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Aerial Single-View Depth Completion

with Image-Guided Uncertainty Estimation

Lucas Teixeira1, Martin R. Oswald2, Marc Pollefeys2, and Margarita Chli1

Abstract—On the pursuit of autonomous flying robots, the
scientific community has been developing onboard real-time
algorithms for localisation, mapping and planning. Despite recent
progress, the available solutions still lack accuracy and robustness
in many aspects. While mapping for autonomous cars had a
substantive boost using deep-learning techniques to enhance
LIDAR measurements using image-based depth completion, the
large viewpoint variations experienced by aerial vehicles are still
posing major challenges for learning-based mapping approaches.
In this paper, we propose a depth completion and uncertainty
estimation approach that better handles the challenges of aerial
platforms, such as large viewpoint and depth variations, and
limited computing resources. The core of our method is a novel
compact network that performs both depth completion and
confidence estimation using an image-guided approach. Real-
time performance onboard a GPU suitable for small flying
robots is achieved by sharing deep features between both tasks.
Experiments demonstrate that our network outperforms the
state-of-the-art in depth completion and uncertainty estimation
for single-view methods on mobile GPUs. We further present a
new photorealistic aerial depth completion dataset that exhibits
more challenging depth completion scenarios than the established
indoor and car driving datasets. The dataset includes an open-
source, visual-inertial UAV simulator for photo-realistic data
generation. Our results show that our network trained on this
dataset can be directly deployed on real-world outdoor aerial
public datasets without fine-tuning or style transfer.

Index Terms—Aerial Systems: Perception and Autonomy; Deep
Learning in Robotics and Automation

I. INTRODUCTION

Spatial awareness is a crucial capability for autonomous

mobile robots. The ability of a mobile robot to sense its

surroundings to gain enough understanding of the environ-

ment is of fundamental importance for performing realistic

autonomous tasks, such as visually inspecting a building
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Fig. 1: Qualitative results of the proposed network trained on our new aerial
dataset and tested on the public ETHZ CAB Building Aerial Dataset [3]. The input
to our approach is an image and a sparse depth map. The output is the guided
depth and guided confidence. This confidence indicates the probability of each
pixel in the guided-depth map to be valid. The jet colour map is used in all colour-
coded maps in this letter (low high; grey means unknown depth). Our
results show that the confidence and the error have a high inverse correlation. As
a result, the guided-depth-map pixels with low confidence can be eliminated.

while avoiding collisions. To this end, several approaches for

Simultaneous Localisation And Mapping (SLAM) have been

proposed in the literature, as robotic ego-motion estimation

and map building are core competencies necessary for spatial

understanding. While state-of-the-art SLAM systems provide

localisation estimates that are accurate enough for controlling

the motion of a wide range of robots, the sparsity of traditional

SLAM maps is usually a problem for path planning and

collision avoidance [1]. Although several SLAM approaches,

such as infiniTAM [2], are capable of building denser maps,

these methods are usually not scalable to large scenes, restrict-

ing their applicability in real-world scenarios. An alternative

method is to use depth completion to build a dense 3D map

of the robots workspace out of a sparse 3D map provided by

either SLAM or LIDAR sensing. In this case, a depth image is

obtained by projecting the sparse 3D map in the image plane

of the camera. Visual SLAM sparse maps usually cover about

0.5% of the image pixels and LIDAR maps around 10%. The

traditional depth-completion process estimates the depth of all

other pixels in the image using both sparse depth estimates

and colour image captured by a camera.

In the last years, depth completion approaches have be-

come popular in the context of ground robots, especially in

autonomous driving and indoor applications. Currently, the

state of the art in depth completion makes use of Convolu-

tional Neural Networks (CNNs). As CNNs are not invariant

to rotation or scale changes, several approaches augment

the training process by rotating and re-scaling the available

training images. While this technique can simulate the small

viewpoint variations experienced by ground vehicles, the same

is not valid for aerial robots, which undergo far more dramatic
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Fig. 2: Overview of our confidence training framework. Given a sparse depth map and a corresponding colour image, a depth completion network estimates a
dense depth map and confidences which, later, are used to filter the estimated depth map. Grey input pixels refer to missing depth information. The sparse samples are
enlarged for better visualisation.

viewpoint changes.

As datasets exhibiting both viewpoint variations and depth

information of a large number of different places are very hard

to obtain, current CNN-based approaches for depth completion

usually rely on datasets recorded from the ground, such as

KITTI dataset [4]. However, networks trained using ground

images do not perform well in predicting depth from aerial

images, as the self-similarity of typical road scenes builds

a bias in the network. On the other hand, generic aerial

footage captured from an Unmanned Aerial Vehicle (UAV)

lacks ground-truth depth information for supervised training

and computing it using photogrammetry [5] is very time-

consuming and usually noisy. While the KITTI dataset makes

use of a high-resolution large-baseline stereo camera to build

ground-truth for depth, such a sensor suite is usually too wide

to be carried by small aircraft.

Inspired by the challenges of depth completion for aerial im-

ages, here, we publish a new photo-realistic synthetic dataset

and open-source the simulator used in this paper. With this

dataset in hand, we were able to design a novel network that

can perform depth completion while computing the uncertainty

of the estimated depths. The uncertainty map, also called

confidences, can be used to filter out unreliable depth estimates

to obtain a more accurate result for the proposed depth

completion approach. An overview of our approach is shown

in Figure 2.

In summary, this work makes the following contributions:

• A novel compact network for depth and confidence esti-

mation with real-time performance onboard a lightweight

GPU suitable for small UAVs. When using the estimated

confidence for filtering out erroneous depth values, our

network outperforms the state of the art in single-view

depth completion for small UAVs with relatively small

compromise in density.
• A novel end-to-end confidence training framework. The

results show that our framework can train a confidence

estimation network better suited for depth filtering than the

state-of-the-art methods.
• A new, publicly available, photo-realistic, large, visual-

inertial dataset exhibiting a wide range of viewpoints of

a UAV with depth and pose ground-truth information per

image. Our experiments show that the proposed network

trained using our synthetic dataset together with NYUv2

indoor dataset [6] can be successfully compute depth com-

pletion on real-world public aerial datasets.
• An open-source, visual-inertial simulator that allows the

creation of photo-realistic datasets from a UAV.

II. RELATED WORK

Mapping, depth estimation and completion from cameras

have been studied for several years. Here, we focus on

discussing the most related works.

Real-time aerial depth estimation and mapping: Depth

estimation is well studied in the literature, especially in the

context of autonomous driving. However, as aforementioned,

few works focus on real-time aerial depth estimation. For

many years, real-time aerial mapping was a task for an off-

board computer connected to the aircraft via wireless commu-

nication. In [7] a system is proposed, where a UAV running

visual-inertial SLAM onboard as odometry, transmits its poses

and images to a ground station, for further optimisation (aka

bundle-adjustment) and denser mapping computation. Later,

Weiss et al. [8] show that it is possible to achieve better ac-

curacy using visual-inertial SLAM systems, but the poses and

landmark-map produced by SLAM still are not very accurate.

However, today, there is a large range of visual-inertial SLAM

methods [9] that already facilitates more exciting applications.

Some of these modern SLAM systems, e.g. OKVIS [10],

produce poses and landmarks that are good enough to be used

in 3D reconstruction without further optimisation. The poses

are not as good as needed for pure Structure from Motion [11],

but in [3], it is shown that the landmarks produced by OKVIS

can be filtered and meshed to build a rough representation of

scenes with simple geometry. Other scene structures, such as

planes, are also commonly extracted from landmarks to better

understand and map the environment [12], [13]. The main

problem with these methods is the strong assumptions that

they make about the environment, limiting their application.

Machine learning for depth estimation: Another way to

enhance sparse depth estimations is by using CNN-based depth

completion. Despite being very popular in autonomous cars,

it is not available for aerial robots due to lack of training

data and more challenging scenarios. Neural Networks have

already been demonstrated to make reasonable predictions of

scene depth from a single colour image only. Even though

primitive networks try to blindly learn using generic convolu-

tion blocks [14], today, the state-of-the-art uses a composition

of building blocks known to perform well in specific tasks,

such as in [15]. Such large networks, however, are too slow

and memory-demanding for resource-constrained platforms.

As every machine learning problem, training data for super-

vision is a significant problem in outdoor tasks. Several current

works propose self-supervised methods to avoid this problem.

Some try to perform motion stereo with camera poses also

calculated by the network [16], while others use stereo camera
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datasets [17]. Similar to our method, Li and Snavely [18] use

3D models for learning depth prediction. Although they use

crowd-sourced images from famous landmarks, such as the

Eiffel Tower and the Colosseum, this dataset only provides

satisfactory reconstruction accuracy close to the ground, from

where the pictures were taken, which is insufficient for a more

generic setting. In addition, the approach in [18] is tailored

to scale-free 3D models while robotic navigation requires the

estimation of metric maps. Instead, in our work, the 3D models

are complete, and the datasets are metric with aligned gravity

to enable aerial visual-inertial SLAM with this data.

Depth completion algorithms are more useful for aerial

depth estimation because they perform better than pure depth

prediction, which uses only the colour image. Since com-

pletion relies on sparse depth information available from the

visual SLAM or another sensor, such as a portable LIDAR, the

problem is more straightforward and can be addressed using

smaller networks.

One of the top-performing depth completion algorithms was

proposed by Ma and Karaman [19] and it makes use of residual

networks. Later, the same authors [20] proposed an even more

accurate U-shaped residual network as an improvement while

also presenting a self-supervised approach.

Weerasekera et al. [21] also present a very competitive

approach using conditional random fields and convolution

networks, albeit it is too slow for aerial navigation. The same

applies to Zhang and Funkhouser [22]: instead of using a CNN

to estimate depth directly, they predict geometric features such

as normals and object boundaries and fuse them within an

optimisation step. Another interesting direction is presented

by Chen et al. [23], in which they perform a geometric depth

extrapolation in the sparse data before inputting it to the

network. Therefore, the network task changes to refining the

initial extrapolation.

Lastly, Eldesokey et al. [24] present an algorithm with one

of the best performances to date. They proposed a network

with two intertwined paths that explicitly propagates the

confidences through the network. In this way, the network can

know which pixels had depth information in the input and

which ones were estimated by the network.

Confidence-aware deep learning: Uncertainty predic-

tion [25] for convolution neural networks is especially salient

in the context of Bayesian deep learning using dropout

sampling [26], [27] or ensemble techniques [28]. The true

statistical uncertainty is a measure of confidence and can be

supervised using one of the previous methods. However, it is

a much more complex task to be learned in the context of an

already difficult scenario of aerial imagery. Another way to

compute depth with associated confidence is presented by Liu

et al. [29], but they use multiple views of a video to compute

the depth. The confidence is the uncertainty of this multi-

view process. Similar confidence estimation is not possible

to be computed by our method given that it is a single-view

approach.

In addition, several methods use a confidence-aware loss

function such as in [24], [30], that combine confidence and

depth error in the same function. The main problem with this

type of method, based on a confidence-weighted sum of the

depth errors, is that zero confidence in every pixel is the best

way to minimise the loss. As a result, these methods require

complex manual tuning of the multiple loss functions in order

to prevent the zero confidence behaviour.

Some large networks, e.g. [31], [32], produce intermediary

results with some correlation with a confidence measurement,

but these results are not meant to be used as output. In this

work, the confidence is interpreted as a classification problem

in which the confidence indicates the probability of each pixel

to have a correct depth estimation. In addition, our training

framework can be trained end-to-end and does not require

tuning.

Fig. 3: Aerial-scanned 3D models used for creating our novel dataset with around
84K images. The last column also depicts an extract from a manually-piloted real
drone used to build some of the trajectories (shown in green), as explained in
Section III-A.

III. OUR APPROACH

This section presents our approach for depth completion

and confidence estimation, details our confidence training

framework, and the new aerial RGB-D dataset.

A. Aerial Depth Dataset

Inspired by the lack of aerial datasets with sufficient view-

point variations and different scenes, we provide a new aerial

dataset to enable training of neural networks with more real-

istic depth supervision. The dataset uses 18 3D-reconstructed

models built using photogrammetry software. Figure 3 shows

some examples of 3D models used in this work. With this set

of 3D models, we created 26 independent camera trajectories

with no visual overlap, which were used to render 83797

RGB and depth images separated, 19 trajectories for training

and 7 for validation. This totals in 67435 training images

and 16362 validation images in the dataset. Furthermore, the

dataset includes inertial data and the result of the visual-inertial

SLAM OKVIS [10], i.e. poses along of the trajectory and

landmarks seen from these poses.

We used two types of trajectories: (i) trajectories extracted

from real-drone flights in which the camera positions were

computed using photogrammetry [5]. These trajectories do

not have inertial data because we used an off-the-shelf UAV

without access to the inertial sensor, but they reproduce pre-

cisely the dynamics of a real UAV; (ii) trajectories generated

using sparse waypoints and executed by a carrot-following-

like path-planning algorithm [33]. We used three popular types

of waypoint trajectories: lawnmower pattern, circular (looking
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at the centre), and manually selected waypoints for complex

trajectories. The camera is mounted in front of the UAV with

one degree of freedom, pitch. The trajectories use a pitch

looking at 0◦(forward), 30◦, 45◦, or 90◦(downward). Upon the

acceptance of this article, the dataset and the simulator devel-

oped to its creation will be made publicly available together

with the source-code of our approach. Our simulator is built

on top of the RotorS Framework [34] for UAV dynamics, ROS

Gazebo for Physics, and Blender Render engine for rendering.

B. Confidence and Depth Completion Network

While designing an aerial depth-completion network, the

main constraint for small UAVs is the limited onboard GPU.

This constraint rules out most of the recent state-of-the-art

network designs. Instead, we designed a compact network

that can run in real-time and fits to small GPUs, such as the

NVIDIA Jetson TX2. As a drawback, our network is thus not

capable of outperforming larger and slower networks that are

in the top of the KITTI Depth Completion challenge, e.g. [4].

However, aiming for its deployment in robotic platforms

with limited payload and computational capabilities, the pro-

posed network outputs not only the depth estimates but also

their confidence values that are used to filter out the unreliable

depths.

Inspired by Eldesokey et al. [24], Figure 4 shows our novel

network. In the first stage, a combination of normalised con-

volutions is used together with confidence-aware max-pooling

and up-sampling. This first part ignores the colour image and

computes the unguided depth and the unguided confidence

based only in the sparse depth and the mask created by the

step function. As shown in [24], the unguided confidence is

very similar to the geometrically-computed distance transform

in [23]. Following the first stage, both the unguided depth and

the unguided confidence computed are fed together with the

colour image into a UNet-like encoder-decoder architecture

that computes the guided depth.

Different from previous works, we also propose a guided-

confidence estimation using as input the guided depth and deep

features collected across the network. Our guided-confidence

estimation does not compute a statistical uncertainty, instead,

it computes the probability of a point in the estimated depth

map being valid or not. This is done using our classification

network, conf-net.

Our conf-net can observe, for example, that a pixel co-

ordinate is over an edge in the colour image and also in

an area of rapid depth variation in the guided depth. Then,

the classifier could potentially infer that the depth in this

coordinate is probably poorly estimated because it is in an

area where the interpolation of neighbours is prone to error.

In fact, this behaviour is observed in the results.

We tried several combinations of shared features and clas-

sification networks for the conf-net. We observed that deeper

classification networks did not impact the accuracy of the final

result. The shared feature selection was a very time-consuming

decision given that some options severely impact the depth

estimation accuracy while others impact the performance. We

selected this design because it has the best accuracy with real-

time performance.

C. Confidence Training Framework

Our training framework has two parts, a loss network and

a depth loss. Our loss network is inspired by methods that

compute multiple depths using different approaches in the

same network and then combine the depth results using a

weighted sum guided by the also estimated relative-confidence

or attention maps, e.g. [31], [32]. A high confidence area in

one of the maps means that the correspondent approach is

likely to compute a better depth estimation inside this area

than the other approaches of the network. Similarly, given that

our network is interested in confidences for filtering out the

defectively estimated depth points, the confidence should be

comparatively higher in points of the depth map with well-

estimated values. In order to achieve this type of confidence,

we opted for using normalized convolutions [35], as their

formulation is also a weighted sum guided by the confidence,

as shown in Equation 1. However, this equation is the sum

of neighbouring pixels in the convolution instead of multiple

depth maps like in [31], [32].

Z
out
i,j =

∑
m,n Z

in
i+m,j+nC

in
i+m,j+nΓ(Wm,n)

∑
m,n C

in
i+m,j+nΓ(Wm,n) + ǫ

+ b (1)

Assuming that neighbours in the depth map are locally similar,

the normalized convolution presented in Equation 1 will have

a more accurate depth estimation, in general, when the con-

fidences of the better-estimated depths in the neighbourhood

of a pixel are higher than the confidence of the bad estimated

ones. In our network, we used the SoftPlus function as Γ. The

kernel weights, W , and the bias, b, are learnable parameters.

ǫ is a small number to avoid division by zero, Zout is depth

estimation, and Zin is the depth input of the convolution and

Cin.

In fact, we use as loss network another instance of the

same network used for depth completion without the conf-

net and the step function. The loss-network’s input is guided

depth, guided confidence and the colour image. This network

has a multi-scale sequence of normalised convolutions in

addition to confidence-aware max-pooling which also helps

the confidence learning. The confidence-aware max-pooling

guarantees that only measurements with higher confidence

survive during down-sampling. Thus, improperly estimated

confidences create an even worse estimation after down-

sampling.

Our depth loss is given by Equation 2. When training the

depth-completion and the loss network together, α is 0.5.

Manually tuning α during the training leads to slightly faster

convergence, but it does not worth the effort. When training

only the depth-completion network, α is zero. Ψ is the L1-

norm using the ground-truth depth as reference.

L = Ψ(Depthguided) + α ∗Ψ(Depthlossnet) (2)

All networks in Figure 2 can be trained in an end-to-

end fashion. However, training only the depth completion

network first and then using the weights to initialise the depth

completion network and loss network for jointly training leads

to a similar or better result, as well as faster convergence. The

conf-net is always randomly initialised.
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Fig. 4: This is our novel proposed network. Given as input a sparse depth map, it computes a binary mask using a step function that serves as the input confidence
in a normalized convolution. Later on this network also uses the colour image to compute both a dense image-guided depth map and its associated confidences.

IV. EXPERIMENTS

In this section, we compare our approach with several state-

of-the-art network architectures on various datasets and present

an ablation study. We use the standard error metrics of the

KITTI depth completion challenge [4]: the Root Mean Square

Error (RMSE m), the Mean Absolute Error (MAE m), the

Mean Absolute Relative Difference (MARD unitary), and the

Mean Square Error (MSE m2), with MARD being particularly

informative here as the datasets have large variations in scene

depth. Given that our network uses the estimated confidence

to guide the elimination of erroneous estimates, MSE is also

very important because it highlights outliers.

A. Datasets and Setup

We perform experiments in three different scenarios: in-

doors, outdoors from an aerial platform, and from a car.

As UAVs can also fly indoors, in some experiments we use

both an indoor dataset and the proposed aerial datasets. This

joint dataset is called Aerial+NYUv2. We use the following

datasets:

• NYUv2 dataset [6]: this is an indoor dataset captured with

a Microsoft Kinect camera. We use the same dataset split as

in [19] with 48000 RGBD images for training and 654 images

for validation. We also performed the same data augmentation

as in [19], which includes a random application of rotation,

scaling, flipping and colour jittering.

• Aerial dataset: this new dataset is described in Sec. III-A.

We use the same image resolution, downsampling and aug-

mentation as for the previous dataset, but with steps of 15◦

(instead of 5◦) for rotation augmentation.

• KITTI Depth Completion dataset [4]: this well-

established dataset has 85898 images for training and 6852

for validation. The test-set ground truth is not public and

the official benchmark website does not accept confidences as

input. So we are not testing on the test set. We performed the

same cropping and data augmentation as in [20]. The samples

have RGB image, sparse depth from LIDAR, and semi-dense

ground-truth with about 30% coverage.

• CAB dataset [3]: this is an aerial and ground dataset

recorded with a global-shutter camera. The aerial sequences

were recorded by a small drone flying multiple times around

a building. We used four videos at 1Hz with a total of 768

images. The ground truth was built using photogrammetry [5].

• PVS dataset [36]: this challenging real-world dataset is

recorded from a manned aircraft over cities at much higher

altitude than the CAB dataset. We use all three sequences;

180 images are available for DOWNTOWN, 240 images for

CAPITOL and 226 images for BARUS&HOLLEY. Ground

truth here was also built using photogrammetry [5].

Experimental Setup: All networks were implemented in

PyTorch, and the original authors’ code for the baseline

networks was used. We adopt the Adam optimiser starting

with a learning rate of 10−4 and reducing it by a factor of

10 every three epochs down to 10−6. We let the model train

for 24 hours and report the best epoch. The training was done

using the NVIDIA GTX 1080 with up to 12GB of memory.

We used the standard PyTorch weights for ResNet and batch

size 8. All images were down-sampled to 320×240. Given

the large variety of depths in the dataset, pre-scaling of the

sparse depth was necessary before feeding it into the networks

as demonstrated in Section IV-E. As sparse depth input, we

used the given LIDAR input for KITTI, which has about 8%
density (i.e. percentage of pixel with associated depth values)

and random sampling over the ground truth for the other

datasets. We chose 500 samples (0.65% density) to be similar

to a SLAM algorithm and 10000 samples (8% density) to be

similar to KITTI’s LIDAR input.

B. Baseline Depth-Completion Network Architectures

As baseline methods we selected five state-of-the-art com-

pact networks with public code from the KITTI Depth Com-

pletion challenge [4]: (i) resnet18, a ResNet architecture used

in [19]; (ii) u-resnet18, a ResNet with skip connections used in

[20]; (iii) erfnet [37] used as the core of the network described

in [31]; (iv) nconv-ed, the normalized convolution net with

an early-fusion encoder-decoder architecture from [24]; and

(v) nconv-ms, the normalized convolution net with late-fusion

multi-stream architecture from [24]. The nconv-* methods can

also compute confidences, but they are not image-guided.

C. Comparison to the State-of-the-art

Evaluation on Aerial+NYUv2 dataset - 500 samples: This

is the training for later to be used with Visual-Inertial SLAM

input running on aerial robots. Table II shows that our network

at 100% density is nearly identical to nconv-ed, and both

are better than all other networks at 100% density. Only

our method using a confidence threshold that delivers an

average of 90% density achieves significantly better results

than all other methods. In particular, the MSE of the proposed

method is almost 40% smaller than nconv-ed. This signifies

a significant reduction of outliers sacrificing only 10% of the

density. In Figure 6, it is visible that our confidences have

low value on areas of high error, across all datasets and levels

of input sparsity. The nconv-ed also computes confidences,
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however on this highly sparse depth input, most pixels get the

same low confidence. As a result, it was only possible to set a

threshold in order to produce densities either 100% or smaller

than 20% as observed in Figure 7.A. Figure 7.A also shows

that our method has smaller MARD in densities greater than

20%.

Evaluation on Aerial+NYUv2 - 10K samples: This training

is target to be later used by a UAV carrying a lightweight

LIDAR sensor and a camera. Comparable behaviour is ob-

served as before, when using 500 and 10K samples as input.

However, the MSE improvement here is much greater, with

ours@90’MSE almost seven times smaller than with nconv-

ed. In Figure 6 and in the accompanying video of this work, it

is clear that our method is capable of eliminating most of the

mistakenly interpolated pixels around large depth discontinues.

Figure 7.A also shows that our method has the smallest MARD

across all densities.

Evaluation on KITTI: The KITTI dataset is very different

from the aerial datasets as it has a strong bias towards the

almost constant car viewpoint. On this dataset the proposed

confidence-based filtering scheme is still beneficial and it is

similar or better than the results in the test set. However, the

improvement is not as good as in the Aerial+NYUv2 10K

samples (note that KITTI also has around 10K input samples).

The main problem is the absence of valid ground truth in

areas with depth discontinuities as depicted in grey in Figure

5, so large parts of our enhanced results are ignored in the

evaluation.

Image Depth

Confidence Error(MARD)

Fig. 5: Qualitative results on the KITTI dataset [4].

Dataset evaluation: Figure 7.A also shows that the depth

completion and confidence networks trained with the our

Aerial+NYUv2 dataset achieve better accuracy across all den-

sities than with NYUv2 alone or Aerial alone.

D. Generalization Capability

We use the aerial outdoor real-world CAB and PVS datasets

to validate the training done using both our synthetic Aerial

dataset and NYUv2 with 500 and 10K samples. Figure 1 shows

some example results. Figure 7.B shows that our method

can successfully perform depth completion and confidence

estimation in these real-world datasets with slightly higher

MARD in all densities than in the original Aerial+NYUv2

validation set without the need of style transfer or fine-

tuning.

E. Ablation Study

Effect of conf-net: The differences between nconv-ed and

ours@100 is the conf-net and the re-wiring for deep-features

sharing. As shown in Table II, both methods have virtually the

same results. We can conclude that feature sharing with dual

purpose does not deteriorate the depth-completion results.

Effect of depth pre-scaling: We compare the per-frame scal-

ing scheme with both no-scaling and global-scaling factors.

We choose 400 meters as global factor because this is about

the maximum depth value in the datasets used. The results

in Table I show that the per-frame scaling has overall better

results, so we used this scaling in all experiments.

Scale per frame 1 1/400

MARD RMSE MARD RMSE MARD RMSE

uresnet18 (500) 0.051 2.675 0.469 16.350 0.626 28.647

ours@100 (500) 0.029 2.943 0.032 3.008 0.031 3.002

uresnet18 (10k) 0.026 1.490 0.079 3.108 0.209 10.856

ours@100 (10k) 0.008 1.151 0.008 1.257 0.008 1.246

TABLE I: Pre-scaling factor effect on the Aerial+NYUv2 dataset. The per-frame
scaling improves the results compared to other fixed scaling factors.

MARD MAE RMSE MSE

Aerial+NYUv2 - 500 samples

uresnet18 0.051 1.486 2.675 19.958

resnet18 0.065 1.883 3.267 31.518

erfnet 0.117 3.231 4.763 42.547

nconv-ms 0.035 1.337 3.149 29.998

nconv-ed 0.029 1.179 2.922 27.882

ours@100 0.029 1.179 2.943 29.445

ours@90 0.023 0.938 2.422 17.87

Aerial+NYUv2 - 10000 samples

uresnet18 0.026 0.730 1.490 6.524

resnet18 0.047 1.335 2.274 13.260

erfnet 0.139 3.354 4.199 21.621

nconv-ms 0.012 0.436 1.214 4.427

nconv-ed 0.008 0.319 1.162 4.736

ours@100 0.008 0.310 1.151 4.655

ours@90 0.005 0.164 0.510 0.697

Aerial - 500 samples

uresnet18 0.263 3.533 5.236 60.821

nconv-ms 0.060 1.464 3.297 31.935

nconv-ed 0.032 1.226 3.024 28.627

ours@100 0.035 1.226 2.989 28.519

ours@90 0.025 0.939 2.328 16.103

NYUv2 - 500 samples

nconv-ms 0.043 0.115 0.224 0.070

nconv-ed 0.043 0.116 0.226 0.073

ours@100 0.043 0.115 0.224 0.070

ours@90 0.039 0.111 0.218 0.067

KITTI Validation set

resnet18 [19] 0.05 - ±2.2 -

nconv-ms [24] - 0.210 0.909 -

nconv-ed [24] - 0.237 1.008 -

nconv-ed 0.013 0.258 1.009 1.129

ours@100 0.014 0.264 1.018 1.149

ours@90 0.010 0.181 0.597 0.404

KITTI Test set

uresnet18 [20] - 0.250 0.815 -

nconv-ms [24] - 0.208 0.859 -

IP-Basic [38] - 0.303 1.288 -

TABLE II: Depth Estimation results. ours is the result for our network with 90%
density. The results with references are taken from the respective papers, while all
others are computed by us.

F. Visual-Inertial SLAM Input

Table III reveals the degradation in performance when using

the more realistically available OKVIS data (i.e. input depth

values from a nominal SLAM system instead of sampling

ground-truth values or using a LIDAR scanner). This degrada-

tion is expected, given the estimation errors in SLAM, but also

because texture-less areas, such as the sky, cannot have their

depth measured. This experiment was done using only the 10K
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Fig. 6: Qualitative comparison on various scenes and between models trained with
different sparsity. The vertical text in the first column states the dataset on which
each model was trained on (e.g. A+NYU = Aerial+NYUv2 datasets), followed by
the number of input samples (500 or 10K).
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Fig. 7: Absolute relative error for various output densities resulting from a changing
confidence threshold. The graph plots show the significant higher error reduction
by filtering values according to the predicted confidences by our method instead
of nconv-ed. This behaviour is consistent across different datasets and samples
sizes. Even in training using synthetic data and testing in real-world datasets.

images in the Aerial validation set that has SLAM data. This

experiment presents three types of input for the training of

our network: (i) Random Points via random sampling of the

ground-truth depth; (ii) Keypoint GT denoting ground-truth

depth values available at the same pixel coordinates where

the SLAM keypoints were detected; and (iii) Keypoint SLAM

MARD MAE RMSE MSE

Random 500 samples 0.031 1.139 1.859 4.218

Keypoint GT 0.071 2.567 4.024 19.177

Keypoint SLAM 0.076 2.900 4.104 19.866

TABLE III: Testing alternative input on a model trained with 500 depth samples.

using the depth information from the SLAM keypoints, which

makes this experiment the closest to reality.

The error increase between Random Points and the Keypoint

GT shows that the different distribution of points is the main

source of error. In addition, the error increase between Key-

point GT and the Keypoint SLAM shows that the noise in the

SLAM measurements further degrades the depth completion.

The results demonstrate that the most significant error increase

is due to the different point distribution and sparsity. Fig. 8

presents the results of the depth completion using both the

Random Point input and Keypoint SLAM input in the same

pre-trained model.

RGB / GT Input Depth Completion Confidence Error (MARD)

R
P

K
S

Fig. 8: Comparison between the results with 500 Random Points input (RP) and
Keypoint SLAM input (KS) while using the same trained model. Top row: RGB, RP
sparse depth input, RP depth completion, RP confidence, and RP depth absolute
error. Bottom row: Ground truth depth in the first column followed by the KS’s
corresponding output in the subsequent columns.

G. Runtime

Our confidence and depth completion network can run on

the NVIDIA Jetson TX2 GPU at 15 Hz, i.e. 0.06s per frame.

Given that the Jetson TX2 has a shared memory, the low

number of parameters used by our network is beneficial for

the system as a whole, as more memory is available for

other tasks. Our network has only 0.5 million parameters.

Similarly, nconv-ed has almost identical performance and

memory consumption. In contrast, uresnet18 has 16 million

parameters and it is five times slower than ours, while nconv-

ms is twice slower.

V. CONCLUSION

We developed a single-view depth-completion and asso-

ciated confidence estimation approach capable of handling

LIDAR and VI-SLAM input sparsity. Experiments on several

datasets and different state-of-the-art algorithms with and

without confidence estimation demonstrate that our approach

for image-guided confidence estimation is able to achieve

unprecedented accuracy with a very small compromise in

density by removing low-confidence predictions. Our network

was also shown to be fast enough to run in real-time onboard

a real UAV carrying a mobile GPU. We further introduced

a large synthetic visual-inertial dataset for depth completion

and a simulator including sample UAV trajectories around

buildings. The proposed dataset exhibits high realism and
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a much wider viewpoint range when compared to existing

datasets. Our network trained on this dataset was successfully

applied to the well-established real-world PVS and ETHZ

CAB datasets without any fine-tuning.

Limitations and Future Work. Although the proposed model

already explicitly predicts confidence values for all depth

estimates, which are typically low along depth discontinuities,

the reconstruction of object edges remains an open problem.

This could be addressed by re-balancing training data with

more examples of such challenging regions or using deeper

architectures to better handle these cases.

While the dataset proposed here has been specifically de-

signed for generality, containing a large variety of scenes and

viewpoints, it poses a particular challenge in learning how

to predict scene depth directly from a colour image. Instead,

if the goal is to achieve high-fidelity depth estimates in a

particular scene (e.g. for recurring flights over it), it is worth

pursuing training on data for that specific scene to improve

estimates in this and similar scenes. To maintain the generality

of the network, however, a promising future direction is the

incorporation of the uncertainty of the SLAM estimates in

the network architecture. This can be a valuable source of

information in addressing challenging estimation conditions,

instead of trusting completely all estimates originating from

SLAM as done so far.
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