence

ΨðtÞ
t + k�E Ψðt + 1Þ

t +k

���I t +1;Dt;Ψ
h i

¼ΨðtÞ
t

Yt + k
l¼t +1

aðtÞl �
Yt +k

l¼t + 1

aðt +1Þl

 !
+
Xt +k
l¼t + 1

bðtÞl
Yt +k

n¼l + 1

aðtÞn �bðt +1Þl

Yt + k
n¼l +1

aðt +1Þn

 !

+ αt + 1 Ψðt +1;tÞ
t + 1 �Ψt + 1

� � Yt +k
l¼t + 2

aðt + 1Þl :

It follows that

E CDRt +1jI t + 1;Dt;Ψ½ � ¼ Ψðt +1;tÞ
t +1 �Ψt +1

� � XJ
j¼1

μt +1�jγj + αt +1
XJ
k¼2

Yk
l¼2

aðt +1Þt + l

XJ
j¼k

μt +k�jγj

0@ 1A
+
PJ
k¼1

ΨðtÞ
t

Qk
l¼1

aðtÞt + l�
Qk
l¼1

aðt +1Þt + l

 !
+
Pk
l¼1

bðtÞt + l
Qk

n¼l + 1
aðtÞt +n�bðt +1Þt + l

Qk
n¼l + 1

aðt +1Þt +n

 ! !

´
XJ
j¼k

μt +k�jγj:

In order to analyse this term, we assume that γj≥0 for all j.

Let us consider the situation where a new phenomenon leads to an increase in the diagonal effects
that is, Ψt ≤Ψt + 1 ≤ ¼ ≤Ψt + n for some n>1. It is likely that this increase is at first underestimated
(as in the example of motor liability in Switzerland) and hence it is plausible that for l≥1 and for
some k≥1:

aðtÞt + l ≤ aðt +1Þt + l ≤ aðt +2Þt + l ≤ ¼ ≤ aðt +kÞt + l ;

bðtÞt + l ≤ bðt +1Þt + l ≤ bðt + 2Þt + l ≤ ¼ ≤bðt +kÞt + l ;

and Ψðt + 1;tÞ
t +1 �Ψt +1<0 for several consecutive calendar years t. This then leads to a negative sign of the

conditionally expected CDR’s for several consecutive years. Analogously, this argument applies in
the case of a decreasing effect which is first underestimated. Therefore, in the cases where
the diagonal effects change in the same direction (increase or decrease) over several years, it is likely
that this effect is underestimated and that one observes the same sign of the CDR over the
corresponding years.
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