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Scenario-based Probabilistic Reachable Sets for Recursively Feasible
Stochastic Model Predictive Control

Lukas Hewing, Melanie N. Zeilinger

Abstract—This paper presents a stochastic model predictive
control approach (MPC) for linear discrete-time systems subject
to unbounded and correlated additive disturbance sequences,
which makes use of the scenario approach for offline computation
of probabilistic reachable sets. These sets are used in a tube-
based MPC formulation, resulting in low computational require-
ments. Using a recently proposed MPC initialization scheme
and nonlinear tube controllers, we provide recursive feasibility
and closed-loop chance constraint satisfaction, as well as hard
input constraint guarantees, which are typically challenging in
tube-based formulations with unbounded noise. The approach is
demonstrated in simulation for the control of an overhead crane
system.

Index Terms—Predictive control for linear systems; Con-
strained control; Stochastic optimal control

I. INTRODUCTION

Stochastic MPC techniques can be broadly classified into
analytic approximation, and randomized formulations [1].
Analytic approximation formulations rely on distributional
information, e.g. disturbance mean and variance, to formulate
a (conservative) approximation of the chance constrained
optimal control problem. Many closed-loop properties such as
convergence, recursive feasibility and closed-loop chance con-
straint satisfaction can be established with these approaches
for linear systems, both for bounded (e.g. [2], [3], [4]) and
unbounded additive disturbances (e.g. [5], [6], [7]). They
typically rely on specific disturbance distributions, in partic-
ular the Gaussian distribution, or are subject to considerable
conservatism, e.g. by making use of Chebyshev-type bounds.
The treatment of hard input constraints presents a challenge
under unbounded noise, since the methods usually rely on
linear tube controllers to reduce uncertainty in the prediction.
Randomized approaches, on the other hand, rely on distur-
bance samples or scenarios and make use of guarantees from
scenario optimization [8], [9]. This offers great flexibility and
applicability to a wide class of problems, with the additional
benefit that no disturbance distribution has to be known,
provided that samples can be obtained. The approaches are,
however, typically computationally intensive and closed-loop
properties are not well-established. In particular, recursive
feasibility guarantees are often not provided [10], [11], [12],
or established for soft constraints [13], compromising closed-
loop chance constraint satisfaction guarantees.

This paper presents a stochastic MPC scheme that combines
properties of both analytic approximation and randomized
approaches, by using scenarios for offline computation of
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probabilistic reachable sets (PRS). These take a similar role
to error tubes in tube-based MPC, keeping the online com-
putational complexity of the approach comparable to nominal
MPC. For the case of bounded independent and identically
distributed (i.i.d.) multiplicative uncertainty, a related approach
was presented in [14], which similarly samples scenarios
offline and guarantees feasibility through a first step constraint
and computation of a control invariant set. In contrast, we
guarantee recursive feasibility and closed-loop chance con-
straint satisfaction based on an MPC initialization introduced
in [7], enabling the treatment of unbounded non-i.i.d. additive
disturbances. Compared to analytic approximation methods,
the proposed approach facilitates handling a wide variety of
disturbance classes by requiring only access to samples of
the disturbance sequence. In addition, the scenario-based tube
computation allows for the use of nonlinear tube controllers, in
particular controllers with limited control authority, enabling
the treatment of hard input constraints also under unbounded
disturbances.

The paper is organized as follows: In Section II we present
the problem formulation and state definitions for PRS, as well
as results from scenario optimization. Using the PRS defini-
tions, we present the resulting recursively feasible stochastic
MPC approach in Section III. The specific scenario-based
computation of PRS is shown in Section IV, enabling the treat-
ment of hard input constraints. We demonstrate the approach
in simulation on an overhead crane in Section V and conclude
in Section VI.

II. PRELIMINARIES

A. Problem Formulation

We consider a linear time-invariant system

x(k+1) = Ax(k) +Bu(k) + w̄(k) + w(k) (1)

with state x(k) ∈ Rn and input u(k) ∈ Rnu . The system is
subject to additive disturbances taking values in Rn, which we
split into a known part in a compact set w̄(k) ∈ W̄ (e.g. a
known mean) and a stochastic component w(k). Introducing
this distinction facilitates the design of tube controllers, which
can be carried out with respect to w(k).

The goal is to control this system for large, but finite, run
times N̄ , where we assume the stochastic disturbance sequence
to be distributed according to W = [w(0)T, . . . , w(N̄)T]T ∼
Q. We consider general non-i.i.d. disturbance sequences with
potentially unbounded support, such that at each time step
w(k) can take values in all of Rn. While the distribution does
not need to be known, we assume access to samples of the
(conditional) disturbance sequence. The system is subject to



a collection of nc chance constraints on the states and hard
constraints on the inputs

Pr(x(k) ∈ X j |x(0)) ≥ pj , j ∈ {1, . . . nc}, (2a)
u(k) ∈ U , (2b)

where X j ⊆ Rn and U ⊆ Rnu and the probabilities are
with respect to a known initial state x(0). We consider the
objective of minimizing the expected value of a general time-
varying cost function lk(x(k), u(k)) resulting in a finite-time
stochastic optimal control problem.
Remark 1. The assumption of finite N̄ is particularly rele-
vant for open-loop unstable systems in the context of con-
straint (2a), which cannot be satisfied under unbounded dis-
turbances with any bounded control law as N̄ → ∞ [15]. In
practice, U is often large w.r.t. likely disturbance realizations,
and the problem is well defined with finite N̄ also for unstable
systems.

In this paper, we present an MPC approach to approximate
the solution of the optimal control problem by repeatedly
solving a simplified problem over a smaller horizon N � N̄ in
such a way that the closed-loop system satisfies constraints (2).
To this end, we split the system dynamics (1) into a nominal
part z(k) and error e(k) such that x(k) = z(k) + e(k).
Correspondingly, the input is divided into a nominal input v(k)
and a tube controller πtube with u(k) = v(k) + πtube(e(k)),
resulting in the decoupled dynamics

z(k+1) = Az(k) +Bv(k) + w̄(k), (3a)
e(k+1) = Ae(k) +Bπtube(e(k)) + w(k) (3b)

with initial condition z(0) = x(0), e(0) = 0. Differently
to many other tube-based methods, we formulate the MPC
problem such that (3) remains valid also in closed-loop under
the MPC control law, as detailed in Section III. For constraint
tightening, we therefore make use of the concept of probabilis-
tic reachable sets (PRS) for the error system (3b), as outlined
in the following.

B. Probabilistic Reachable Sets

We recall the definitions of PRS as given in [7].

Definition 1 (k-step PRS). A set Rk with 0 ≤ k ≤ N̄ is a
k-step probabilistic reachable set (k-step PRS) of probability
level p for system (3b) initialized at e(0) if

Pr(e(k) ∈ Rk | e(0)) ≥ p.

Definition 2 (PRS). A set R is a probabilistic reachable set
(PRS) of probability level p for system (3b) initialized at e(0)
if

Pr(e(k) ∈ R | e(0)) ≥ p ∀ 0 ≤ k ≤ N̄ .

Note that the probability bound in the definition of a PRS
holds at all time steps individually, i.e. it guarantees e(k) to
lie in R with probability p at each time step k, but makes
no statement about the probability of being contained in R
for all time steps jointly, which would require much more
restrictive sets. Assuming knowledge of the distribution of the
disturbance sequence W , or at least the first two moments,

techniques for analytically computing PRS for (3b) have been
presented in [6], [7]. In this paper, we instead compute PRS
relying on samples of W and simulation of the error system
(see Section IV), by making use of results from scenario
optimization, which are outlined in the following section.

C. Scenario Optimization

Scenario optimization [8], [9] considers chance constrained
optimization problems of the form

min
x∈X⊆Rd

cTx (4a)

s.t. Pr(x ∈ Xδ) ≥ p, (4b)

where Xδ are convex and closed sets for each realization of
a random variable δ, and d is the dimension of the decision
variable x. Problem (4) is approximated by considering Ns
samples of the random variable δ, and enforcing the constraint
for a selection of these samples i ∈ Is. The sampled optimiza-
tion problem results in

min
x∈X⊆Rd

cTx (5a)

s.t. x ∈ Xδ(i) , i ∈ Is, (5b)

in which δ(i) denotes a sample of δ, and the considered subset
of samples has cardinality |Is| = Ns−Nk, which is found by
discarding Nk samples from the original set.

Assumption 1 ([9]). Constraints are discarded such that the
optimal solution x∗ of (5) violates all the discarded constraints
Xδ(j) with j ∈ {1, . . . , Ns} \ Is.

This technical assumption is required to make use of
established results from scenario optimization and can in
general be satisfied, e.g. by successive optimization while
greedily removing samples [9]. By discarding samples it is
therefore possible to improve the objective function in (5),
while maintaining probabilistic guarantees of the solution with
regard to the chance constraint optimization problem (4),
which is formalized in the following theorem.

Theorem 1 ([9]). Let Ns and Nk satisfy(
Nk + d− 1

Nk

)Nk+d−1∑
i=0

(
Ns
i

)
(1− p)ipNs−i ≤ β. (6)

The optimal solution x∗ of (5) is a feasible solution for
optimization problem (4) with probability 1− β.

The bound in Theorem 1 is often unwieldy for practical
computations and can be approximated. For instance, a suffi-
cient condition for (6) is given by

Nk ≤ (1−p)Ns − d+ 1−

√
2(1−p)Ns ln

(
((1−p)Ns)d−1

β

)
(7)

and provides a practical way of assessing how many samples
Nk to discard while providing guarantees with respect to p and
β given a number of sampled scenarios Ns (see [9]. Without
removing constraint samples, i.e. for Nk = 0, one can obtain

Ns ≥
2

1− p
((d− 1) ln(2)− ln(β)) , (8)



to estimate the required number of samples to guarantee
probability level p with probability 1− β (see [8]).

III. STOCHASTIC MPC USING PROBABILISTIC
REACHABLE SETS

In the following, we recount a recursively feasible stochastic
MPC approach recently proposed in [7] and show how it can
be modified to be wholly reliant on samples, before discussing
the scenario-based computation of PRS in Section IV. In order
to differentiate quantities in prediction from the closed-loop
system (1), we make use of the index i for an i-step ahead
prediction. The predictive dynamics are

xi+1 = Axi +Bui + w̄i + wi, (9a)
zi+1 = Azi +Bvi + w̄i, (9b)
ei+1 = Aei +Bπtube(ei) + wi, (9c)

which are initialized at every time step at the currently mea-
sured state x0 = x(k), z0 = z(k), e0 = e(k), and the known
disturbance part is w̄i = w̄(k+i). The predictive disturbance
sequence Wk, i.e. wi and resulting predictive error ei are
exclusively used to optimize the MPC cost, making use of all
information about the disturbance sequence available at that
time. The sequence Wk = [w0, . . . , wN ] is therefore obtained
by conditioning W on all past disturbances, such that p(Wk)=

p
(

[w(k)T, . . . , w(k+N)T]
T
∣∣∣[w(0)T, . . . , w(k−1)T]

T
)
, where

we assume for notational convenience that the distributions
allow a density, as well as access to samples of Wk. Closed-
loop constraint satisfaction, on the other hand, is established
with regard to the closed-loop error e(k) and disturbance
sequence W .

A. Constraint Tightening

In order to guarantee satisfaction of constraints (2) on state x
and input u we consider tightened constraints on the nominal
state z and input v. Hard input constraints are realized by
imposing a limited control authority on πtube.

Assumption 2. The tube controller πtube is such that

πtube(e) ∈ Eu ⊂ U ,∀e ∈ Rn.

This can be ensured by designing πtube e.g. as an input con-
strained (explicit) MPC, or a saturated linear controller [16].
Each chance constraint j in (2a) is treated based on the idea of
keeping the error e(k) within a respective time-varying PRS
Rjk, the scenario-based computation of which we discuss in
Section IV. This results in the following tightened constraints
on the nominal system (9b)

zi ∈ Zi =

nc⋂
j=1

(
X j 	Rjk+i

)
, (10a)

vi ∈ V = U 	 Eu. (10b)

Assumption 3. The tightening set Rjk+i in (10a) is chosen as
a k+i-step PRS of probability pj for system (3b) initialized
at e(0) = 0.

B. Stochastic MPC with Indirect Feedback

In the MPC problem, we introduce a terminal constraint
Zf and terminal cost lf to approximate the remainder of the
horizon, resulting in the cost function

EWk

(
lf (xN ) +

N−1∑
i=0

lk+i(xi, ui)

)
.

We follow a sampling-based approach to approximate this cost
based on NMPC

s samples of the predicted disturbance sequence
Wk and formulate the MPC problem as

min
{vi}

NMPC
s∑
l=1

(
lf (x

(l)
N ) +

N−1∑
i=0

lk+i(x
(l)
i , u

(l)
i )

)
(11a)

s.t. x
(l)
i+1 = zi+1 + e

(l)
i+1 (11b)

u
(l)
i = vi + πtube(e

(l)
i ) (11c)

e
(l)
i+1 = Ae

(l)
i +Bπtube(e

(l)
i ) + w

(l)
i (11d)

zi+1 = Azi +Bvi + w̄i (11e)
vi ∈ V, zi ∈ Zi, zN ∈ Zf (11f)

z0 = z(k), x
(l)
0 = x(k), e

(l)
0 = e(k), (11g)

for all i ∈ {0, . . . , N−1}. Note that e(l)
i , πtube(e

(l)
i ) are not

affected by the decision variables {vi} and can therefore be
precomputed. The resulting control input applied to system (1)
is obtained by setting v(k) = v∗0 , where v∗0 is the first element
of the minimizer in (11), i.e.

u(k) = v∗0 + πtube(e(k)). (12)

Remark 2. Since z0 = z(k) at each time-step, the closed-loop
error e(k) evolves autonomously according to (3b). Feedback
from x(k) on the nominal trajectory z(k) is nevertheless
introduced through the cost in (11), see also [7].

C. Recursive Feasibility and Constraint Satisfaction

In order to ensure recursive feasibility, we require an invari-
ance assumption on the terminal set Zf , taking into account
the known disturbance w̄ ∈ W̄ .

Assumption 4. The terminal set Zf is robust invariant with
respect to w̄ ∈ W̄ under the local controller πf (z) ∈ V ∀z ∈
Zf , i.e.

z ∈ Zf ⇒ Az +Bπf (z) + w̄ ∈ Zf

and Zf ⊆ Z∞, where Z∞ =
⋂N̄
k=1Zk.

Remark 3. For the choice of W̄ = {0} and time-invariant
Rk = R, for 0 ≤ k ≤ N̄ , Assumption 4 requires a nominal
invariant set within the tightened constraints, which is a
standard assumption in robust tube MPC. Here we allow more
flexibility to deal with correlated time-varying disturbances,
requiring that in the terminal set a control input exists which
keeps the nominal state within every tightened constraint set
Zk from k = 0, . . . , N̄ .

Theorem 2. Consider system (1) under control law (12) re-
sulting from (11) satisfying Assumptions 2 & 4. If optimization



problem (11) is feasible for x(0) = z(0), then it is feasible
for all times 0 ≤ k ≤ N̄ −N , i.e. it is recursively feasible.

Proof. The proof follows from standard arguments in MPC
by showing feasibility of a candidate solution. Let V ∗ =
{v∗0 , . . . v∗N−1} be the minimizer of (11) at time step k with
resulting Z∗ = {z∗0 , . . . , z∗N}. Applying control input (12)
results in state x(k+ 1) and z(k+ 1) = z∗1 , for which we
consider the candidate solution V̄ = {v∗1 , . . . , v∗N−1, πf (z∗N )}
resulting in Z̄ = {z∗1 , . . . , z∗N , Az∗N+Bπf (z∗N )+w̄(k+N+1)}.
Since v∗i ∈ V for all 1 ≤ i ≤ N and πf (z∗N ) ∈ V we have
that V̄ satisfies input constraints (11f). Similarly, we have that
z∗i ∈ Zi(k) = Zi−1(k+1) defined in (10a) for all 1 ≤ i ≤ N ,
where we use notation Zi(k) to indicate the state constraint
at i-th prediction step for optimization problem (11) at time
step k. We finally have Az∗N +Bπf (z∗N ) + w̄(k+N+1) ∈ Zf
due to Assumption 4.

Recursive feasibility and Definition 1 of the PRS used in
constraint tightening (10a) can directly be used to establish
satisfaction of hard constraints on the inputs (2b) and chance
constraints on the state (2a) for the closed-loop system.

Theorem 3. Consider system (1) under control law (12)
resulting from (11) satisfying Assumptions 2, 3 & 4. The
resulting state x(k) and input u(k) satisfy constraints (2a)
and (2b), respectively.

Proof. From recursive feasibility, control law (12) and defini-
tion of the input constraint tightening (10b) we immediately
have u(k) ∈ U , since πtube(e) ∈ Eu for all e ∈ Rn from
Assumption 2. From Assumption 3 we furthermore have that
Pr(e(k) ∈ Rjk) ≥ pj . Given that z(k) ∈ Z0(k) due to re-
cursive feasibility and Z0(k) =

⋂nc

j=1

(
X j 	Rjk

)
according

to (10a), we therefore have Pr(x(k) ∈ X j) ≥ pj for all
j = 1, . . . , nc.

IV. PROBABILISTIC REACHABLE SETS USING SCENARIO
OPTIMIZATION

In the following, we describe a sampling-based design
procedure for k-step PRS computation. The inputs to this
procedure are a number of disturbance scenarios over the run-
time sampled from W , i.e. W (i) = [w

(i)
0 , . . . , w

(i)

N̄−1
]T ∼ W ,

i ∈ {1, . . . , Ns}, resulting in trajectories of the error sys-
tem (3b) E(i) = [e

(i)
0 , . . . , e

(i)

N̄
]T, initialized at e(i)

0 = e(0) = 0.
The general idea is to generate sets that cover given error

state realizations, i.e. e(i)
k ∈ Rk, i ∈ Is and apply the result

of Theorem 1 to establish that Rk is a k-step PRS with high
probability. For this, we formulate chance constraint optimiza-
tion problems similar to (4) to find sets Rk, which are used to
tighten constraints (10a). In general, it is desirable to generate
sets Rk which result in the smallest possible tightening, for
instance by aligning the PRS with the considered constraint
X j , e.g. for half-spaces or simple polytopic constraints. For
general constraint sets, a useful heuristic is to minimize the
size of Rk, e.g. by finding the minimum volume ellipsoid
covering the required number of samples. We discuss selected
options in the following sections.

Remark 4. Scenario-based guarantees along Theorem 1 are
given with confidence 1 − β. For the MPC, this implies
that Assumption 3 and the resulting closed-loop constraint
satisfaction property (Theorem 3) hold with probability 1− β
when using a scenario-based construction of the PRS.

A. Scaling of Convex Set

We first consider the scaling of an arbitrary closed convex
set R̃ containing the origin such that R = αR̃ is a k-step
PRS for random variable e(k) with given probability p. This
can be stated as the following chance constrained optimization
problem:

min
α>0

α

s.t. Pr(e(k) ∈ αR̃) ≥ p.

The relation to (4) is obtained by noting that α corresponds
to x and Xδ := {α | e(k) ∈ αR̃}. This set is convex in α
and closed for each realization of e(k) since R̃ is convex and
closed. The sampled version is

min
α>0

α (13a)

s.t. e
(i)
k ∈ αR̃ , i ∈ Is, (13b)

where e
(i)
k stem from the Ns sampled realizations of the

random disturbance sequence W . From this set of samples,
Nk scenarios are discarded resulting in the index set Is. Note
that in this case the index set Is satisfying Assumption (1)
can be obtained by repeatedly solving (13) starting with all
samples and successively removing samples corresponding to
active constraints. The PRS property of the resulting set is
directly obtained from Theorem 1.

Corollary 1. Let α∗ be the solution to optimization prob-
lem (13) and let Ns, Nk satisfy (6) with d = 1. With probability
1−β the set α∗R̃ is a k-step PRS of probability p for process
(3b) initialized at e(0) = 0.

Remark 5 (Half-space PRS). An important special case is
given by a half-space R̃ =

{
e
∣∣hTe ≤ 1

}
. We can discard

the k samples of e(i)
k with highest value hTe(i)

k and then find
α∗ = maxi∈Is h

Te
(i)
k .

B. Polytopic PRS

Next we address the case of polytopic PRS containing the
origin, with a predefined shape R̃ = {e |He ≤ 1} in which
H ∈ Rnhs×n and 1 ∈ Rnhs is the one-vector. The goal is
to optimize the level of each half-space constraint, which is
formulated as the scenario problem

min
b>0

‖b‖1 (14a)

s.t. He
(i)
k ≤ b, i ∈ Is. (14b)

Similar to half-space constraints (Remark 5) constraint re-
moval can easily be carried out greedily by successively
removing Nk samples of e

(i)
k with the largest violation

‖He(i)
k ‖∞. Note that through the choice of matrix H an
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Fig. 1. Illustration of the overhead crane system.

importance weighting can be carried out for each individual
half space defining the polytope.

Corollary 2. Let b∗ be the solution to optimization prob-
lem (14) and let Ns, Nk satisfy (6) with d = nhs. With
probability 1−β the set {e |He ≤ b∗} is a k-step PRS of
probability p for process (3b) initialized at e(0) = 0.

C. Ellipsoidal PRS

As a third possibility consider the minimum volume ellip-
soidal set covering the error e(k) with specified probability p.
The sampled version can be expressed as

min
P>0,ec

− log detP (15a)

s.t. (e
(i)
k − ec)

TP (e
(i)
k − ec) ≤ 1 , i ∈ Is, (15b)

where d = n2+n
2 +n is given by the number of unique entries

in the symmetric shape matrix P and vector ec. Ensuring
Assumption 1 in the construction of Is is again possible by
sequential removal of active constraint samples. Additional
information on suitable constraint removal strategies can be
found in [9].

Corollary 3. Let P ∗, e∗c be the solution to optimization
problem (15) and let Ns, Nk satisfy (6) with d = n2+n

2 + n.
With probability 1−β the set

{
e
∣∣ (e− e∗c)TP ∗−1(e− e∗c) ≤ 1

}
is a k-step PRS of probability p for process (3b) initialized at
e(0) = 0.

Remark 6. When fixing the ellipsoid center, e.g. ec = 0,
Corollary 3 holds with d = n2+n

2 .
Remark 7. It is possible to speed up constraint removal by
initializing Idis heuristically, e.g. by discarding samples based
on the empirical variance of the sample set.

V. SIMULATION EXAMPLE: OVERHEAD CRANE

As an illustrative example we consider an overhead crane
maneuvering a load in windy conditions. The system is de-
picted in Figure (1) with states x = [p, v, θ, r]T, where p, v
are the position and velocity of the slider, and θ, r the load
angle and angular velocity, respectively. The system equations
are given in the appendix. The input to the system is a force
applied to the slider u and the run-time is N̄ = 200. The
load is subject to a disturbance force w, representing heavy
winds, distributed according to W ∼ N (0,Σw), which is zero
mean and strongly correlated in time. The system is subject
to a number of physical and safety constraints. First, the input

is restricted to |u| ≤ umax = 4 and we consider the sliders
position and velocity to be subject to physical limitations

[|p|, |v|]T ≤ [pmax, vmax]T = [1, 0.4]T, (16)

which we want to enforce with highest possible probability.
We additionally consider chance constraints on the load angle
for safety reasons

Pr(θ(k) ≥ −0.08) ≥ 90%, (17a)
Pr(θ(k) ≤ 0.08) ≥ 90%. (17b)

Starting from x(0) = 0, the goal is to track the reference

xref
k =

{
[1, 0, 0, 0]T, k ≤ 100

[−1, 0, 0, 0]T, k > 100

as closely as possible, given the constraints.

A. Simulation Setup

Using the cost function (xi− xref
k+i)

TQ(xi− xref
k+i) + uTRu

with Q = I , R = 10−4, we compute the expected cost (11a)
based on NMPC

s = 10 samples and consider a prediction
horizon of N = 30. We design the tube controller πtube as an
LQR controller with the same weights, which we saturate at
±0.4 to enable hard input constraints. We compute suitable
half-space and box constraints aligned with the respective
state constraints in order to obtain a constraint tightening
with little conservatism. Using Ns = 10000 scenario samples,
we compute PRS R|p|,|v|k as minimum-size boxes containing
all sampled error positions and velocities in each time step
according to Corollary 2. To enforce the constraint with
maximum probability, we remove no constraint samples, and
find according to (8) that the probability of satisfying (16)
in each time step is at least p1 = 99.6% with probability
1 − β ≈ 1 − 10−7. For chance constraints (17) we use
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u
(k

)

Fig. 2. Overhead crane system with reference pref = 1 for k ≤ 100 and
pref = −1 for k > 100. The plot depicts 10000 simulations, highlighting
one realization. Dashed lines show chance and hard input constraints.



TABLE I
CLOSED-LOOP CHANCE CONSTRAINT EVALUATION

Constraint Guaranteed Probability Empirical Probability[
|p|
|v|

]
≤

[
pmax

vmax

]
99.6% 99.98%

θ ≤ θmax 90% 91.2%

θ ≥ −θmax 90% 94.33%

Corollary 1 with Remark 5 and find using (7) that we can
remove k = 820 samples to determine Rθmax

k and Rθmin

k

satisfying the probability level p2 = 90% with β = 10−7.
This results in nc = 3 time-varying PRS used for tightening
in (10a). All offline computations, consisting of sampling,
simulations and PRS computations were carried out within
a few seconds on standard hardware. Note that the use of
half-space and box PRS are computationally cheap, whereas
the use of e.g. ellipsoidal constraints (Section IV-C) can
require increased offline computation. The MPC optimization
problem (11) results in a quadratic program, which is reliably
solved in around 20 ms in each time step.

B. Results

We carried out 10000 simulations of the system with
different noise realizations, the results of which are shown in
Figure 2 and Table I. It can be seen that the system approaches
the reference position, keeping a safety distance to enable
satisfaction of constraint (16) which is achieved for almost all
of the 10000 realizations. The minimum empirical constraint
satisfaction rate over all time steps of 91.2% is close to the
one specified in the case of the maximum load angle, and
somewhat conservative with 94.33% for the minimum load
angle. This conservatism is likely due to the fact that in the
latter case constraints on z are not simultaneously active for
all simulated noise realizations in the same time-step. Finally,
it can be observed in Figure 2 that the applied input satisfies
the given hard input constraints while dealing with Gaussian,
and therefore possibly unbounded disturbance sequences.

VI. CONCLUSION

This paper presented a stochastic model predictive con-
trol approach for additive correlated disturbance sequences
making use of the scenario approach for offline computa-
tion of probabilistic reachable sets for constraint tightening.
This enabled us to show recursive feasibility and closed-loop
chance satisfaction for systems under unbounded noise and
hard input constraints. The effectiveness of the approach was
demonstrated in a simulation example of an overhead crane.
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APPENDIX

We consider a damped cart-pole system given by[
cos θ l
m+M Ml cos θ

] [
p̈

θ̈

]
=

[
−g sin θ − dM θ̇

M + w
M cos θ

u− dpṗ− dM (ṗ+ lθ̇ cos θ) +Mlθ̇2 sin θ + w

]
with slider mass m = 1 and damping dm = 10, payload mass
M = 1 and damping dM = 1 and l = 1, g = 9.81. Lineariza-
tion around the origin and discretization with sampling time
Ts = 0.1 yields the employed linear system with eigenvalues
λ = [1, 0.3672, 0.8617 ± 0.2788i]T. The distribution of the
disturbance is zero mean Gaussian W ∼ N (0,K) with
Ki,j = 0.022 + 0.22 exp(− 1

2 (i− j)2/102), i, j ∈ {1, . . . , N̄}.
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