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In Brief

Calorie-rich diets induce hyperphagia

and promote obesity. Here, Jais et al.

report that short-term high-fat-diet (HFD)

feeding in mice activates

prepronociceptin (PNOC)-expressing

neurons in the arcuate nucleus of the

hypothalamus (ARC). They characterize

PNOCARC neurons as a novel ARC neuron

population activated upon palatable food

consumption to promote hyperphagia.
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SUMMARY
Calorie-rich diets induce hyperphagia and promote obesity, although the underlying mechanisms remain
poorly defined. We find that short-term high-fat-diet (HFD) feeding of mice activates prepronociceptin
(PNOC)-expressing neurons in the arcuate nucleus of the hypothalamus (ARC). PNOCARC neurons represent
a previously unrecognizedGABAergic population of ARCneuronsdistinct fromwell-defined feeding regulatory
AgRPorPOMCneurons.PNOCARCneuronsarborizedensely in theARCandprovide inhibitorysynaptic input to
nearby anorexigenic POMC neurons. Optogenetic activation of PNOCARC neurons in the ARC and their projec-
tions to the bed nucleus of the stria terminalis promotes feeding. Selective ablation of these cells promotes the
activation of POMC neurons upon HFD exposure, reduces feeding, and protects from obesity, but it does not
affect food intake or body weight under normal chow consumption. We characterize PNOCARC neurons as a
novel ARC neuron population activated upon palatable food consumption to promote hyperphagia.
INTRODUCTION

Genetic studies indicate a strong role for the CNS in the develop-

ment of obesity, especially for genes expressed in the hypothala-

mus (Locke et al., 2015; Speliotes et al., 2010). Nevertheless, how

a high-fat diet (HFD) affects the central regulation of feeding re-

mains largely elusive. Exposure toaHFD leads toacute hyperpha-

gia, which is potentially caused by the difference in postingestive

signals arising from carbohydrate and fat consumption (Blundell

and MacDiarmid, 1997; Gaysinskaya et al., 2007; Green et al.,

1994; Thaler et al., 2012; Warwick, 2003). In addition, acute and/
Neuron 106, 1009–1025, J
This is an open access article under the CC BY-N
or prolonged feeding of a HFD alters the secretion of gastrointes-

tinal hormones (Richards et al., 2016; Xu et al., 2011) and impairs

vagal afferent sensitivity (Daly et al., 2011; Kentish et al., 2012). In

the brain, highly dynamic neuronal networks in the hypothalamus

integrate anticipatory responses, postingestive signals, and sys-

temic metabolic homeostasis. In particular, the orexigenic

agouti-related peptide (AgRP)-expressing and the anorexigenic

proopiomelanocortin (POMC)-expressing neurons in the arcuate

nucleus of the hypothalamus (ARC) express receptors for sensing

the organismal energy state, allowing for accurate feedback regu-

lation (Belgardt et al., 2009;Gautron et al., 2015; Jais andBr€uning,
une 17, 2020 ª 2020 The Authors. Published by Elsevier Inc. 1009
C-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2017). For example, increased blood glucose concentrations and

release of the adipokine leptin inform the brain about the suffi-

ciency of energy stores and act via the activation of satiety

signaling POMC neurons (Cowley et al., 2001; Ibrahim et al.,

2003) and inhibition of hunger-signalingAgRP/NPY (neuropeptide

Y) neurons (Fioramonti et al., 2007; van den Top et al., 2004). In

addition, sensory food perception transiently regulates POMC

neuron activity to prime postprandial liver adaptation (Brandt

et al., 2018). However, continuous and prolongedHFD feeding re-

sults in impaired glucose sensing by POMCneurons (Parton et al.,

2007), altered mitochondrial dynamics and mitochondria-endo-

plasmic reticulum (ER) interactions (Diano et al., 2011; Schnee-

berger et al., 2013), andultimately inhibitionof POMCneuron firing

via the deterioration of Ca2+ homeostasis (Paeger et al., 2017).

Here,wesetout tocharacterizeneuronalpopulations thatspecif-

ically respond to the feeding of energy-dense, highly palatable

food. Using an unbiased phosphoribotrap approach, we find that

prepronociceptin (PNOC)-expressingneurons in thehypothalamus

are activated upon acuteHFD feeding, and specifically, PNOC-ex-

pressing neurons in the ARC (PNOCARC neurons) provide inhibitory

synaptic contact toanorexigenicPOMCneurons. Theiractivitypro-

motesoverconsumptionduringacuteHFD feeding,makingPNOC-

expressingneuronsanattractive target for thepreventionand treat-

ment of obesity and associated metabolic diseases.

RESULTS

PNOCARC Neurons Are Activated upon Short-Term HFD
Feeding
To identify novel neurocircuits activated upon short-term HFD

feeding, we used phosphoribotrap profiling (Knight et al., 2012)

via immunoprecipitation of phosphorylated S6 ribosomal

protein-tagged ribosomes from hypothalamic extracts of

mice exposed to either 3 days of normal chow diet (NCD) or

HFD (Figure S1A). The extraction of RNA from precipitated

ribosomes allowed for the comparison of mRNA expression

both in the input RNA and following pull-down of pS6-bearing

ribosomes under both diet conditions. Only minor differences

were observed between the input RNA fractions (Figure S1B).
Figure 1. PNOCARC Neurons Are Activated upon Short-Term HFD Feed

(A) RNA sequencing (RNA-seq) profiling of gene expression after 3 days of NC

condition is shown.

(B) Fold enrichment in IP/input HFD versus IP/input NCD and statistical significa

(C) Pnoc mRNA fold expression (IP/input) and Pnoc mRNA expression (IP) for NC

(D) Hypothalamic Pnoc expression in PNOC-EGFP mice.

(E) Quantification of pS6 expression in PNOCARC neurons in PNOC-EGFP mice a

(F) Representative pS6 stainings of the ARC of PNOC-eGFP mice after 3 days o

(G) Representative traces of spontaneous firing from original recordings of PNOC

(H) Action potential firing frequencies and percentage of spontaneously active and

mice. Empty and filled bars represent active and silent cells, respectively. Absol

(I) Input resistance of PNOCARC neurons from NCD-fed (n = 50) and HFD-fed (n

(J) Representative traces illustrating the application of a ramp stimulus protocol

(K) Threshold current determined by the ramp protocols in (J) of PNOCARC neuro

(L) Total number of action potentials elicited upon ramp current injection in PNO

(M) Quantification of Fos-positive PNOCARC neurons (fasted: n = 4/4, refed: n = 5

(N) Quantification of Fos-positive AgRP neurons (fasted: n = 4/4, refed: n = 5/5).

*p < 0.05, **p < 0.01, and ***p < 0.001 as determined by Mann-Whitney test (H, lef

and mixed-effects analysis followed by Sidak’s multiple comparisons test (M an

See also Figure S1 and Table S1.
However, when we compared the input normalized immuno-

precipitation (IP)-associated mRNAs, we detected transcripts

that were significantly enriched in association with pS6-labeled

ribosomes in hypothalamic extracts of mice exposed to HFD

feeding for 3 days (Figure 1A). Among these transcripts, the

mRNA encoding the neuropeptide PNOC (Pnoc) exhibited a

significant enrichment in ribosomes precipitated from cells

activated upon HFD feeding (Figures 1B and 1C). We next over-

laid our dataset with a published single-cell-sequencing dataset

of cells in the ARC of mice (Campbell et al., 2017). Analysis of

activated cell clusters based on our phosphoribotrap data

identified Pnoc as a characteristic marker of neurons activated

by HFD feeding (Figure S1C). In addition, when we analyzed

the top 50 most significantly enriched transcripts upon HFD

feeding, Pnoc was the only transcript characterizing the Gene

Ontology (GO) term ‘‘neuropeptide signaling pathway’’ (GO:

0007218; Table S1). Using PNOC-EGFP mice (Smith et al.,

2020), we identified PNOC-expressing cells in the ARC, the

lateral hypothalamus (LHA), the dorsomedial nucleus of the hy-

pothalamus (DMH), and the zona incerta (Figure 1D).

Next, weperformed a co-expression analysis of PNOCandpS6

expression via immunohistochemistry on hypothalamic sections

of mice, which express EGFP under the regulatory elements of

thePnoc gene via bacterial artificial chromosome (BAC) transgen-

esis and had been exposed to NCD or HFD for 3 days. This anal-

ysis revealed an enhancement of the proportion of PNOCneurons

exhibiting pS6 immunoreactivity, particularly in the ARC of mice

that had been fed HFD for 3 days (Figures 1E and 1F).

Furthermore, we performed perforated patch-clamp record-

ings of identified and synaptically isolated PNOCARC neurons

(Figures 1G and 1H). While 24% of PNOCARC neurons were

completely silent in NCD-fed animals, the percentage of silent

neurons was decreased to only 1% in HFD-fed animals (Fig-

ure 1H). In addition, PNOCARC neurons had a higher mean firing

rate in HFD-fed animals compared to NCD-fed animals (Figures

1G and 1H). Acute HFD feeding failed to alter the membrane

potential of PNOCARC neurons (Figure S1D), but the higher firing

rate was accompanied by a tendency of increased input resis-

tance in PNOCARC neurons of HFD-fed animals (Figure 1I).
ing

D or HFD feeding using phosphoribotrap. Fold enrichment (IP/input) for each

nce are shown.

D-fed (n = 3) and HFD-fed (n = 4) mice.

fter 3 days of NCD or HFD (n = 4/4) feeding.

f NCD or HFD feeding. Scale bar, 200 mm.
ARC neurons from NCD- and HFD-fed mice.

silent (<0.5 Hz) PNOCARC neurons from NCD-fed (n = 88) and HFD-fed (n = 28)

ute numbers of neurons are indicated.

= 24) mice.

to assess excitability in PNOCARC neurons from NCD-fed and HFD-fed mice.

ns from NCD-fed (n = 36) and HFD-fed (n = 23) mice.

CARC neurons from NCD-fed (n = 36) and HFD-fed (n = 23) mice.

/5).

t; I; and K), Fisher test (H, right), 2-tailed, unpaired Student’s t test (C, E, and L),

d N).
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Figure 2. PNOCARC Neurons Are GABAergic and Distinct from POMC or AgRP Neurons

(A) RNA-seq profiling of hypothalamic tissue of PNOC-L10a-EGFP mice using BAC-TRAP. Fold enrichment in IP/input (x axis) and statistical significance (y axis)

are shown (NCD-fed mice).

(B) Expression profiling of GABAergic marker genes in PNOC neurons using BAC-TRAP.

(C) Overlap of Pnoc mRNA with neuronal clusters obtained from single-cell RNA-seq of ARC neurons (Campbell et al., 2017).

(legend continued on next page)
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When we applied a triangular depolarizing stimulus protocol and

determined the action potential threshold by measuring the

current at the peak of the first action potential (Figure 1J),

we found a significant decrease in the threshold current in

PNOCARC neurons of HFD-fed animals (Figure 1K). The number

of action potentials elicited by depolarizing current ramps was

significantly higher compared to NCD-fed animals (Figure 1L),

due to a uniform increase in the number of action potentials

during the ascending and descending parts of the protocol (Fig-

ures S1E and S1F), strongly suggesting a general increase in

excitability without altering activity-dependent mechanisms

(Figure S1G).

To further investigate whether acute HFD feeding could

affect the activity pattern of PNOCARC neurons, we analyzed

their activation upon food consumption via performing in situ

hybridizations for Pnoc, Agrp, and Fos mRNA expression in the

ARC of NCD- and HFD-fed mice that were fasted and refed.

This analysis revealed that in NCD-fed mice, refeeding sup-

pressed the activation of PNOCARC neurons (Figures 1M and

S1H). This refeeding-induced inhibition was completely abro-

gated in mice that had been exposed to HFD for 3 days (Figures

1M and S1H). In contrast, while refeeding potently suppressed

fasting-induced activation of AgRP neurons in NCD-fed mice,

short-term fasting-induced activation of AgRP neurons was

largely reduced in animals exposed to HFD and not further

suppressed upon refeeding (Figures 1N and S1H). These exper-

iments indicate that PNOCARC neurons lose their ability to rapidly

adapt to the short-term increase in highly palatable caloric

intake.

PNOCARC Neurons Are GABAergic and Distinct from
POMC or AgRP Neurons
To further characterize PNOC neurons on a molecular level, we

performed BAC-TRAP (translating ribosome affinity purifica-

tion)-based ribosome profiling of these cells in mice, which ex-

press a fusion protein of the ribosomal L10a protein with EGFP

(L10a-EGFP) under control of the Pnoc promoter (Doyle et al.,

2008). The precipitation of ribosomes of hypothalamic PNOC

neurons with anti-GFP antibodies and subsequent sequencing

of associated mRNAs allowed for the assessment of an in-depth

translational profile of these cells. Besides a clear enrichment

of PnocmRNA (Figure 2A), pathway analysis of enrichedmRNAs

revealed a signature of GABAergic neurons (Figures 2B and

S2A), while precipitation of Agrp mRNA was underrepresented

in the pull-down (Figure 2A). Similarly, we found enrichment of

Pomc mRNA in the hypothalamic, non-PNOC fraction (Fig-
(D) Representative confocal images and quantification of in situ hybridization of m

Scale bar, 200 mm.

(E) Representative confocal images and quantification of in situ hybridization ofmR

mice (n = 5 for Agrp quantification, n = 6 for Pomc quantification). Scale bar, 200

(F) Representative confocal images and quantification of in situ hybridization of m

bar, 200 mm.

(G) Original traces illustrating inward rectification of a PNOCARC neuron upon hy

(H) Quantification of inward rectification to 5 consecutive stimuli as illustrated by t

relationship (dashed black line).

(I) Original examples of hyperpolarizations illustrating the inward rectification in P

(J) Percentage of neurons with inward rectification upon hyperpolarization in PN

See also Figure S2.
ure 2A). These data indicate that PNOCARC neurons, AgRPs,

and POMC neurons are distinct neuronal populations.

We next assessed the overlap of genes enriched in PNOC

neurons as identified in the BAC-TRAP approach with data ob-

tained from single-cell RNA sequencing of > 20,000 arcuate

and median eminence cells (Campbell et al., 2017). This analysis

revealed a clear enrichment of PNOC neuron characteristic tran-

scripts in a cluster of ARC neurons characterized by Htr3b

expression (Figure 2C).

When we performed double in situ hybridizations with probes

for Pnoc and either Pomc, Agrp, Slc32a1 (VGAT), or Th (tyrosine

hydroxylase) mRNA in the ARC, we confirmed that the majority

(76.5%) of PNOCARC neurons express VGAT (Figure 2D).

Furthermore, there was little overlap of Pnoc mRNA expression

with Agrp- (10.1%), Pomc- (11.0%), or Th- (15.4%) mRNA

expression (Figures 2E and 2F).

Electrophysiological recordings of PNOCARC revealed the

presence of inward rectification upon hyperpolarizing stimuli

(Figures 2G–2I). Hyperpolarizing current injections revealed in-

ward rectification in ~82% of the recorded PNOCARC neurons

(Figure 2J), while inward rectification upon hyperpolarizing

current injections was only observed in ~14% of POMC and

~15% of AgRP neurons (Figures 2I and 2J). These studies sug-

gest that PNOCARC neurons represent a GABAergic population

that is distinct from previously characterized ARC neurons.

PNOCARC Neurons Are Regulated by Extracellular
Glucose
We next aimed to investigate the response of these cells to nu-

trients and circulating adiposity signals such as glucose and lep-

tin. Therefore, we performed long-lasting perforated patch-

clamp recordings from identified PNOCARC neurons combined

with pharmacological experiments. To this end, we decreased

extracellular glucose concentrations during electrophysiological

recordings stepwise from 5 to 0.1mM. Reduction of extracellular

glucose concentrations profoundly hyperpolarized the mem-

brane potential of PNOCARC neurons and led to significantly

reduced firing of these neurons, thus characterizing them

as glucose excited (GE)-ARC neurons (Figures 3A–3C). Altering

extracellular glucose concentrations stepwise from 5 to

0.1 mM revealed a clear concentration-dependent inhibition

of PNOCARC neurons (Figure 3B), similar to other GE neurons

in the ARC (Claret et al., 2007). In support of these findings,

BAC-TRAP-based ribosome profiling revealed that hypotha-

lamic PNOC neurons express functional KATP channels, specif-

ically Kir6.2 (Kcnj11) and SUR1 (Abcc8) subunits (Figure S3A).
RNA of Pnoc (cyan) and Slc32a1 (gray) in the ARC of C57BL/6N mice (n = 4).

NA ofPnoc (cyan),Agrp (yellow), andPomc (magenta) in the ARC of C57BL/6N

mm.

RNA of Pnoc (cyan) and Th (blue) in the ARC of C57BL/6N mice (n = 4). Scale

perpolarizing current injections.

he non-linear relationship (solid red line) compared to a theoretical linear ohmic

NOCARC and the lack of inward rectification in POMC and AgRP neurons.

OCARC (n = 28), POMC (n = 27), and AgRP neurons (n = 14) of NCD-fed mice.

Neuron 106, 1009–1025, June 17, 2020 1013
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Figure 3. PNOCARC Neurons Are Regulated by Extracellular Glucose

(A) Original recording and corresponding rate histogram of a PNOCARC neuron from a NCD-fed mouse treated with a decreased concentration of extracellular

glucose (5–0.1 mM). Numbered arrows mark the sections of the recording that are displayed in a higher time resolution.

(B) Normalized frequency and absolute membrane potential (inset) of PNOCARC neurons, illustrating a concentration-response relationship and responses to

extracellular glucose concentrations ranging from 5 to 0.1 mM. The representative recordings and corresponding rate histograms illustrate the responses to 3,

1.5, and 0.1 mM, respectively. The numbers above the circles represent the number of experiments.

(C) Membrane potential under control (5 mM) and low glucose (0.1 mM) conditions of PNOCARC neurons of NCD-fed mice (dashed black lines mark single

experiments; n = 13).

(D) Attenuated responsiveness to decreases in extracellular glucose to 0.1 mM. Original recording and corresponding rate histogram of a PNOCARC neuron from

HFD-fed mice treated with decreased extracellular glucose (0.1 mM). Numbered arrows mark the sections of the recording that are displayed in higher time

resolution.

(legend continued on next page)
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Furthermore, these neurons express glucokinase (Gck), a pri-

mary glucose sensor (Matschinsky and Wilson, 2019), as

well as transient receptor potential canonical type 3 (Trpc3)

channels, which are involved in hypothalamic glucose detection

(Chrétien et al., 2017; Figure S3A).

We also performed similar electrophysiological studies in

PNOC neurons in the LHA and in the bed nucleus of the

stria terminalis (BNST). Here, also, the majority of PNOCLHA

neurons hyperpolarize their membrane potential upon the reduc-

tion of extracellular glucose concentrations (Figures S3B–S3E).

PNOCBNST neurons exhibited a more heterogeneous response

to changes in extracellular glucose concentrations (Figures

S3F–S3I). These experiments indicate that the majority of hypo-

thalamic PNOC neurons represent glucose-excited neurons.

Since HFD feeding has been shown to impair neuronal glucose

sensing in the ARC (Parton et al., 2007), we tested whether

short-term exposure to HFD also affects glucose sensitivity in

PNOCARC neurons. While a number of neurons still responded

to decreased extracellular glucose concentrations (Figures 3D

and S3J), we found a larger number of cells with attenuated or

abrogated responsiveness to decreases in extracellular glucose

(Figures 3D and 3E). The impaired glucose responsiveness in

these cells revealed a significant decrease in the responsiveness

to decreased extracellular glucose at the population level (Fig-

ure 3F), thus providing evidence for a relative activation of these

cells in the presence of reduced glucose transport in response

to acute HFD feeding (Jais et al., 2016).

Since PNOCARC neurons respond to HFD feeding, we aimed

to investigate a possible role of leptin signaling in the direct regu-

lation of these neurons. Here, the application of 100 nM leptin

to synaptically isolated, actively firing (>0.5Hz) PNOCARC neu-

rons on average decreased their activity. While the majority

(80%) of PNOCARC neurons were inhibited, 1 neuron (10%)

was activated by the application of leptin (Figures 3G–3I). In

situ hybridization for Lepr expression in PNOCARC neurons re-

vealed that 10% of these cells express the leptin receptor

(Lepr) (Figure S3K).

PNOC Signaling Mediates Acute Hyperphagia and Initial
Body Weight Gain upon HFD Feeding
To specifically address the role of PNOC neurons in the regula-

tion of food intake, we generated a PNOC-Cre mouse line, which

expresses the Cre-recombinase from the Pnoc locus while

simultaneously disrupting the Pnoc coding exon 2 via homolo-

gous recombination-based gene targeting in embryonic stem

cells (ESCs) (Figures 4A and S4A). PNOC-Cre mice exhibited

the expected pattern of Cre-recombination as evidenced via

overlap of endogenous Pnoc expression and ZsGreen fluores-
(E) Membrane potential under control (5 mM) and low glucose (0.1 mM) conditio

periments; n = 23).

(F) Mean change of the membrane potential upon treatment with low glucose in

(G) Original recording and corresponding rate histogram of a PNOCARC neuron tre

that are displayed in a higher time resolution.

(H) Effect of leptin treatment (100 nM) on action potential frequency of PNOCARC

(I) Percentage of hyperpolarized, depolarized, and non-responsive neurons.

*p < 0.05, **p < 0.01, and ***p < 0.001 as determined by Mann-Whitney test (C an

test (H).

See also Figure S3.
cence in mice expressing ZsGreen in a Cre-dependent manner

(Figure 4B). As mice homozygous for the Cre allele lack the

Pnoc gene product, breeding this mouse line to homozygosity

allowed us to study the effects of global PNOC inactivation on

body weight regulation.

While the body weight of Pnoc knockout (KO) mice on NCD

did not significantly differ from control animals, they showed a

clear reduction in body weight gain after 1 week of HFD feeding

(Figures 4C, 4D, and S4B). This initial difference in body weight

gain decreased over time (Figure 4D). Similarly, food intake did

not differ between control and Pnoc KO mice when exposed to

NCD (Figures 4E and 4F), while it was significantly decreased

in Pnoc KO mice compared to controls during the first 3 days

of HFD feeding (Figures 4G and 4H). However, after 4 weeks of

HFD feeding, no difference in food intake was observable (Fig-

ures 4I and 4J). Notably, this initial reduction in HFD intake re-

sulted in decreased fat mass after 4 weeks of HFD feeding (Fig-

ures 4K, 4L, and S4C). Pnoc KO mice also showed a trend

toward increased water consumption (Figures S4D–S4F). In

addition, we found unaltered respiratory exchange ratio (RER)

and locomotor activity between the groups of mice (Figures

S4G–S4L).

PNOCARC Neurons Densely Innervate the ARC
Wenext investigated the projection pattern of PNOCARC neurons

and compared it to that of AgRP and POMC neurons. PNOC-

Cre, AgRP-Cre, and POMC-Cre mice were stereotaxically in-

jected in the ARC with an adeno-associated virus (AAV) allowing

for Cre-dependent expression of channelrhodopsin-2 (ChR2)

fused to mCherry (AAV-DIO-ChR2-mCherry) (Figure 5A).

Assessment of the distribution of mCherry-positive PNOCARC fi-

bers revealed dense local arborizations within the ARC (Fig-

ure 5A). The dense PNOCARC fibers within the ARC largely over-

lapped with the localization of POMC neuron cell bodies, but

not with AgRP neurons (Figure 5A). Moreover, we observed

PNOCARC projections to other brain areas, including the BNST,

similar to what was observed for AgRP and POMC fibers (Fig-

ure 5A). In contrast, while both AgRP and POMC neurons

densely innervate the paraventricular nucleus of the hypothala-

mus (PVN), we did not detect PVN-projecting PNOCARC fibers

(Figure 5A). Moreover, while AgRP and POMC neurons more

densely innervate the LHA and dorsal raphe nucleus (DR), there

were less prominent projections of PNOCARC neurons detect-

able in these regions (Figure 5A).

To investigate the downstream effects of activating PNOCARC

neurons, we used positron emission tomography (PET) coupled

with photostimulation of PNOCARC neurons in anesthetized

mice. This allowed us to measure changes in regional brain
ns of PNOCARC neurons of HFD-fed mice (dashed black lines mark single ex-

PNOCARC neurons of NCD-fed (n = 13) and HFD-fed mice (n = 23).

ated with 100 nM leptin. Numbered arrows mark the sections of the recording

neurons.

d E), and 2-tailed, unpaired Student’s t test (F) or by 2-tailed, paired Student’s t
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glucose metabolism in response to acute photostimulation.

We found reduced glucose metabolism in the BNST and in the

amygdala and other feeding regulatory centers, such as the

LHA (Rossi et al., 2019), zona incerta (Zhang and van den Pol,

2017), and the lateral septum (Sweeney and Yang, 2016; Figures

S5A and S5B) in response to the activation of PNOCARC neurons,

indicating the inhibition of neuronal activity in feeding-regulatory

projection sites, including the BNST, which receives prominent

projections from these cells.

PNOCARC Neurons Monosynaptically Inhibit POMC
Neurons
Since PNOCARC neurons form local innervation in the ARC

overlapping with the localization of POMC neurons (Figure 5A)

and GABAergic tone regulates POMC neuron activity (Dicken

et al., 2015; Newton et al., 2013; Vong et al., 2011), we deter-

mined whether PNOCARC neurons provide direct inhibitory

input into anorexigenic POMC neurons. To probe local con-

nectivity between PNOCARC and POMC neurons, we per-

formed ChR2-assisted circuit mapping (CRACM; Atasoy

et al., 2008; Petreanu et al., 2007). To this end, we injected

AAV-DIO-ChR2-mCherry into the ARC of PNOC-Cre::POMC-

IRES-EGFP mice (Figure S5C) and recorded light-evoked

inhibitory postsynaptic currents (IPSCs) in POMC neurons

(Figure 5B). We readily detected robust light-evoked IPSCs

in all (12 of 12) of the POMC neurons tested (Figure 5B). The

light-evoked IPSCs were completely blocked by bath applica-

tion of the GABAA-receptor antagonist bicuculline (Figure 5B).

Thus, PNOCARC neurons synaptically release GABA onto

POMC neurons in the ARC. Since acute HFD feeding robustly

increased the activity and excitability of PNOCARC neurons

(Figure 1), we investigated whether GABAergic input to

POMC neurons is affected upon HFD feeding. Three days of

HFD feeding markedly increased both the frequency and the

amplitude of spontaneous GABAergic IPSCs (sIPSCs) in

POMC neurons (Figures 5C–5E). Thus, short-term HFD

feeding caused a marked increase in GABAergic tone onto

POMC neurons paralleled by the activation of PNOCARC neu-

rons, which provides strong GABAergic input onto POMC

neurons.
Figure 4. PNOC Signaling Mediates Acute Hyperphagia and Initial Bod

(A) Schematic diagram of the PNOC-Cre allele.

(B) Representative confocal images of in situ hybridization of mRNA of Pnoc (cy

(cyan) in the ARC of PNOC-Cre::ZsGreen floxed mice. Scale bar, 200 mm.

(C) Body weights of PNOC-Cre mice (PNOC-Crewt/wt, PNOC-Cretg/wt, and PNO

ANOVA with Sidak’s multiple comparisons test).

(D) Percentage of weekly body weight gain on HFD compared to Pnoc wild-ty

comparisons test).

(E) Cumulative food intake on NCD.

(F) Total food intake on NCD. (n = 5/5/5, 1-way ANOVA followed by Tukey’s pos

(G) Cumulative food intake during 3 days of HFD feeding.

(H) Total food intake during 3 days of HFD feeding (n = 5/5/5, 1-way ANOVA foll

(I) Cumulative food intake after 4 weeks on HFD.

(J) Total food intake after 4 weeks of HFD feeding (n = 5/5/5, 1-way ANOVA follo

(K) Fat mass of Pnoc WT, Pnoc HET and Pnoc KO mice after 4 weeks of HFD (n

(L) Representative images of computed tomography (CT) scans of Pnoc WT, Pno

adipose soft tissue.

*p < 0.05, **p < 0.01, and ***p < 0.001.

See also Figure S4.
Optogenetic PNOCARC Neuron Activation Promotes
Feeding
To investigate the functional role of PNOCARC neurons in

feeding regulation, we crossed PNOC-Cre mice with animals,

allowing for Cre-dependent expression of the excitatory

opsin ChR2. Optical fibers were implanted above the ARC of

PNOC-Cre ChR2-positive mice to selectively photostimulate

PNOCARC neurons (Figure S6A). Blue light illumination at the

onset of the dark phase and during daytime increased NCD

food intake in PNOC-Cre ChR2-positive mice (Figures 6A,

6B, S6B, and S6C) concomitant with a significant shift in

RER and an increase in water intake (Figures S6D–S6F). In

contrast, in the absence of photostimulation, food intake

and water consumption did not differ between the two groups

of mice (Figures 6C, 6D, S6G, and S6H). In contrast, when we

stimulated PNOCARC neurons in fasted mice, PNOCARC

neuron activation failed to alter water intake (Figures S6I

and S6J). Moreover, photostimulation of PNOCARC neurons

increased HFD intake alongside a shift in RER (Figures 6E,

6F, and S6K). Again, in the absence of laser stimulation,

food intake did not differ between the two groups of mice

(Figures 6G and 6H).

Since the activation of food intake-stimulating AgRP neurons

had been demonstrated to act as a negative valence teaching

signal (Betley et al., 2015), we performed photostimulation

of PNOCARC neurons in a place-preference/aversion setup.

However, the activation of PNOCARC cells failed to induce aver-

sive or appetitive behavior either upon acute stimulation or

repeated conditioning (Figures S6L and S6M). Furthermore,

upon photostimulation of PNOCARC neurons, no acute effects

on glucose homeostasis or insulin sensitivity were observed

(Figures S6N and S6O).

Because PNOC neurons project locally within the ARC and

to other brain regions, we aimed at investigating the potential

contribution of PNOCARC / LHA and PNOCARC / BNST pro-

jections in mediating the food intake-stimulatory effect of opto-

genetic PNOCARC neuron activation. To this end, we injected

AAV-DIO-ChR2-EYFP (enhanced yellow fluorescent protein)

into the ARC of PNOC-Cre mice (Figure S6P) and implanted

optical fibers either above the LHA or the BNST (Figures S6Q
y Weight Gain upon HFD Feeding

an), endogenous Cre-driven ZsGreen fluorescence (yellow), and Agrp mRNA

C-Cretg/tg) during HFD feeding (n = 15/12/9, 2-way repeated measures [RM]

pe (WT) mice (n = 15/12/9, 2-way RM ANOVA followed by Sidak’s multiple

t hoc test).

owed by Tukey’s post hoc test).

wed by Tukey’s post hoc test).

= 6/5/6, 1-way ANOVA followed by Tukey’s post hoc test).

c HET, and Pnoc KO mice after 4 weeks of HFD. Yellow, fat tissue; blue, non-
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Figure 5. PNOCARC Neurons Densely Innervate the ARC and Monosynaptically Inhibit POMC Neurons

(A) Injection of AAV-ChR2-mCherry into the ARC. Cre-dependent ChR2 expression in neuronal projections (ChR2-mCherry) of PNOC-Cre, Agrp-Cre, and Pomc-

Cremice (n = 4). (a) ARC, (b) anterior bed nucleus of the stria terminals (BNST), (c) paraventricular nucleus of the hypothalamus (PVN), (d) lateral hypothalamic area

(LHA)/dorsal premammillary nucleus (PMD), and (e) dorsal raphe nucleus (DR). Scale bar, 200 mm.

(B) Schematic (left) and representative traces of light-evoked IPSCs recorded from POMC neurons in PNOC-Cre::POMC-IRES-EGFP mice expressing ChR2 in

PNOCARC neurons (n = 12).

(C) Schematic (top) and representative traces of sIPSCs recorded from POMC neurons in POMC-IRES-EGFP mice.

(D and E) Frequency (D) and amplitude (E) of sIPSCs in POMC neurons from NCD-fed (n = 18) or HFD-fed (n = 21) mice.

*p < 0.05, **p < 0.01, and ***p < 0.001 as determined by 2-tailed, unpaired Student’s t test.

See also Figure S5.
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and S6R).While photostimulation of PNOCARC/ LHA fibers had

no effect on food intake (Figures 6I–6L), the stimulation of PNO-

CARC / BNST projections potently increased food intake (Fig-

ures 6M–6P)

The activation of PNOCARC neurons increases feeding, and

while these neurons provide inhibitory input on anorexigenic

POMC neurons within the ARC, part of this effect is mediated

through PNOCARC / BNST projections.
1018 Neuron 106, 1009–1025, June 17, 2020
Ablation of PNOCARC Neurons Protects from HFD-
Induced Obesity
To investigate the necessity of PNOCARC neurons in feeding

regulation, we bilaterally injected PNOC-Cre or wild-type litter-

mate control animals with an AAV, allowing for Cre-dependent

expression of activated caspase-3 (AAVCasp) in the ARC to selec-

tively ablate PNOCARC neurons (Figures 7A and S7A). Assess-

ment of PnocmRNA expression via in situ hybridization revealed
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Figure 6. Optogenetic PNOCARC Neuron Activation Promotes Feeding

Data are plotted as cumulative food intake over time and total food intake after the stimulation period (16 h).

(A) Cumulative food intake with photostimulation on NCD (n = 12/11).

(B) Total food intake on NCD.

(legend continued on next page)
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the expected reduction of PNOC expression in the ARC of

PNOC-Cre mice, but not in control animals (Figures 7B and

S7B). Expression of Pomc mRNA in the ARC was unchanged

between the groups (Figure S7C). Three weeks following viral

injection, a cohort of mice was exposed to HFD feeding. Body

weight and food intake between AAVCasp-injected PNOC-Cre

mice compared to AAVCasp-injected control animals did not

differ 2 weeks following virus injection upon NCD feeding (Fig-

ures 7C, S7D, and S7E). When we then switched the animals

from NCD to HFD, AAVCasp-injected PNOC-Cre mice exhibited

a reduced body weight gain as compared to AAVCasp-injected

control animals (Figure 7C). After 3 days of HFD feeding, we

found a significant reduction in food intake (Figures 7D–7G).

Here, we also found a significantly increased caloric intake for

the AAVCasp-injected control animals on acute HFD compared

to their previous NCD intake, whereas this acute overeating

was abrogated in the AAVCasp-injected PNOC-Cre mice (Figures

7F and 7G). After 5 weeks of HFD feeding, the AAVCasp-injected

PNOC-Cre mice showed significantly reduced body weights

(Figure 7C) and a trend toward reduced adiposity (Figures 7H

and 7I). Furthermore, we found significantly reduced food intake

even after 5 weeks of HFD feeding (Figures S7F and S7G). In a

separate cohort, AAVCasp-injected PNOC-Cre mice and control

animals remained on NCD. Here, the animals showed no differ-

ence in body weight (Figure 7J). When we compared the activa-

tion of POMC neurons, the ablation of PNOCARC neurons clearly

increased the proportion of Fos-expressing POMC neurons in

HFD-fed mice compared to control mice on the same diet (Fig-

ure 7K). Quantification of PNOC expressing cells showed a sig-

nificant positive correlation with the number of PNOC neurons in

the ARC and body weight gain on HFD (Figures 7L and S7H).

DISCUSSION

Deterioration of energy homeostasis initiated by the consump-

tion of highly palatable, calorie-dense food represents a key

step in the development of obesity. Here, we demonstrate that

the consummatory aspect of palatable food is regulated via a

newly identified population of PNOC neurons in the ARC. This

finding is in line with the recent identification of PNOC neurons

in the central amygdala (CeA), which are activated by palatable

food consumption (Hardaway et al., 2019). However, in contrast
(C) Cumulative food intake without photostimulation on NCD (n = 12/11).

(D) Total food intake without photostimulation on NCD.

(E) Cumulative food intake with photostimulation after 3 days of HFD feeding (n =

(F) Total food intake (3 days of HFD feeding).

(G) Cumulative food intake without stimulation after 2 days of HFD feeding (n = 1

(H) Total food intake without stimulation (2 days of HFD feeding).

(I) Cumulative food intake with photostimulation of PNOCARC-LHA projections (N

(J) Total food intake (PNOCARC-LHA projections).

(K) Cumulative food intake without photostimulation of PNOCARC-LHA projection

(L) Total food intake without photostimulation (PNOCARC-LHA projections).

(M) Cumulative food intake with photostimulation of PNOCARC-BNST projections

(N) Total food intake (PNOCARC-BNST projections).

(O) Cumulative food intake without photostimulation of PNOCARC-BNST projecti

(P) Total food intake without photostimulation (PNOCARC-BNST projections).

*p < 0.05, **p < 0.01, and ***p < 0.001 as determined by 2-tailed, unpaired Stude

See also Figure S6.
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to the results obtained in our study, the activation of PNOC cell

bodies in the CeA or their axons in the ventral BNST, parabra-

chial nucleus (PBN), and nucleus of the solitary tract (NTS)

induces reward behavior but failed to promote the feeding of

palatable food (Hardaway et al., 2019). Thus, PNOC neurons

appear to be activated at different sites in the CNS to control

distinct aspects of HFD-induced hyperphagia (i.e., increased

food consumption via PNOCARC neurons and increased food-

associated reward as controlled via PNOC neurons in the CeA).

Rodents placed on an HFD show a transient increase in food

intake (Thaler et al., 2012). Using whole-body Pnoc KO mice,

we find abrogation of acute hyperphagia and reduced body

weight gain during the first week of HFD feeding. This indicates

that Pnoc-expressing circuitries play key integrative roles in

acute hyperphagia and the development of obesity. These find-

ings are consistent with previous reports on attenuated HFD-

binge eating behavior upon treatment with the selective nocicep-

tin receptor (NOP) antagonist SB-612111 (Hardaway et al., 2016)

and reduced overconsumption of palatable high-energy diet

upon treatment with the NOP antagonist LY2940094 (Statnick

et al., 2016). In fat-preferring rats, intracerebroventricular (i.c.v.)

administered nociceptin exhibited a hyperphagic response,

whereas sucrose-preferring or ‘‘neutral’’ rats did not increase

the intake of preferred diets (Olszewski et al., 2002). Moreover,

icv injection of nociceptin induced acute hyperphagia in satiated

rats (Pomonis et al., 1996), and more recently, it was shown that

intra-ARC injections of nociceptin increased energy intake,

which was further potentiated by exposure to HFD (Hernandez

et al., 2019). The latter finding is consistent with our observation

that the optogenetic activation of PNOCARC neurons increases

the intake of NCD and HFD.

Although we demonstrate through multiple complementary

approaches that PNOCARC neurons are robustly activated

upon short-term HFD feeding, the exact mechanism underlying

this regulation clearly deserves future study. We show that

PNOCARC neurons are strongly activated by rising extracellular

glucose concentrations, and within 3 days of acute HFD feeding,

a large proportion of these cells exhibits attenuated sensitivity

to decreased extracellular glucose concentrations. Our previous

studies revealed that short-term feeding of HFD during the same

time range reduces brain glucose uptake via suppression of

GLUT-1-expression in blood-brain barrier vascular endothelial
11/11).

1/11).

CD, n = 6/7).

s (n = 6/7).

(NCD, n = 6/7).

ons (n = 6/7).

nt’s t test.
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Figure 7. Ablation of PNOCARC Neurons Protects from HFD-Induced Obesity

(A) Injection of AAV-flex-taCasp3-TEVp into the ARC of PNOC-Cre and littermate WT control animals.

(B) Representative confocal images of in situ hybridization of Pnoc mRNA (green) and DAPI staining (blue). Scale bar, 200 mm.

(C) Body weight of PNOCARC ablated mice. Mice were fed an HFD after 3 weeks postsurgery (n = 10/9).

(D) Cumulative food intake during 3 days of HFD feeding (n = 8/9).

(E) Total food intake after 3 days of HFD feeding (n = 8/9).

(F) Food intake of AAVCasp-injected control animals on NCD and after 3 days of HFD feeding (n = 8/9).

(G) Food intake of AAVCasp-injected PNOC-Cre mice on NCD and after 3 days of HFD feeding (n = 8/9).

(H) Representative images of CT scans of AAVCasp-injected PNOC-Cremice and control animals after 5 weeks of HFD. Yellow, fat tissue; blue, non-adipose soft

tissue.

(I) Fat mass of AAVCasp-injected PNOC-Cre mice and control animals after 5 weeks of HFD (n = 6/5).

(J) Body weight of PNOCARC ablated mice. Mice were fed a NCD postsurgery (n = 9/8).

(K) Quantification of Fos-positive POMC neurons after 5 weeks of HFD feeding (n = 10/9).

(L) Correlation of body weight gain during 5 weeks of HFD feeding and the average number of Pnoc neurons per section and hemisphere (Pearson correlation is

reported, n = 10/9).

*p < 0.05, **p < 0.01, and ***p < 0.001 as determined by 2-way RM ANOVA with Sidak’s multiple comparisons test (C and J), by 2-tailed, unpaired Student’s t test

(E–G, I, and K). To assess the correlation between 2 variables, Pearson’s correlation coefficient for normally distributed data was used (L).

See also Figure S7.
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cells (Jais et al., 2016). Thus, an altered ability to reduce

PNOCARC neuron firing in response to lowered extracellular

glucose concentrations may lead to the excitation of these neu-

rons under such conditions and thus promote their activity.

Therefore, defining the molecular basis of altered glucose

sensing under conditions in which glucose availability is reduced
may point toward a new mechanistic basis of altered feeding

circuit regulation in obesity. In addition, we reveal that a subset

of PNOC neurons are inhibited by leptin. Direct leptin action on

POMC and AgRP neurons was shown to play only a small role

in controlling energy balance (van de Wall et al., 2008). Our

finding is in line with a report that shows that leptin, acting
Neuron 106, 1009–1025, June 17, 2020 1021
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directly on presynaptic GABAergic neurons, many of which do

not express AgRP, reduces inhibitory tone to postsynaptic

POMC neurons (Vong et al., 2011). Clearly, future studies

must address the physiological diet-dependent regulation of

PNOCARC neurons using in vivo calcium imaging.

We define PNOCARC neurons as a previously functionally

uncharacterized class of feeding-regulatory neurons in

the ARC. We further reveal a clear GABAergic signature of

PNOCARC neurons and find a minor overlap of PNOC and

POMC neurons (11.0%), which is in line with a report that

showed a 13.9% overlap between PNOC and POMC neurons

in the ARC (Maolood and Meister, 2010). Consequently, we

define them as distinct from the well-characterized feeding-pro-

moting Agrp- or Th-expressing cells in the ARC, also consistent

with the notion that although AgRP neurons promote feeding

upon chemogenetic or optogenetic activation, they are dispens-

able for an appropriate feeding response to palatable food (De-

nis et al., 2015). In fact, our in-depth molecular profiling in

conjunction with single-cell sequencing data define them as a

class of ARC neurons characterized by Htr3b expression.

Previous work has shown the activation of AgRP neuron

firing upon 2–6 days of short-term HFD feeding (Wei et al.,

2015). In this study, the authors demonstrate that while

long-term HFD feeding abolishes the ability of leptin to inhibit

AgRP neurons (Baver et al., 2014), leptin still normally inhibits

AgRP neuron firing upon short-term HFD feeding (Wei et al.,

2015). Consistent with this, AgRP and PNOCARC neurons are

active in the fasting state of lean NCD-fed mice, and both

types of neurons are inhibited upon 1 h of refeeding in NCD-

fed mice. Here, the acute suppression of AgRP neurons is

more profound compared to that of PNOCARC neurons as as-

sessed via Fos expression. Remarkably, in 3 days HFD-fed

mice, fasting-induced AgRP neuron activation is blunted, indi-

cating that AgRP neurons are capable of sensing the energy

state of the organism and adapt their activity during an early

phase of HFD intake. This is also consistent with the study

by Wei et al. (2015), revealing normal leptin sensitivity under

these conditions. Nevertheless, PNOCARC neurons upon

short-term HFD feeding retain their activity and lose their abil-

ity to suppress their activity upon refeeding. In addition, our

phosphoribotrap approach failed to identify AgRP neurons

as chronically activated upon 3 days of HFD feeding. Thus,

although AgRP neurons can also increase their firing upon

short-term HFD feeding, they apparently retain the ability to

sense transitions in feeding state, while PNOCARC neurons

lose their regulation and become activated upon short-term

HFD feeding.

Regarding the downstream effector circuitry of feeding stimu-

lation via activation by PNOCARC neurons, we find that the inhi-

bition of POMC neurons is driven by direct monosynaptic

GABAergic output of PNOCARC neurons. This finding is consis-

tent with a clear enhancement of IPSCs on POMC neurons

upon short-term HFD feeding. In contrast, AgRP neurons do

not contribute a significant source of spontaneous GABA

input to POMC neurons, which indicates that other GABAergic

cells play an important role in spontaneous inhibitory modula-

tion of POMC neurons (Rau and Hentges, 2017). In addition,

a role for the NOP in the inhibition of POMC neuronal activity
1022 Neuron 106, 1009–1025, June 17, 2020
was reported. Bath application of nociceptin reversibly hyper-

polarized and decreased firing in POMC neurons via a NOP-

mediated mechanism (Hernandez et al., 2019). Furthermore, no-

ciceptin-induced presynaptic inhibition of glutamatergic input

onto POMC neurons observed in wild-type mice was absent

in NOP KO mice (Farhang et al., 2010). In addition to the

PNOCARC-dependent inhibition of POMC neurons, bath applica-

tion of nociceptin potently suppressed activity in LepRb-ex-

pressing ventromedial hypothalamic (VMH) neurons (Chee

et al., 2011). Therefore, nociceptin acts as an orexigenic factor

by suppressing VMH output, and future studies are warranted

to investigate the link between PNOCARC and VMH neurons.

The activation of POMC neurons is enhanced in mice with selec-

tive ablation of PNOCARC neurons upon HFD feeding, revealing

the functional relevance of these cells in the control of POMC

neuron function upon HFD feeding. In addition, our experiments

reveal that PNOCARC / BNST projections also contribute to

the feeding stimulatory effect of optogenetic PNOCARC neuron

activation.

Our data reveal that PNOCARC neurons represent a neuronal

population distinct from AgRP- and POMC-expressing cells,

which is activated upon short-term HFD feeding, that these neu-

rons provide strong inhibitory input on POMC neurons, and that

upon photostimulation these cells also increase food intake via

projections to the BNST. Selective ablation of these cells re-

duces feeding and body weight gain upon HFD feeding but not

in NCD-fed mice. Thus, we define the PNOCARC neuronal

signaling as a critical pathway underlying the instatement of

hyperphagia upon short-term HFD feeding.
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REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Phospho-S6 (Ser244, Ser247) Polyclonal Antibody Thermo Fisher Scientific Cat# 44-923G, RRID:AB_2533798

Heintz Lab TRAP anti-GFP 19F7 antibody Heintz Lab; Rockefeller University

(Heiman et al., 2008)

Cat# Htz-GFP-19F7, RRID:AB_2716736

Heintz Lab TRAP anti-GFP 19C8 antibody Heintz Lab; Rockefeller University

(Heiman et al., 2008)

Cat# Htz-GFP-19C8, RRID:AB_2716737

Goat anti-Rabbit IgG (H+L) Cross-Adsorbed

Secondary Antibody, Alexa Fluor 594

Thermo Fisher Scientific Cat# A-11012, RRID:AB_2534079

Bacterial and Virus Strains

AAV-flex-taCasp3-TEVp UNC Vector core, plasmid a gift

from Nirao Shah

In Stock AAV Vectors

(plasmid: Addgene Cat# 45580)

pAAV-EF1a-double floxed-hChR2(H134R)-

mCherry-WPRE-HGHpA (AAV1)

Addgene, plasmid a gift from Karl

Deisseroth

Addgene, Cat# 20297-AAV1

pAAV-EF1a-double floxed-hChR2(H134R)-

EYFP-WPRE-HGHpA (AAV1)

Addgene, plasmid a gift from Karl

Deisseroth

Addgene, Cat# 20298-AAV1

Chemicals, Peptides, and Recombinant Proteins

IgG-free BSA Sigma Aldrich/Merck Cat# A2058

Cycloheximide AppliChem Cat# A0879,0001

Nonident P40 AppliChem Cat# A1694,0250

HEPES AppliChem Cat# A1069,0250

KCl Sigma Aldrich/Merck Cat# P9541

RNasin Promega Cat# N2511

DHPC Avanti Polar Lipids Cat# 850306P

DTT AppliChem Cat# A1101,0005

Complete Mini, EDTA-free Sigma Aldrich/Merck Cat# 11836170001

PhosSTOP (Phosphatase Inhibitor Cocktail) Sigma Aldrich/Merck Cat# 04906845001

Leptin Sigma Aldrich/Merck Cat# L3772

D-Mannitol AppliChem Cat# A4831

Amphotericin B Sigma Aldrich/Merck Cat# A4888

Bicuculline methiodide Sigma Aldrich/Merck Cat# 14343

Picrotoxin Sigma Aldrich/Merck Cat# P1675

DL-2-amino-5-phosphonopentanoic

acid (DL-AP5)

Biotrend Cat# BN0086

6-cyano-7-nitroquinoxaline-2,

3-dione (CNQX)

Sigma Aldrich/Merck Cat# C127

Critical Commercial Assays

RNAscope Multiplex Fluorescent

Reagent Kit v2

Advanced Cell Diagnostics Cat# 323100

Probe Mm-Pnoc Advanced Cell Diagnostics Cat# 437881

Probe Mm-Pomc Advanced Cell Diagnostics Cat# 314081

Probe Mm-Agrp Advanced Cell Diagnostics Cat# 400711

Probe Mm-Slc32a1 Advanced Cell Diagnostics Cat# 319191

Probe Mm-Th Advanced Cell Diagnostics Cat# 317621

Probe Mm-Fos Advanced Cell Diagnostics Cat# 316921

Probe Mm-Lepr Advanced Cell Diagnostics Cat# 402731

RNeasy Micro kit QIAGEN Cat# 74004

Agilent RNA 6000 Pico Kit Agilent Cat# 5067-1513

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Phosphoribotrap RNA Seq raw and analyzed data This paper GSE137737

PNOC BacTRAP RNA Seq raw and analyzed data This paper GSE137626

Gene expression in 20,921 individual cells in and

around the adult mouse Arc-ME using Drop-seq

Campbell et al., 2017 GSE90806

Experimental Models: Cell Lines

C57BL/6N-PRX-B6N Jackson Laboratory Stock No: 012448

ES-Bruce 4 Dr. Frank Koentgen N/A

Experimental Models: Organisms/Strains

Mouse: C57BL/6N Charles River Laboratories Strain code: 027

PNOC-Cre This paper N/A

POMC-IRES-EGFP This paper N/A

Tg(Pnoc-EGFP)#Uze Zeilhofer HU, University of Zurich

(Smith et al., 2020)

MGI:5426015

Tg(Pnoc-EGFP/Rpl10a)GM64Htz Zeilhofer HU, University of Zurich

(Doyle et al., 2008)

MGI:5496695

ROSA26loxSTOPloxChR2(H134R)-EYFP-WPRE Jackson Laboratory

(Madisen et al., 2012)

Stock No: 012569,

RRID:IMSR_JAX:012569

POMC-Cre Jackson Laboratory

(Balthasar et al., 2004)

Stock No: 005965,

RRID:IMSR_JAX:005965

AgRP-IRES-EGFP Jackson Laboratory

(Tong et al., 2008)

Stock No: 012899

RRID:IMSR_JAX:012899

Oligonucleotides

5screen5pnoc: CAGATTCTGTATCTATAATTTG

ATGGATTTGG

Eurogentech Germany N/A

3Cre5screen: ATGTTTAGCTGGCCCAAATGTT

GCTGGATAGT

Eurogentech Germany N/A

5screen5neo: GGGCCAGCTCATTCCTCCCAC

TCATGATCTATAGA

Eurogentech Germany N/A

3screen3pnoc: GCTCAGTTCTCTGCTCCTTTG

GTTTACTGGTG

Eurogentech Germany N/A

Software and Algorithms

R The R Foundation for Statistical

Computing, Institute for Statistics and

Mathematics, University of Economics

and Business, Vienna, Austria

https://www.r-project.org

Halo Image Analysis Platform Indica labs https://www.indicalab.com/halo/

Fiji ImageJ/Fiji https://fiji.sc/

Spike2 Cambridge Electronic Design http://ced.co.uk/

Igor Pro 6 Wavemetrics https://www.wavemetrics.com

Patchmaster HEKA https://www.heka.com

pClamp/Clampfit Molecular Devices https://www.moleculardevices.com/

GraphPad Prism GraphPad https://www.graphpad.com/scientific-

software/prism/

ExpeData Sable Systems https://www.sablesys.com

Vinci Max Planck Institute for

Metabolism Research

https://vinci.sf.mpg.de/

Other

Maintenance Diet (NCD) Ssniff Spezialdi€aten Cat# R/M-H

Control Diet (NCD) Ssniff Spezialdi€aten Cat# EF D12450B

(Continued on next page)
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High-Fat Diet (HFD) Ssniff Spezialdi€aten Cat# EF D12492-(I)

Protein A Dynabeads Invitrogen Cat# 10001

SuperFrost Plus Gold slides Thermo Fisher Cat# K5800AMNT72

Vectashield Antifade Mounting

Medium with DAPI

Vector Laboratories Cat# H-1200
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RESOURCE AVAILABILITY

Lead Contact
Additional information and requests for resources or reagents used in this paper should be directed and will be fulfilled by the Lead

Contact, Jens C. Br€uning (bruening@sf.mpg.de).

Materials Availability
Mouse lines generated in this study are available from the Lead Contact with a completed Materials Transfer Agreement.

Data and Code Availability
Raw and fully processed RNA-Seq data from the phosphoribotrap screen are available at GEO accession number GSE137737. Raw

and fully processed RNA-Seq data from BacTRAP-based ribosomal profiling of PNOC neurons are available at GEO accession num-

ber GSE137626. All data and code are available upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal Care
All animal procedures were conducted in compliance with protocols approved by local government authorities (Bezirksregierung

Köln). Permission to maintain and breed mice was issued by the Department for Environment and Consumer Protection - Veterinary

Section, Köln, North Rhine-Westphalia, Germany. All animal procedures were performed in accordance with NIH guidelines. Mice

were housed in individually ventilated cages (IVCs) at 22�C–24�C using a 12-hour light/dark cycle. Animals had access to water

and food ad libitum. Food was only withdrawn if required for an experiment during defined fasting periods. Sex is a significant mod-

ifier of the impact of HFD (Ingvorsen et al., 2017), therefore all experiments have been performed in male mice (If not stated

otherwise).

Animal Diets
Mice had ad libitum access to either a normal chow-diet (R/M-H; Ssniff Diet) containing 57% of calories from carbohydrates, 34%

calories from protein and 9% calories from fat, a control-diet (NCD; EF D12450B; Ssniff Diet) containing 67% of calories from car-

bohydrates, 20% of calories from protein and 13% of calories from fat, or a high-fat diet (HFD; EF D12492-(I); Ssniff Diet) containing

21% calories from carbohydrates, 19% calories from protein and 60% calories from fat. Fasting/refeeding experiments: 8-week-old

male C57BL/6N mice were obtained from Charles River, France and acclimatized to the facility for 14 days prior to the experiment.

Fasting cohorts were fasted for 8 hours (after being fed either NCDor HFD for 3 days). Refeeding cohorts were fasted for 8 hours (after

being fed either NCD or HFD for 3 days) and refed for 1 hour with their respective diet.

Mouse lines
C57BL/6N - This mouse line was obtained from Charles River, France.

BAC-transgenic PNOC-eGFP (B6.FVB-Tg(pnoc-EGFP)Uze, MGI:5426015) carrying a eGFP expression cassette introduced into

the start codon of BAC RPCI 452H11 were used for electrophysiology experiments.

PNOC-L10a-eGFP (Tg(Pnoc-EGFP/Rpl10a)GM64Htz, MGI:5496695) mice were used for BacTRAP experiments.

For experiments enabling photostimulation of PNOC neurons, mice homozygous for a ROSA26loxSTOPloxChR2(H134R)-EYFP-

WPRE conditional allele were bred to PNOC-Cre mice and the resulting Pnoctg/wt::ChR2fl/wt (Pnoc ChR2) and Pnocwt/wt::ChR2fl/wt

(control) mice were used for experiments. ROSA26loxSTOPloxChR2(H134R)-EYFP-WPRE) (Madisen et al., 2012) with a conditional

allele (Ai32) were obtained from Jackson Laboratory (stock# 012569).

For CRACM experiments, PNOC-Cre mice were crossed with POMC-IRES-eGFP mice (see ‘Generation of POMC-IRES-

eGFP Mice’).

POMC-Cre - This line has previously been described (Balthasar et al., 2004) and was obtained from Jackson Laboratory (stock#

005965). Mice were bred to C57BL/6N mice from Charles River, France, to maintain the line in the facility of the Max Planck Institute

for Metabolism Research, Cologne, Germany.
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AgRP-IRES-Cre - This line has previously been described (Tong et al., 2008). Mice were bred to C57BL/6N mice from Charles

River, France, to maintain the line in the facility of the Max Planck Institute for Metabolism Research, Cologne, Germany.

METHOD DETAILS

Generation of PNOC-Cre mice
To generate PNOC-Cre knock inmice, a targeting vector was designed that replaces exon 2, containing the ATG translation start-site

of Pnoc, with Cre. To this end TW1 plasmid containing Cre and neo/kana resistance cassette was used to insert PCR amplified left

arm of homology (LAH) and right arm of homology (RAH). 2576 bp LAH was amplified from B6Ng01-327O03 BAC using oligos

5KpnLAHpnoc: GGTACCGCGATCGCAGAGGGCTGGAGAGTTATCTCA and 3SalLAHpnoc: GTCGACGCAGCAGTGGGAATCGG

GAG. Subsequently, LAH was cloned into TW1 via Kpn1/Sal1 digest. Furthermore, 4.7 kb RAH was amplified from B6Ng01-

327O03 BAC using oligos 5AscRAHpnoc: GGCGCGCCAAAATCCTCTTTTGTGACGTTCTG and 3SacIIRAHpnoc: CCGCGGAAGA

GATAAGTCTAGAGGCCACT and inserted into LAH containing TW1 plasmid via Asc1/SacII digest. 30mg of Pnoc targeting vector

was transfected into 107 Bruce 4 ES cells that upon G418 selection were screened by long range PCR for correct integration using

50 screening of 3.11 kb with oligos 5screen5pnoc: CAGATTCTGTATCTATAATTTGATGGATTTGG and 3Cre5screen: ATGTT

TAGCTGGCCCAAATGTTGCTGGATAGT For correct 30 integration, we screened to obtain a 4.99 kb band with oligos 5screen5neo:

GGGCCAGCTCATTCCTCCCACTCATGATCTATAGA and 3screen3pnoc: GCTCAGTTCTCTGCTCCTTTGGTTTACTGGTG ES cell

clones positive for both PCRs were used in Southern blot analysis of EcoRV digested clonal DNA to obtain a single 11 kb band

when single integrated. Correct targeted clones were injected into donor blastocysts to generate chimeric mice that were further

bred for germline transmission. Animals heterozygous for PNOC-Cre were crossed with mice expressing Flp-recombinase in the

germline to remove neo cassette flanked by FRT sites.

Generation of POMC-IRES-eGFP mice
POMC-IRES-eGFP mice were created using standard protocols for generating knockin IRES-Cre mice. Specifically, to target IRES-

eGFP to the Pomc gene, recombineering techniques were used (Copeland et al., 2001). A PCR amplicon containing an optimized

internal ribosome entry sequence (IRES) fused to an enhanced green fluorescent protein (eGFP) sequence, followed by a FRT-

flanked neomycin selection cassette, was first inserted 3 bp after the Pomc stop codon within a Pomc BAC genomic clone

(bMQ314d20) obtained from the Source BioScience. The targeting construct containing the eGFP and FRT-flanked neomycin selec-

tion cassette, along with 4kb of upstream and downstream Pomc genomic DNA sequence (i.e., the homology arms), was then lifted

out from the BAC clone using reverse recombineering. The resulting targeting construct was then transfected into mouse ESCs

(C57BL/6N-PRX-B6N #1, The Jackson Laboratory). Drug-selection was used to enrich for targeted clones, whichwere then identified

by long range PCR, and injected into C57BL/6 blastocysts. Chimeric animals fromblastocyst implantationwere bred for germline-line

transmission of the targeted Pomc gene. Animals heterozygous for the targeting event were crossed with mice expressing Flp-re-

combinase in the germline (Farley et al., 2000) to remove neo cassette flanked by FRT sites (Rossi et al., 2011; Tong et al., 2008).

Ribosome Immunoprecipitations (Phosphoribotrap)
Ribosome immunoprecipitations were performed according to Knight et al. (2012) with minor modifications. Protein A Dynabeads

(150 mL per IP, Invitrogen) were loaded with 5 mg of pS6 antibody (Phospho-S6 (Ser244, Ser247) Polyclonal Antibody, Invitrogen,

44-923G, RRID:AB_2533798) in Buffer A (10 mM HEPES [pH 7.4], 150 mM KCl, 5 mM MgCl2, 1% NP40, 0.05% IgG-free BSA) at

4�C overnight. Beads were washed three times with Buffer A immediately before use. 10-week-old male C57/BL6N mice were

put either on a NCD or a high fat diet for 3 days. Afterward, mice were sacrificed by cervical dislocation. The hypothalamus was

rapidly dissected using a stainless steel brain matrix (World Precision Instruments) and immediately frozen in liquid nitrogen. Hypo-

thalamic tissues were pooled (8 per IP, 4 IPs per condition) in a homogenization cylinder (Sartorius) and resuspended in 1.35 mL of

buffer C (10 mM HEPES [pH 7.4], 150 mM KCl, 5 mM MgCl2, 2 mM DTT, 100 U/ml RNasin, 100 mg/ml cycloheximide, protease and

phosphatase inhibitor cocktails [1 tablet of cOmplete mini EDTA-free protease inhibitor cocktail/7ml and 2 tablets of PhosSTOP/

10ml]). Samples were homogenized 2 times at 250 rpm, and 9 times at 750 rpm on a rotating glass/teflon potter homogenizer (Potter

S, Braun) at 4�C. Homogenateswere transferred to low bindingmicrocentrifuge tubes (Nonstick, RNase-freemicrofuge tubes, 1.5ml,

Ambion, Invitrogen) and centrifuged at 2,000xg for 10 min at 4�C. The supernatant was transferred to a new tube on ice, and to this

solution was added 90 ml of 10% NP40 and 90 ml of DHPC (Avanti Polar Lipids: 100 mg/0.69 ml). This solution was mixed, incubated

on ice for 2 min and then centrifuged at 17,000xg for 10 min at 4�C. The resulting supernatant was transferred to a new tube. A 25 ml

aliquot was removed, transferred to a separate tube, flash frozen in liquid nitrogen and stored at 80�C for purification as input RNA.

The remainder was used for immunoprecipitation (IP). Immunoprecipitations were allowed to proceed 10 minutes at 4�C during con-

stant rotation. The beads were then washed four times with buffer D (10 mM HEPES [pH 7.4], 350 mM KCl, 5 mMMgCl2, 2 mM DTT,

1%NP40, 100 U/ml RNasin, and 100 mg/ml cycloheximide). After the final wash the RNAwas eluted by addition of buffer RLT (350 mL)

to the beads at RT, allowed to incubate at RT for 5 minutes, the beads removed by magnet, and the RNA purified using the RNeasy

Micro Kit (QIAGEN). RNA integrity was assessed using an Agilent 2100 bioanalyzer. The extracted RNA of one replicate from the

NCD-fed group was used for quality control and testing for enrichment of activity marker genes.
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BacTRAP-based ribosomal profiling of hypothalamic PNOC neurons
Affinity purification of translating ribosomes was performed as described by Heiman et al. (2014; 2008) with minor modifications. 10-

12 week old male and female PNOC-L10a-eGFP mice were put either on a NCD or a high fat diet for 3 days. Afterward, mice were

sacrificed by cervical dislocation. The hypothalamus was rapidly dissected using a stainless steel brain matrix (World Precision In-

struments) and immediately frozen in liquid nitrogen. Protein A Dynabeads (375 ml, Invitrogen per IP) were washed three times in

0.15M KCl IP wash buffer (20 mMHEPES [pH 7.4], 5 mMMgCl2, 150 mMKCl, 1%NP40, 0.5 mMDTT and 100 mg/ml cycloheximide).

Beads were resuspended in 275 ml 0.15M KCl IP wash buffer and were loaded with 50 mg of 19C8 and 50 mg of 19F7 (Cat# Htz-GFP-

19F7, RRID:AB_2716736 and Htz-GFP-19C8, RRID:AB_2716737, Memorial Sloan Kettering Monoclonal Antibody Facility) and incu-

bated with slow end-over-end mixing at 4�C overnight. Pooled hypothalamic tissue (4 pooled mice per sample; 4 samples per group)

was homogenized in lysis buffer (20 mM HEPES [pH 7.4], 5 mMMgCl2, 150 mM KCl, 0.5 mMDTT, 40 U/ml RNasin, 100 mg/ml cyclo-

heximide, protease and phosphatase inhibitor cocktails [1 tablet of cOmplete mini EDTA-free protease inhibitor cocktail/7 mL and 2

tablets of PhosSTOP/10 ml]) 2 times at 250 rpm, and 9 times at 750 rpm on a rotating glass/teflon potter homogenizer (Potter S,

Braun) at 4�C. Homogenates were transferred to low binding microcentrifuge tubes (Nonstick, RNase-free microfuge tubes,

1.5 ml, Ambion, Invitrogen) and centrifuged at 2,000xg for 10 min at 4�C. The supernatant was transferred to a new tube on ice,

and 1/9 sample volume 10% NP-40 (final concentration: 1%) and 1/9 sample volume 300 mM DHPC (final concentration: 30 mM)

was added. This solution was mixed, incubated on ice for 2 min and then centrifuged at 17,000xg for 10 min at 4�C. The resulting

supernatant was transferred to a new tube, and a 25 ml aliquot was removed, transferred to a new tube, flash frozen in liquid nitrogen

and stored at 80�C for purification as input RNA. 200 ml of antibody-bound beads were added (800-1000 ml supernatant) and incu-

bated at 4�C for one hourwith end-over-endmixing. Beadswere collectedwith amagnet and resuspended in 1000 ml of 0.35MKCl IP

wash buffer (20 mM HEPES [pH 7.4], 5 mM MgCl2, 350 mM KCl, 1% NP40, 0.5 mM DTT, 100 mg/ml cycloheximide). Beads were

washed three more times with 1000 ml of 0.35 M KCl IP wash buffer. After the final wash the beads were collected with a magnet

and the supernatant removed. The RNA was eluted by addition of buffer RLT (350 mL) to the beads, allowed to incubate at RT for

5 minutes and RNA was purified subsequently using the RNeasy Micro Kit (QIAGEN). RNA integrity was assessed using an Agilent

2100 bioanalyzer.

Sequencing
Due to low amount of input material, pre-amplification using the Ovation RNASeq System V2was performed. Total RNAwas used for

first strand cDNA synthesis, using both poly(T) and random primers, followed by second strand synthesis and isothermal strand-

displacement amplification. For library preparation, the Illumina Nextera XT DNA sample preparation protocol was used, with 1 ng

cDNA input. After validation (Agilent 2200 TapeStation) and quantification (Invitrogen Qubit System) all transcriptome libraries

were pooled. The pool was quantified using the Peqlab KAPA Library Quantification Kit and the Applied Biosystems 7900HT

Sequence Detection and sequenced on an Illumina HiSeq 4000 sequencing instrument with a 2x75bp paired-end read length.

The RNA sequencing pipeline utilizes the GRCm38 assembly of the mouse genome as gene sets from Ensembl release 92 (Yates

et al., 2016). We quantified the gene expression of each sample by (1) aligning the RNA-sequencing reads to the mm10 reference

genome using hisat 2.1.0 (Kim et al., 2015), (2) computationally depleted rRNA reads using samtools 1.8.0 (Li et al., 2009), and (3)

transcript assembly and quantification using the cufflinks 2.2.1 suite (Trapnell et al., 2010). To normalize the ribosomal pulldown

(IP) to the hypothalamic background (Input) per sample, we calculated a ratio of the gene abundance level (reported in Fragments

Per Kilobase Million, FPKM) using the formula FPKMratio =
FPKMIP

FPKMInput
. For overlap analysis single-cell RNA-sequencing data of 20,921

cells from the hypothalamic arcuate-median eminence complex (Campbell et al., 2017) was used. Cells were clustered using the

R Seurat package (Butler et al., 2018). The resulting 20 cell type specific clusters were analyzed for the expression of the top 100

most enriched transcripts from the phosphoribotrap screen. An overlap with Pnoc mRNA was found in the neuronal clusters

a17.Neurons5 and a18.Neurons6. Gene annotations and pathway analysis were performed using Ingenuity Pathway Analysis

(QIAGEN).

Immunohistochemistry
For immunohistochemistry assays, mice were deeply anesthetized and perfused transcardially with phosphate-buffered saline (PBS)

followed by 4% paraformaldehyde (PFA). Brains were postfixed for 8 hours at 4�C and transferred to 25% sucrose in PBS for

2-3 days. 20-mm thick sections were processed for immunofluorescence as described below. Brain sections were washed (2 3

10 min) with PBS 0.1M (pH 7.4) and incubated in blocking solution (PBS containing 0.3%Triton X-100, 3%goat serum) for 60minutes

at room temperature. Sections were incubated with the primary antibody (p-S6, rabbit, 44-923, 1:250, Thermo Fisher/Invitrogen)

overnight at 4�C, washed 3 times with PBS + 0.1% Triton X-100 for 10 minutes each and incubated with the secondary antibody

(Alexa 594, A11012, 1:500, Thermo Fisher/Invitrogen) for 60 minutes at room temperature, protected from light. The slides were

washed 3 times with PBS + 0.1% Triton X-100 and mounted using Vectashield Antifade Mounting Medium with DAPI (Vector Lab-

oratories). To ensure comparable immunostaining, sections were processed together under identical conditions.

Fluorescence in situ hybridization
Deeply anaesthetized mice were perfused transcardially with phosphate-buffered saline (pH 7.4) followed by 4% paraformaldehyde

(PFA) dissolved in phosphate-buffered saline (pH 7.4). The brain was removed from the skull and post-fixed in 4% PFA at room
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temperature (RT) overnight, and then moved to 25% sucrose solution (in 1X PBS) at 4�C for 2-3 days. 14 mm thick sections were pro-

cessed as described below. Detection of Pnoc, Fos, Agrp, Pomc, Slc32a1, Th and LeprmRNA was performed using a fluorescent in

situ hybridization technique (RNAscope, Advanced Cell Diagnostics) according to the manufacturer’s instructions. The Pnoc probe

(Cat no. 437881) contained 20 oligo pairs and targeted region 325 - 1263 (Acc. No. NM_010932.2) of the Pnoc transcript. 3-plex nega-

tive and 3-plex positive control probes were processed in parallel with the target probes. All incubation steps were performed at 40�C
using the ACDHybEz hybridization system (Cat No. 321462). Sections weremounted on SuperFrost Plus Gold slides (ThermoFisher),

dried at RT, briefly rinsed in autoclaved Millipore water, air-dried and baked at 60�C overnight. A section from the same region of the

brain was also mounted for use with the negative control probe to enable calculation of background signal. Afterward, slides were

submerged in Target Retrieval (Cat No. 322000) at 98.5-99.5�C for 8 min, followed by two brief rinses in autoclaved Millipore water.

The slides were dehydrated in 100% ethanol and allowed to air dry for 5 min. A hydrophobic barrier was then created around the

sections using an ImmEdge hydrophobic barrier pen (Cat No. 310018). Sections were incubated with Protease III (Cat No.

322340) for 35min. The subsequent hybridization, amplification and detection stepswere performed according to themanufacturer’s

instructions (Multiplex Fluorescent Detection kit v2, Cat No. 323110). Sections were coverslipped and counterstained with DAPI with

Vectashield Antifade Mounting Medium (Vector Laboratories) and stored at 4�C in the dark.

Imaging and quantification
Images were captured using a confocal Leica TCS microscope, equipped with 10x/0.30 dry and 20x/0.75 immersion objectives.

Laser intensities for the probe channels were kept constant throughout the imaging process. Images of the ARC were captured

from rostral to caudal, rendering approximately 5 sections per animal. Images were imported into Fiji (NIH), where the DAPI channel

was enhanced regarding brightness and contrast, but the probe channels were left unmodified. The images were then imported into

the Halo software (Indica Labs) for quantification of labeled neurons. The software uses the DAPI fluorescence signal for cellular iden-

tification and calculates the cell intensity for each cell and probe. The threshold for probe recognition was calculated as themean cell

intensity present in the negative control sections + 3 x standard deviation (SD).

Electrophysiology
Experiments were performed on brain slices from 8-12 week-old male and female PNOC-eGFP mice that expressed enhanced

green fluorescent protein (eGFP) selectively in prepronociceptin (PNOC) neurons. Animals were either fed normal chow diet or a

high fat diet for three consecutive days and nights. The animals were decapitated and coronal slices (270 – 300 mm) containing

the ARC, LHA or BNST were cut with a vibration microtome (HM-650 V; Thermo Scientific, Walldorf, Germany) under cold (4�C), car-
bogenated (95% O2 and 5% CO2), glycerol-based modified artificial cerebrospinal fluid (GaCSF). GaCSF contained (in mM): 244

Glycerol, 2.5 KCl, 2 MgCl2, 2 CaCl2, 1.2 NaH2PO4, 10 HEPES, 21 NaHCO3, and 5 Glucose adjusted to pH 7.2 with NaOH. If not

mentioned otherwise, the brain slices were continuously superfused with carbogenated aCSF at a flow rate of ~2.5 ml/min. aCSF

contained (in mM): 125 NaCl, 2.5 KCl, 2 MgCl2, 2 CaCl2, 1.2 NaH2PO4, 21 NaHCO3, 10 HEPES, and 5 Glucose adjusted to pH 7.2

with NaOH. To reduce synaptic input, it contained 10�4 M PTX (picrotoxin, P1675, Sigma Aldrich), 5 3 10�5 M DL-AP5 (DL-2-

amino-5-phosphonopentanoic acid, BN0086, Biotrend), and 10�5 M CNQX (6-cyano-7-nitroquinoxaline-2,3-dione, C127, Sigma-

Aldrich).

Current-clamp recordings of PNOC-eGFP mice were performed at ~32�C in the perforated patch clamp configuration. Neurons

were visualized with a fixed stage upright microscope (BX51WI, Olympus, Hamburg, Germany) using 40x and 60x water-immersion

objectives (LUMplan FL/N 40x, 0.8 numerical aperture, 2 mm working distance; LUMplan FL/N 60x, 1.0 numerical aperture, 2 mm

working distance, Olympus) with infrared differential interference contrast optics and fluorescence optics. PNOC-eGFP neurons

were identified by their anatomical location in the ARH and by their eGFP fluorescence that was visualized with an X-Cite 120 illumi-

nation system (EXFO Photonic Solutions, Ontario, Canada) in combination with a Chroma 41001 filter set (EX: HQ480/40x, BS:

Q505LP, EM: HQ535/50 m, Chroma, Rockingham, VT, USA). Electrodes with tip resistances between 4 and 6 MU were fashioned

from borosilicate glass (0.86 mm inner diameter; 1.5 mm outer diameter; GB150-8P; Science Products) with a vertical pipette puller

(PP-830; Narishige, London, UK). All recordings were performed with an EPC10 patch-clamp amplifier (HEKA, Lambrecht, Germany)

controlled by the program PatchMaster (version 2.32; HEKA). In parallel, data were recorded using a micro1410 data acquisition

interface and Spike 2 (version 7) (both from CED, Cambridge, UK). Data were sampled at 25 kHz and low-pass filtered at 2 kHz

with a four-pole Bessel filter. The calculated liquid junction potential of 14.6 mV between intracellular and extracellular solution

was compensated or subtracted offline (calculated with Patcher’s Power Tools plug-in from https://www.mpibpc.mpg.de/groups/

neher/index.php?page=software for IGOR Pro 6 (Wavemetrics, Lake Oswego, OR, USA)).

Recordings were performed with pipette solution containing (in mM): 140 K-gluconate, 10 KCl, 10 HEPES, 0.1 EGTA, 2 MgCl2
adjusted to pH 7.2 with KOH. ATP and GTP were omitted from the intracellular solution to prevent uncontrolled permeabilization

of the cell membrane. The patch pipette was tip filled with internal solution and back filled with internal solution, which contained

the ionophore to achieve perforated patch recordings and 0.02% tetramethylrhodamine-dextran (3000 MW, D3308, Invitrogen,

Eugene, OR, USA) to monitor the stability of the perforated membrane. Amphotericin B (A4888; Sigma) was dissolved in dimethyl

sulfoxide to a concentration of 40 mg/ml (DMSO; D8418, Sigma). The used DMSO concentration (0.1%–0.3%) had no obvious effect

on the investigated neurons. The ionophore was added to the modified pipette solution shortly before use. The final concentration of

amphotericin Bwas ~120–180 mg/mL. Amphotericin solutions were prepared from undissolvedweighted samples (stored at 4�Cpro-
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tected from light) on every recording day. During the perforation process access resistance (Ra) was constantly monitored and

experiments were started after Ra had reached steady state (~15–20 min) or the action potential amplitude was stable.

After the electrophysiological experiments, perforated-patch recordings were converted to the whole-cell configuration and bio-

cytin was allowed to diffuse into the cell for at least 30 s. Biocytin-streptavidin labeling (1:500 streptavidin-Alexa Fluor 633, S21375,

Invitrogen) combined with GFP immunohistochemistry (1:1000 chicken polyclonal anti-GFP, ab13970, abcam; 1:500 goat anti-

chicken Alexa Fluor 488, ab150173, abcam) was performed as previously described (Hausen et al., 2016). For the overviews shown

in Figure 1D slices were stained for GFP only. Fluorescence images were captured with a confocal microscope (SP8, Leica) equipped

with PL APO 10x/0.40, PL APO 20x/0.75 IMM and PL APO 63/1.2 objectives. Scaling, z-projections and adjustments of brightness

and contrast were done using ImageJ/Fiji.

Glucose and leptin sensitivity
Glucose sensitivity was analyzed with perforated patch clamp recordings and protocols modified from Claret et al. (2007). Glucose

sensitivity was assessed lowering the extracellular glucose concentration stepwise from 5 mM to 0.1 mM. D-Mannitol (A4831,

AppliChem, Germany) was used to adjust osmolarity. The effect of changes in glucose concentration or leptin (100 nM; L3772,

Sigma-Aldrich, Taufkirchen, Germany) was measured after 25-30 min when the spike frequency or membrane potential had stabi-

lized. To test the significance of the responses of individual neurons, means and standard deviations of action potential frequency

and membrane potential were calculated from 12 bins each 10 s long. Significance was accepted at p % 0.001 in paired t tests.

ChR2-assisted circuit mapping (CRACM)
PNOC-Cre::POMC-IRES-eGFP mice were unilaterally injected with pAAV-EF1a-double floxed-hChR2(H134R)-mCherry-WPRE-

HGHpA (AAV1) in the ARC and allowed 3 weeks for virus expression. Mice were decapitated and brains were quickly removed

into ice-cold cutting solution consisting of (in mM): 92 choline chloride, 30 NaHCO3, 25 Glucose, 20 HEPES, 10 MgSO4, 2.5 KCl,

1.25 NaH2PO4, 5 sodium ascorbate, 3 sodium pyruvate, 2 thiourea, 0.5 CaCl2; oxygenated with 95% O2/5% CO2; measured os-

molarity 310–320 mOsm/L. 300 mm thick coronal sections were cut with a Campden vibratome (Model 7000smz-2) and incubated

in oxygenated cutting solution at 34 �C for 10 min. Slices were transferred to oxygenated aCSF (consisting of (in mM): 126 NaCl,

21.4 NaHCO3, 2.5 KCl, 1.2 NaH2PO4, 1.2 MgCl2, 2.4 CaCl2, 10 glucose) at 34 �C for 30 min, and stored in the same solution at

room temperature (20–24 �C) for at least 60 min prior to recording. A single slice was placed in the recording chamber where it

was continuously superfused at a rate of 3–4 mL permin with oxygenated aCSF. Neuronswere visualizedwith an uprightmicroscope

(SliceScope, Scientifica) equipped with infrared-differential interference contrast and fluorescence optics. Borosilicate glass micro-

electrodes (3-5 MU) were filled with a Cs+-based internal solution consisting of (in mM): 135 CsMeSO3, 10 HEPES, 1 EGTA, 4MgCl2,

4 Na2-ATP, 0.4 Na2-GTP, 10 Na2-phosphocreatine (pH 7.3 adjusted with CsOH; 295 mOsm/L). To photostimulate ChR2-expressing

PNOCARC cell bodies and terminals, an LED light source (473 nm) was focused onto the back aperture of the microscope objective,

producing widefield exposure around recorded cells. Light-evoked IPSCs were recorded from GFP-positive POMC neurons in

whole-cell voltage-clamp mode, with membrane potential clamped at Vh = 0 mV. At the end of the recordings, bicuculline (10 mM)

was added to the aCSF to block GABAergic synaptic transmission. All recordings were made using a Multiclamp 700B amplifier,

and data were filtered at 2 kHz and digitized at 10 kHz. The light-evoked IPSC detection protocol consisted of four blue light pulses

(473 nm wavelength, 5 ms) administered 1 s apart during the first 4 s of an 8 s sweep. Evoked IPSCs with short latency (< 10 ms)

upon light stimulation and low jitter were considered light-driven. Light output was controlled by a programmable pulse stimulator,

Master-8 (A.M.P.I.) and pClamp software (Axon Instruments). All recordings were analyzed offline using Clampfit.

sIPSCs in POMC neurons
POMC-IRES-eGFPmice were either fed NCD or HFD for 3 days prior to the experiment. Brain slices were prepared as outlined above

(ChR2-assisted circuit mapping) and sIPSCs recordings from POMC neurons were obtained in voltage-clampmode at Vh =�70mV.

Borosilicate glassmicroelectrodes (3-5 MU) were filledwith a CsCl-based internal solution consisting of (inmM): 140CsCl, 2 NaCl, 10

HEPES, 5 EGTA, 2 MgCl2, 0.5 CaCl2, 2 Na-ATP, 0.5 Na-GTP, 2 QX-314, pH of 7.3 with CsOH). sIPSCs were recorded in presence of

CNQX (10 mM) to block glutamatergic synaptic transmission. Recordings with an Ra change of > 20%were discarded from analysis.

sIPSC frequency and mean peak amplitude were determined using WinEDR (version 3.8.6). The entire duration of each analyzed

recording was manually inspected (1-2 minute duration).

Stereotaxic surgical procedures
For all stereotaxic surgeries, animals were anesthetized with isoflurane and placed into a stereotaxic apparatus. For pain relief

and postoperative care, mice were injected with buprenorphine (0.1 mg/kg) and meloxicam (5 mg/kg). Post-surgery, animals

received tramadol in the drinking water (1 mg/mL), were inspected twice daily and body weight was monitored to ensure regain

of pre-surgery weight.

Fiber implantation

Optical fibers (fiber core = 200 mm, NA = 0.48, flat tip; Doric Lenses Inc.) were implanted unilaterally over the ARC (coordinates from

bregma AP: �1.45 mm, DV: �5.5, ML: 0) and fixed to the skull using dental acrylic.
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For projection stimulation experiments PNOC-Cre and control mice were unilaterally injected (coordinates from bregma

AP: �1.45 mm; ; ML: �0.20 mm; DV: �5.87 mm) with 25 nL pAAV-EF1a-double floxed-hChR2(H134R)-EYFP-WPRE-HGHpA

(AAV1). For stimulation of BNST projections optical fibers were implanted unilaterally over the BNST (coordinates from bregma

AP: 0.45; ML: �0.50; DV: �3.8). For stimulation of LHA/PMD projections optical fibers were implanted over the LHA/PMD (coordi-

nates from bregma AP:-2.5; ML: �0.5; DV: �4.6).

Viral injections

For PNOCARC projection mapping 25 nL of pAAV-EF1a-double floxed-hChR2(H134R)-EYFP-WPRE-HGHpA (AAV1) was unilaterally

injected into the ARC (coordinates from bregma AP: �1.45 mm; ML: ± 0.20 mm; DV: �5.95 mm). Mice with missed injections or

expression outside the ARC were excluded from analysis after post hoc examination of EYFP expression.

For CRACM experiments, 10-15 nL of pAAV-EF1a-double floxed-hChR2(H134R)-mCherry-WPRE-HGHpA (AAV1) was unilaterally

injected into the ARC (coordinates from bregma AP: �1.45 mm; ML: ± 0.20 mm; DV: �5.95 mm) of PNOC-Cre::POMC-IRES-

eGFP mice.

75 nL of AAV expressing AAV-flex-taCasp3-TEVp (2.8 x1012 particles/ml) was bilaterally injected into the ARC (coordinates from

bregma AP: �1.45 mm; ML: ± 0.20 mm; DV: �5.95 mm) and the pipette was withdrawn 5 min after injection.

In vivo optogenetic studies
A fiber optic cable was firmly attached to the implanted fiber optic cannula. ChR2-Pnoc and control ChR2-wild-type mice were

acclimated to this procedure in their experimental cages for one week prior to optogenetic stimulation. Blue laser light stimulation

(473 nm, output power of 15 mW at the tip of the patch cord) consisting of pulse trains (5 ms pulses of 20 Hz; 1 s on, 3 s off) was

delivered. For photostimulation of PNOCARC projections to the LHA/PMD and BNST blue laser light stimulation (473 nm, output po-

wer of 10mWat the tip of the patch cord) consisting of pulse trains (5ms pulses of 20 Hz; 1 s on, 3 s off) was delivered. The location of

the fiber tip was identified using histology of the brain tissue. Mice with fiber placement outside of the target region were excluded

from analysis.

Indirect Calorimetry
Indirect calorimetry was performed using an indirect calorimetry system from TSE systems (PhenoMaster, TSE systems). Mice were

placed in training cages for three days prior to data acquisition to adapt to the pellet and liquid dispensers of the system. For the

measurement mice were placed in regular type II cages with sealed lids at room temperature (22�C) and allowed to adapt to the

chambers for at least 24 hours. Food and water were provided ad libitum. All parameters were measured continuously and

simultaneously.

Indirect calorimetry during optogenetic stimulation was performed using an indirect calorimetry system from Sable Systems

(Promethion, Sable Systems, Las Vegas, NV). Mice were placed in the calorimetric cages for three days prior to data acquisition

to adapt to the pellet and liquid dispensers of the system. Food and water were provided ad libitum. Obtained raw data was pro-

cessed using ExpeData v. 1.9.22 (Sable Systems, Las Vegas, NV) using an analysis script for data transformation.

Real time place preference/aversion test
Real time place preference/aversion test was performed in a custom-built wooden enclosure (30x50x20 cm), consisting of two in-

terconnected chambers. The experiment was conducted in two sessions, 30 min each (baseline recording on the day 1 and a stim-

ulation session two days later). During the baseline session, mice were connected to the patchords and placed in the enclosure, but

no laser light was delivered. During the stimulation session, optogenetic stimulation consisted of 1 s of blue light pulses (473 nm, 5ms

pulse width, 20 Hz) followed by 1 s of delay. For optogenetic stimulation, the patch cord was connected to a 473-nm diode-pumped

solid-state laser (R471005FX, Laserglow Technologies) with an FC/PC adaptor. The stimulation was delivered by the AnyMaze

behavior tracking software (Stoelting, USA) when animal entered one of the compartments (stimulation compartment) until themouse

crossed back into the non-stimulation side. The stimulation compartment was assigned in a counterbalanced manner. Behavioral

data was recorded using the Digital USB 2.0 CMOS Camera (The Imaging Source Europe GmbH, Germany), scored and analyzed

in AnyMaze.

Conditioned place preference/aversion test
Conditioned place preference/aversion test was conducted using a 4 days protocol as described previously (Tan et al., 2012; Zhang

et al., 2015) in a three-chambered setup. It was performed in a custom-built wooden enclosure, consisting of two chambers

(30x20x20 cm each) with distinct wall features, and separated by a corridor (30x10x20 cm). The experiment consisted of 4 sessions

(15 min baseline recording on the Day 1; conditioning sessions, 30 min each, on Day 2 and 3; 15 min test on Day 4). During the con-

ditioning sessions, optogenetic stimulation consisted of 1 s of blue (473 nm) light pulses (5 ms pulse width, 20 Hz) followed by 1 s of

delay and was activated when the animal entered the conditioned chamber. The conditioned chamber was assigned in a counter-

balanced manner. For optogenetic stimulation, the patch cord was connected to a 473-nm diode-pumped solid-state laser

(R471005FX, Laserglow Technologies) with an FC/PC adaptor. The stimulation was delivered by the Any-Maze behavioral tracking

software (Stoelting Co, the USA). Behavioral data was recorded using the Digital USB 2.0 CMOS Camera (The Imaging Source

Europe GmbH, Germany), scored and analyzed in Any-Maze and GraphPad Prism.
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PET Imaging
PET imaging was performed as described in Jais et al. (2016) using an Inveon preclinical PET/CT system (Siemens). Mice were anes-

thetized with 2% isoflurane in 65%/35%nitrous oxide/oxygen gas and positioned on a dedicatedmouse carrier (MEDRES, Germany)

carrying two mice. A fiber optic cable was firmly attached to the implanted fiber optic cannula. For injection of the radiotracer, a

catheter consisting of a 30G cannula connected to a polythene tubing (ID = 0.28 mm) was inserted into the tail vein and fixated

by a drop of glue. After starting the PET scan, 7-8 MBq of [18F]FDG in 50-100 mL saline were injected per mouse and blue laser

(473 nm) light stimulation (output power of 15 mW) consisting of pulse trains (5 ms pulses of 20 Hz; 1 s on, 3 s off) was delivered.

Emission data were acquired for 45 minutes. Thereafter, animals were automatically moved into the CT gantry and a CT scan

was performed (180 projections/360�, 200 ms, 80 kV, 500 mA). The CT data were used for attenuation correction of the PET

data and the CT image of the scull was used for image co-registration. Plasma glucose levels were determined from a tail vein blood

sample using a standard glucometer (Bayer) after removing the tail vein catheters. PET data were histogrammed in time frames of

12x30s, 3x60s, 3x120s, 7x240s, Fourier rebinned, and images were reconstructed using the MAP-SP algorithm provided by the

manufacturer. For co-registration the imaging analysis software Vinci was used (Cı́zek et al., 2004). Images were co-registered to

a 3D mouse brain atlas constructed from the 2D mouse brain atlas published by Paxinos (Paxinos et al., 2013). An image-derived

input function was extracted from the PET data of the aorta, which could be identified in the image of the first time frame of each

animal. Input function data were corrected for partial volume effect by assuming a standardized volume fraction of 0.6 (Green

et al., 1998). Parametric images of the [18F]FDG kinetic constants K1, k2, k3, and k4 were determined by a voxel-by-voxel (voxel

size = 0.4 mm x 0.4 mm x 0.8 mm) fitting of data to a two- tissue-compartment kinetic model. The ratio of tissue and plasma glucose

concentrations (CE/CP) is a measure for glucose transport and is given by CE/CP = K1/(k2+k3/0.26) (Backes et al., 2011; Jais et al.,

2016). Since neuronal activation is accompanied by increased glucose transport and this parameter is less sensitive to changes

in plasma glucose level, we use alterations of glucose transport (CE/CP) as surrogate for alterations in neuronal activation. Statistical

testing was performed by application of a voxel-wise t test between groups. 3D maps of p values allow for identification of regions

with significant differences in the parameters. From these regions we defined volumes of interest (VOIs) and performed additional

statistical testing for these VOIs. For presentation only, 3D maps of p values were re-calculated on a 0.1 mm x 0.1 mm x 0.1 mm

grid from the original dataset using trilinear interpolation.

Analysis of Body Composition
Body composition was analyzed using micro-computed tomography (micro-CT)-based imaging of isoflurane-anesthetized mice.

Data acquisition was performed in an IVIS Spectrum CT-scanner (Calpier LifeScience, USA) using the IVIS LivingImage Software

V4.3.1. Quantification of fat mass was performed with a modification of the Vinci software package 4.61.0 (Cı́zek et al., 2004).

Insulin tolerance test
Insulin tolerance tests (ITTs) were performed in random fed mice. Food was removed and bedding was renewed prior to starting

the experiment. Blue laser (473 nm) light stimulation (output power of 15 mW) consisting of pulse trains (5 ms pulses of 20 Hz; 1 s

on, 3 s off) was delivered starting 3 hours prior to the experiment and continued throughout the experiment. Blood glucose concen-

trations were measured from whole venous blood using an automatic glucose monitor (Contour Ascensia, Bayer HealthCare, Ger-

many). Following determination of body weights and basal blood glucose concentrations, mice received an intraperitoneal injection

of 0.75 U/kg body weight of human insulin (Insuman� Rapid, Sanofi Aventis) dissolved in saline and blood glucose concentrations

were measured again at 15, 30, and 60 min post injection. Food was withdrawn over the whole course of the experiment.

Glucose tolerance test
Glucose tolerance tests (GTTs) were performed in mice that had been fasted for 16 hours overnight. Blue laser (473 nm) light

stimulation (output power of 15 mW) consisting of pulse trains (5 ms pulses of 20 Hz; 1 s on, 3 s off) was delivered starting 3 hours

prior to the experiment and continued throughout the experiment. Following determination of body weights and basal blood glucose

concentrations, mice received an intraperitoneal injection of 20% glucose (10 mL/kg body weight; beta-pharm) and blood glucose

levels were measured again at 15, 30, 60, and 120 min post injection. Blood samples for glucose measurement were collected from

the tail vein. Glycemia was assessed using a Contour glucometer (Bayer).

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of replicates (n) are indicated in the figure legends. For electrophysiology experiments, n represents the number of

recorded neurons. For RNA sequencing experiments, n represents the number of technical replicates (details on the number of

mice pooled for each replicate can be found in the ‘Ribosome Immunoprecipitations (Phosphoribotrap)’ or in the ‘BacTRAP-Based

Ribosomal Profiling of Hypothalamic PNOC Neurons’ section of STAR Methods. For all other experiments, n represents the number

of mice (unless otherwise stated). Data are presented as Box-whisker plots or as violin plots with upper and lower quartile, median,

the minimum and maximum values. For all statistical tests, significance was measured against an alpha value of 0.05 unless other-

wise stated. * p < 0.05, ** p < 0.01, *** p < 0.001. All error bars show s.e.m. No statistical methods were used to predetermine sample

sizes, but group sizes commonly applied in murine studies were used. All statistical analyses were performed using GraphPad Prism
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software unless noted otherwise. Electrophysiology analysis was performed with Spike2 (version 7; Cambridge Electronic Design

Ltd., Cambridge, UK), Igor Pro 6 (Wavemetrics, Portland, OR, USA) and Graphpad Prism (version 5.0b; Graphpad Software Inc.,

La Jolla, CA, USA). If not stated otherwise, all calculated values are expressed as means ± SEM (standard error of the mean). For

pairwise comparisons of dependent and independent normal distributions paired and unpaired t tests were used, respectively.

For pairwise comparisons of independent, not normal distributions Mann-Whitney U-test was used. Tests were executed using

GraphPad Prism 5 (GraphPad Software Inc., La Jolla, CA, USA). Neurons with action potential frequencies below 0.5 Hzwere defined

as silent.
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