
ETH Library

Lowering the Latency of
Data Processing Pipelines
Through FPGA based Hardware
Acceleration

Conference Paper

Author(s):
Owaida, Muhsen; Alonso, Gustavo; Fogliarini, Laura; Hock-Koon, Anthony; Melet, Pierre-Etienne

Publication date:
2019-09

Permanent link:
https://doi.org/10.3929/ethz-b-000388204

Rights / license:
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Originally published in:
Proceedings of the VLDB Endowment 13(1), https://doi.org/10.14778/3357377.3357383

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000388204
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.14778/3357377.3357383
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Lowering the Latency of Data Processing Pipelines
Through FPGA based Hardware Acceleration

Muhsen Owaida Gustavo Alonso
Systems Group

Dept. of Computer Science, ETH Zurich
Zurich, Switzerland

firstname.lastname@inf.ethz.ch

Laura Fogliarini Anthony Hock-Koon
Pierre-Etienne Melet

Amadeus
Sophia-Antipolis, France

firstname.lastname@amadeus.com

ABSTRACT
Web search engines often involve a complex pipeline of pro-
cessing stages including computing, scoring, and ranking
potential answers plus returning the sorted results. The la-
tency of such pipelines can be improved by minimizing data
movement, making stages faster, and merging stages. The
throughput is determined by the stage with the smallest ca-
pacity and it can be improved by allocating enough parallel
resources to each stage. In this paper we explore the pos-
sibility of employing hardware acceleration (an FPGA) as
a way to improve the overall performance when computing
answers to search queries. With a real use case as a baseline
and motivation, we focus on accelerating the scoring func-
tion implemented as a decision tree ensemble, a common ap-
proach to scoring and classification in search systems. Our
solution uses a novel decision tree ensemble implementation
on an FPGA to: 1) increase the number of entries that can
be scored per unit of time, and 2) provide a compact im-
plementation that can be combined with previous stages.
The resulting system, tested in Amazon F1 instances, sig-
nificantly improves the quality of the search results and im-
proves performance by two orders of magnitude over the
existing CPU based solution.

PVLDB Reference Format:
Muhsen Owaida, Gustavo Alonso, Laura Fogliarini,Anthony Hock
Koon, and Pierre-Etienne Melet. Lowering the Latency of Data
Processing Pipelines Through FPGA based Hardware Accelera-
tion. PVLDB, 13(1): xxxx-yyyy, 2019.
DOI: https://doi.org/10.14778/3357377.3357383

1. INTRODUCTION
Response time is a critical metric in interactive systems

such as search engines, payment platforms, or recommender
systems (e.g., a flight or hotel reservation system), where the
latency in responding to a search query determines the qual-
ity of the user experience [8, 10, 28, 1]. Each of these systems
has to complete a different task: search engines compute po-
tential matches to the search query, recommender systems
identify the user’s profile and activity to make suggestions

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 13, No. 1
ISSN 2150-8097.
DOI: https://doi.org/10.14778/3357377.3357383

as the user is browsing, while online payment systems detect
fraudulent transactions before accepting payments. Never-
theless, the architecture used, whether on-premise installa-
tions or in the cloud, is similar in all cases: it involves a
variety of databases and a pipeline of data processing stages
where each stage runs on a cluster of machines [18].

The most common performance metric for interactive sys-
tems is a latency upper-bound given a throughput lower-
bound (e.g., processing at least 1000 request per second
with a 95-percentile response time of 1 second). To meet
throughput constraints (as well as elasticity and fault toler-
ance), query processing is done in parallel across several ma-
chines. To meet latency requirements, the response time of
the data processing stages must be predictable, which often
implies limiting their scope or the amount of data processed
to make sure the resulting response time does not exceed
the available budget for the stage [58]. In practice, there is
a trade-off latency vs. throughput. Separating stages allows
to devote parallel resources to each one of them (improv-
ing throughput). On the other hand, merging stages into a
single step tends to improve latency by cutting down on net-
work transfers and data movement but reduces the capacity
of each stage due to the higher processing cost per query.

In the past, these pipelines involved mostly data inten-
sive operations (e.g., queries over databases). Nowadays,
there is a widespread use of machine-learning classifiers and
predictors, which are computationally heavier, as they have
the ability to improve interactive systems in many ways.
Thus, existing recommender systems [6, 55] and search en-
gines [12] such as those used by Amazon, Netflix, LinkedIn,
or YouTube, to mention a few, all employ machine-learning
within their data processing pipelines. Similarly, the pay-
ment systems associated to the same platforms rely as well
on machine learning for, e.g., detecting bots or fraudulent
transactions [62, 4].

Using a real use case as motivation and baseline, in this
paper we explore the interplay of data processing and ma-
chine learning in search engines pipelines. We give exam-
ples of how the latency constraints restrict the amount of
data that can be processed, thereby reducing the quality
of the results. We also show the problems associated to
improving only query throughput by scaling out the search
engine. We then provide a novel solution to flight route scor-
ing through an FPGA-based implementation of gradient-
boosted decision tree ensembles [35, 13] that allows pro-
cessing a larger number of potential results and enables the
merging of stages, thereby reducing the overall latency with-
out compromising the system’s throughput.

71



The contributions of the paper are as follows:
(1) We discuss with a concrete example the latency vs.

throughput trade-off common to many data processing pipe-
lines. This is a complex system issue since, as the paper
illustrates, improving query throughput is not enough to
improve the overall system performance due to the very tight
latency requirements and the query volume faced by modern
domain search engines.

(2) We identify FPGA-based accelerators as the most suit-
able processing devices for tackling the trade-off and develop
a novel implementation of inference over decision tree ensem-
bles using an FPGA. The design generalizes the state of the
art to more complex predicate comparisons on the decision
nodes and wider data. The resulting system is two orders of
magnitude faster than existing CPU-based systems.

(3) We evaluate the resulting system on a variety of plat-
forms – PCIe connected FPGAs [33, 46], cache coherent
FPGAs [37], and Amazon F1 instances [7] – to explore de-
ployments over the typical configurations made available by
cloud providers. We also discuss in detail the effects of mem-
ory, computing, and I/O bandwidth on the resulting system.
This analysis should help to project the results obtained into
future systems as the hardware involved is rapidly changing
and gaining in both capabilities and capacity.

(4) We break down the cost of the proposed design for
the entire use case, including the overheads of starting the
computation, data transfers, and memory capacity. Based
on this information, we analyze in depth the advantages as
well as the potential limitations of the solution we propose.

2. BACKGROUND

2.1 Decision Trees (DT)
Decision trees have been used in the past for, e.g., data

mining [21, 22], and are nowadays widely used for a range of
machine-learning tasks such as classification (results are dis-
tinct labels) and regression (results are values). Implemen-
tations range from libraries as part of ML packages (H2O
[16], SciKit [44], or XGBoost [13]), large-scale distributed
implementations for cloud platforms [43], to database op-
erators such as those available in Oracle Data Mining [38].
While here we focus on data pipelines for search engines,
our solution can be applied as-is in the context of databases
or data warehouses that use FPGA acceleration [54, 3, 32,
26, 59].

Decisions trees are constructed by recursively splitting the
data into groups. The split is usually a greedy algorithm
that considers all possible splits and decides which one is
best at each step using some cost function determining the
accuracy of each possible split. The recursion is stopped by
using heuristics such as limiting the depth of the tree or en-
forcing a minimum number of elements per leaf of the tree.
Stopping the recursion correctly is important to avoid over-
fitting. Typically, a decision tree model is trained on input
data annotated with labels (class or prediction) and then
tested on a second set of input data for model validation.
Inference, the part we explore in this paper, is performed by
traversing the tree using the data of the tuple that is to be
classified.

Decision trees have several advantages over other machine-
learning techniques. They have an intuitive representation

Figure 1: An Example of a Decision Tree. Nodes 0 - 2 are
decision nodes and nodes 3 - 6 are leaf nodes.

that helps with interpretability and they do not require pa-
rameter setting as many other ML methods do (thus re-
ducing the effort in data preparation). They can handle
categorical and numerical data as well as multiple outputs.
Their two most important limitations are variance (the tree
changes substantially with small changes in the training set)
and locking on local optima as a result of the greedy search.

2.2 Gradient Boosted Decision Trees (GBDT)
The most common form of decision tree models used nowa-

days are Gradient-Boosting Decision Trees (GBDT), a su-
pervised decision tree ensemble method [35]. The use of en-
sembles (many trees) addresses the problem of local optima
by generating multiple trees with random samples of the in-
put. The use of gradient boosting addressed the problem
of variance. Stated simply, GBDT builds a strong learner
out of an ensemble of weak learners. A model in GBDT
contains K decision trees. To run inference, it first runs in-
ference over all K trees independently, and then combines
the inference results. GDBT tends to favor shallow trees
without many levels but requires many trees (hundreds to
thousands).

In this paper, we use a GBDT model generated with H2O,
an open-source platform for big data analytics [16] as it is the
system used in production for our use case. We use H2O for
training and generating the GBDT model. However, when
deploying the model in production, H2O GBDT inference
was re-implemented in C++ as the original version of H2O
uses Java (the nature of the changes made is detailed later
in the paper).

Figure 1 shows an example of a binary decision tree as
represented in a H2O Gradient Boosted Machines (GBM),
which is an implementation of a GBDT. Each non-leaf node
is called a decision node. Each decision node defines an
operation to choose either the left or right node in the next
level. Each leaf node contains the classification or regression
result. In GBM trees, two types of operations are used in
decision nodes:

• Split value comparison. A decision node performs a
comparison operation between a particular data tuple
feature and a split value (i.e., floating-point number)
to choose either the left or the right branch.

• Split set membership test. A decision node defines a
split set, on which it performs membership test for an
input data tuple feature. This test is more appropriate
for categorical features. However, in GBM trees, a
split set might grow to hundreds of bytes, leading to
trees with a large memory footprint.

72



2.3 FPGAs as Accelerators
A field-programmable gate array (FPGA) is an integrated

circuit that consists of a matrix of configurable logic, mem-
ory, and digital signal processing (DSP) components (Fig-
ure 2 [49]). These components are distributed within a grid
of configurable routing wires connected to programmable
chip I/O blocks. This flexible and programmable fabric can
be configured to perform any functionality implemented as
a digital circuit (e.g., finite state automate [34], deep learn-
ing [15], or data management systems [30], etc.).

FPGAs are programmed using hardware description lan-
guages (HDLs) such as VHDL or Verilog. There are also
frameworks to use common software programming languages
such as OpenCL for Intel FPGAs [24] or C/C++ for Xilinx
FPGAs [61]. Recent efforts try to use domain-specific lan-
guages for FPGAs [29].

Programs are compiled into FPGA binaries, called bit-
streams. The HDL compiler first translates the program
statements into a netlist of FPGA primitive components
(memory, logic, arithmetic, etc.). It then assigns the netlist
to physical components in the FPGA fabric, determining
which routing wires should be used to connect them. This
latter process is called Place&Route and can be very time
consuming (often hours for complex designs).

The programming model for FPGAs is quite different from
the one for CPUs. Computations are laid out spatially and
the programmer has to specify how data and control flows
from one logic block to another inside the datapath. Thus,
common design challenges when developing algorithms for
FPGAs is the amount of space (resources) required and the
ability to meet timing (ensuring the data can be moved
across the circuit in a correct manner). It must also be noted
that the clock rate on an FPGA is 10 to 20 times slower than
that of CPUs (150–400MHz vs 2.5–4 GHz). Thus, an FPGA
design must be far more efficient than the CPU counterpart
to be competitive, something that requires completely differ-
ent algorithms than those used on conventional processors.
One important contribution of this paper is the implemen-
tation of a GBDT solution that is significantly faster than
those available for CPUs and more general than those avail-
able for FPGAs.

2.4 Data Processing with FPGAs
There is a substantial amount of work on using FPGAs

for data processing, from databases [56, 59, 26, 32] and
cloud systems [14, 11, 2] to machine-learning [15, 23, 42, 25].
The vast body of existing research has focused on the com-
pute capacity of an FPGA device, ignoring key performance
overheads such as the data transfer cost between host and
FPGA. Another aspect often ignored is the initiation cost
of an FPGA accelerator (to start the processing), typically
larger than that of a function call on the CPU. Later in the
paper, we look in depth at these factors when considering
the feasibility of the solution we propose.

3. A FLIGHT SEARCH ENGINE
The starting point is an existing search engine provided by

Amadeus. Amadeus is an IT provider covering services such
as search, pricing, booking, or ticketing for travel services
providers along with automated solutions for applications
such as inventory management or departure control. The
Flight Search Engine is a service used to recommend flights
to sites implementing travel-booking functionality.

Figure 2: An illustration of a modern Xilinx FPGA archi-
tecture showing the different components and their organi-
zation in the FPGA fabric.

3.1 Looking for Flights
The Flight Availability Search and Pricing Engine tries to

find the cheapest routes between a source and a destination.
Given a basic search query (e.g., flight from Zurich (ZRH) in
Switzerland to Columbia (CAE) in South Carolina, USA) on
a particular date, the engine returns a list of potential routes
and their prices. An important quality criterion in such a
system is the look-to-book ratio, which depends on how good
the proposed routes are. Figure 3 shows the different logical
components of the engine:

• The Domain Explorer searches the flight domain (avail-
able flights from all airlines) and selects up to 750
routes both ways.

• The Route Selection reduces the 750 routes to 150
based on which ones are most likely to be the cheapest.

• The Pricing Engine determines the actual price for the
150 proposed routes.

The bounds on the number of routes considered at each
stage arise from the throughput vs. latency trade-off men-
tioned in the introduction. Details are provided below. The
complete search and pricing process must be completed in
under 4 seconds.

The flight domain is very large as it consists of all possible
combinations of connecting points (airports), carriers (air-
lines), and flight numbers from source to destination. An
example would be a Zurich-Amsterdam-Atlanta-Columbia
route, with KLM from Zurich to Amsterdam, then Delta
from Amsterdam to Atlanta and to Columbia, plus the time

Figure 3: The Flight Availability Search and Pricing en-
gine.

73



of each particular flight (since there could be several flights
from A to B the same day). Depending on the complexity
of the request, the flight domain can have millions of combi-
nations. Since selecting and scoring a route is an expensive
step, the Domain Explorer is limited to providing only 750
routes, making it simpler for the later stages in the pipeline
to finish within the allocated time budget.

The Route Selection serves two purposes. First, it selects
the cheapest routes among those proposed by the Domain
Explorer. Second, it ensures a proper distribution of the
routes among all possible airline and airport combinations
(e.g., avoiding biases in the answers favoring one particular
carrier or hub). The selection processes of both the Do-
main Explorer and the Route Selection are heavily based on
domain expert heuristics considering factors such as route
length, travel duration, or connection time.

The Pricing Engine finally takes the selected routes and
calculates the price of the corresponding ticket. This is also
an expensive operation as it involves many queries across a
number of systems to find out the prices for each leg and
the combination of prices offered by each carrier.

3.2 Baseline Route Scoring
The heuristics-based approach to selection in the Domain

Explorer and the Route Selection often induces drastic and
somewhat arbitrary cuts to the domain of solutions con-
sidered. Such cuts affect the quality of the results. Route
Scoring (shown in Figure 3) was added to the pipeline to
improve the situation.

Route Scoring uses machine-learning to determine which
of the proposed routes is most likely to be among the cheap-
est ones. The baseline implementation for the module uses
the H2O framework on production requests to generate a
GBDT model. GBDTs were chosen for three main reasons:
a predominance of categorical features; the high likelihood of
missing features; and a fast training cycle (new models can
be generated and tested about every week). The training
phase is based on production data.

The Route Scoring baseline implementation running on
several multicore servers is designed to introduce at most
an additional ten milliseconds of latency to Route Selection.
The Route Scoring module is deployed on its own set of
servers, separated from those for Route Selection. To ensure
the necessary performance, H2O, which is Java-based, was
re-implemented in C++. The code was optimized through
multiple iterations of profiling and stress testing (see below
for more details).

The 56-core CPU servers used to run the Route Scor-
ing module can handle around 1.5M routes per second, i.e.,
20–30K routes per core. A total of ten servers (including
redundancy servers) are dedicated to the Route Scoring to
handle the entire Route Selection traffic. For a single flight
availability query, the Route Selection component handles a
couple of hundreds of routes. This is the same order of mag-
nitude than the baseline Route Scoring can reach: hundreds
of routes scored in 10 ms in a single process.

To put the importance of route scoring into perspective,
the use of the Route Scoring module increases the findabil-
ity (the capacity to find the cheapest flights) by approx-
imately 10%. In the flight industry, a higher findability
usually translates into more bookings and more traffic from
aggregators.

3.3 Problem Statement
Both the initial pipeline and the one augmented with

route scoring are limited in the number of routes they can
consider because looking at too many routes per query would
impact latency. Moreover, since the engine has to serve a
large amount of queries per second, a higher cost per query
would also be detrimental to the overall throughput. Main-
taining a high throughput for heavier queries would imply
committing many more servers to the Route Scoring mod-
ule, increasing the overall costs of the Flight Search Engine.

Nevertheless, improving the quality of the results requires
to consider more routes per query. To avoid the subsequent
impact on latency, the route scoring should be merged with
other data processing stages. Doing so would lower the re-
sponse time as it would eliminate, in some part of the sys-
tem, the communication over the network. To be amenable
to embedding and also increase the number of routes consid-
ered per query, the Route Scoring has to be able to evaluate
hundreds of thousands of routes in a few milliseconds for
each flight availability query. In practical terms, the prob-
lem to address is to implement the GBDTs system in the
same servers as the Domain Explorer while providing higher
capacity and staying within the given latency bounds.

4. FPGA-GBDT INFERENCE ENGINE

4.1 Overview
The FPGA-GBDT inference engine we propose has been

implemented over models generated by H2O. Unlike previ-
ous work, we address the problem of implementing complex
decision nodes and provide a more compact implementation.
The decision nodes in GBM trees use different decision op-
erations compared to, e.g., XGBoost trees and tend to con-
sume much more memory. This makes the trees in GBM
larger and more complex than those considered before; as
a result, the memory structures used to store the trees had
to be modified and tailored to the GBM trees format to
efficiently utilize the FPGA’s on-chip memory.

The design achieves a high performance by using two tech-
niques: first, it parallelizes the processing of both the trees
in the ensemble and the routes data. Second, it eliminates
the overhead of the high-rate memory accesses suffered on
the CPU by implementing novel, highly distributed, and
customized memory structures in the FPGA to store both
the trees and the routes data.

4.2 Inference Engine Architecture
Figure 4a shows the inference engine architecture. The

design is built out of many Processing Elements (PE) orga-
nized in Compute Units (CU) as illustrated in Figure 4b. A
processing element can be programmed at runtime to pro-
cess one or more decision trees in parallel. A Compute Unit
consists of 28 PEs, and a tree of single precision floating-
point adders that sums up the individual decision tree re-
sults produced from the 28 PEs. A Compute Unit is de-
signed to process a complete decision tree ensemble. Hence,
multiple Compute Units are allocated to parallelize the scor-
ing of different routes. The Collector Unit then gathers in-
dividual route scoring results and writes them back to the
FPGA memory.

The Distributor is responsible for first replicating the tree
ensemble to all CUs, then distributing incoming routes data
in a round-robin fashion to CUs for processing. The I/O

74



(a) (b)

Figure 4: (a) FPGA-GBDT Inference Engine architecture. (b) Compute unit architecture.

Figure 5: Processing Element (PE) architecture.

Unit first receives a request with a set of parameters through
the command interface to perform a scoring query, then it
loads the tree ensemble from the off-chip memory to the
FPGA. Once all the trees are stored in the Compute Units,
the engine becomes ready for data processing. The I/O
Unit then starts reading the routes data from the FPGA
memory and feeding it to the Compute Units (through the
Distributor) for processing.

The engine can process 896 trees in parallel, either for
tens of different routes (same trees processed for different
routes as in small tree ensembles) or for just a few routes if
the tree ensemble consists of hundreds of trees.

Both the I/O Unit and the Collector have direct access
to the FPGA on-board DDR memory. The command inter-
face is connected to the PCIe interface of the FPGA card,
such that the software running on the host CPU can write
a command directly to start the scoring query.

4.3 Processing Element (PE)
The processing element (Figure 5) consists of two types

of components: local memories storing the tree nodes and

Figure 6: Decision node format and memory layout.

the input routes data, and a datapath that performs the
decision operation in a decision node on input routes.

Both the data and tree memories are 8 KB. Each memory
structure is built out of two FPGA dual-port Block RAMs
(BRAMs). The data memory BRAMs are organized to offer
one 64-bit write port dedicated for storing input routes data
and one 32-bit read port used for reading route features
during the inference operation. The tree memory BRAMs
are organized to offer four 32-bit read/write ports. During
the tree ensemble loading step, two ports are used to store
the trees, then during the inference step all the four ports
are used for read operations. This memory organization
offers enough parallel random memory accesses to sustain
the processing power of the datapath.

To maximize the utilization of the ports of the tree mem-
ory and fit as many trees as possible, we customized the
tree node format and memory layout offered by H2O. The
original decision node format allocates more bits for the dif-
ferent fields. For example, the fields of Word#0 consumes
5–8 bytes in the original format. Also, the right child offset,
and left and right values come after the large split set field
in the original format. We mainly reduced the bit-width of
the fields in Word#0 and put the large split set as the last
field in the tree node to reduce the number of memory ac-
cesses to the tree memory. Figure 6 shows the format and
memory layout of a tree node. The node consists of at least
two or more 32-bit words. The first 32-bit word defines the
decision node type including its decision operation, if it has
a left or right branch and so on. The second word defines the
split value or the split set depending on the decision node
type. The decision node memory layout is 32-bit aligned to
match the memory port sizes of the tree memory. A left
child of a decision node (if it exists) is stored directly after

75



its parent node, while the right child is stored at the given
offset in the first word. Size of split sets ranges from one to
tens of 32-bit words. A decision node branches into either a
decision node or a leaf node at its left and right branches.
If a branch ends with a leaf node, then its value is stored in
the decision node occupying the third or fourth word in the
tree node as Figure 6 illustrates. If the node has a large split
set, it comes after all other fields in the tree node starting
from Word#4 (if the node has left and right values). The
large split occupies one or more 32-bit words.

The datapath of the processing element (Figure 5) exe-
cutes a loop of L iterations, where L is the tree depth. Each
iteration evaluates one decision node and it takes 8 clock cy-
cles. To benefit from the datapath resources, its logic circuit
is fully pipelined, hence 8 trees can be processed in parallel.
The datapath pipeline consists of five stages. Stage#1 uses
2x32-bit ports of the tree memory to read the first two words
of a tree node (W0, W1). These two words contain all the
necessary information to process the tree node. Stage#2
uses the column (feature) index in W0, to calculate the fea-
ture address to read from the data memory. Stage#3 reads
the appropriate large split set word (if it exists) given the
feature value. If the node does not have a large split set
then it passes the feature value for the next stage. Stage#4
compares the feature with the split value, performs a mem-
bership test on the small split set, and chooses which opera-
tion outcome to consider based on the node type. Stage#5
either computes the next node pointer or reads the scoring
result from the tree memory if the current node is a leaf
node.

4.4 Design Configuration and Constraints
The engine architecture just presented is an architectural

template with a set of configurable parameters adjustable
at compile time (i.e., during FPGA bitstream generation)
to support a certain range of tree ensembles. The template
parameters include:

• Number of Compute Units (#CUs). The number of
CUs controls the degree of data parallelism exploited
in the engine. More CUs can be added to the archi-
tecture depending on the available amount of FPGA
resources.

• Number of Processing Elements (#PEs). The num-
ber of PEs determines the number of trees that can be
processed in parallel. But also the maximum tree en-
semble size that can be stored in a CU and processed
entirely on the FPGA. It is recommended to increase
the number of PEs as the number of trees increases.

• Size of the Tree Memory (SMAX). The Tree Memory
size determines the maximum size of a single decision
tree that can be stored in the tree memory and pro-
cessed entirely on the FPGA.

A given configuration of the engine template supports all
tree ensembles that can fit in a single CU, and not just
one particular tree ensemble size. For example, the engine
architecture shown in the previous Section, which consists
of four CUs, 28 PEs and 8KB tree memory, can support any
ensemble that satisfies the following conditions:

• The total size of the tree ensemble is less than 224 KB.

• A single tree is fully stored in a single PE tree memory.

The last constraint is important as, even if the first one is
satisfied, a tree ensemble may not fit in the CU. For exam-
ple, consider an ensemble of 29 trees with an average tree
size equals 6 KB. The first constraint is satisfied, but after
distributing 28 trees on all the PEs, the 29th tree does not
fit completely in any PE tree memory. In such a case, we
can either add one more PE unit (hence the CU contains
29 PEs) or reduce the number of PEs (e.g., 15 PE) and in-
crease the tree memory size to fit two trees (e.g., 12 KB).
While either way allows the engine to fit the tree ensemble,
the two differ in performance and resources consumption.
Adding one more PE consumes more resources, but offers
more performance as it increases parallelism. However, re-
ducing the number of PEs requires less resources but cuts
the engine performance by half as it reduces parallelism.

Using more CUs increases the compute performance lin-
early to match the memory line rate, hence turning the in-
ference from being compute-bound to being memory-bound.
Using more PEs also improves the compute performance but
it does not scale as well as the CUs. The recommendation
is to balance the tree memory size and the number of PEs
in a compute unit such that, for the target ensemble, the
highest possible utilization of the tree memory and as many
PEs is reached.

5. ROUTE SCORING SYSTEM

5.1 FPGA-Software Integration
The inference engine design is platform-agnostic; it can

be compiled on both Xilinx and Intel FPGAs. In the exper-
iments we use Xilinx FPGAs to test standalone and cloud
systems and Intel FPGAs to test integrated, cache-coherent
co-processors.

On the Intel Xeon+FPGA platform, we used the Intel’s
AAL framework for the FPGA applications development.
Atop of AAL, we used Centaur [41], a framework for inte-
grating FPGA accelerators with software applications. Cen-
taur offers concurrent access to multiple accelerators sharing
the same FPGA fabric. Further, it offers a thread-like in-
terface to applications with a functional interface for FPGA
accelerators. An FPGA accelerator on Intel’s platforms has
direct access to the CPU memory, which means no explicit
data transfers occur from CPU memory to FPGA mem-
ory. Instead, the FPGA accelerator, upon starting opera-
tion, fetches data directly from the CPU memory and writes
results back to CPU memory, overlapping memory accesses
with data processing.

On Xilinx platforms, we used the SDAccel application de-
velopment environment. SDAccel uses the OpenCL comput-
ing model, where there is a host (CPU machine) and a com-
pute device (FPGA). The FPGA device can be configured
with one or more compute kernels. In our case a compute
kernel is an inference engine instance. The data involved in
processing is first transferred from the host memory to the
FPGA DDR memory. Then, the compute kernels on the
device are invoked to start processing. The kernel reads the
data from the device memory, processes it, and writes the
results back to the device memory. Then, the results are
transferred from the device to the host memory back to the
software application.

Figure 7 shows the SDAccel application architecture. On
the software side, the SDAccel architecture includes device

76



drivers, runtime environment, and the OpenCL API. SDAc-
cel allows multiple instances of the same FPGA kernel on a
single FPGA device.

5.2 Integration in the Flight Search Engine
Pipeline

The flight search system deploys the Route Scoring as
part of the Route Selection stage and is deployed on its
own servers. There are two potential architectures for in-
tegrating the FPGA Route Scoring module into the Route
Selection stage: Attaching FPGA devices through PCIe to
the Route Selection servers, or deploying the FPGA Route
Scoring module on its own servers.

The first deployment approach is more favorable from the
FPGA perspective. The software running on the CPU pro-
ducing the routes can stream them at a much higher rate
directly to the FPGA through PCIe compared to the stream-
ing bandwidth over the network if the Route Scoring mod-
ule is deployed on its own servers. This tight integration
minimizes communication overhead between the Route Se-
lection and Route Scoring stages, improving the overall re-
sponse time. This might change in the future with network-
attached FPGAs.

The FPGA Route Scoring module developed in SDAccel,
exposes the scoring operation as a function call.

ScoreFPGA(Routes_ptr, Model_ptr, Scores_ptr)

The caller passes the pointers to the routes, tree model,
and output scores through the ScoreFPGA function, which
then handles all the steps to transfer data to the FPGA,
triggers the computation, and later returns scoring results
back to the caller application. This functional interface is
convenient for existing software applications and requires
minimal code modifications. It offers a drop-in replacement
for existing CPU implementations regardless of the final de-
ployment of the FPGA accelerator.

6. EXPERIMENTAL EVALUATION

6.1 Route Scoring Performance on Produc-
tion Data

6.1.1 Setup
Tested GBDT Model. In this experiment we trained a

GBDT model using H2O on historical flight data. A flight
route record consists of 25 categorical and numerical 32-bit
features. We extended the data set by creating multiple
variations of the same request to influence the heuristics in
order to have a bigger pool of results than a classic reply.

Figure 7: Route Scoring application on a CPU-FPGA
server using Xilinx SDAccel environment.

The result was an ensemble of 109 trees, each tree being five
levels deep. The trees differ in size, a tree size is 1–2.5 KB,
and the total size of the ensemble is nearly 200 KB. The
model was tested using one million routes of synthetic data.

Deployment platforms. The experiments were performed
on three different machines in the AWS cloud and three
stand-alone servers. Table 1 summarizes the characteristics
of the different platforms used. For the CPU baseline, we
reimplemented the H2O Java version in C++. Profile-based
optimizations to the memory control and code streamlining
were used to improve performance. The C++ implementa-
tion can score 60% more routes than the original H2O Java
version. We did not optimize the data format and structures
to maintain compatibility with the full specification of H2O.

The FPGA design is implemented in SystemVerilog. The
FPGA is configured with two inference engines. Each in-
ference engine has four CUs and each CU contains 28 PEs.
The Tree Memory in the PE is 8 KB in size, which can ac-
commodate up to four trees of the model used for testing.
This is more than enough to fit the trained GBDT model in
a single compute unit.

Performance metrics. We use scored routes per second as
the performance metric. The throughput is calculated by
dividing the number of routes processed (i.e., one million
routes) over the query response time, excluding the time
overhead for transferring the data and results over PCIe for
FPGA-based platforms (discussed later in Section 6.1.2).

6.1.2 Results
On-premises deployment. Figure 8 plots the performance

results for on-premises platforms as described in Table 1 for
both compute-only and overall performance including the
data transfer overhead. Both FPGAs in the Intel’s HARP v2
and VCU1525 have the same inference engine configuration,
but use different clock frequencies. The HARP v2 is clocked
at 200 MHz and the VCU1525 is clocked at 300 MHz.

The plot shows that HARP’s performance is not affected
by the data movement costs since the inference engine ac-
cesses the data in the host memory directly and reading
the data can be overlapped with the computation. The
VCU1525 deployment with SDAccel requires an explicit step
to move data from the host memory to the FPGA DDR be-
fore processing can begin, causing an important overhead.
As a result, even if the VCU1525 compute-only throughput
is higher than HARP due to the 30% higher clock frequency,
the overall performance is slightly lower.

Figure 8: Route Scoring performance when deployed in
on-premises platforms.

77



Table 1: Platforms used in the experimental evaluation.

AWS Instance CPU FPGA PCIe Bandwidth ($/Hr)

CPU C5 2xlarge 8 vCPUs, 16 GiB - - 0.34

FPGA F1 2xlarge 8 vCPUs, 122 GiB 1 UltraScale+ VU9P, 64 GiB 10 GB/s 1.65

FPGA F1 4xlarge 16 vCPUs, 244 GiB 2 UltraScale+ VU9P, 128 GiB 10 GB/s 3.30

On Premises CPU FPGA CPU-FPGA Bandwidth Cost

HP ProLiant 56 CPU cores - - 11K $

Intel’s HARP v2 14 cores, 64 GiB 1 Arria 10 20 GB/s 7.5K $

Xilinx VCU1525 - 1 UltraScale+ VU9P, 64 GiB 10 GB/s 7.5K $

FPGA Device Logic Elements On Chip Memory DDR Bandwidth

Ultrascale+ 147,618 CLBs 2,160 RAMB36E (75.9 Mb) 4 DDR channels, 16 GB/s per channel

Arria 10 427,200 ALMs 2,713 M20K (55.5 Mb) -

(a) (b) (c)

Figure 9: (a) Compute-only and Overall performance on FPGA compared to full CPU performance when deployed in AWS
cloud. (b) Route Scoring throughput per Dollar running on AWS cloud. (c) Compute-only and overall performance when
mapping a scoring request on one or two inference engines.

AWS cloud deployment. Figure 9 shows the performance
results for the AWS instances described in Table 1. The
plotted results for FPGA are the full device compute-only
as well as the overall performance considering the cost of
data transfers over PCIe (the FPGA is configured with two
inference engines). The FPGA delivers two orders of magni-
tude performance improvement over the CPU solution. The
huge parallelism of the FPGA (9 billion trees per second)
and the tremendous throughput of random memory accesses
(168 billion 64-bit read operations per second) enable the
FPGA to score nearly 82 million routes per second. Al-
though the FPGA is more expensive than the CPU instance,
it is 25 times cheaper to use the FPGA to deliver the same
performance as a CPU (Figure 9b).

Data transfer overhead. It is important to see how the
performance will change if the data transfer from the host
device to the FPGA is considered. Figure 9c compares the
compute-only (just inference inside the FPGA) and the over-
all (including data transfers over PCIe) throughputs, for one
and two inference engines instantiated on the FPGA in AWS
F1 2xlarge instance. The throughput drops by 30–40% when
data transfers are taken into account. Using two inference
engines offers double the compute-only performance of a sin-
gle engine. This is not the case when including the data
transfer overhead. Both engines share the same physical
PCIe link and the same memory bank on the FPGA side,
limiting the benefits of the additional engine.

The limitation of the data transfer overhead we observe
is a symptom of the current F1 servers’ architecture and
the OpenCL compute model used in Xilinx SDAccel. As a
comparison, on the Intel’s HARP v2 platform, the inference
engine on the FPGA can access the CPU main memory
directly without the need to first transfer the data to the
FPGA memory. This means the HARP v2 performs bet-
ter than the AWS F1 and VCU1525 FPGA card when the
cost of data transfers is considered even if it is nominally a
smaller and slower FPGA. Another way to speed up data
transfers is on FPGA with a network connection with suffi-
cient bandwidth. The data can then be streamed directly to
the scoring engines, eliminating the data transfer overhead
and utilizing the full compute throughput.

The existing solution at Amadeus implements the Route
Scoring system using a total of 10 HP ProLiant servers,
achieving 15 million routes per second in aggregate through-
put. If deployed in the AWS Cloud, 25 CPU c5.2xlarge in-
stances are required to maintain the same throughput. Even
when considering the cost of data transfers, a single server
equipped with a PCIe attached Virtex Ultrascale+ FPGA
card deployed on premises, or on an AWS F1 instance, is able
to replace all the servers and offer 3 times more throughput
being 5 times cheaper than the 25 c5.2xlarge instances.

In terms of comparison with a GPU, such as the AWS
p3.2xlarge instance (equipped with a Tesla V100 NVidia
GPU) costs 3.06 $/hour, which is nearly double the cost

78



Figure 10: Inference engine performance scaling as trees
ensemble size changes.

of the FPGA instance with similar characteristics. For the
GPU to reach similar performance per dollar to that of the
FPGA, it must double the FPGA throughput (152 Million
routes/second). For on-premises deployment, the FPGA
and GPU cards used in the AWS instances have a simi-
lar price (around 10K$). However, the GPU consumes 2–
3x more energy than the FPGA. In a recent report from
NVidia [48], a GPU implementation (on V100) of the XG-
Boost trees (which are much lighter than the ones we con-
sider in this work) delivers, at best, 50 million tuples per
second, which is one third of what is required to make the
GPU cost competitive to the FPGA in a cloud deployment.
In addition to these considerations, we are not aware of any
significant results on inference over decision tree ensembles
on GPUs (see related work) due to the irregular nature of
the computation.

Latency analysis. The 0.6 M routes/second throughput
of the AWS C5 CPU instance is the aggregate throughput
of 8 cores each processing 75 K routes/second. The current
CPU implementation is single threaded. A single core takes
10 ms to process a scoring query involving 750 routes. The
FPGA needs 0.25 ms to score a query of 750 routes (from the
data in Figure 11a). In addition, the ability to attach the
FPGA through PCIe to the Route Selection servers instead
of running it on a separate server eliminates the network
overhead in the overall latency (see discussion Section).

6.2 Performance Scalability
In the previous Section, we showed the performance of

the FPGA solution for a single point in the problem space
(i.e., a specific decision tree ensemble and a single scoring
request size). To assess the viability of the FPGA solution,
we explore in this Section the performance scalability using
a range of tree ensemble sizes and different scoring requests
sizes.

6.2.1 Scaling performance with tree ensemble size
The purpose of this experiment is to see how the per-

formance of a single configuration of the inference engine
changes for different tree ensembles fitting in its allocated
tree memories. As established in Section 4, the amount of
time spent processing an ensemble depends on the number
of trees and on the tree depth and not on the tree size or on
the type of tree nodes. Hence, we randomly generated eight
ensembles with a different number of trees (28–224). The
trees are five levels deep, and all the trees are of the same

size, 768 bytes. We run the experiment using the same in-
ference engine configuration as in Section 6.1.

Figure 10 shows the experiment results for a scoring re-
quest of one million routes. The plot shows the compute
throughput of a single inference engine without including
data transfer over PCIe (compute-only), as well as the over-
all throughput including both data transfer and compute.
As the ensemble size grows, the compute throughput drops
and dominates the performance, diminishing the overhead
of data transfers.

More trees consume more compute cycles of the PE data-
path, hence reducing the overall throughput. In Figure 10,
the ”Optimal” line is computed using Equation 1, which
gives the maximum compute capacity of a single engine con-
sidering all the PEs allocated in all CUs. The numerator
represents the total number of compute cycles of the engine
(8 is the PE datapath pipeline depth), and the denominator
expresses how it is consumed by the tree ensemble. Ensem-
bles larger than 56 trees are satisfied with the current config-
uration. The only limiting factor is the number of available
compute cycles of the engine. However, it is important to
consider other factors in the system that might impose an
upper limit on performance such as PCIe bandwidth, and
off-chip DDR bandwidth.

Optimal =
#PEsTotal ∗ 8 ∗ freq

((8 ∗ TreeDepth+ 8) ∗Ntrees)
routes/s (1)

For tree ensembles with 28 and 56 trees, the throughput
of the inference engine is bounded by the internal data bus
width bringing data to the PEs, which operates at a maxi-
mum bandwidth of 2 GB/s (i.e. 20 million routes/second for
100-byte routes). Since each CU has its own data bus, the
maximum throughput of the full engine cannot exceed 80
million routes/second (in the current configuration of four
CUs). To solve this internal bandwidth limitation, the PEs-
CUs distribution in the engine can be changed while main-
taining the same number of PEs. Reducing the number of
PEs per compute unit to 7 PEs and allocating 16 CUs offers
abundant internal bandwidth to consume input data traffic,
making the engine memory bound.

It is important to note that these throughput numbers are
for a route size of 100 bytes. If the considered route data
is much larger (e.g., 1 KB), then the PCIe and DDR upper
bounds become much lower and dominate system perfor-
mance. However, the compute throughput does not change
as it does not depend on the data size.

The results of this experiment point to the fact that, while
a single configuration of the inference engine can support a
range of tree ensembles, its performance is negatively af-
fected by the tree ensemble size. To alleviate this perfor-
mance degradation, we recommend modifying the inference
engine parameters discussed in Section 4.4 to produce a con-
figuration that achieves the maximum possible throughput.

6.2.2 Scaling with request size
An important aspect of the Route Scoring system to ex-

amine is the overhead of initiating a scoring request on the
overall performance. Initiating a scoring request includes
a kernel invocation as well as scheduling and initiating the
necessary data transfers. In the previous Sections we used
a scoring request of 1 million routes, which is large enough
to hide the invocation overhead. In this Section we evaluate
the performance for a range of request sizes (i.e., number of

79



(a) (b)

Figure 11: (a) Inference engine performance scaling as scoring request size changes. (b) Scoring request response time
distribution for different requests sizes.

routes to score). We used the same inference engine config-
uration and tree ensemble as in Section 6.1, and considered
a wide range of request sizes from a couple of hundreds of
routes to hundreds of thousands. In these experiments, the
FPGA device on the AWS F1 is programmed with one in-
ference engine.

Figure 11a plots the results of the experiment for different
request sizes. The throughput of a single inference engine
is very low for small requests barely improving over a single
CPU server. The overhead of initiating a scoring opera-
tion is on the order of hundreds of microseconds, which is
much more than the latency of processing a couple hundred
routes (approximately 6µs). This observation implies that
although the FPGA achieves an order of magnitude higher
performance over CPU servers, it will fail to deliver this per-
formance with the current setup where all scoring requests
are few hundred routes.

Figure 11b illustrates the response time distribution across
different request sizes. The response time components are
the computation time, data transfer time (host to FPGA),
results transfer time (FPGA to host), loading trees to on-
chip memories, and kernel invocation latency. For small
request sizes, the kernel invocation overhead dominates the
overall request response time. As requests grow in size, the
compute part dominates the request response time, followed
by the time to transfer data from host memory to FPGA
DDR.

A solution to alleviate the kernel invocation overhead is
to batch thousands of these small requests to minimize the
initiation overhead. It also indicates that the route scoring
is suitable to be used inside the Domain Explorer, which can
generate hundreds of thousands to millions of routes before
early stage filtering.

6.3 Resource Usage
Table 2 details the amount of consumed resources by the

different components of the FPGA. The critical FPGA re-
source for the inference engine is the FPGA BRAMs used to
store the trees as well as the routes while being processed. A
single inference engine consumes 24% of the FPGA memory
resources. When allocating two inference engines, 60% of
the FPGA BRAMs are used. While there is still a sufficient
amount of resources to allocate a third engine, the routing
complexity inside the engine architecture and the layout of
the Xilinx Ultrascale+ FPGAs make it very hard to allo-
cate three engines in the FPGA. However, it is easier to use

the available BRAMs to increase the size of tree memories
to fit larger or more trees. The floating-point adders tree
consumes nearly 32% of the CLBs occupied by a CU.

The rest of the engine components (I/O Unit, Collector,
State-Machine, etc.) consume nearly 9% of the overall en-
gine resources (both logic and memory). However, the per-
centage would be higher if the engine only contained one
CU. Then the I/O Unit and State-Machine would consume
nearly 29% of the engine resources. The takeaway point here
is that it is preferable to parallelize data/trees processing by
allocating as many CUs as possible in the inference engine
instead of allocating many small inference engines. The final
decision behind the allocation of resources depends on the
application characteristics (e.g., many scoring requests us-
ing different GBDT models), and the success of generating
an FPGA bitstream, which is a daunting process includes
synthesis, placement and routing steps of many inference
engines on the FPGA.

7. DISCUSSION
The performance improvements achieved on the FPGA

opens up several options for integrating the Route Scoring
system in the search pipeline even if we are bound by ex-
isting architectural configurations. If the Route Scoring is
embedded inside the Route Selection stage, the ten dedi-
cated servers currently used for the Route Scoring system
in a data center can be replaced by a single FPGA-based
server. If the Route Scoring is deployed on a single FPGA
server, the server must have sufficient network bandwidth
to feed enough data to the FPGA to utilize its full com-
pute capacity. To maintain the current throughput of all
ten servers (15 million route per second), a minimum aggre-
gate network bandwidth of 12 Gbps is required, within easy
reach of modern data center networks.

An alternative design that removes the need for an addi-
tional server for Route Scoring is to equip every Route Selec-

Table 2: Consumed FPGA resources by different modules.

Module CLBs BRAMs

Processing Element 112 0.08% 4 0.19%

Compute Unit 4557 3.1% 121 5.6%

Inference Engine 20076 13.6% 520 24.1%

SDAccel Shell 31936 21.6% 215 10%

80



(a) (b)

Figure 12: (a)Inserting a small FPGA card in each Route Selection server attached through PCIe.(b) Deploying the Route
Scoring as part of the Domain Explorer by attaching an FPGA card to each Domain Explorer server.

tion server with an FPGA implementing the route scoring
engines, removing the network overhead (Figure 12). The 48
millions of routes evaluated per second on the FPGA also
enable a deployment of the Route Scoring inside the Do-
main Explorer as it can deal with the much higher number
of routes generated there. An FPGA card in every Domain
Explorer node would allow the scoring of hundreds of thou-
sands of routes for each flight availability request and 10 ms
of latency requirement for route scoring (Figure 12b). The
same type of deployment could be applied in the cloud. The
Domain Explorer can be deployed on an AWS F1 instance
with the Route Scoring inside the FPGA.

The increasing availability of FPGAs and the way they
are evolving is in favor of our design. For instance, designs
such as those on Microsoft Azure where the FPGA has di-
rect network access [11] or the new Xilinx Alveo cards with
network ports on the PCIe attached FPGA would enable a
configuration in which the FPGA can directly communicate
with other servers, thereby significantly reducing latency in
the data movement and increasing the available bandwidth.

The current FPGA implementation assumes that the de-
cision tree ensemble fits in the FPGA memory. However,
this might not be the case for very large ensembles. Storing
the ensemble in off-chip memory will significantly diminish
the FPGA performance as it does not offer the huge random
memory bandwidth and low latency of on-chip memory. In
prior work, we have developed two solutions to the problem:
partitioning the ensemble into smaller partitions that fit in
the FPGA and processing them sequentially on the same
FPGA [42], or using a cluster of FPGAs to process very
large ensembles [40].

8. RELATED WORK

8.1 Low-Latency Data Processing Pipelines
There have been many efforts both in academia and in-

dustry to use hardware accelerators such as FPGAs to im-
prove the response time of latency-sensitive data processing
pipelines. Microsoft initially developed the Catapult plat-
form [46, 11] to accelerate the search queries of the Bing
search engine, in particular the document ranking stage of
the Bing data processing pipeline. The document ranking
stage employs a series of feature computation, features syn-
thesis, and machine-learning based document scoring. The
FPGA acceleration of the ranking service reduced tail la-
tency by 29% while maintaining equivalent throughput.

Alibaba Cloud recently deployed an accelerated database
system called X-DB to boost the performance of their ser-
vices [2]. In addition to accelerating SQL search queries, the

FPGA performs the compaction operation, which merges
multiple versions of the SSTables in the persistent storage
and keeps the latest version. Alibaba was able to achieve
up to 60% improvement on throughput and reducing sig-
nificantly the performance jitters caused by the compaction
operation competing with normal transaction processing on
the CPU.

Similarly, Baidu has deployed Software Defined Acceler-
ators (SDA) based on Xilinx FPGAs in their datacenters
to accelerate data analysis systems (e.g., Spark) [39]. The
SDA offers a flexible hardware architecture implementing
core SQL operators (join, select, filter, sort, group by, aggre-
gate). A SQL plan is translated into a program to configure
the SDA to perform a specific query. For certain bench-
marks, the SDA achieves an improvement of one order of
magnitude over CPU in terms of query response times.

Sidler et al. [53] have proposed an FPGA solution for ac-
celerating database pattern matching queries, the proposed
solution reduces query response time by 70%. Similarly,
Kara et al. [27], demonstrated how offloading the partition-
ing operation of the SQL join operator to the FPGA can
significantly improve performance and offer a robust solu-
tion.

High-speed trading is another field where FPGAs have
been used to significantly improve response time. Tang et
al. [57] developed a market-data processing library for FP-
GAs that achieves an improvement of two orders of magni-
tude over CPU latency.

All the prior efforts draw parallels to our effort in this
work to improve the overall response of a given data process-
ing pipeline. In all the mentioned accelerator solutions, as
in ours, the developers strove to meet two conditions: lower
latency and accelerator flexibility to adapt to changing work-
load characteristics and user requirements. The flexibility is
achieved through highly parameterized FPGA architectures
(Bing search, X-DB) or a custom, software programmable
Instruction Set Architecture (Baidu SDA).

8.2 Machine Learning on FPGAs
The stagnating performance of CPUs running machine-

learning workloads opened the door for hardware accelera-
tors such as FPGAs and GPUs which are more suited to
these type of workloads [15, 7, 60].

There is already quite a lot of work on decision trees for
FPGAs [17, 5, 20, 20, 47, 36]. In most cases, it is highly cus-
tomized to particular applications (e.g., [36]), supports only
small decision trees [50] or has been designed for different
architectures [42]. Oberg et al. [36] presented an FPGA clas-
sification pipeline for the Microsoft Kinect depth image pix-
els. The problem they addressed was how to accelerate very

81



deep random forest trees that do not fit inside the FPGA
memories. Their ensembles consisted of just a few trees but
each tree contains hundreds of thousands of nodes. Their
solution used the FPGA off-chip DDR memories to store
the trees and was based on reordering of the computation
to minimize off-chip DDR memory accesses.

Essen et al. [20] approached the acceleration of decision
trees inference by unfolding the tree levels and allocating
separate compute and memory resources for each tree level.
While this works for ensembles with a small number of de-
cision trees, it does not scale well for large tree ensembles.

The authors report a throughput of 31.25 M tuples/second
using four Virtex-6 FPGAs (manufactured with 40 nm tech-
nology) for a random forest of 32 trees, each six levels deep.
This throughput is compute-only and obtained from sim-
ulation. Their design mainly uses LUTs, Flip Flops, and
DSPs and consumes half of the FPGA resources and runs
on 70 MHz. The Virtex Ultrascale+ FPGA we use offers
nearly eight times the amount of resources of their FPGA,
and is manufactured with 16 nm process-node. If we re-
implement their design on our FPGA (we do not have ac-
cess to their source code), adapt the design to our GBM
trees and ensemble size which is nearly 16 times more com-
plex in operations and memory requirements, we estimate
that we will need two Ultrascale+ FPGAs to implement the
trees. Running at 200 MHz their solution would deliver
about 80 M routes/second. Compared to our solution, us-
ing one VCU1525 we achieve 94 M routes/second (compute-
only).

Integrating machine-learning in relational databases has
been explored to benefit from the optimized data structures
and operators inside the RDBMS. Sattler et al. [51] proposed
a set of SQL primitives as building blocks for implementing
a decision tree classifier in relational databases. To allevi-
ate the overhead of the slow decision tree primitives in a
database, Bentayeb et al.[9] proposed an approach to repre-
sent an ID3 decision tree using SQL views.

Recently, a large body of research work has explored a
range of hardware accelerator solutions for Deep Neural Net-
works (DNNs), another machine-learning method. Microsoft
Brainwave project [15] deploys an FPGA-based DNN pro-
cessor in the Bing search engine. The FPGA solution meets
the strict latency requirements of the Bing data processing
pipeline offering an order of magnitude lower response time
compared to a CPU-only solution. The Brainwave DNN
processor harnesses the vast amount of FPGA resources to
create wide parallel datapaths with a custom instruction set.
As in our case, the approach must support the frequent up-
dates to the DNN models. Other work has explored the ac-
celeration of machine-learning methods such as KMeans [23],
Association Rules [45], Generalized Linear Models [25], etc.

All these systems are based on the same architectural
premise we follow in this work: latency-sensitive systems em-
ploying machine-learning in their data processing pipelines
need to use hardware accelerators to meet their stringent
timing constraints while still benefiting from the better re-
sults provided by machine-learning methods.

8.3 Machine Learning on GPUs
GPUs offer tremendous parallel processing capacity by al-

locating thousands of scalar processing elements equipped
with double-precision arithmetic units. GPUs use a Single
Instruction Multiple Data (SIMD) execution model, where

parallel processing units concurrently crunch large amounts
of sequential data. The GPU execution model and architec-
ture is suitable for methods such as neural networks but it
works less well for non-sequential control flow, low-density
computations, and if a significant amount of random mem-
ory accesses is involved. These are, unfortunately, precisely
the characteristics of decision tree inference [48].

Existing work on using GPUs for decision trees focuses
almost exclusively on training and learning of the trees, a
task where GPUs excel. Only recently, NVidia described a
library for inference over gradient-boosted trees (XGBoost
models) that requires users to make the input dataset and
the tree ensemble dense. Also, the library allows for only
fully grown trees with leaves only at the deepest layer [48].
The input is assumed to be already in the memory of the
GPU, in batches of up to a million queries, and stored so as
to minimize random accesses. The trees need to be stored
in a weaved manner, with processing occurring first for node
0 of all trees, then for node 1, for node 2, etc. which limits
the ability to deal with sparse inputs and sparse trees. The
reported performance results indicate that our solution is 2x
to 4x more cost-effective when considering deployments in
AWS cloud as we discussed in Section 6.1.2. Even for very
high-end GPUs (NVidia P100 and V100, typically used in
supercomputing) and without having to impose any limita-
tions on data allocation, batching, format, or tree represen-
tation, our solution achieves twice their performance when
comparing their published numbers and ours (the library
was not publicly available at the time of writing).

Earlier work [52] has shown that a GPU can deliver speedup
of an order of magnitude over a CPU for relatively small en-
sembles (just a few trees). Liao et al. [31] have proposed a
GPU-based solution for both training trees and inference, of-
fering an improvement of an order of magnitude over a CPU
baseline implementation. Recent work from NVidia [19]
demonstrated the ability of GPUs to deliver an improve-
ment of two orders of magnitude on CPU performance when
training GBDTs but there is no mentioning of using the sys-
tem for inference. The algorithm is now available as part of
H2O GPU Edition.

9. CONCLUSIONS
In this paper we have addressed the problem of combin-

ing machine learning methods with latency-sensitive search
pipelines. Using a real use case, we have shown how the
use of specialized hardware (an FPGA-based solution) and
a novel design of inference over tree ensembles can lead to a
significant performance improvement as well as a potential
boost to the quality of the results obtained by enabling the
scoring of many more potential answers. Future work will
involve the automated generation of optimal designs using
a parameterized template.

10. ACKNOWLEDGMENTS
We would like to thank Intel for the generous donation of

the HARP platform and Xilinx for the generous donation of
the Ultrascale+ board. Part of the work of Muhsen Owaida
was funded by a grant from Amadeus.

82



11. REFERENCES
[1] J. A. Konstan and J. Riedl. Recommender Systems:

From Algorithms to User Experience. User Modeling
and User-Adapted Interaction, 22(1):101–123, 2012.

[2] Alibaba Cloud. When Databases Meet FPGA
Achieving 1 Million TPS with X-DB Heterogeneous
Computing. https://www.alibabacloud.com/blog/.

[3] G. Alonso, Z. Istvan, K. Kara, M. Owaida, and
D. Sidler. DoppioDB 1.0: Machine Learning inside a
Relational Engine. IEEE Data Engineering Bulletin,
42(2):19–31, 2019.

[4] Altexsoft. Fraud Detection: How Machine Learning
Systems Help Reveal Scams in Fintech, Healthcare,
and eCommerce. Technical report, 2017.
https://www.altexsoft.com/whitepapers/.

[5] F. Amato, M. Barbareschi, V. Casola, and A. Mazzeo.
An FPGA-Based Smart Classifier for Decision
Support Systems. In Proceedings of the International
Symposium on Intelligent Distributed Computing
(IDC), pages 289–299, 2014.

[6] X. Amatriain and J. Basilico. Recommender Systems
in Industry: A Netflix Case Study; Recommender
Systems Handbook. Springer, 2015.

[7] Amazon AWS. Amazon EC2 F1 Instances.
https://aws.amazon.com/ec2/instance-types/f1/.

[8] I. Arapakis, X. Bai, and B. B. Cambazoglu. Impact of
Response Latency on User Behavior in Web Search. In
Proceedings of the International ACM SIGIR
Conference on Research & Development in
Information Retrieval, pages 103–112, 2014.

[9] F. Bentayeb and J. Darmont. Decision Tree Modeling
with Relational Views. In Proceedings of the
International Symposium on Methodologies for
Intelligent Systems (ISMIS), pages 423–431, 2007.

[10] J. D. Brutlag, H. Hutchinson, and M. Stone. User
Preference and Search Engine Latency. In JSM
Proceedings, Qualify and Productivity Research
Section., pages 1–13, 2008.

[11] A. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, and et al. A Cloud-Scale Acceleration
Architecture. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture
(MICRO), pages 1–13, 2016.

[12] M. Chau and H. Chen. A Machine Learning Approach
to Web Page Filtering Using Content and Structure
Analysis. Decision Support Systems, 44(2):482–494,
2008.

[13] T. Chen and C. Guestrin. XGBoost: A Scalable Tree
Boosting System. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining
(KDD), pages 785–794, 2016.

[14] Y.-T. Chen, J. Cong, Z. Fang, J. Lei, and P. Wei.
When Spark Meets FPGAs: A Case Study for
Next-Generation DNA Sequencing Acceleration. In
Proceedings of the USENIX Conference on Hot Topics
in Cloud Computing (HotCloud), pages 64–70, 2016.

[15] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael,
A. Caulfield, and et al. Serving DNNs in Real Time at
Datacenter Scale with Project Brainwave. In
Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages
8–20, 2018.

[16] D. Cook. Practical Machine Learning with H2O:
Powerful, Scalable Techniques for Deep Learning and
AI. O’Reilly Media, 2016.

[17] T. G. Dietterich. Ensemble Methods in Machine
Learning. In Proceedings International Workshop on
Multiple Classifier Systems (MSC), pages 1–15, 2000.

[18] M. Endrei, J. Ang, A. Arsanjani, S. Chua, P. Comte,
P. Krogdahl, M. Luo, and T. Newling. Patterns:
Service-Oriented Architecture and Web Services,
volume 1. IBM Redbooks, 2004.

[19] V. Ershov. CatBoost Enables Fast Gradient Boosting
on Decision Trees Using GPUs, 2018.
https://devblogs.nvidia.com/category/

artificial-intelligence/.

[20] B. V. Essen, C. Macaraeg, M. Gokhale, and
R. Prenger. Accelerating a Random Forest Classifier:
Multi-Core, GP-GPU, or FPGA? In Proceedings of the
IEEE International Symposium on
Field-Programmable Custom Computing Machines
(FCCM), pages 232–239, 2012.

[21] J. Gehrke, V. Ganti, R. Ramakrishnan, and W.-Y.
Loh. BOAT—Optimistic Decision Tree Construction.
In Proceedings of the International Conference on
Management of Data (SIGMOD), pages 169–180,
1999.

[22] J. Gehrke, R. Ramakrishnan, and V. Ganti.
RainForest - A Framework for Fast Decision Tree
Construction of Large Datasets. Data Mining and
Knowledge Discovery, 4(2):127–162, 2000.

[23] Z. He, D. Sidler, Z. István, and G. Alonso. A Flexible
K-Means Operator for Hybrid Databases. In
Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), pages
368–3683, 2018.

[24] M. Kainth, D. Pritsker, and H. S. Neoh. FPGA Inline
Acceleration for Streaming Analytics. Technical
report, 2018.

[25] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and
C. Zhang. FPGA-Accelerated Dense Linear Machine
Learning: A Precision-Convergence Trade-Off. In
Proceedings of the IEEE International Symposium on
Field-Programmable Custom Computing Machines
(FCCM), pages 160–167, 2017.

[26] K. Kara, K. Eguro, C. Zhang, and G. Alonso.
ColumnML: Column-store Machine Learning with
On-the-fly Data Transformation. PVLDB,
12(4):348–361, 2018.

[27] K. Kara, J. Giceva, and G. Alonso. FPGA-Based Data
Partitioning. In Proceedings of the International
Conference on Management of Data (SIGMOD),
pages 433–445, 2017.

[28] B. P. Knijnenburg, M. C. Willemsen, Z. Gantner,
H. Soncu, and C. Newell. Explaining the User
Experience of Recommender Systems. User Modeling
and User-Adapted Interaction, 22(4):441–504, 2012.

[29] D. Koeplinger, M. Feldman, R. Prabhakar, Y. Zhang,
S. Hadjis, R. Fiszel, T. Zhao, L. Nardi, A. Pedram,
C. Kozyrakis, and K. Olukotun. Spatial: A Language
and Compiler for Application Accelerators. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI), pages 296–311, 2018.

83



[30] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. KV-Direct: High-Performance
In-Memory Key-Value Store with Programmable NIC.
In Proceedings of the Symposium on Operating
Systems Principles (SOSP), pages 137–152, 2017.

[31] Y. Liao, A. Rubinsteyn, R. Power, and J. Li. Learning
Random Forests on the GPU. In Proceedings of Big
learning: Advances in Algorithms and Data
Management, pages 1–6, 2013.

[32] D. Mahajan, J. K. Kim, J. Sacks, A. Ardalan,
A. Kumar, and H. Esmaeilzadeh. In-RDBMS
Hardware Acceleration of Advanced Analytics.
PVLDB, 11(11):1317–1331, 2018.

[33] N. Mehta. UltraScale Architecture: Highest Device
Utilization, Performance and Scalability. Technical
report, 2015.
https://www.xilinx.com/support/documentation/

white_papers/wp455-utilization.pdf.

[34] A. Mitra, W. Najjar, and L. Bhuyan. Compiling
PCRE to FPGA for Accelerating SNORT IDS. In
Proceedings of the ACM/IEEE Symposium on
Architecture for networking and communications
systems (ANCS), pages 127–136, 2007.

[35] A. Natekin and A. Knoll. Gradient Boosting Machines,
a Tutorial. Frontiers in Neurorobotics, 7(Dec), 2013.

[36] J. Oberg, K. Eguro, and R. Bittner. Random Decision
Tree Body Part Recognition Using FPGAs. In
Proceedings of the International Conference on Field
Programmable Logic and Applications (FPL), pages
330–337, 2012.

[37] N. Oliver, R. Sharma, S. Chang, et al. A
Reconfigurable Computing System Based on a
Cache-Coherent Fabric. In Proceedings of the
International Conference on Reconfigurable Computing
and FPGAs (ReConFig), pages 80–85, 2011.

[38] Oracle Inc. Oracle Data Mining Concepts. https:
//docs.oracle.com/database/121/DMCON/toc.htm.

[39] J. Ouyang, W. Qi, Y. Wang, Y. Tu, J. Wang, and
B. Jia. SDA: Software-Defined Accelerator For
General-Purpose Big Data Analysis System. In
Proceedings of the IEEE Hot Chips Symposium, pages
1–23, 2016.

[40] M. Owaida and G. Alonso. Application partitioning
on fpga clusters: Inference over decision tree
ensembles. In Proceedings of the International
Conference on Field Programmable Logic and
Applications (FPL), pages 295–300, 2018.

[41] M. Owaida, D. Sidler, K. Kara, and G. Alonso.
Centaur: A framework for hybrid cpu-fpga databases.
In Proceedings of the IEEE International Symposium
on Field-Programmable Custom Computing Machines
(FCCM), pages 211–218, 2017.

[42] M. Owaida, H. Zhang, C. Zhang, and G. Alonso.
Scalable inference of decision tree ensembles: Flexible
design for CPU-FPGA platforms. In Proceedings of
the International Conference on Field Programmable
Logic and Applications (FPL), pages 1–8, 2017.

[43] B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo.
Planet: Massively parallel learning of tree ensembles
with mapreduce. PVLDB, 2(2):1426–1437, 2009.

[44] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
et al. Scikit-learn: Machine Learning in Python.

Journal of Machine Learning Research,
12(nov):2825–2830, 2011.

[45] A. Prost-Boucle, F. Pétrot, V. Leroy, and H. Alemdar.
Efficient and Versatile FPGA Acceleration of Support
Counting for Stream Mining of Sequences and
Frequent Itemsets. ACM Transactions on
Reconfigurable Technology and Systems (TRETS),
10(3):1–21, 2017.

[46] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou,
and et. al. A Reconfigurable Fabric for Accelerating
Large-Scale Datacenter Services. In Proceedings of the
International Symposium on Computer Architecture
(ISCA), pages 13–24, 2014.

[47] Y. R. Qu and V. K. Prasanna. Scalable and
Dynamically Updatable Lookup Engine for
Decision-Trees on FPGA. In Proceedings of the IEEE
High Performance Extreme Computing Conference
(HPEC), pages 1–6, 2014.

[48] S. Rao, T. Nanditale, and V. Deshpande. GBM
Inferencing on GPU. NVIDIA GPU Technology
Conference, 2018. http://on-demand-
gtc.gputechconf.com/gtc-quicklink/ghywWyq.

[49] B. Ronak and S. A. Fahmy. Mapping for Maximum
Performance on FPGA DSP Blocks. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 35(4):573–585, 2016.

[50] F. Saqib, A. Dutta, and J. Plusquellic. Pipelined
Decision Tree Classification Accelerator
Implementation in FPGA (DT-CAIF). IEEE
Transactions on Computers, 64(1):280–285, 2015.

[51] K.-U. Sattler and O. Dunemann. SQL Database
Primitives for Decision Tree Classifiers. In Proceedings
of the International Conference on Information and
Knowledge Management (CIKM), pages 379–386,
2001.

[52] T. Sharp. Implementing Decision Trees and Forests on
a GPU. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 595–608, 2008.

[53] D. Sidler, Z. István, M. Owaida, and G. Alonso.
Accelerating Pattern Matching Queries in Hybrid
CPU-FPGA Architectures. In Proceedings of the
International Conference on Management of Data
(SIGMOD), pages 403–415, 2017.

[54] D. Sidler, M. Owaida, Z. István, K. Kara, and
G. Alonso. doppioDB: A Hardware Accelerated
Database. In Proceedings of the International
Conference on Management of Data (SIGMOD),
pages 1659–1662, 2017.

[55] A. Singhal, P. Sinha, and R. Pant. Use of Deep
Learning in Modern Recommendation System: A
Summary of Recent Works. International Journal of
Computer Applications, 180(7):17–22, 2017.

[56] B. Sukhwani, H. Min, M. Thoennes, P. Dube,
B. Brezzo, S. Asaad, and D. E. Dillenberger. Database
Analytics: A Reconfigurable-Computing Approach. In
Proceedings of the IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages
19–29, 2014.

[57] Q. Tang, M. Su, L. Jiang, J. Yang, and X. Bai. A
Scalable Architecture for Low-Latency Market-Data
Processing on FPGA. In Proceedings of the IEEE
Symposium on Computers and Communication

84



(ISCC), pages 597–603, 2016.

[58] P. Unterbrunner, G. Giannikis, G. Alonso, D. Fauser,
and D. Kossmann. Predictable performance for
unpredictable workloads. PVLDB, 2(1):706–717, 2009.

[59] Z. Wang, K. Kara, H. Zhang, G. Alonso, O. Mutlu,
and C. Zhang. Accelerating Generalized Linear Models
with MLWeaving: A One-Size-Fits-All System for
Any-Precision Learning. PVLDB, 12(7):807–821, 2019.

[60] Xilinx. Accelerating DNNs with Xilinx Alveo
Accelerator Cards . Technical report, 2018.

https://www.xilinx.com/support/documentation/

white_papers/wp504-accel-dnns.pdf.

[61] Xilinx. Introduction to FPGA Design with Vivado
High-Level Synthesis. Technical report, 2019.
https://www.xilinx.com/support/documentation/

sw_manuals/ug998-vivado-intro-fpga-design-hls.

pdf.

[62] M. Zareapoor and P. Shamsolmoali. Application of
Credit Card Fraud Detection: Based on Bagging
Ensemble Classifier. Procedia Computer Science,
48:679–685, 2015.

85


