
ETH Library

Constrained Inverse Optimal
Control With Application to a
Human Manipulation Task

Journal Article

Author(s):
Menner, Marcel; Worsnop, Peter; Zeilinger, Melanie N.

Publication date:
2021-03

Permanent link:
https://doi.org/10.3929/ethz-b-000387818

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
IEEE Transactions on Control Systems Technology 29(2), https://doi.org/10.1109/tcst.2019.2955663

Funding acknowledgement:
157601 - Safety and Performance for Human in the Loop Control (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000387818
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/tcst.2019.2955663
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Constrained Inverse Optimal Control with Application to a
Human Manipulation Task

Marcel Menner, Peter Worsnop, and Melanie N. Zeilinger

Abstract—This paper presents an inverse optimal control
methodology and its application to training a predictive model
of human motor control from a manipulation task. It introduces
a convex formulation for learning both objective function and
constraints of an infinite-horizon constrained optimal control
problem with nonlinear system dynamics. The inverse approach
utilizes Bellman’s principle of optimality to formulate the infinite-
horizon optimal control problem as a shortest path problem and
Lagrange multipliers to identify constraints. We highlight the key
benefit of using the shortest path formulation, i.e. the possibility
of training the predictive model with short and selected trajectory
segments. The method is applied to training a predictive model
of movements of a human subject from a manipulation task.
The study indicates that individual human movements can be
predicted with low error using an infinite-horizon optimal control
problem with constraints on shoulder movement.

Index Terms—Imitation learning, learning for dynamics and
control, learning from demonstrations, manipulation tasks.

I. INTRODUCTION

As robotic systems are applied to increasingly unstructured
and unpredictable environments, the ability to identify and
adapt to their environment is becoming of critical importance.
The collaboration with humans represents a particular chal-
lenge, as the interaction varies between individuals. The ma-
nipulation of an articulated object by a human in collaboration
with a robot is one example, where the robot performance can
be improved by learning a model to describe and predict the
human motor control behavior [1].

The literature on human control behavior widely agrees on
the fact that human motor performance is achieved through a
reactive and a predictive component, cf. the review in [2]. The
reactive component is triggered by sensory inputs and updates
an ongoing motor command; it can therefore be interpreted as
feedback control action. The predictive component capitalizes
on the ability to anticipate motor events based on memory in
order to accomplish a given task under foreseeable conditions,
which can be interpreted as feedforward action [3]. The
existence of these two components has been highlighted in
studies of various motor control tasks, including grasping and
manipulation [4]–[6].

In this work, we present a shortest path inverse optimal
control method, which is applied to train a predictive model
of human motor control. The inverse optimal control method
is thereby used to learn the parameters of an optimal control
problem from demonstrated state and input trajectories. In
particular, it learns both the objective function and constraints
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of an underlying infinite-horizon optimal control problem from
observed trajectory segments of finite length using optimality
conditions of a corresponding shortest path problem and a
candidate constraint set. The optimality conditions are derived
based on Bellman’s principle of optimality [7] and the Karush-
Kuhn-Tucker (KKT) optimality conditions [8]. The proposed
method is convex for objective functions that are linear in their
parameters and for general nonlinear systems, where relevant
constraints are identified from the candidate constraint set
using Lagrange multipliers. The method is utilized to train a
predictive model of movements of three human subjects from
a human manipulation task.

We set up a human manipulation experiment, where three
human subjects manipulated one end of a passive kinematic
object whose position was changed consecutively by a robot.
In this context, the goal of the inverse learning method is to
train a predictive model of human movements. The underlying
hypothesis is that the demonstrations of the human manip-
ulation task are optimal with respect to an infinite-horizon
constrained optimal control problem. The experimental study
highlights the potential of the proposed learning approach by
providing good predictive performance for individual human
movements. In particular, the proposed shortest path formula-
tion is shown to be beneficial for sub-optimal execution, i.e.
disregard the reactive human motor control component in the
application considered in this paper.

Related inverse optimal control approaches are presented in
[9]–[15]. The approaches in [9]–[11] can be interpreted as an
inverse method of an infinite-horizon optimal control problem,
but they are restricted to unconstrained, linear systems and
quadratic objective functions. In [12], a bilevel approach to
solve an inverse unconstrained optimal control problem is
presented. The techniques closest to our method are [13]–
[15], where the KKT conditions are similarly used for learning
the stage cost but the constraints are assumed to be known.
The two main distinctions of our approach with respect to
[13]–[15] are the consideration of an optimal control problem
with an infinite horizon and the simultaneous identification of
constraints from a candidate constraint set that is constructed
from data with a convex optimization problem. By using
a shortest path formulation, the required trajectory segment
for learning the parameters of the underlying optimal con-
trol problem can be shorter, e.g. compared to [14], and the
learned parameters are invariant with respect to the chosen
trajectory segment. As for the application, the incorporation of
constraints results in better predictions of human movement,
whereas the consideration of a shortest path formulation
allows for isolating trajectory segments where the predictive
component is dominant, i.e. where the hypothesis of optimal
demonstrations with respect to an optimal controller is valid.



II. SHORTEST PATH INVERSE OPTIMAL CONTROL

This section presents an inverse optimal control (IOC)
approach based on a shortest path formulation to learn an
objective function and constraints from observations. The ob-
servations are represented as trajectories of state measurements
x(k) ∈ Rn and inputs u(k) ∈ Rm at time-step k, where

x(k + 1) = f(x(k), u(k)) (1)

with the potentially nonlinear function f(·) modeling the
evolution of the state. For the derivation of the inverse method
in this section, we assume that f(·) is given. Section IV
discusses how to identify f(·) for the considered application.

Observed trajectories are assumed to be optimal with respect
to an infinite-horizon constrained optimal control problem, i.e.
x(k + i) = x?i and u(k + i) = u?i ∀ i ≥ 0 with

{x?i , u?i }∞i=0 = arg min
xi,ui

∞∑
i=0

l(xi, ui;L) (2a)

s.t. xi+1 = f(xi, ui) ∀ i ≥ 0 (2b)
C(xi, ui) ≤ 0 ∀ i ≥ 0 (2c)
x0 = x(k) (2d)

with stage cost l(xi, ui;L) defined as a parametric function
with parameters L, constraint set C(xi, ui) ≤ 0, and initial
state x(k). The notation {·}∞i=0 is used to indicate indices
from i = 0 to∞. The goal in this work is to train a predictive
model by learning both l(xi, ui;L) and C(xi, ui) from state
and input measurements, which is referred to as the inverse
problem to (2) in the following.

Problem Definition: The first difficulty in the inverse prob-
lem of (2) is that measurements x(k), u(k) are not available
for k →∞ but only in some finite segment. We address this
using a shortest path formulation (Section II-A). For cases,
where the constraint set C(·, ·) is unknown, we propose the
construction of a candidate constraint set. The main step of the
proposed approach is the derivation of optimality conditions
of the shortest path formulation using the candidate constraint
set (Section II-B). The optimality conditions are then used to
simultaneously identify constraints from the candidate set and
learn the stage cost parameters.

A. Formulation of infinite-horizon as shortest path problem
We formulate the infinite-horizon problem as a shortest path

problem of finite length e and show that the minimizers of both
the infinite-horizon problem and the shortest path problem
are identical along the path, i.e. from time k to k + e. Let
Xm := [ x(k)T x(k + 1)T . . . x(k + e)T ]T ∈ Rn(e+1) and
Um := [ u(k)T u(k + 1)T . . . u(k + e− 1)T ]T ∈ Rme be
the collection of state and input measurements, respectively,
over the time interval k through k + e. If Xm, Um describe
the shortest path, then they (at least locally) minimize

{Xm, Um} = arg min
xi,ui

e−1∑
i=0

l(xi, ui;L)

s.t. xi+1 = f(xi, ui)
C(xi, ui) ≤ 0 i = 0, ..., e− 1
x0 = x(k)
xe = x(k + e).

(3)

Using Bellman’s principle of optimality [7], we can show that
Xm, Um then also correspond to minimizers of (2) for i =
k, ... k+ e, which is formally stated in the following theorem.

Theorem 1. Consider a trajectory segment of measurements
Xm, Um from a dynamical system (1). If the observed inputs
Um are the result of the optimal control problem in (2) for
times k, ..., k + e − 1, then Xm, Um also (at least locally)
minimize the optimization problem in (3).

Proof. The optimization problem in (2) can be written as

J?(x(k)) = min
xi,ui

e−1∑
i=0

l(xi, ui;L) +

∞∑
i=e

l(xi, ui;L)

s.t. (2b), (2c), (2d).

(4)

If x?e is known, then, using Bellman’s principle of optimality
[7] with xe = x?e , (4) can be formulated as

J?(x(k)) = min
xi,ui

e−1∑
i=0

l(xi, ui;L) + J?(x?e)

s.t. xi+1 = f(xi, ui) i = 0, ..., e− 1
C(xi, ui) ≤ 0 i = 0, ..., e− 1
x0 = x(k)
xe = x?e.

(5)

Hence, the minimizers of (2) and (5) are equal for all i =
0, ..., e. The result follows with x?e = x(k + e).

Note that problem (3) differs from a standard finite-horizon
formulation as used in [14] by the end-point constraint xe =
x(k + e), which makes a key difference for learning the
problem parameters, as will be illustrated in Section III.

Remark 1. The shortest path formulation originates from
the hypothesis that demonstrations are optimal with respect
to the infinite-horizon problem in (2). For a different model/
hypothesis, the formulation of the inverse problem can differ.
A particular advantage of the shortest path formulation is
that any path along the measured trajectory can be used
for learning. This allows for selecting particular paths where
the assumption of optimal execution/data is fulfilled ’more
closely’, e.g. high signal-to-noise ratio or negligible reactive
human motor control component in the application considered.

B. Optimality conditions
In the following, we derive optimality conditions of the

shortest path problem in (3) and show how they can be used
for learning both parameters of the stage cost and constraints.
First, we express the optimization problem in (3) in terms of
the inputs ui by recursively defining xi = Fi(U, x0):

Fi(U, x0) :=

{
x0 if i = 0

f(Fi−1(U, x0), ui−1) else
(6)

with U :=
[
uT0 uT1 . . . uTe−1

]T
. Hence, the resulting

optimization problem is given as

min
U

e−1∑
i=0

l(Fi(U, x(k)), ui;L)

s.t. C(Fi(U, x(k)), ui) ≤ 0 i = 0, ..., e− 1
Fe(U, x(k)) = x(k + e),

(7)



where we use x0 = x(k). The Lagrangian L(U, λ, ν, L) of the
optimization problem in (7) is given by

L(U, λ, ν, L) = νT(Fe(U, x(k))− x(k + e))

+

e−1∑
i=0

l(Fi(U, x(k)), ui;L) + λTi C(Fi(U, x(k)), ui)
(8)

with Lagrange multipliers λi ≥ 0 and ν ∈ Rn, cf. [16], and L
denoting the parameters of the stage cost l(xi, ui;L). Using
L(·) in (8), the KKT optimality conditions for the trajectory
segment are given by

∇UL(U, λ, ν, L) = 0 (9a)

λTi C(Fi(U, x(k)), ui) = 0 i = 0, ..., e− 1 (9b)
λi ≥ 0 i = 0, ..., e− 1 (9c)
C(Fi(U, x(k)), ui) ≤ 0 i = 0, ..., e− 1 (9d)
Fe(U, x(k))− x(k + e) = 0. (9e)

1) Construction of candidate constraint set: Eq. (9d) will
hold for any observed trajectory with optimal execution (pri-
mal feasibility), however, the function C might be unknown. If
C is unknown, we propose to use (9d) to construct candidate
constraints C̄(xi, ui) as the convex hull of all observed data
points of the form P [xTi u

T
i ]T ≤ p. A subset of the candidate

constraints is then identified as constraints via the KKT
conditions. A method for computing the convex hull, i.e. P
and p, is, e.g., presented in [17].

2) Optimality conditions for learning: The idea of the pro-
posed approach is to solve (9) for the parameters L of the stage
cost l(xi, ui;L) as well as for λi and ν, given measurements
Xm, Um and the candidate constraints C̄(xi, ui), i.e.

∇U L̄(U, λ, ν, L)
∣∣
U=Um = 0 (10a)

λTi C̄(x(k + i), u(k + i)) = 0 i = 0, ..., e− 1 (10b)
λi ≥ 0 i = 0, ..., e− 1 (10c)

with the approximate Lagrangian L̄(·) defined as in (8) where
C̄(Fi(U, x(k)), ui) replaces C(Fi(U, x(k)), ui). Eq. (9d) is
only needed for the construction of candidate constraints and
(9e) holds by construction. Hence, both C̄(x(i), u(i)) ≤ 0 and
(9e) are not needed for learning the stage cost parameters, cf.
(9) with (10). The feasibility problem in (10) is convex if
l(xi, ui;L) is linear in L. One can show that (10) is always
feasible using the convex hull as the candidate constraint set,
provided optimal and noise-free data.

The Lagrange multipliers λi and their values are essential
in the proposed IOC approach in order to identify constraints
from the candidate set. Each scalar λi,j can be interpreted as
a force keeping the optimization problem (7) from violating
the corresponding primal constraint C̄j(xi, ui) ≤ 0 at time i.
In other words, the value of a dual variable λi,j indicates the
sensitivity of the optimization problem to the corresponding
constraint [16]. We define a measure for the identification of
constraint j as Λj ≥ Λ̄ with

Λj =
∑e−1
i=0 λi,j , (11)

where Λ̄ ≥ 0 is a problem-specific threshold value. If, e.g.,
Λj = 0, the jth constraint does not affect the minimizer of

the optimization problem and does not represent a constraint.
If, however, the value of Λj is very high, the minimizer is
strongly affected by the constraint j and the constraint is
therefore crucial in explaining the observed trajectory. Hence,
Λj relates directly to the importance of constraint j. The larger
Λj , the more important is constraint j. We utilize this relation
to identify constraints from the candidate set. The identified
constraints are used in the predictive model, along with the
learned parameters of the stage cost.

C. Sub-optimal and noisy data

Eq. (10) will be feasible if, and only if, the trajectory is
the solution of an optimal control problem of the form (2). In
practice, however, even if this modeling assumption is correct,
the feasibility problem in (10) will not be satisfied exactly due
to measurement or process noise. In order to learn from sub-
optimal or noisy data, we propose to solve the relaxed problem

min
L,ν,λi

∥∥∇U L̄(U, λ, ν, L)
∣∣
U=Um

∥∥2
2

s.t. λTi C̄(x(k + i), u(k + i)) = 0
λi ≥ 0 i = 0, ..., e− 1.

(12)

It is easy to verify that
∥∥∇U L̄(·)

∣∣
U=Um

∥∥2
2

= 0 indicates
optimality with respect to (10) and that (12) is always feasible.

Remark 2. The use of a shortest path formulation in this work
is reflected through the term νT(Fe(U, x(k)) − x(k + e)) in
(8). Thus, an inverse approach with finite horizon as in [14]
is obtained with ν = 0.

Remark 3 (On active and identified constraints). A constraint
j is active if C̄j(xi, ui) = 0 at time i. Using the proposed
method for constructing candidate constraints, there are al-
ways active candidate constraints. However, it is important to
note that not all active candidates yield Λj > 0; it is also
possible that candidate j is active, i.e. C̄j(xi, ui) = 0, and
Λj = 0. Inversely, Λj = 0 does not mean that the candidate
j is never active but that the observed trajectory would have
been the same with and without candidate j. Hence, candidate
constraint j is not identified as constraint if Λj = 0. Section III
illustrates this concept in a simulation example.

III. ILLUSTRATIVE EXAMPLE

In this section, we illustrate the IOC procedure and highlight
its key benefits in simulation for a pendulum with the discrete-
time state-space representation:[
x1(k + 1)
x2(k + 1)

]
=

[
x1(k) + Tsx2(k)

x2(k)− Ts gl sinx1(k)

]
+ Ts

[
0
1
ml2

]
u(k)

with x1(k) = θ(t) at t = kTs and Ts = 0.01s, g = 9.81m/s2,
l = 1m, and m = 1kg. θ(t) is the angle and u(t) is the applied
torque in Nm, where |u(t)| ≤ ū with ū = 5Nm is assumed
to be the available torque. In the following, we consider an
optimal controller of the form (2) with constraints ui ≤ 5
and −ui ≤ 5 and stage cost l(xi, ui;Qgt, rgt) = xTi Q

gtxi +
rgt|ui|+u2i . The goal in this example is to learn the constraints
and the parameters Qgt and rgt.



A. Learning with shortest path and finite horizon methods
First, we highlight main differences between the proposed

shortest path formulation and two finite-horizon methods, i.e.
a method using the KKT conditions similarly as in [14]
and a probabilistic IOC method which uses a likelihood
maximization similarly as in [18]. The finite-horizon KKT
method differs from the presented approach by virtue of the
term νT(Fe(U, x(k)) − x(k + e)) in (8) and thus, follows
readily with ν = 0 (removing the term). The proposed IOC
approach, similarly as the approach in [14], yield a convex
semi-definite program, which can e.g. be solved with MOSEK
[19], whereas the likelihood maximization method yields a
non-convex optimization problem, which in this example is
solved with a projected gradient descent method.

Figure 1 shows results with trajectory segments from t =
0s through te generated with Qgt = I and rgt = 0, where
we enforce Q � 0. The middle plot shows that the proposed
method only needs a segment from t = 0s through te ≈ 0.5s
to find the ground truth. Both methods with finite horizon are
not able to learn the ground truth even if the segments are long
and θ(t) is close to stationarity, cf. Q12 ≈ 1 at te = 1000s.

B. Learning with and without candidate constraints
Next, consider the trajectories with Qgt = 10I and rgt = 1

for comparing methods with and without candidate constraints
using segments from ti to ti + 2s, cf. the top plot in Figure 2.

IOC, constrained (2nd plot from the top): The first step is
to construct candidate constraints for the input u(k):

u(k) ≤ gu (13a)
−u(k) ≤ gl (13b)

where gu and gl depend on the chosen segment and are dis-
played in red (diamond markers) and green (triangle markers),
respectively. The algorithm returns Q and r as well as Λ1 and
Λ2, which are defined in (11) and correspond to the candidate
constraints (13a) and (13b), respectively. The parameters Q
and r are very close to the ground truth for all ti. If ti < 0.96s,
gu = 5 and Λ1 > 0 suggesting that u(k) ≤ 5 is indeed a
constraint. If ti > 0.96s, gu < 5 and Λ1 = 0 suggesting
that u(k) ≤ gu < 5 is not a constraint, which is correct, as
the constraint is not active. For all ti, gl < 5 and Λ2 = 0
(not displayed) suggesting that −u(k) ≤ gl < 5 is not a
constraint. Overall, Q is learned reliably and for ti < 0.96,
u(k) ≤ umax is learned as constraint. The trajectory does not
provide conclusive evidence about the existence of a lower
bound, i.e. −u(k) ≤ umax, which is expected as gl < 5 ∀ti.

IOC, unconstrained (3rd plot from the top): If ti > 0.96s,
Q and r are very close to the ground truth, which is expected
since the control problem is virtually unconstrained in these
segments. However, if no candidate constraints are constructed
a priori, Q and r differ for ti < 0.96s as the observed trajectory
cannot be explained by means of an unconstrained optimal
control problem.

Finite-horizon IOC, constrained (bottom plot): The method
learns the constraint u(k) ≤ 5 using similar arguments as SP-
IOC, however, it fails to capture the ground truth stage cost
parameters with r ≈ 0 and Q not close to Qgt for all trajectory
segments.
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C. Summary of analysis

In this section, we have illustrated the benefits of the
proposed approach. In particular, we showed the candidate
constraint construction and how to simultaneously learn pa-
rameters of the stage cost and identify constraints from the
candidate set. Further, we have shown that the proposed
shortest path formulation only requires a short segment of
measurements to learn the stage cost parameters and iden-
tify constraints, whereas finite-horizon approaches require a
comparably long segment. Moreover, we have shown the
importance of the candidate constraint set as a substantial
component for correctly identifying the stage cost.



IV. MANIPULATION OF A PASSIVE KINEMATIC OBJECT

In this section, we show how to train a predictive model for
human movements in a manipulation task using the proposed
method. We conducted experiments with three human subjects
where the underlying hypothesis is that humans plan their
movements by solving a constrained optimal control problem.

A. Experiment description and system modeling

In the experiment, the human subjects manipulated one end
of an object whose position was changed consecutively by a
robot. The manipulation task was set up to provide a fore-
seeable environment triggering the human’s predictive motor
control component such that the reactive control component
can be disregarded (at least at the beginning of the movement).
The object was articulated and unactuated and was composed
of three lightweight wooden links and one cardboard handle,
which acted as both a revolute joint and the manipulation
point, cf. Figure 3. Hence, it had four revolute joints, one
connecting its end link to the robot (joint 1), two connecting
the three wooden links (joint 2 & 3), and the cardboard handle
(joint 4), which was gripped by the subject such that the
forearm and the handle acted as a single rigid body.

After familiarizing themself with the robot, the human was
instructed to achieve specific angles for two of the object’s
joints, the joint connecting the object to the robot (joint 1 in
Figure 3) and the first joint after that (joint 2), both of which
have vertical rotational axes (perpendicular to the ground).
The target angles were communicated to the subjects visually
by reference-markers attached to the links. The subjects were
asked to only move when the robot was stationary. First, the
robot moved to disturb the system state. When the robot’s
motion ended, the subject corrected the reference error. Motion
capture sensors were placed on all links of each kinematic
chain and recorded through the Phasespace Python API.

The derivation of the individual movement model, i.e.
the system dynamics, of each subject is based on model-
ing the passive kinematic object and the human arm as a
kinematic chain [20] whose parameters were identified from
measurements. In this model, the base frame is attached to
the torso and the manipulation frame is attached to the grip
location of the hand. Ball joints such as the shoulder joint are
modeled as three revolute joints in series with orthogonal axes
intersecting at the center of the joint. This leads to the ball
joint configuration being described with intrinsic Euler angles
rotating around a point in space [21], [22]. The elbow joint
is modeled as a single revolute joint. The wrist is modeled as
three revolute joints in series, however a wrist brace was used
in the experiment to restrict the motions in the frontal and
sagittal plane, that is, waving and flapping motions. Pronation
and supination (twisting about the forearm) could not be
restricted by the brace, however the experiment was designed
such that the kinematic chain of the object itself constrained
this movement. Both the placement of the motion capture
markers and the kinematic modeling are shown in Figure 3.

The system state x(t) = [ xh(t)T xo(t)
T ]T is composed of

the joint angles of the human, xh(t) ∈ R4, and of the object,
xo(t) ∈ R4. The input to the system, u(t) = ẋh(t), is given

Joint 1
Joint 2

Joint 3

Joint 4 (cardboard handle)

Fig. 3. Top: Modeling of the human arm and the object. Bottom: Experiment
setup with the Kuka LBR iiwa robot. Joints included in the model are shown in
green, while the blue joint represents a freedom of motion that was constrained
by experiment design. The motion capture markers are illustrated in red.

by the joint velocities of the human arm. The velocities of the
object joint angles are given by:

ẋo(t) = J‡o (xo(t))Vg(t), (14)

where Jo(xo(t)) ∈ R6×4 is the Jacobian mapping joint
velocities of the object to Vg(t), the absolute twist velocity
of the manipulation frame, and J‡o (xo(t)) ∈ R4×6 denotes
its Moore-Penrose pseudo-inverse [23]. Given that the human
maintained a stationary base in the experiment, we can express
Vg(t) in terms of the human arm joint velocities and the
Jacobian of the human arm, Jh(xh(t)) ∈ R6×4:

Vg(t) = Jh(xh(t))ẋh(t). (15)

Using (14) and (15), ẋo(t) = J‡o (xo(t))Jh(xh(t))ẋh(t), and
thus, the overall dynamics of the system is given by[

ẋh(t)
ẋo(t)

]
=

[
I

J‡o (xo(t))Jh(xh(t))

]
u(t). (16)

In order to obtain the Jacobians, the twists representing the
joints in each kinematic chain are identified by recording traces
of the subject’s range of motion and applying the techniques
in [24]. The Jacobians Jh(xh(t)) and Jo(xo(t)) in (16) are
derived using the formula for the body Jacobian as in [25].

A discrete-time representation of (16) is derived using an
Euler-forward scheme with the sampling time Ts:[
xh(k + 1)
xo(k + 1)

]
=

[
xh(k)
xo(k)

]
+ Ts

[
I

J‡o (xo(k))Jh(xh(k))

]
u(k).

An unscented Kalman filter as described in [26] is imple-
mented to estimate the system state, where a static process
model is chosen to smoothen the estimated angles, since mea-
surement noise is amplified by the kinematic transformation.
The inputs are computed as u(k) = (xh(k + 1)− xh(k))/Ts.

B. Learning predictive model for human movements

Each of the three subjects maneuvered the object 15 times
to correct the reference error induced by the robot. For each



experiment, we recorded the entire trajectory from the start of
the human movement until the subject was instructed to remain
stationary. For reasons discussed in Section IV-C3, we use the
initial 1.2s, i.e. e = 65 in (10) with sampling time Ts =
0.0185s for learning, which corresponds to roughly 60% of
each trajectory. In order to generalize from the available sparse
data, we utilize leave-one-out cross-validation [27], where we
learn the parameters of the predictive model 15 times, each
time removing one of the recorded trajectories. This is done
to assess the robustness of the model.

1) Design choices: In this work, we train a predictive
model with quadratic stage cost. Our goal is to exemplify
the proposed method to build a simple predictive model
of human movement. Quadratic stage costs are commonly
used as objective function in optimal control offering a good
compromise between complexity and expressivity, where the
cost minimizes a trade-off between tracking a given target and
control effort. Note that higher-order or more complex stage
cost terms are possible with the proposed framework and there
are various possibilities to express human movements [28].
Given that the task requires tracking a reference for only two
of the states, we take a stage cost of the form

l(xi, ui) = (Sxi − ys)TQ(Sxi − ys) + uTi Rui,

where ys ∈ R2 is the reference, S = [ 02×4 I2 02×4 ] selects
the states (two joint angles of the object) tracking ys, and Q,R
are the penalty parameters. We enforce Q,R � 0 in order to
obtain physically meaningful penalties for both deviation to
the target angles and control effort. Also, we restrict the input
penalties to

∑m
i=1Rii = 1, which fixes the scaling of the stage

cost and avoids the trivial solution of all parameters being
zero. We train one predictive model without constraints and
one with a polytopic candidate constraint set for each subject.

Candidate constraints: The object’s states xo(k) are mod-
eled as unconstrained. The human’s states xh(k) consist of
the three shoulder joint angles and the elbow angle; the inputs
u(k) are the three angular velocities of the shoulder joint and
the angular velocity of the elbow. Constraints on joint angles
directly relate to constraints on xh(k), velocity constraints
relate to constraints on u(k), and acceleration constraints are
computed as a rate constraint: a(k) = (u(k + 1)− u(k))/Ts.

2) Learning results: Figure 4 shows the mean and standard
deviation of Q and R obtained with the proposed IOC method.
The most distinct feature is the scale of the parameters Qij ,
varying from order 10−2 for Subject 1, 10−3 for Subject 2,
to 10−6 for Subject 3. The second most distinct feature is the
difference in the diagonal elements of R that reflect movement
of the shoulder, i.e. R11, R22, and R33, whereas the penalty on
elbow velocity is comparable, i.e. R44 ≈ 0.2 for all subjects.
Off-diagonal elements in R are similar across subjects.

Table I shows the sum of Lagrange multipliers as in (11),
which are used to identify constraints from the candidate
constraint set. The Lagrange multipliers are stated as the mean
over all experiments to identify constraints on angle, velocity,
and acceleration of shoulder and elbow joints. We consider
constraint j as identified if the corresponding Lagrange mul-
tiplier Λj ≥ Λ̄ = 10−3. It can be seen that constraints are
predominantly on shoulder movement. Constraints on elbow

movement seem less important for all subjects. Note that even
though the stage cost parameters in Figure 4 obtained with
constrained and unconstrained IOC are relatively close for the
individual subject, the resulting prediction models differ by
virtue of the constraints identified as in Table I.
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Fig. 4. Mean and standard deviation of cost parameters Q and R for
unconstrained learning (black stars) and constrained learning (red diamonds).

TABLE I
LAGRANGE MULTIPLIERS TO IDENTIFY CONSTRAINTS

Angle Velocity Acceleration
Shoulder Elbow Shoulder Elbow Shoulder Elbow

Subject 1 22.8 0 3.31e-2 0 1.38e-2 8.66e-4
Subject 2 11.5 0 2.78e-1 0 2.15e-2 6.98e-4
Subject 3 3.50 0 4.36e-1 2.86e-4 1.05e-1 0

C. Evaluation of trained human manipulation model

The difficulty in evaluating the quality of the trained model
for human-centered experiments is the lack of a ground truth as
reference. We therefore assess the quality of modeling human
movement as an optimal control problem (2) by comparing
the true trajectory with the prediction provided by the model.
The predictions are obtained by solving problem (3) with the
learned stage cost and identified constraints from the initial
position at time t = 0s through t = te = 1.2s using IPOPT
[29], cf. Figure 5 for a sample prediction. We compute 15 sets
of stage cost matrices by leaving out one trajectory for each
learning. In order to evaluate the quality of the trained model,
we use the left-out measured trajectory for validation against
the predicted trajectory, which would result from (3) with the
learned stage cost and constraints. This technique ensures that
the predicted trajectory is not biased by the corresponding
measured trajectory. The mismatch between prediction x̂ji ∈
R8 and measurement xj(i) ∈ R8 of trajectory j is measured
as the root mean square (RMS) error:

Ej =
√

1
8e

∑e
i=1 ‖x̂

j
i − xj(i)‖22. (17)

1) Intra-subject evaluation: First, we compute the errors
Ej in (17) for each trajectory j per subject. Figure 5 shows
one measured trajectory of Subject 2 and the predictions
obtained with the unconstrained and the constrained model.
The prediction obtained with the unconstrained model shows
a larger RMS error, best seen in the plot of human joint angles.



The prediction obtained with the constrained model shows a
lower error. Table II presents the mean and standard deviation
over all 15 prediction errors for all subjects. It shows that,
generally, the predictions have low errors (< 3.3◦), where
Subject 1 has the lowest (< 1◦). On average, the presence
of constraints improve the predictions by 20%-25%.

TABLE II
PREDICTION ERRORS: UNCONSTRAINED VS. CONSTRAINED

Constraint set unconstrained constrained
Subject 1 0.96◦ ± 0.49◦ 0.78◦ ± 0.42◦

Subject 2 3.26◦ ± 1.75◦ 2.45◦ ± 0.87◦

Subject 3 1.87◦ ± 1.00◦ 1.56◦ ± 0.79◦

2) Inter-subject cross-evaluation: Next, we analyze the
individuality of the trained models, where the error Ej in (17)
is computed three times for each trajectory j: We compute the
error using the prediction model of the subject who generated
trajectory j; then, we compute Ej of the predicted trajectory
x̂ji using the other subjects’ prediction models, where we use
the proposed IOC method with polytopic constraints.

Figure 6 shows an example of a measured trajectory from
Subject 1, compared against predictions generated with the
models of all subjects. The measured trajectory and the
predicted trajectory of Subject 1 are close (error: 0.55◦).
The predicted trajectories of Subject 2 & 3 show higher
errors. Table III states the mean and standard deviation of
the errors between measurements of Subject j in columns j
and prediction with objective of Subject i in rows i over all
trajectories. Hence, a good separation between the subjects
means large entries in the off-diagonal entries i 6= j. The
results show a high confidence in separating Subject 1 from the
other two with high confusion errors (3.23◦, 2.39◦ vs. 0.78◦).
The confidence to identify Subject 2 from a given trajectory
is also high with confusion errors (3.99◦, 3.59◦ vs. 2.45◦).
A less clear separation is observed for Subject 3, where the
confusion errors are lower (2.22◦, 1.91◦ vs. 1.56◦). Overall,
this cross-validation suggests that the models trained to predict
the distinct motor behavior are individual.

TABLE III
PREDICTION ERRORS: CROSS-VALIDATION BETWEEN SUBJECTS

Trajectories of Subject 1 Subject 2 Subject 3

M
od

el Subject 1 0.78◦ ± 0.42◦ 3.99◦ ± 1.53◦ 2.22◦ ± 1.14◦

Subject 2 3.23◦ ± 1.03◦ 2.45◦ ± 0.87◦ 1.91◦ ± 0.93◦

Subject 3 2.39◦ ± 0.68◦ 3.59◦ ± 1.68◦ 1.56◦ ± 0.79◦

3) Benefit of shortest path formulation: In the following,
we discuss the advantages of using a shortest path formulation
over a finite horizon in the context of the considered applica-
tion. If the entire trajectory is used for training and stationarity
is reached, i.e. e is large, both the proposed shortest path
method and a finite-horizon method are similar. In the context
of the considered application, however, we encountered two
main challenges when considering the entire trajectory. Firstly,
in the final part of the trajectory, the target angles are more or
less reached and the measured signals are close to stationarity.
As a result, the signal-to-noise ratio is low and can corrupt
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Fig. 5. Measured trajectory in black, predicted trajectory with the uncon-
strained model in gray (error 4.17◦) and the constrained model in red (error
1.40◦). The upper plot shows the shoulder flexion, shoulder abduction, and
shoulder rotation, as well as elbow flexion. The object states to be tracked
are shown in the lower plot as dashed black lines and are related to the
corresponding joints with a diamond and a star marker.
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Fig. 6. Measured trajectory of Subject 1 in black, predicted trajectory of
Subject 1 in red (error: 0.55◦). Left plots: Predicted trajectory of Subject 2
in green (error: 3.62◦). Right plots: Predicted trajectory of Subject 3 in blue
(error: 1.97◦).

learning. Secondly, we observed small corrections around the
target angles in the experiment suggesting the presence of re-
active movements, which renders the final part of the trajectory
not indicative for the predictive human motor control.

For shorter segments, the predictive component dominates
both noise and reactive component but the solution from a
finite-horizon formulation diverts from that with a shortest
path, cf. Section III. The proposed IOC approach allows
for using only the initial part of the trajectory for learning
where stationarity is not reached. Overall, the presence of both
reactive human motor control component and noise do not
fulfill the assumption of optimal execution with respect to (2).
We used the initial 60% of the trajectory, which was observed
to be a good trade-off between segment-length and avoidance
of the reactive component.



Figure 7 revisits the trajectory in Figure 5 to illustrate the
above discussion on the horizon length e. The upper plot
shows the complete recorded trajectory, where some correction
around the target angles can be observed for t ≥ 1.4s, cf. joint
angle marked by the diamond symbol. The lower plot displays
the RMS error (17) of the predictions that result from different
horizon lengths e. The RMS error increases as a result of both
the correction around the target angles and the low signal-to-
noise ratio. It highlights that the modeling assumption as an
open-loop optimal control problem is suitable for the predic-
tive part, but not in the presence of the reactive component.
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Fig. 7. Top: Target angles to be tracked are shown as dashed black lines
and are related to the corresponding joints with a diamond and a star marker.
Bottom: RMS error of prediction with different horizon lengths e.

V. CONCLUSION

This paper presented an inverse optimal control approach
to learn both cost function parameters and constraints from
demonstrations, i.e. state and input measurements of dynam-
ical systems. The shortest path formulation is shown to be
the inverse problem to an infinite-horizon optimal control
problem. By relying on the Karush-Kuhn-Tucker conditions,
the problem is convex for cost functions that are linear in their
parameters. We set up a human manipulation experiment to
exemplify the proposed approach for modeling and predicting
human arm movements. In the experiment, three human sub-
jects manipulated one end of a passive kinematic object whose
position was changed consecutively by a robot. The benefits
of using a shortest path formulation and the consideration
of constraints on human movements were highlighted. The
results showed that a model with good predictive capabilities
can be learned using a quadratic cost function for both states
and inputs together with constraints on shoulder movements
using the proposed formulation. Finally, it was shown that the
predictive models of the human subjects are individual.
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