
ETH Library

A new contraction technique
with applications to congruency-
constrained cuts

Journal Article

Author(s):
Nägele, Martin; Zenklusen, Rico

Publication date:
2020-09

Permanent link:
https://doi.org/10.3929/ethz-b-000412160

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Mathematical Programming 183, https://doi.org/10.1007/s10107-020-01498-x

Funding acknowledgement:
165866 - New Approaches to Constrained Submodular Maximization (SNF)
184622 - Toward Stronger Approximation Algorithms for Fundamental Network Design and Optimization Problems (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000412160
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10107-020-01498-x
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A New Contraction Technique with Applications to
Congruency-Constrained Cuts

Martin Nägele* Rico Zenklusen†

Abstract

Minimum cut problems are among the most classical problems in Combinatorial Optimization
and are used in a wide set of applications. Some of the best-known efficiently solvable variants
include global mininmum cuts, minimum s-t cuts, and minimum odd cuts in undirected graphs. We
study a problem class that can be seen to generalize the above variants, namely finding congruency-
constrained minimum cuts, i.e., we consider cuts whose number of vertices is congruent to r modulo
m, for some integers r and m. Apart from being a natural generalization of odd cuts, congruency-
constrained minimum cuts exhibit an interesting link to a long-standing open problem in Integer Pro-
gramming, namely whether integer programs described by an integer constraint matrix with bounded
subdeterminants can be solved efficiently.

We develop a new contraction technique inspired by Karger’s celebrated contraction algorithm
for minimum cuts, which, together with further insights, leads to a polynomial time randomized ap-
proximation scheme for congruency-constrained minimum cuts for any constant modulusm. Instead
of contracting edges of the original graph, we use splitting-off techniques to create an auxiliary graph
on a smaller vertex set, which is used for performing random edge contractions. This way, a well-
structured distribution of candidate pairs of vertices to be contracted is obtained, where the involved
pairs are generally not connected by an edge. As a byproduct, our technique reveals new structural
insights into near-minimum odd cuts, and, more generally, near-minimum congruency-constrained
cuts.

*Department of Mathematics, ETH Zurich, Zurich, Switzerland. Email: martin.naegele@ifor.math.ethz.ch.
†Department of Mathematics, ETH Zurich, Zurich, Switzerland. Email: ricoz@math.ethz.ch.

This project has received funding from the European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 817750).

This work was supported by Swiss National Science Foundation grants 200021 165866 and 200021 184622.

This work appeared in Mathematical Programming (2020) 183:455–481, https://doi.org/10.1007/s10107-020-01498-x.

1

mailto:martin.naegele@ifor.math.ethz.ch
mailto:ricoz@math.ethz.ch
https://doi.org/10.1007/s10107-020-01498-x

1 Introduction

Cuts in undirected graphs are a basic structure in Combinatorial Optimization with a multitude of ap-
plications. The global minimum cut problem, the minimum s-t cut problem, and the minimum odd cut
problem are among the best known efficiently solvable minimum cut variants, and have been the cra-
dle of many exciting algorithmic techniques. We study a generalization of these problems that we call
congruency-constrained minimum cut (CCMC), where a congruency constraint on the vertices in the cut
is imposed, as described in the box below.1

Congruency-Constrained Minimum Cut (CCMC): Let G = (V,E) be an undirected graph
with edge weights w : E → R>0 and let γ : V → Z>0. Let m ∈ Z>0 and r ∈ Z>0. The task is
to find a minimizer of

min

{
w(δ(C))

∣∣∣∣∣ ∅ (C (V,
∑
v∈C

γ(v) ≡ r (mod m)

}
. (CCMC)

We call m the modulus of the problem, and we will typically consider m to be constant. Moreover,
allowing general γ-values—instead of setting γ(v) = 1 for all v ∈ V , i.e., requiring that |C| ≡ r
(mod m)—is merely for convenience. Indeed, the case of general γ-values can be reduced to the unit
case by replacing each vertex v by a clique of (γ(v) mod m)-many vertices with large edge values if
γ(v) 6≡ 0 (mod m), and a clique of size m if γ(v) ≡ 0 (mod m).2

Apart from generalizing well-known cut problems, we are interested in the study of (CCMC) due to
a link to an intriguing open question in Integer Programming, namely whether integer linear programs
(ILPs) defined by an integer constraint matrix with bounded subdeterminants can be solved efficiently.
Recently it was shown in [1] that ILPs of the form min{c>x | Ax 6 b, x ∈ Zn} can be solved
efficiently if A ∈ Zm×n is bimodular, i.e., A has full column-rank and the determinant of every n ×
n submatrix of A is in {−2,−1, 0, 1, 2}. This result implies that if A is totally bimodular, i.e., all
subdeterminants of A are in {−2,−1, 0, 1, 2}, then the corresponding ILP can be solved in polynomial
time even without the requirement of A having full column rank (see [1] for details). This extends the
well-known fact that ILPs with a totally unimodular constraint matrix can be solved efficiently; here, the
absolute value of subdeterminants is bounded by 1. Only very limited techniques are known for attacking
the question whether ILPs remain efficiently solvable in the ∆-modular case for some constant ∆ > 2,
i.e., rank(A) = n and any n × n subdeterminant of A is in {−∆,−∆ + 1, . . . ,∆}. Interestingly, to
approach the bimodular case, classical combinatorial optimization problems with congruency constraints
play a crucial role, and the problem can be reduced to certain types of congruency-constrained cut and
flow problems (see [1]). In particular, (CCMC) with modulus m can be reduced to m-modular ILPs.3

Hence, if one believes that ∆-modular ILPs can be solved efficiently for ∆ = O(1), then (CCMC)
should admit an efficient algorithm. Conversely, despite the fact that, for ∆ ≥ 3, further gaps have to be
overcome to reduce ∆-modular ILPs to congruency-constrained cut and flow problems, the results in [1]
give hope that congruency-constrained cuts may be a useful building block for attacking ∆-modular
ILPs, besides merely being a special case thereof.

1The minimum odd cut problem is captured by (CCMC) by choosing m = 2, r = 1, and γ(v) = 1 for all v ∈ V . Global
minimum cuts correspond to m = 1, r arbitrary, and γ(v) = 0 for all v ∈ V , and s-t cuts can be modeled as minimum
{s, t}-odd cuts, i.e., m = 2, r = 1, γ(s) = γ(t) = 1, and γ(v) = 0 for all v ∈ V \ {s, t}.

2We denote by (γ(v) mod m) the smallest non-negative integer congruent to γ(v) modulo m. Reducing modulo m is
crucial to obtain a blow-up bounded by m, which, as mentioned, we will typically assume to be constant.

3If M is the incidence matrix of the digraph H = (V,A) obtained by bidirecting G, then

min

{∑
a∈A

waya

∣∣∣∣∣ Mx− y 6 0,
∑
v∈V γ(v)xv + zm = r, xs = 1, xt = 0,

x ∈ {0, 1}V , y ∈ {0, 1}A, z ∈ Z .

}
solves the congruency-constrained minimum s-t cut problem in G with edge weights w and congruency constraint γ(C) ≡
r (mod m), where the cut corresponds to the set C = {v ∈ V | xv = 1}. Moreover, the constraint matrix of the above ILP
can be seen to be m-modular. Analogously to how global min cut problems can be reduced to min s-t cut problems, every
(CCMC) problem can be reduced to solving linearly many problems of the above type.

2

Unfortunately, not much is known in terms of techniques to deal with congruency constraints in
Combinatorial Optimization beyond parity constraints (m = 2). These constraints introduce an al-
gebraic component to the underlying problem, which is a main additional hurdle to overcome. Some
progress has been achieved for moduli m that are constant prime powers: it was shown in [30] that
submodular function minimization under congruency constraints with such moduli can be solved effi-
ciently. As the cut function is submodular, this implies that (CCMC) can be solved efficiently for m
being a constant prime power. However, the techniques in [30] do not extend to general constant moduli
m, due to intrinsic additional complications appearing when m has two different prime divisors.

The goal of this paper is to show that contraction techniques, in the spirit of Karger’s algorithm for
global minimum cuts [17, 18], can be employed to approach (CCMC). A naive way of using Karger

C

· · ·

u

v1
v2 v3 vn

w
γ(u) = γ(w) = 4, ∀i ∈ [n] : γ(vi) = 3

w(e) = 1 w(e) = M

Figure 1: A (CCMC) instance with m = 6 and r = 1. Its optimal value is n + M − 1, achieved by the
highlighted cut C.

for (CCMC) faces several hurdles, which we exemplify through the (CCMC) instance in Figure 1, pa-
rameterized by an even number n and a weight M > 1.4 It consists of n paths of length 2 between two
vertices u and w. An optimal cut is highlighted in gray. Karger’s algorithm returns any global minimum
cut in a graph G = (V,E) with probability Ω(|V |−2), implying that there are at most O(|V |2) global
minimum cuts. However, for M = 1, the (CCMC) problem in Figure 1 has exponentially many optimal
solutions. Hence, we cannot hope for an algorithm that returns any optimal solution with probability
Ω(1/poly(|V |)). Moreover, if one of the n many u-w paths gets contracted, then the problem turns infea-
sible. It is not clear how to fix this. Even if we forbid contractions that make the instance infeasible, it
is likely that in many of the u-w paths, one would contract the edge of weight 1. It is not hard to verify
that Karger-type contractions would with high probability lead to a cut that is about twice as large as the
minimum cut if M is chosen large (and this factor of 2 can be boosted further).

To overcome these and further hurdles, substantial changes seem necessary, and we introduce new
techniques to employ contraction algorithms in our context. A key difference between our method and
Karger’s algorithm, as well as other contraction algorithms in a similar spirit (see a recent result of
Chandrasekaran, Xu, and Yu [8] for a nice adaptation of Karger’s algorithm to the hypergraph k-cut
problem), is that we do not contract edges of the graph. Instead, we define a distribution over pairs of
vertices to contract that may not be connected by an edge. Moreover, we only look for contractions
among certain vertices, namely those v ∈ V fulfilling γ(v) 6≡ 0 (mod m). We show that splitting-
off techniques from Graph Theory can be leveraged to design an efficient procedure to sample from a
distribution of vertex pairs to contract with strong properties.

1.1 Our results

Our main result for (CCMC) via our new contraction technique is the following.

Theorem 1. (CCMC) with constant modulus m admits a PRAS.
4Even n ensures that S = {w, v1, v2, . . . , vn} is infeasible, i.e., γ(S) 6≡ 1 (mod 6).

3

Recall that a PRAS (polynomial time randomized approximation scheme) is an efficient procedure
that, for any fixed ε > 0, returns a (1 + ε)-approximate solution with high probability, by which we
mean with probability at least 1 − 1/|V |. As the focus of this paper is existence of the PRAS claimed
by Theorem 1, no efforts were made to optimize its running time. Nevertheless, let us mention that for
ε < 1, we can bound the running time of our PRAS by log

(
wmax
wmin

)
· |V |O(m logm

ε) · 2O(m2), where wmax

and wmin are the maximum and minimum edge weights occurring in the (CCMC) instance, respectively.
A short discussion of this bound is given at the end of Section 2.

Moreover, for a constant composite modulus m that is the product of only two primes, we obtain an
exact procedure.

Theorem 2. (CCMC) with a constant modulus that is the product of two primes admits an efficient
randomized algorithm that w.h.p. returns an optimal solution.

This is in stark contrast to prior procedures, in particular for congruency-constrained submodular
function minimization [30], which employ techniques that face hard barriers for moduli beyond prime
powers.

Finally, in a similar spirit to Karger’s algorithm for global minimum cuts, our contraction algo-
rithm allows us to derive structural results on near-minimum congruency-constrained cuts. Whereas
Karger’s analysis shows that there are only polynomially many cuts of value at most a constant factor
higher than the minimum cut, we cannot hope for results of this type: The example in Figure 1 shows
that (CCMC) problems can have exponentially many optimal solutions. For prime moduli, we show that
near-minimum (CCMC) cuts are near-minimum cuts (without congruency constraint) in one of only a
polynomial number of minimum s-t cut instances. These instances are defined on contractions of G,
i.e., graphs obtained from G = (V,E) by successively contracting nonempty node sets S ⊆ V . When
contracting a set S, all vertices of S are replaced by a single vertex vS with γ(vS) :=

∑
v∈S γ(v), all

edges with both endpoints in S are deleted, and each edge connecting a vertex in S to a vertex u ∈ V \S
is replaced by an edge between u and vS of the same weight. By construction, a cut C in a contraction
of G naturally corresponds to a cut C in G of the same weight with γ(C) = γ(C), and thus, we can
identify these cuts.

Theorem 3. Consider a (CCMC) problem on G = (V,E) with constant prime modulus m and nonzero
optimal solution value, and let κ ≥ 1 be a constant. Then there is an efficient randomized method re-
turning poly(|V |) many minimum s-t cut instances defined on contractions of G such that the following
holds with high probability, where OPT denotes the optimal solution value of the (CCMC) problem.
A cut C (V , C 6= ∅, is a solution to (CCMC) of value at most κ · OPT if and only if C is a fea-
sible solution of value at most κ · OPT in one of the minimum s-t cut instances (without congruency
constraint).

Theorem 2 and 3 are in fact consequences of more general structural properties of (CCMC) instances
that are exhibited by our contraction algorithm (see Section 4 for more details).

1.2 Further discussion on related results

Work on minimum cut problems with constraints of congruency type date back to the early ’80s, when
Padberg and Rao [32] presented a method to efficiently find a minimum cut among all cuts with an odd
number of vertices. Barahona and Conforti [2] later showed that efficient minimization is also possible
over all cuts with an even number of vertices. Later works by Grötschel, Lovász, and Schrijver [16], and
by Goemans and Ramakrishnan [13] generalized these results, by showing that even any submodular
function can be minimized over so-called triple families and, more generally, parity families. Submodu-
lar functions generalize cut functions, and triple as well as parity families capture congruency constraints
with modulus 2. More generally, these approaches even allow for minimizing over all cuts C ⊆ V of
cardinality not congruent to r modulo m, for any integers r and m, which turns out to be a much sim-
pler constraint than requiring a cardinality congruent to r modulo m. Indeed, (CCMC) for unbounded

4

m quickly leads to NP-hard problems, as one could model an arbitrary cardinality constraint through a
congruency constraint. In particular, if G = (V,E) is a graph with an even number of vertices, then
seeking a minimum cut C with |C| ≡ 0 (mod |V |/2) captures the well-known minimum bisection prob-
lem. Khot [19] showed that, unless NP has randomized sub-exponential time algorithms, the minimum
bisection problem does not admit a polynomial time approximation scheme. Hence, it seems unlikely
that a PRAS can be obtained for (CCMC) without a bound on the modulus.

We briefly mention further works linked to matrices with bounded subdeterminants. This includes
the problem of finding a maximum weight independent set in a graph with constant odd-cycle pack-
ing number, for which a PTAS was obtained by Bock, Faenza, Moldenhauer, Vargas, and Jacinto [7].
This problem readily reduces to ILPs with bounded subdeterminants, due to an observation of Gross-
man, Kulkarni, and Schochetman [15]. Another recent result by Eisenbrand and Vempala [10] is a
randomized simplex-type algorithm for linear programming that is strongly polynomial whenever all
subdeterminants of the constraint matrix defining the LP are bounded by a polynomial in the dimension
of the problem. Furthermore, there has been interesting recent progress on the problem of approximating
the largest subdeterminant of a matrix (see Di Summa, Eisenbrand, Faenza, and Moldenhauer [9], and
Nikolov [31]).

1.3 Organization of the paper

We provide a discussion of the techniques leading to our main contribution (Theorem 1) in Section 2.
Section 3 expands on how to find a good distribution of vertex pairs to contract through splitting-off
techniques, completing the proof of Theorem 1 given in Section 2. Section 4 is devoted to the exploration
of furter structural properties of (CCMC) instances, leading to proofs of Theorem 2 and Theorem 3.
Finally, Section 5 presents an alternative splitting-off approach for obtaining a suitable distribution of
vertex pairs to contract.

2 An overview of our approach

As mentioned, the core of our approach is a contraction procedure inspired by Karger’s global minimum
cut algorithm, where we sample vertex pairs to be contracted from a certain distribution. In fact, the
analysis of Karger’s random contraction algorithm exploits that, whenever a random edge is contracted
in a graph G = (V,E), this contraction is bad with probability at most k/|V | for some constant k ∈ Z>0.
More precisely, in the analysis, an arbitrary minimum cut C is fixed, and a contraction is bad if it
contracts two vertices on different sides of C. The probability of bad contractions being at most k/|V |
implies that by contracting until only k vertices remain, and then enumerating all cuts among those
vertices, each minimum cut is found with probability at least 1/

(|V |
k

).
For (CCMC), an important observation is that it suffices to decide which vertices in

V 6≡0 := {v ∈ V | γ(v) 6≡ 0 (mod m)}

are part of a solution. Indeed, for any cutC, the value of γ(C) is determined by the intersectionC∩V 6≡0.
Moreover, for any U ⊆ V 6≡0, the value

ν(U) := min {w(δ(C)) | ∅ (C (V, C ∩ V 6≡0 = U}

and a minimizer CU can be obtained efficiently by a minimum cut computation in a contraction of G.5

As CU ∩ V6≡0 = U , we have γ(CU) ≡ γ(U) (mod m).
Due to the above, instead of performing contractions over the full graph, as done in Karger’s algo-

rithm, we only contract pairs in V6≡0, with the goal to reduce V6≡0 to a constant-size set. If we achieve

5If U 6∈ {∅, V 6≡0}, then CU can be computed by contracting U and V6≡0 \U inG, and by determining a minimum cut in the
contracted graph that separates the two vertices corresponding to the contracted sets. If U ∈ {∅, V 6≡0}, then ν(U) is obtained
by contracting V 6≡0 and finding a global minimum cut C in the contracted graph, where C is chosen such that C ∩ V6≡0 = U ;
this is achieved by replacing the computed global minimum cut by its complement if necessary.

5

this, it suffices to enumerate over all U ⊆ V6≡0 with γ(U) ≡ r (mod m), minimize ν(U), and return a
corresponding cut CU . The theorem below is a key technical result of this paper, and shows that a suit-
able distribution over vertex pairs in V 6≡0 to contract exists whenever the sum

∑
v∈V6≡0

ν({v}) is large
enough.

Theorem 4. Let I = (G,w, γ,m, r) be a (CCMC) instance on G = (V,E). Let α > 0 and c > 0
with

∑
v∈V6≡0

ν({v}) > (2α/c) · |V6≡0|. Then, there is a distribution D over pairs in V6≡0 such that
Pr{u,v}∼D

[
|{u, v} ∩ C| = 1

]
6 c/|V6≡0| for any feasible solution C of I with w(δ(C)) 6 α. Moreover,

there is a procedure to sample from D with running time polynomial in |V | (independent of any other
input parameters).

To prove Theorem 4, we use weighted splitting-off techniques onG to construct a weighted auxiliary
graph H on the vertex set V6≡0. We show that by choosing edges of H with probabilities proportional to
the edge weights, a distribution with the properties highlighted in Theorem 4 is obtained. Details of the
proof are discussed in Section 3.

Theorem 4 with α = OPT (or α slightly larger than OPT) implies that, whenever
∑

v∈V6≡0
ν({v})

is large compared to OPT, a contraction step has good success probability, similar to Karger’s analy-
sis. Otherwise, instead of performing a contraction, we approximately reduce the problem to another
(CCMC) instance with smaller modulus. More precisely, if

∑
v∈V6≡0

ν({v}) is sufficiently small, then
there are many vertices v ∈ V 6≡0 where the smallest cut C{v} ⊆ V separating v from V 6≡0 \ {v} has
weight no more than β = κ · OPT for a small constant κ. Such cuts are useful to modify a cut with
wrong residue class. Indeed, consider a cut C with small weight w(δG(C)), but γ(C) 6≡ r (mod m).
Then, C := C4C{v} satisfies γ(C) ≡ γ(C)± γ(v) (where the sign depends on whether v ∈ C), while
the weight w(δ(C)) increased by at most β compared to w(δ(C)); we recall that β is small with respect
to OPT. Our plan is that if we have enough small cuts C{v}, we can simplify the congruency constraint
to one with smaller modulus, because the small cuts of type C{v} allow for moving solutions into the
right residue class. This idea leads to the following notion of a reduction family.

Definition 5 (Reduction family). Let I = (G,w, γ,m, r) be a (CCMC) instance on the graph G =
(V,E). For β ∈ R>0 and q ∈ [m− 1], a familyR(β, q) ⊆ 2V is a reduction family for I if

(i) R(β, q) = {R1, R2, . . . , R2mq−1} with mq := m
gcd(m,q) ,

6

(ii) for each i ∈ [2mq − 1], there is one vertex ui ∈ Ri with γ(ui) ≡ q (mod m), and γ(u) ≡ 0
(mod m) for all other u ∈ Ri \ {ui},

(iii) the vertices u1, . . . u2mq−1 are distinct, and
(iv) w(δ(Ri)) 6 β for all i ∈ [2mq − 1].

A reduction family R(β, q) allows for correcting the residue class γ(C) of a solution C by any
multiple of q modulo m, with losses in terms of cut weight controlled by the parameter β. Given a
reduction family R(β, q), it is thus sufficient to find a solution C ′ satisfying γ(C ′) ≡ r (mod m′) for
m′ = gcd(m, q). This is formalized in the following lemma.

Lemma 6 (Reduction lemma). LetR(β, q) be a reduction family for a (CCMC) instance (G,w, γ,m, r),
and let m′ = gcd(m, q). Given a cut C ′ (V , C ′ 6= ∅, with γ(C ′) ≡ r (mod m′), one can efficiently
(in running time polynomial in |V | and m) obtain a cut C (V , C 6= ∅, such that

(i) w(δ(C)) 6 w(δ(C ′)) +
(
m
m′ − 1

)
β, and

(ii) γ(C) ≡ r (mod m).

Proof. Let R(β, q) = {R1, R2, . . . , R2mq−1} with distinct ui ∈ Ri for all i ∈ [2mq − 1] as given in
item (ii) of Definition 5. We distinguish two cases: Either, there are mq many vertices among the ui
with ui ∈ C ′, or there are mq many with ui 6∈ C ′.

6gcd(m, q) denotes the greatest common divisor of m and q.

6

In the first case, assume w.l.o.g. that u1, . . . , umq ∈ C ′, and let Uk :=
⋃k
i=1Ri for k ∈ {0, . . . ,mq−

1}. We show that for some k, the set Ck := C ′4Uk has the desired properties. First observe that all Ck
are cuts, as C0 = C ′ is a cut, and u1 /∈ Ck 3 umq for k ∈ [mq − 1]. Moreover, k 6 mq − 1 implies

w(δ(Ck)) 6 w(δ(C ′)) +
k∑
i=1

w(δ(Ri)) 6 w(δ(C ′)) + (mq − 1)β . (1)

Using mq = m
gcd(m,q) = m

m′ , we see that (1) is precisely point (i) of Lemma 6 for Ck. To conclude, we
show that there exists k such that Ck satisfies γ(Ck) ≡ r (mod m), i.e., point (ii). Using that γ(u) ≡ 0
(mod m) for all u ∈ Ri \{ui}, and ui ∈ C ′ for all i ∈ [mq], we obtain γ(Ck) ≡ γ(C ′)−

∑k
i=1 γ(ui) ≡

γ(C ′)− kq (mod m). It thus suffices to find k ∈ {0, . . . ,mq − 1} with γ(C ′)− kq ≡ r (mod m), or
equivalently,

kq ≡ γ(C ′)− r (mod m) . (2)

By assumption, γ(C ′) − r ≡ 0 (mod m′), so r′ := γ(C′)−r
m′ ∈ Z, and q′ := q

m′ ∈ Z because m′ =
gcd(m, q). Dividing (2) by m′, we obtain the equivalent equation kq′ ≡ r′ (mod mq), which has a
solution k ∈ {0, . . . ,mq − 1} as gcd(q′,mq) = 1.

The second case, i.e., u1, . . . , umq /∈ C ′, is similar: Ck always is a cut because C0 = C ′ is a cut,
and u1 ∈ Ck 63 umq for k ≥ 1. Equation (1) remains true and implies point (i). For point (ii), we use
γ(Ck) ≡ γ(C ′) +

∑k
i=1 γ(ui), and the above analysis results in kq′ ≡ −r′ (mod mq), admitting a

solution k ∈ {0, . . . ,mq − 1}.
Finally, given R(β, q) and C ′, checking which of the two cases applies can be done efficiently, as

well as solving the respective congruence equation for k. Altogether, we conclude that a cut C with the
desired properties can be obtained in running time polynomial in |V | and m.

The above reduction lemma applied with a reduction familyR(β, q) allows for reducing the modulus
from m to a divisor m′ of m, which is strictly smaller than m, as 0 < q < m. We call such a reduction
to a smaller modulus through a reduction family a reduction step. Reduction families exist (and can
be found efficiently) whenever Theorem 4 fails to guarantee a distribution with the desired properties
for Karger-type contraction steps, i.e., whenever

∑
v∈V6≡0

ν({v}) is small. In this case, there are many
vertices v ∈ V6≡0 for which ν({v}) is small, i.e., the cut C{v} has small value. A subset of these cuts can
then be used as a reduction family. This idea is concretized in Theorem 7 below.

Theorem 7. Let I be a (CCMC) instance with modulus m and let B > 0. Assume that |V6≡0| > 4m2

and
∑

v∈V6≡0
ν({v}) 6 B · |V6≡0|. Then, for some q ∈ [m − 1], one can efficiently (in running time

polynomial in |V | and m) obtain a reduction familyR(2B, q) for I.

Proof. The conditions of Theorem 7 imply that at least |V6≡0|/2 ≥ 2m2 many vertices v ∈ V 6≡0 satisfy
ν({v}) 6 2B; indeed, for otherwise∑

v∈V6≡0

ν({v}) > 2B · |V6≡0|
2

= B · |V 6≡0| ,

However, the above inequality contradicts the second assumption, namely
∑

v∈V6≡0
ν({v}) 6 B · |V6≡0|,

which implies the claim.
For every one of those 2m2 many vertices v ∈ V 6≡0 with ν({v}) 6 2B, there is a corresponding

cut C{v} in G separating v and V 6≡0 \ {v} of value w(δ(C{v})) 6 2B; moreover, γ(C{v}) ≡ γ(v) 6≡ 0
(mod m) because v ∈ V6≡0. Hence, by the pigeonhole principle, there exists q ∈ [m − 1] such that at
least 2m2

m−1 > 2m many cuts C{v} satisfy γ(C{v}) ≡ q (mod m). Let v1, . . . , v2m ∈ V 6≡0 be distinct
vertices such that {C{vi} | i ∈ [2m]} are precisely 2m such cuts. For mq = m

gcd(m,q) , the family

R =
{
C{v1}, . . . , C{v2mq−1}

}
7

is well-defined and fulfils points (i) to (iv) in Definition 5 with parameters β = 2B and q. To conclude
the proof of Theorem 7, observe that R can be obtained in running time polynomial in |V | and m by
following the above constructive proof.

A reduction step reduces the modulus m to a divisor strictly smaller than m, hence we can perform
at most log2(m) many reduction steps, and might end up solving a problem with modulus 1, i.e., an
unconstrained minimum cut problem.

Altogether, the ingredients discussed above lead to Algorithm 1. This algorithm requires a guess α
for the value of the optimal solution, which we can assume to know up to a factor of (1 + ε) by trying
all polynomially many values

α ∈ {0} ∪
{

(1 + ε)i · wmin

∣∣ 0 6 i 6 dlog1+ε(wtot/wmin)e
}
, (3)

where wmin := min{w(e) | e ∈ E, w(e) 6= 0} and wtot := w(E).

Algorithm 1: Contraction-Reduction algorithm for (CCMC).

Input: (CCMC) instance I = (G,w, γ,m, r) on G = (V,E), error parameter ρ > 0, optimal
value guess α > 0.

while |V 6≡0| > max
{

4m2, 2 ·
⌈
4m
ρ

⌉}
and

∑
v∈V6≡0

ν({v}) > ρα
2m · |V 6≡0| do

1. Sample a pair {u, v} from the distribution D guaranteed by Theorem 4.
2. Modify G by contracting the set {u, v}.

if |V6≡0| 6 max
{

4m2, 2 ·
⌈
4m
ρ

⌉}
then

1. For every S ⊆ V 6≡0 with γ(S) ≡ r (mod m), let
CS ∈ arg min{w(δ(C)) | ∅ (C (V, C ∩ V6≡0 = S} .

2. Among all cuts CS obtained in step 1, let C be one of smallest value w(δ(C)).
return Cut corresponding to C in input graph before contractions.

else
1. Use Theorem 7 to get reduction familyR(β, q) for β = ρα

m and some q ∈ [m− 1].
2. Let m′ = gcd(m, q). Apply Algorithm 1 recursively to I ′=(G,w, γ,m′, r) with error

parameter ρ and optimal value guess α to obtain a solution C ′ of I ′.
3. Apply Lemma 6 to get a solution C of I from C ′ andR(β, q).
return Cut corresponding to C in input graph before contractions.

As long as |V6≡0| is large, Algorithm 1 contracts two vertices of V 6≡0 whenever the conditions of
Theorem 4 are met with c = 4m/ρ. Note that every contraction step reduces the number of vertices in
V 6≡0 by one or two, depending on whether γ(u)+γ(v) 6≡ 0 (mod m) or not. The if-block in Algorithm 1
performs the enumeration step described earlier once there are at most max

{
4m2, 2 ·

⌈
4m
ρ

⌉}
vertices

left in V 6≡0. If neither of the above is possible, then Theorem 7 and Lemma 6 allow for a reduction step,
which is executed in the else-block, where we recursively invoke Algorithm 1 on an instance with strictly
smaller modulus. Combining the above insights, we can prove the following guarantee for Algorithm 1.

Theorem 8. Consider a (CCMC) instance (G,w, γ,m, r) with optimal solution value OPT. Let
α > OPT and ρ > 0. Algorithm 1 is an efficient procedure with running time bounded by |V |O(1) +
2O(m2+m/ρ) that, by using α as an optimal value guess and ρ as error parameter, returns a solution with
value at most OPT + ρα log2m with probability at least 1/

(|V |
d4m/ρe

).
Proof. The only randomized step of Algorithm 1 occurs in the while-loop, where pairs {u, v} for con-
traction are sampled. For the analysis, we fix an optimal solution C0 of I, and first assume that no
contraction is bad w.r.t. C0, i.e., that no contraction step contracts two vertices on different sides of C0

throughout Algorithm 1. Under this assumption, we prove by induction on m that Algorithm 1 returns a
cut C satisfying w(δ(C)) 6 OPT + ρα log2m.

8

If m = 1, then V6≡0 = ∅, hence the algorithm directly executes the if-block, where an unconstrained
minimum cut problem is solved, giving an exact solution. This reflects that for m = 1, (CCMC) is an
unconstrained minimum cut problem.

Now let m > 1. If no bad contraction is performed, C0 remains feasible after the termination of the
while-loop, and α remains an upper bound on the optimal solution value in the new contracted graph.
If |V 6≡0| 6 max

{
4m2, 2 ·

⌈
4m
ρ

⌉}
, then, in the if-block, all remaining options are enumerated, and an

optimal solution is found. Else, we have |V 6≡0| > 4m2 and
∑

v∈V6≡0
ν({v}) 6 ρα

2m · |V 6≡0|, hence by
Theorem 7 with B = ρα

2m , a reduction family R(ραm , q) can be found efficiently. We have q ∈ [m − 1]
by Theorem 7, so m′ = gcd(m, q) < m. Thus, by the inductive assumption, the recursive application
of Algorithm 1 in step 2 of the else-block returns a solution C ′ (V , C ′ 6= ∅, of I ′ with

γ(C ′) ≡ r (mod m′) and w(δ(C ′)) 6 OPT + ρα log2(m
′) . (4)

Note that in the inequality, we used OPT(I ′) 6 OPT, which follows from the fact that C0 remains
feasible for I ′. By (4) and Lemma 6, the solutionC of I constructed in step 3 is a cut, satisfies γ(C) ≡ r
(mod m), and

w(δ(C)) 6 w(δ(C ′)) +
(m
m′
− 1
) ρα
m

6 OPT + ρα(log2m
′ + 1) 6 OPT + ρα log2m ,

where the last inequality follows from m′ 6 m/2, as m′ is a divisor of m and strictly smaller than m.
This concludes the induction. Thus, if no bad contraction steps are performed, a solution of value at
most OPT + ρα log2m is returned.

We now show that with probability at least 1/(|V |d4m/ρe

), no contraction step is bad w.r.t.C0 throughout all
recursive calls of Algorithm 1. Assume that overall, there are q contraction steps, and let m1, . . . ,mq ∈
Z≥0 and s1, . . . , sq ∈ Z≥0 be such that when the ith contraction step is performed, the modulus is mi

and |V6≡0| = si. By the condition in the while-loop, we know that when the ith contraction is performed,
then

∑
v∈V6≡0

ν({v}) > ρα
2mi
· |V6≡0|. Hence, by Theorem 4 with c = 4mi

ρ ,

Pr[contraction i is bad w.r.t. C0] 6
4mi

ρ · |V 6≡0|
6
ki
si

,

where ki :=
⌈
4mi
ρ

⌉
, holds for all i ∈ [q]. Consequently,

Pr[no contraction is bad w.r.t. C0] >
q∏
i=1

(
1− ki

si

)
. (5)

To bound the latter product from below, we exploit the following three facts.
(i) For x ∈ Z, let κ(x) := max{ki | i ∈ [q] : x > 2ki}, which is finite if x > min{2k1, . . . , 2kq}. As

si > 2ki by the contraction conditions, κ(si) > ki.
(ii) The sequence (si)i∈[q] measures the size of V6≡0, which decreases in each contraction step, and

never increases. In particular,

|V | ≥ s1 > s2 > . . . > sq ≥ 2kq + 1 .

(iii) The sequence (ki)i∈[q] is decreasing, and it drops precisely when reduction steps are performed.
Thus, there exists p 6 q and a1, . . . , ap ∈ [q] such that ka1 > ka2 > . . . > kap are all values taken
by the sequence (ki)i∈[q]. Note that in particular, ka1 = k1 =

⌈
4m
ρ

⌉
.

9

Using this, we get

q∏
i=1

(
1− ki

si

)
(i)
>

q∏
i=1

(
1− κ(si)

si

)
(ii)
>

|V |∏
i=2kq+1

(
1− κ(i)

i

)
(iii)
>

2kap−1∏
i=2kap+1

(
1−

kap
i

)
· . . . ·

2ka1∏
i=2ka2+1

(
1− ka2

i

)
·

|V |∏
i=2ka1+1

(
1− ka1

i

)

=

(2kap
kap

)
(2kap−1

kap

) · . . . ·
(2ka2
ka2

)
(2ka1
ka2

) ·
(2ka1
ka1

)
(|V |
ka1

) >

(2kap
kap

)
(|V |
ka1

) >
1(|V |

d4m/ρe
) . (6)

For the penultimate inequality we use
(2kaj
kaj

)
≥
(2kaj
kaj+1

)
for j ∈ [p − 1], and the last inequality follows

from
(2kap
kap

)
≥ 1. Combining (5) and (6), we get the desired bound.

To prove the running time guarantee, first assume that |V | 6 m, in which case the enumeration
step is executed directly, giving a running time of 2O(|V |), which is less than the claimed bound. Thus,
assume that |V | > m from now on. Overall, there are less than |V | many contraction steps, each with
a running time polynomial in |V | by Theorem 4, giving a bound of the form |V |O(1) for all contraction
steps together. Moreover, there are at most log2(m) many reduction steps as observed earlier, each with
running time polynomial in m and |V | by Lemma 6 and Theorem 7. As |V | > m by assumption, this
shows that reduction steps take time bounded by |V |O(1), as well. Finally, the algorithm enumerates
subsets of a set of size at most max{4m2, 2 · d4m/ρe}, i.e., 2O(m2+m/ρ) many sets. Adding these bounds
gives the result.

Guessing the optimal solution value up to a factor (1 + ε) and repeating Algorithm 1 polynomially
often independently implies our main result, Theorem 1.

Proof of Theorem 1. For all polynomially many values of α given in (3), we run Algorithm 1 with
ρ = ε

(1+ε) log2(m) for
(|V |
d4m/ρe

)
log |V | many times independently, and we return the best solution found

over all iterations. By Theorem 8, for α ∈ [OPT, (1 + ε)OPT), a single iteration returns a (1 + ε)-
approximate solution with probability at least 1/(|V |d4m/ρe

). Hence, among all iterations with this α, a (1+ε)-
approximate solution is found with probability at least

1−

(
1− 1(|V |

d4m/ρe
))(|V |d4m/ρe)·log |V |

> 1− e− log |V | = 1− 1

|V |
.

From the above proof of Theorem 1, we can immediately obtain a bound on the running time of our
PRAS for (CCMC): There are⌈

log1+ε

(
wtot

wmin

)⌉
+ 2 = O

(
log |V |+ log(wmax

wmin
)

log(1 + ε)

)
many guesses for the value of α, where we exploit that wtot 6 |V |2 · wmax. For each of these guesses,
we run Algorithm 1 for

(|V |
d4m/ρe

)
log |V | = |V |O(1+ε

ε
m logm) many times independently. Finally, by

Theorem 8, every such run takes time |V |O(1) + 2O(m2+ 1+ε
ε
m logm). Together, this gives a running time

bound of the form
log(wmax

wmin
)

log(1 + ε)
· |V |O(1+ε

ε
m logm) · 2O(m2) ,

which can be simplified to log
(
wmax
wmin

)
· |V |O(m logm

ε) · 2O(m2) for ε < 1. We remark that, by using
Megiddo’s parametric search technique [25, 26], we can get rid of the factor log

(
wmax
wmin

)
and thus obtain

a strongly polynomial time algorithm at the expense of a larger constant in the exponent of |V | that is
hidden by the O-notation.

10

3 Good contraction distributions through splitting-off

To obtain a good distribution for Karger-type contractions (Theorem 4), we construct a weighted aux-
iliary graph H = (V 6≡0, F), and then select a pair of vertices {u, v} ∈ F for contraction in G with
probabilities proportional to the edge weights in H . The construction of H is based on splitting-off
techniques, which, loosely speaking, allow for modifying a given graph such that certain connectivity
properties are preserved. Our interest lies in preserving the values ν({v}) = µG,w({v}, V6≡0 \ {v}) for
all v ∈ V 6≡0, where we use the notation µG,w(A,B) := min{w(δ(C)) | A ⊆ C ⊆ V \ B}. This is
achieved by the following theorem.

Theorem 9. Let G = (V,E) be a graph with edge weights w : E → R>0, and let Q ⊆ V . There is a
strongly polynomial time algorithm to obtain a graph H = (Q,F) and edge weights wH : F → R>0

such that
(i) wH(δH(q)) = µG,w({q}, Q \ {q}) for all q ∈ Q, and

(ii) wH(δH(C ∩Q)) 6 w(δG(C)) for all C ⊆ V .

We remark that similar theorems are known in literature, and there are various ways to derive the
version above, which we need for our purposes. A splitting-off theorem of Lovász [22] gives the exis-
tential result in an unweighted setting, and allows an immediate generalization to the weighted setting.
Alternatively, the non-algorithmic version of Theorem 9 can also be seen to be an implication of a result
on weakly parsimonious set functions by Bertsimas and Teo [5], which uses splitting-off, as well. In or-
der to obtain strongly polynomial algorithms complementing the existential results, ideas of Frank [11]
can be used. A full proof of Theorem 9 combining Lovász’ splitting-off result and Frank’s ideas is given
in Section 3.1. Let us now show how Theorem 9 is used to prove Theorem 4.

Proof of Theorem 4. Apply Theorem 9 to (G,w) with Q = V6≡0 to obtain the graph H = (V 6≡0, F) with
weights wH . The distribution D over vertex pairs {u, v} we use is given by choosing {u, v} ∈ F with
probability proportional to wH({u, v}). By Theorem 9 (i),

2 · wH(F) =
∑
v∈V6≡0

wH(δH(v)) =
∑
v∈V6≡0

µG,w({v}, Q \ {v}) =
∑
v∈V6≡0

ν({v}) .

If C is a solution of I with w(δ(C)) 6 α, then by choice of D and the above,

Pr{u,v}∼D
[
|{u, v} ∩ C| = 1

]
=
wH(δH(C ∩ V6≡0))

wH(F)
6

2 · w(δG(C))∑
v∈V6≡0

ν({v})
6

c

|V6≡0|
,

as desired, where the inequalities are due to Theorem 9 (ii), w(δG(C)) 6 α, and the assumption∑
v∈V6≡0

ν({v}) > 2α
c · |V 6≡0| in Theorem 4. To finish the proof, observe that the auxiliary graph H

can be constructed in time polynomial in |V | by Theorem 9, and the sampling procedure can be realized
in running time polynomial in |V |, too.

3.1 Proof of Theorem 9

As indicated above, Theorem 9 is a consequence of splitting-off techniques from Graph Theory, a funda-
mental tool dating back to the ’70s [22, 24, 23]. In this context, a graph is typically modified by repeat-
edly splitting off two edges from a vertex v, i.e., replacing two non-parallel edges {v, x} and {v, y} by
a new edge {x, y}, or deleting two parallel edges incident to v. Denoting µG(A,B) := min{|δG(C)| |
A ⊆ C ⊆ V \B} for a graph G = (V,E) and A,B ⊆ V , Lovász proved the following.

Theorem 10 (Lovász [22]). Let G = (V,E) be Eulerian, let Q ⊆ V , and let v ∈ V \Q. For every edge
{v, x} ∈ E, there exists another edge {v, y} ∈ E such that the graph G′ arising from G by splitting off
{v, x} and {v, y} from v satisfies

µG({q}, Q \ {q}) = µG′({q}, Q \ {q}) ∀q ∈ Q .

11

Iterative applications of Theorem 10 for fixed Q ⊆ V and v ∈ V \ Q result in a new graph on the
vertex set V \ v only, without changing the value of minimum cuts separating a single vertex q from
Q \ {q}, for all q ∈ Q. We aim for a generalization of this statement to a weighted setting, where
the graph G = (V,E) has edge weights w : E → R>0, a splitting operation consists of decreasing the
weight on two edges {v, x} and {v, y} by some ε > 0 while increasing the weight on the edge {x, y}
by ε, and we want the weighted cut values µG,w({q}, Q \ {q}) to be invariant. We claim that this is
achieved by Algorithm 2. We highlight that efficient weighted versions of other splitting-off results
(than Theorem 10) have already been studied extensively (see [11, 12, 29, 3, 27, 4, 28, 6, 21]), and our
method is heavily inspired by an approach of Frank [11].

Algorithm 2: Fractionally splitting off a single vertex.

Input: Graph G = (V,E) with edge weights w : E → R>0, Q ⊆ V , v ∈ V \Q.

foreach x, y ∈ NG(v) := {z ∈ V \ {v} | {v, z} ∈ E}, x 6= y do
foreach q ∈ Q do

Calculate the min cut sizes
cq1 = µG,w({q}, Q \ {q}) , cq2 = µG,w({q, v}, (Q \ {q}) ∪ {x, y}) , 7

and cq3 = µG,w({q, x, y}, (Q \ {q}) ∪ {v}) .

Split off ε from e1 = {v, x} and e2 = {v, y}, where

ε = min
q∈Q

min
{
(cq2 − c

q
1)/2, (c

q
3 − c

q
1)/2, w(e1), w(e2)

}
.

return Modified graph G with vertex v deleted and modified weights w.

In each iteration of the outer for-loop in Algorithm 2, we split off ε > 0 from {v, x} and {v, y}, with
ε chosen maximal so that all weights remain non-negative and the connectivities of interest are preserved.
This choice of ε implies that once the outer for-loop terminated, there is no pair of edges incident to v
from which a positive weight can be split off. Uniformly scaling all weights of this remaining graph to
even integral weights (which we interpret as edge multiplicities) and employing Theorem 10, we can
prove that there can only be a single edge with positive weight incident to v in the remaining graph,
which we can thus safely delete without affecting connectivities within V \ {v}.

The following lemma summarizes the guarantees that we thereby obtain for Algorithm 2.

Lemma 11. Let G = (V,E) be a graph with edge weights w : E → R>0, let Q (V and v ∈
V \Q. On this input, Algorithm 2 returns, in running time dominated byO(|V |3) many minimum s-t cut
computations in contractions of (G,w), a graph H = (V \ {v}, F) with edge weights wH : F → R>0

such that
(i) µH,wH ({q}, Q \ {q}) = µG,w({q}, Q \ {q}) for all q ∈ Q, and

(ii) wH(δH(C \ {v})) 6 w(δG(C)) for all C ⊆ V .

Proof. Consider a splitting operation performed in Algorithm 2 on edges e1 = {v, x} and e2 = {v, y}
for x 6= y, i.e., the weights on e1 and e2 are decreased by ε while the weight on {x, y} is increased by
ε. Such an operation changes the values of precisely those cuts that separate v from {x, y}, and their
values all decrease by 2ε. Thus, cut values never increase in splitting steps, and neither do they when
deleting v at the end of Algorithm 2, implying point (ii).

Moreover, observe that cq2 and cq3 computed in Algorithm 2 are precisely the minimum values of cuts
separating q fromQ\{q} and v from {x, y}. Thus, choosing ε 6 min

{
(cq2 − c

q
1)/2, (c

q
3 − c

q
1)/2
}

guarantees
that the values of these cuts do not decrease below µ({q}, Q \ {q}). In other words, µ({q}, Q \ {q})
remains invariant under all splitting operations in Algorithm 2. Additionally, ε 6 min{w(e1), w(e2)}
ensures that edge weights are always non-negative.

7If q ∈ {x, y}, then cq2 = µG,w({q, v}, (Q \ {q}) ∪ {x, y}) is the value of an infeasible cut problem (because both
arguments of µG,w contain q), which we interpret as∞.

12

The extremal choice of ε implies that after the splitting operation is applied to a pair of edges (e1, e2),
either one of w(e1) and w(e2) is zero, or there is a vertex q ∈ Q and a cut C ⊆ V with the following
property: C separates q from Q \ {q} as well as v from {x, y}, and w(δ(C)) = µ(q,Q \ {q}). We call
such a cut tight for the pair (e1, e2), as any further reduction of w(e1) or w(e2) would reduce the value
of C and hence also µ(q,Q \ {q}). Observe that once a cut is tight for a pair of edges, it remains tight
under all subsequent splitting operations.

Let (G′, w′) be the weighted graph obtained from (G,w) after performing all O(n2) splitting oper-
ations in Algorithm 2. We claim that (G′, w′) has at most one edge with non-negative weight incident
to v. If so, deleting v (and all its incident edges) from G′ does not reduce µ(q,Q \ {q}) for any q ∈ Q,
hence the resulting graph has the desired properties. To see the claim, assume by contradiction that
in (G′, w′), there is more than one edge with positive weight incident to v. Then, there is a tight cut
for each pair of such edges, implying that none of the edge weights can be reduced without reducing
µ(q,Q \ {q}) for some q ∈ Q. Now scale w′ by an integer M > 0 such that all edge weights become
even integers, and interpret these edge weights as edge multiplicities. Doing so, we obtain an Eulerian
graph to which Theorem 10 is applicable, resulting in a pair of (potentially parallel) edges that can be
split off from v without affecting µ(q,Q \ {q}). But deleting an edge incident to v in this new graph
corresponds to reducing the weight of the corresponding edge in G′ by 1/M. By assumption, the latter
does reduce µ(q,Q \ {q}), a contradiction.

Finally, observe that the values µG,w(A,B) needed in Algorithm 2 are infinite if A ∩ B 6= ∅, and
else they can be computed as the values of minimum s-t cuts in the contraction of G where A and
B are contracted to vertices s and t, respectively. Three such values are computed for every triple
(x, y, q) consisting of x, y ∈ NG(v) with x 6= y and q ∈ Q, and these O(|V |3) many minimum s-t cut
computations indeed dominate the overall running time.

Applying Lemma 11 iteratively for all v ∈ V \ Q reduces the graph G to the vertex set Q while
maintaining the desired cut sizes, and thus immediately yields Theorem 9.

As indicated earlier in this section, there are different versions of splitting-off techniques. Some
better known ones, for which strongly polynomial algorithms are already known, preserve pairwise
connectivities among vertices in Q ⊆ V instead of fulfilling the guarantees stated in Theorem 10. In
Section 5, we show that under slightly stronger assumptions, these standard splitting-off techniques
can also be used to obtain contraction distributions with the properties given in Theorem 4, with the
necessary stronger assumptions leading to a weaker running time guarantee for Algorithm 1.

4 Further structural properties and their implications

Karger’s mininum cut algorithm also provides a means of proving that a minimum cut problem has only
polynomially many optimal solutions, and repeated applications of Karger’s algorithm can find all these
solutions with high probability. As discussed, analogous results cannot hold for (CCMC) problems.
Note that in contrast to Karger’s algorithm, our Contraction-Reduction Algorithm does not contract
pairs of vertices until only two of them are left, but it stops early and terminates in an enumeration
phase, solving reduced s-t cut problems. Following the spirit of the above-mentioned implications of
Karger’s algorithm, we obtain a structural result on these s-t cut instances. To state this result in full
generality, we need the following congruency-constrained version of minimum s-t cut problems.

Congruency-Constrained Minimum s-t Cut (s-t CCMC): Let G = (V,E) be an undirected
graph with edge weights w : E → R>0 and let γ : V → Z>0. Let m ∈ Z>0 and r ∈ Z>0, and
let s, t ∈ V be two distinct vertices. The task is to find a minimizer of

min

{
w(δ(C))

∣∣∣∣∣ {s} ⊆ C ⊆ V \ {t}, ∑
v∈C

γ(v) ≡ r (mod m)

}
. (s-t CCMC)

13

Note that (s-t CCMC) problems can easily be modeled by (CCMC) problems if one allows to in-
crease the modulus by an additional factor.8 The subsequent theorem shows that the opposite reduction
can be done, as well: Every (CCMC) problem can be reduced to polynomially many (s-t CCMC) prob-
lems with a smaller modulus.

Theorem 12. Consider a (CCMC) problem on G = (V,E) with constant modulus m > 1 and nonzero
optimal value, and let κ ≥ 1 be a constant. Then there is an efficient randomized algorithm returning
poly(|V |) many (s-t CCMC) instances that (i) are defined on contractions of G with modified vertex
multiplicities, and (ii) have a modulus that is a divisor of m strictly smaller than m, such that the fol-
lowing holds with high probability, where OPT denotes the optimal solution value of the initial (CCMC)
problem: A cut C (V , C 6= ∅, is a solution to the initial (CCMC) problem of value at most κ ·OPT if
and only ifC is a feasible solution of value at most κ·OPT in one of the returned (s-t CCMC) instances.

While the reduction of the modulusm obtained in the above theorem looks promising, the additional
hurdle introduced by the transition to (s-t CCMC) instances seems to be substantial. We know efficient
algorithms only for very special cases of (s-t CCMC) instances, one of them being the case of prime
moduli, where a reduction to congruency-constrained submodular minimization is possible. This can be
exploited to prove Theorem 2.

Proof of Theorem 2. Let I be the given (CCMC) instance with modulus m that is a product of two
primes. Let C be an optimal solution of I and denote its value by OPT. If OPT = 0, an optimal
solution can be found easily by contracting the components and finding a union of them satisfying the
congruency constraint. Else, an application of Theorem 12 to I with κ = 1 results in a polynomial
number of (s-t CCMC) instances I1, . . . , I`. By Theorem 12, C is a feasible solution to at least one
of these instances with high probability. On the other hand, Theorem 12 also asserts that the instances
I1, . . . , I` are defined on contractions of the initial graph G with weights induced by the initial weights,
hence their optimal values are all at least OPT. Thus, we conclude that with high probability, C is an
optimal solution to at least one of the instances I1, . . . , I`.

To conclude Theorem 2, it is enough to show that the instances I1, . . . , I` can all be solved in
polynomial time. To see this, fix an instance Ik. By Theorem 12, its modulus m′ is a divisor of m that is
strictly smaller than m. As m is a product of two primes, m′ equals 1 or is a prime number. In the first
case, Ik is an unconstrained minimum s-t cut problem, which can be solved efficiently. In the other case,
Ik is a (s-t CCMC) instance with modulus equal to a prime number. This problem can easily be seen
to be a special case of congruency-constrained submodular function minimization with prime modulus,
which can be solved efficiently and to optimality as shown in [30].

Finally, if the modulus of the input problem in Theorem 12 is a prime number, the only feasible
reduction of the modulus to one of its divisors is a reduction to modulus 1—and hence, to s-t cut
problems without congruency constraint, which we exploit to prove Theorem 3.

Proof of Theorem 3. An application of Theorem 12 to the given instance with the given parameter κ
results in polynomially many (s-t CCMC) instances. As the modulus of the given instance is a prime
number, Theorem 12 implies that all the returned instances have modulus 1, i.e., they are in fact mini-
mum s-t cut problems (without congruency constraint). Thus, Theorem 12 asserts that these instances
have precisely the properties claimed by Theorem 3.

4.1 Proof of Theorem 12

In this section, we show that Theorem 12 can be deduced from Algorithm 1. To this end, we add some
further insights to the discussion of Algorithm 1 given in Section 2. In particular, observe that during
a call of the algorithm on a (CCMC) instance I = (G,w, γ,m, r), the input graph G is repeatedly

8An (s-t CCMC) instance (G,w, γ,m, r, s, t) is captured by the (CCMC) instance (G,w, γ̂, m̂, r̂), where γ̂(v) = 3 ·γ(v)
for v /∈ {s, t}, γ̂(s) = 3 · γ(s) + 1, γ̂(t) = 3 · γ(t) + 2, m̂ = 3 ·m, and r̂ = 3 · r + 1, for example.

14

modified by random contractions, until the if-block of Algorithm 1 is reached (potentially only after
several recursive calls to itself). Within the if-block, problems of the form

min{w(δ(C)) | ∅ (C (V, C ∩ V 6≡0 = S} (7)

are solved for certain sets S ⊆ V 6≡0. Problems of this type can be immediately reduced to minimum s-t
cut problems in a further contracted graph: If S /∈ {∅, V6≡0}, then contract S and V6≡0 \ S to vertices s
and t, respectively, and the problem in (7) is equivalent to the minimum s-t cut problem in the contracted
graph. If S = ∅, contract V 6≡0 to a vertex t, and a solution of (7) can be obtained by solving the minimum
v-t cut problems for all v ∈ V \V 6≡0 and returning the solution of minimum value. Similarly, if S = V 6≡0,
contract V6≡0 to a vertex s, and the best solution among all solutions to the minimum s-v cut problems
for v ∈ V \ V6≡0 solves (7).

Recall that these minimum s-t cut instances on contractions ofG come with weights and vertex mul-
tiplicities induced by the original weights w and vertex multiplicities γ such that any cut C in the con-
tracted graph has the same weight w(δ(C)) and value γ(C) as the corresponding cut in the initial graph.
Hence, after imposing the original congruency constraint γ(C) ≡ r (mod m), we obtain (s-t CCMC)
instances which we call the instances reached by Algorithm 1. Note that these instances have modulus
m equal to the input modulus, and not the potentially smaller modulus that is used in the call where the
if-block is reached. The instances defined this way have several useful properties, and we will see that
they are essentially the instances claimed by Theorem 12. More precisely, the only missing property
compared to the instances in Theorem 12 is that they still have modulus m. In Lemma 17, we will see
that their structure allows for reducing the modulus to a divisor of m that is strictly smaller than m.
Finally, analogous to the proof of Theorem 1, to obtain a sufficiently high success probability, we will
run Algorithm 1 multiple times independently, and consider all (s-t CCMC) problems reached by these
runs to construct the desired family of (s-t CCMC) problems as claimed in Theorem 12.

We start with two quick observations. First, note that the enumeration is done only if V6≡0 reaches
constant size, hence there are at most poly(|V |) many candidates S ⊆ V6≡0 to be enumerated over. For
every such choice of S, Algorithm 1 reaches either a single or linearly many (s-t CCMC) instances.
Combining these arguments, we obtain Observation 13.

Observation 13. The family of (s-t CCMC) instances reached by Algorithm 1 in a single run has size
at most poly(|V |).

Additionally, note that contractions and the transition from a global cut problem to an s-t cut problem
for certain vertices s and t of the graph only reduce the set of feasible solutions, implying Observation 14.

Observation 14. A cut C that is feasible for an (s-t CCMC) instance reached by Algorithm 1 is feasible
for the input problem, and the weight of the cut is the same with respect to the two instances.

For the other direction, we saw in the proof of Theorem 8 that for a suitable guess α of the optimal
solution value, an optimal solution C of the input (CCMC) problem is not destroyed in the random
contraction phase of Algorithm 1 (i.e., none of the contractions are applied to two vertices lying on
different sides of C) with probability at least 1/poly(|V |). The following lemma shows that with a slightly
larger choice of the optimal solution value guess, this result extends to almost-minimum cuts.

Lemma 15. Let I be a (CCMC) instance with optimal solution value denoted by OPT, let κ > 1, and
let F be the family of (s-t CCMC) instances reached by Algorithm 1 on input I with optimal value
guess α > κ · OPT and error parameter ρ > 0. Then, the probability that a feasible solution C of I
with value at most κ ·OPT is also feasible for at least one of the instances in F is at least 1/

(|V |
d4m/ρe

).
Proof. Fix a feasible solution C of I with w(δ(C)) 6 κ ·OPT. Let mi ∈ Z≥0 and si ∈ Z≥0 denote the
modulus and the size of V 6≡0, respectively, when the ith contraction step is performed. By assumption,
α > κ ·OPT, hence Theorem 4 with c = 2mi/ρ guarantees that

Pr[contraction i is bad w.r.t. C] 6
4mi

ρ · |V6≡0|
6
ki
si

,

15

where we define ki :=
⌈
4mi
ρ

⌉
. Following the very same reasoning as in the proof of Theorem 8, we get

Pr

[
no random contraction is bad w.r.t. C

throughout a full run of Algorithm 1 on I

]
>

1(|V |
k1

) =
1(|V |

4m/ρ

) .

Thus, with the above probability, C is still feasible once Algorithm 1 reaches the if-block. In this case,
among all (s-t CCMC) instances reached by Algorithm 1 in the if-block, the cut C is feasible for at least
the one instance reached when choosing S = V 6≡0 ∩ C. This concludes the proof.

Besides preserving almost-minimum cuts with inverse polynomial probability, the (s-t CCMC) in-
stances reached by Algorithm 1 have structured vertex multiplicities γ as stated by Lemma 16 below.
This structure directly reflects the enumeration step performed in the if-block of Algorithm 1, where the
choice of a suitable subset S ⊆ V 6≡0 guarantees that the remaining congruency constraint (note that at
this stage, the modulus may have reduced to a divisor m0 of m) is satisfied for every feasible solution
of the resulting s-t cut problem. Showing that we must have m0 > 1 under a mild assumption on the
algorithm parameters α and ρ, we obtain the following.

Lemma 16. Let I = (G,w, γ,m, r) be a (CCMC) instance such that m > 1 and denote its optimal
value by OPT. Let I ′ = (G′, w′, γ′,m, r, s, t) be an (s-t CCMC) instance reached by Algorithm 1 in a
call on I with error parameter ρ > 0 and optimal solution guess α > 0 such that ρα < OPT. Then,
there exists a divisor m0 of m with m0 > 1 such that γ(v) ≡ 0 (mod m0) for all vertices v of G′ with
v /∈ {s, t}.

Proof. When processing a (CCMC) instance I, Algorithm 1 starts with repeatedly doing random con-
tractions and reduction steps, with each of the latter ones issuing a recursive call to Algorithm 1 using
a modulus that is a divisor of the input modulus m. When there are only few vertices in V 6≡0 left, an
enumeration over subsets of V 6≡0 is performed. Let m0 be the modulus used when the if-block is started,
and let S ⊆ V6≡0 be the subset used in the enumeration step to reach I ′. If S ∈ {∅, V6≡0}, then the set
V 6≡0 is contracted and used in I ′ as vertex s or t. In the other case, S and V6≡0 \ S get contracted to the
vertices s and t. Thus, in both cases, a vertex v of the contracted graph different from s and t lies in
V \ V6≡0, so by definition of V 6≡0, it satisfies γ(v) ≡ 0 (mod m0).

Consequently, it remains to prove that m0 > 1. To this end, assume m0 = 1 and consider the
reduction step that leads to the recursive call of Algorithm 1 with modulus 1. This reduction step can
only be performed if there is a reduction family R(β, q) for β = ρα

m and some q ∈ [m − 1] with
gcd(m, q) = 1, where the latter condition comes from the assumption that the modulus is reduced to 1.
By definition of a reduction family, we have |R(β, q)| = 2m − 1, i.e., R(β, q) = {R1, . . . , R2m−1},
and every set Ri contains one vertex ui with γ(ui) ≡ q (mod m), while all other vertices have γ-value
0 (mod m). Furthermore, the vertices u1, . . . , u2m−1 are all distinct. Let k ∈ [m] be such that qk ≡ r
(mod m) (such a k exists as gcd(m, q) = 1), and let C := R1 ∪ . . . ∪ Rk. Observe that C is feasible
for I, as ∅ 6= C (V because u1 ∈ C and u2m−1 /∈ C, and γ(C) =

∑k
i=1 γ(ui) ≡ k · q ≡ r (mod m).

But
w(δ(C)) 6

∑
i∈[k]

w(δ(Ri)) 6 k · β 6 ρα < OPT ,

contradicting that OPT is the optimal solution value of I. Thus indeed, we must have m0 > 1.

We remark that the assumptions of Lemma 16 imply OPT > 0, which is inevitable. Indeed, consider
an instance only consisting of isolated vertices with γ(v) ≡ 1 (mod m) and congruency constraint
γ(C) ≡ 1 (mod m). As there are no edges at all, no contractions can be applied, and an efficient
enumeration is not possible either, leaving only a reduction to modulus 1—making an argument as in
the previous proof impossible. This also explains why we have to assume that the optimal solution value
is nonzero in Theorem 12.

Furthermore, note that in the proof of Lemma 16, we show that the modulus m0 that is used when
reaching the enumeration phase satisfies m0 > 1 if ρα < OPT. Equivalently, Algorithm 1 never

16

reduces to global minimum cut instances for input moduli m > 1. In particular, no reduction steps are
performed at all if m is a prime, hence in this case and under the given condition on ρ and α, we see that
Algorithm 1 is exact.

Finally, it is easy to observe that the structured (CCMC) instances as specified in Lemma 16 can be
transformed to equivalent (s-t CCMC) instances with strictly smaller modulus.

Lemma 17. Let I = (G,w, γ,m, r, s, t) be an (s-t CCMC) instance on a graph G = (V,E) such that
there exists a divisor m0 of m satisfying γ(v) ≡ 0 (mod m0) for all vertices v ∈ V \ {s, t}. Then,
we can efficiently obtain an (s-t CCMC) instance I ′ on the same edge-weighted graph G with modulus
m/m0 such that a cut C ⊆ V is feasible for I if and only if C is feasible for I ′.

Proof. If I is infeasible, there is nothing to show (and feasibility can be checked efficiently). In the
other case, we must have γ(s) ≡ r (mod m0), hence r′ := r−(γ(s) mod m0)

m0
∈ Z, where for v ∈ V ,

(γ(v) mod m0) denotes the smallest non-negative integer k such that γ(v) ≡ k (mod m0). Moreover,
let m′ := m

m0
∈ Z, and define γ′ : V → Z>0 by

γ′(v) =
γ(v)− (γ(v) mod m0)

m0

for all v ∈ V . We claim that I ′ = (G,w, γ′,m′, r′, s, t) has the desired properties.
To see this, let C ⊆ V be a feasible solution for I. Then γ(C) ≡ r (mod m), and thus by definition

of γ′ and as γ(v) ≡ 0 (mod m0) for all v ∈ C \ {s},

m0 · γ′(C) = γ(C)− (γ(s) mod m0)

≡ r − (γ(s) mod m0)

≡ m0 · r′ (mod m) ,

and thus, after division by m0, γ′(C) ≡ r′ (mod m′), so C is feasible for I ′. For the other direction,
let C ⊆ V be feasible for I ′, i.e., γ′(C) ≡ r′ (mod m′). After multiplication by m0, the latter gives
m0 · γ′(C) ≡ r − (γ(s) mod m0) (mod m), hence

γ(C) = m0 · γ′(C) + (γ(s) mod m0) ≡ r (mod m) ,

so C is feasible for I. Finally, observe that I ′ can obviously be obtained from I efficiently.

From the above findings, we can now complete a proof of Theorem 12.

Proof of Theorem 12. Let I be the given (CCMC) instance. For all polynomially many values

α ∈
{
κ · 2j · wmin

∣∣ 0 6 j 6 dlog2(wtot/wmin)e
}
,

we run Algorithm 1 on I with ρ = 1
2κ for

(|V |
d8κme

)
log |V | times independently, obtaining families Fαi of

(s-t CCMC) instances reached by the algorithm with guess α in the ith run. By Observation 14, any cut
C that is a solution to one of the problems in

⋃
α,iFαi is a solution to I, as well, and the solutions have

the same value.
For the other direction, fix a solution C of I with value at most κ · OPT, and consider the families

Fαi obtained from a run of Algorithm 1 with α ∈ [κ · OPT, 2κ · OPT). By Lemma 15, for each of
these

(|V |
d8κme

)
log |V | many families Fαi , the following is true: With probability 1/

(|V |
d8κme

), it contains
an (s-t CCMC) instance for which C is feasible. Consequently, with probability at least

1−

(
1− 1(|V |

d8κme
))(|V |d8κme)·log |V |

> 1− e− log |V | = 1− 1

|V |
,

17

the cut C is feasible for at least one instance in
⋃
iFαi . As by Observation 13, every family Fαi has

polynomial size, and because we generated polynomially many such families, F :=
⋃
i,αFαi has poly-

nomial size. Thus, the (s-t CCMC) instances in F have all properties stated in Theorem 12 except for
the fact that their modulus is still m. But, by Lemma 16 (note that ρα < OPT as α < 2κ · OPT), the
instances inF satisfy the assumptions of Lemma 17, and thus can be transformed to equivalent instances
on the same edge-weighted graphs with moduli that are divisors of m and strictly smaller than m, as
desired.

5 Weaker contraction distributions from standard splitting techniques

The proof of Theorem 4 given in Section 3 is built on an algorithmic version of the splitting-off theorem
by Lovász (Theorem 10), which allows for reducing a graph G = (V,E) while preserving the sizes of
minimum cuts separating the sets {q} and Q \ {q} for a fixed Q ⊆ V and all q ∈ Q. This splitting-off
version is much less known and studied than the most common variant which preserves all pairwise
connectivities among vertices in a subset Q ⊆ V . In this section, we show that these better-known
splitting-off versions, for which strongly polynomial algorithms are already known, also allow for con-
structing contraction distributions for our purposes that are only slightly weaker than those obtained in
Section 3.

Let us start by stating one of the above-mentioned standard versions of splitting-off results, namely
a theorem of Frank [11]. We write µG,w(s, t) instead of µG,w({s}, {t}) for the value of a minimum cut
separating distinct vertices s and t.

Theorem 18 (Frank [11]).9 LetG = (V,E) be a graph with edge weightsw : E → R>0, and letQ ⊆ V .
Then there is a strongly polynomial time algorithm to obtain a graph H = (Q,F) and edge weights
wH : F → R>0 satisfying

(i) µG,w(s, t) = µH,wH (s, t) for all s, t ∈ Q with s 6= t, and
(ii) wH(δH(C ∩Q)) 6 w(δG(C)) for all C ⊆ V .

For the rest of this section, let us fix a (CCMC) instance I = (G,w, γ,m, r) with graphG = (V,E),
and let H = (V6≡0, F) with edge weights wH : F → R>0 be a graph obtained by applying Theorem 18
to (G,w) with Q = V 6≡0. Moreover, let D be the distribution over vertex pairs {u, v} ⊆ V given by
choosing {u, v} ∈ F with probability proportional to wH({u, v}). For this distribution D, we show the
following theorem, which is a weaker version of Theorem 4.

Theorem 19. Let α > 0 and c > 0 with
∑

v∈V6≡0
ν({v}) > 4α

c · |V 6≡0|. Then, for any feasible solution C
of the instance I with w(δ(C)) 6 α, the distribution D satisfies Pr{u,v}∼D

[
|{u, v} ∩ C| = 1

]
6 c/|V6≡0|.

Note that compared to Theorem 4, the assumption in Theorem 19 is stronger by a factor of 2. This
implies that the analogue of Algorithm 1 which contracts vertices based on the distribution D obtained
in this section can perform contraction steps only if stronger assumptions are satisfied, and thus has to
fall back on reduction or enumeration steps earlier. This leads to an increase in running time.

The proof of Theorem 19 is similar to the one of Theorem 4. There, we could exploit that by
construction, wH(F) = 1

2

∑
v∈V6≡0

ν({v}). This is no longer true in the current alternative setting, but
we can instead use the following bound.

Theorem 20. We have wH(F) > 1
4

∑
v∈V6≡0

ν({v}) .

This indeed implies Theorem 19 immediately.
9Frank shows how to get (i). However, (ii) is immediate from the fact that Frank’s algorithm performs classical splitting-

off operations. More precisely, the method repeatedly considers a pair of edges {w, v}, {w, u} sharing one endpoint w, and
reduces their weights by some ε > 0, while increasing the weight of {v, u} by ε (if needed, a new edge {v, u} is introduced).
Clearly, this way of modifying weights will never increase the value of any cut.

18

Proof of Theorem 19. If C is a solution of I with w(δ(C)) 6 α, then by the choice of D,

Pr{u,v}∼D
[
|{u, v} ∩ C| = 1

]
=
wH(δH(C ∩ V6≡0))

wH(F)
6

4 · w(δG(C))∑
v∈V 6≡0

ν({v})
6

c

|V 6≡0|
,

where the first inequality is due to Theorem 18 (ii) and Theorem 20, and the second one follows from
w(δG(C)) 6 α and the assumption that

∑
v∈V6≡0

ν({v}) > 4α
c · |V6≡0|.

It thus remains to show Theorem 20. To this end, we use the notion of a Gomory-Hu tree [14] (see
also [20, 33] for two excellent exhibitions of the topic). More precisely, we consider a Gomory-Hu tree
T = (V 6≡0, L) for V 6≡0 inG. This is a spanning tree over V 6≡0, where the edges L ⊆

(
V6≡0
2

)
of the spanning

tree are not necessarily edges of G. Moreover, the edges L of T have weights wT : L→ R>0, such that

wT ({s, t}) = µG,w(s, t) = ν(Cs,t) ∀{s, t} ∈ L , (8)

where Cs,t ⊆ V 6≡0 are all vertices of the graph (V6≡0, L\{s, t}) in the connected component that contains
s.10 To prove Theorem 20, the next two lemmas relate both the wH-weight of F and the values ν({v}),
respectively, to weights on the Gomory-Hu tree T , which then allows us to compare them.

Lemma 21. For all v ∈ V6≡0, we have ν({v}) 6 wT (δT (v)) .

Proof. Let k := |δT (v)|, and let t1, . . . , tk ∈ V6≡0 be the neighbors of v in T . The desired result holds
due to

ν({v}) 6
k∑
i=1

ν(Cv,ti) =
k∑
i=1

wT ({v, ti}) = wT (δT (v)) ,

where the inequality holds because a cut in G that separates v from V6≡0 \ {v} can be obtained by
removing, for each i ∈ [k], the minimum cut in G that separates Cv,ti from V 6≡0 \ Cv,ti ; moreover, the
first equality follows from (8).

Lemma 22. We have wT (T) 6 2wH(F) .

Proof. We start by showing that

wH(δH(v)) > wT (f) ∀f ∈ δT (v) . (9)

The above holds because for any f = {u, v} ∈ δT (v), we have

wT (f) = µG,w(u, v) = µH,wH (u, v) 6 wH(δH(v)) ,

where the first equality follows from (8), the second one from Theorem 18 (i), and the inequality holds
because wH(δH(v)) is the value of the singleton cut {v} in H , which is a v-u cut, and µH,wH (u, v) is
the value of the smallest v-u cut in H .

Finally, to show the lemma, we choose an arbitrary vertex r ∈ V 6≡0, and direct all edges L of
T = (V6≡0, L) away from r, to obtain an r-arborescence. This arborescence can be interpreted as a
bijection between L and V 6≡0 \ {r}, where an edge f ∈ L gets assigned to the vertex in V 6≡0 to which it
points to. Now for each edge {u, v} ∈ L, we have wT (f) ≤ wH(δH(v)) by (9), where v is the vertex to
which f points to. Hence, by summing over all edges in T , we obtain the first inequality in the following
relation, which proves the statement:

wT (L) 6
∑

v∈V6≡0\{r}

wH(δH(v)) 6
∑
v∈V6≡0

wH(δH(v)) = 2wH(F) ,

where the equality is the classical relation that the sum of weighted degrees is equal to twice the total
weight.

10A more classical notion of Gomory-Hu trees considers a spanning tree over all vertices of G. However, the generalized
version we need, with a tree only over a subset of the vertices, can be readily derived from the more classical version, and often
follows as a byproduct when building classical Gomory-Hu trees (see proof of Theorem 15.14 in [33] for a formal proof).

19

With the above two statements at hand, Theorem 20 is a straightforward consequence.

Proof of Theorem 20. We have

wH(F) >
1

2
wT (T) =

1

4

∑
v∈V6≡0

wT (δT (v)) >
1

4

∑
v∈V6≡0

ν({v}) ,

where the first inequality follows from Lemma 22, the equality holds because the sum of weighted
degrees is twice the total weight, and the second inequality holds due to Lemma 21.

References

[1] S. Artmann, R. Weismantel, and R. Zenklusen. A strongly polynomial algorithm for bimodular
integer linear programming. In Proceedings of the 49th Annual ACM Symposium on Theory of
Computing (STOC), pages 1206–1219, 2017.

[2] F. Barahona and M. Conforti. A construction for binary matroids. Discrete Mathematics,
66(3):213–218, 1987.

[3] A. A. Benczúr. A representation of cuts within 6/5 times the edge connectivity with applications.
In Proceedings of the 36th Annual Symposium on Foundations of Computer Science (FOCS), pages
92–102, 1995.

[4] A. A. Benczúr and D. R. Karger. Augmenting undirected edge connectivity in O(n2) time. In
Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
500–509, 1998.

[5] D. Bertsimas and C. Teo. The parsimonious property of cut covering problems and its applications.
Operations Research Letters, 21(3):123–132, 1997.

[6] A. Bhalgat, R. Hariharan, T. Kavitha, and D. Panigrahi. Fast edge splitting and Edmonds’ ar-
borescence construction for unweighted graphs. In Proceedings of the 19th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 455–464, 2008.

[7] A. Bock, Y. Faenza, C. Moldenhauer, and A. J. Ruiz-Vargas. Solving the stable set problem in
terms of the odd cycle packing number. In Proceedings of the 34th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS), pages 187–198,
2014.

[8] K. Chandrasekaran, C. Xu, and X. Yu. Hypergraph k-cut in randomized polynomial time. In
Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1426–1438, 2018.

[9] M. Di Summa, F. Eisenbrand, Y. Faenza, and C. Moldenhauer. On largest volume simplices and
sub-determinants. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 315–323, 2015.

[10] F. Eisenbrand and S. Vempala. Geometric random edge. Mathematical Programming, 164(1):325–
339, 2017.

[11] A. Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM Journal on Discrete
Mathematics, 5(1):25–53, 1992.

[12] H. N. Gabow. Efficient splitting off algorithms for graphs. In Proceedings of the 26th Annual ACM
Symposium on Theory of Computing (STOC), pages 696–705, 1994.

20

[13] M. X. Goemans and V. S. Ramakrishnan. Minimizing submodular functions over families of sets.
Combinatorica, 15(4):499–513, 1995.

[14] R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, 9(4):551–570, 1961.

[15] J. W. Grossman, D. M. Kulkarni, and I. E. Schochetman. On the minors of an incidence matrix
and its smith normal form. Linear Algebra and its Applications, 218:213–224, 1995.

[16] M. Grötschel, L. Lovász, and A. Schrijver. Corrigendum to our paper “The ellipsoid method and
its consequences in combinatorial optimization”. Combinatorica, 4(4):291–295, 1984.

[17] D. R. Karger. Global min-cuts in RNC, and other ramifications of a simple min-cut algorithm.
In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
21–30, 1993.

[18] D. R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the ACM,
43(4):601–640, 1996.

[19] S. Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM
Journal on Computing, 36(4):1025–1071, 2006.

[20] B. Korte and J. Vygen. Combinatorial Optimization, Theory and Algorithms. Springer, 6th edition,
2018.

[21] L. Lau and C. Yung. Efficient edge splitting-off algorithms maintaining all-pairs edge-
connectivities. SIAM Journal on Computing, 42(3):1185–1200, 2013.

[22] L. Lovász. On some connectivity properties of Eulerian graphs. Acta Mathematica Academiae
Scientiarum Hungarica, 28(1):129–138, 1976.

[23] L. Lovász. Combinatorial Problems and Exercises. North-Holland, Amsterdam, 1979.

[24] W. Mader. A reduction method for edge-connectivity in graphs. Annals of Discrete Mathematics,
3:145–164, 1978.

[25] N. Megiddo. Combinatorial optimization with rational objective functions. Mathematics of Oper-
ations Research, 4(4):414–424, 1979.

[26] N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms. Journal
of the ACM, 30(4):852–865, 1983.

[27] H. Nagamochi and T. Ibaraki. Deterministic O(nm) time edge-splitting in undirected graphs. In
Proceedings of the 28th Annual ACM Symposium on Theory of Computing (STOC), pages 64–73,
1996.

[28] H. Nagamochi, S. Nakamura, and T. Ibaraki. A simplifiedO(nm) time edge-splitting algorithm in
undirected graphs. Algorithmica, 26(1):50–67, 2000.

[29] H. Nagamochi, K. Nishimura, and T. Ibaraki. Computing all small cuts in undirected networks. In
International Symposium on Algorithms and Computation (ISAAC), pages 190–198, 1994.

[30] M. Nägele, B. Sudakov, and R. Zenklusen. Submodular minimization under congruency con-
straints. In Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 849–866, 2018.

[31] A. Nikolov. Randomized rounding for the largest simplex problem. In Proceedings of the 47th
Annual ACM Symposium on Theory of Computing (STOC), pages 861–870, 2015.

21

[32] M. W. Padberg and M. R. Rao. Odd minimum cut-sets and b-matchings. Mathematics of Opera-
tions Research, 7(1):67–80, 1982.

[33] A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer, 2003.

22

