
ETH Library

Reconstruction of the signal
amplitude of the CMS
electromagnetic calorimeter

Journal Article

Author(s):
CMS Electromagnetic Calorimeter Group; Adzic, P.; Betev, Botio; Davatz, Giovanna; Dissertori, Günther; Dittmar, Michael;
Djambazov, Lubomir; Ehlers, Jan; Giolo-Nicollerat, Anne-Sylvie; Holzner, André G.; Lecomte, Pierre; Lister, A.; Luckey, David;
Lustermann, Werner; Nardulli, Alessandro; Nessi-Tedaldi, Francesca; Ofierzynski, Radoslaw; Pauss, Felicitas; Rykaczewski, Hans;
Suter, H.; Viertel, Gert; Zelepoukine, Serguei; et al.

Publication date:
2006-07

Permanent link:
https://doi.org/10.3929/ethz-b-000037998

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
The European Physical Journal C 46(Supplement 1), https://doi.org/10.1140/epjcd/s2006-02-002-x

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000037998
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1140/epjcd/s2006-02-002-x
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Eur. Phys. J. C 46, s01, 23–35 (2006)
Digital Object Identifier (DOI) 10.1140/epjcd/s2006-02-002-x

Scientific Note

Reconstruction of the signal amplitude
of the CMS electromagnetic calorimeter
The CMS Electromagnetic Calorimeter Group

P. Adzic3, R. Alemany-Fernandez13, C.B. Almeida13,14, N.M. Almeida13, G. Anagnostou2, M.G. Anfreville11,
I. Anicin3, Z. Antunovic30, E. Auffray10, S. Baccaro28,29, S. Baffioni25, D. Barney10, L.M. Barone29, P. Barrillon15,
A. Bartoloni29, S. Beauceron11, F. Beaudette10, K.W. Bell8, R. Benetta10, M.J. Bercher25, U. Berthon25, B. Betev38,
R. Beuselinck15, A. Bhardwaj7, C. Biino33, S. Bimbot25, J. Blaha35, P. Bloch10, S. Blyth6, P. Bordalo13,
A. Bornheim26, J.M. Bourotte25,10, D. Britton15, R.M. Brown8, R. Brunelière10, P. Busson25, T. Camporesi10,
N. Cartiglia33, F. Cavallari29, M. Cerutti25, D. Chamont25, P. Chang6, Y.H. Chang6, C. Charlot25, S. Chatterji7,
E.A. Chen6, R. Chipaux11, B.C. Choudhary7, D.J. Cockerill8, C. Collard25, C. Combaret35, F. Cossutti34,
S. Costantini29, J.C. Da Silva13, I. Dafinei29, G. Daskalakis15, G. Davatz38, A. Debraine25, D. Decotigny25,
A. De Min17, K. Deiters36, M. Dejardin11, R. Della Negra35, G. Della Ricca34, P. Depasse35, J. Descamp11,
G. Dewhirst15, S. Dhawan23, M. Diemoz29, G. Dissertori38, M. Dittmar38, L. Djambazov38, L. Dobrzynski25,
S. Drndarevic3, M. Dupanloup35, M. Dzelalija30, J. Ehlers38, H. El Mamouni35, A. Elliott-Peisert10, I. Evangelou12,
B. Fabbro11, J.L. Faure11, J. Fay35, F. Ferri17, P.S. Flower8, G. Franzoni17,18, W. Funk10, A. Gaillac25,
C. Gargiulo29, S. Gascon Shotkin35, Y. Geerebaert25, F.X. Gentit11, A. Ghezzi17, J. Gilly25,
A.S. Giolo-Nicollerat38,10, A. Givernaud11, S. Gninenko20, A. Go6, N. Godinovic31, N. Golubev20, I. Golutvin9,
R. Gomez-Reino10, P. Govoni17, J. Grahl18, P. Gras11, J. Greenhalgh8, J.P. Guillaud1, M. Haguenauer25,
G. Hamel-de-Montechenault11, M. Hansen10, H.F. Heath5, J.A. Hill8, P.R. Hobson16, D. Holmes5, A.G. Holzner38,
G.W. Hou32, B. Ille35, Q. Ingram36, A. Jain13, P. Jarry11, C. Jauffret25, M. Jha7, M.A. Karar25, S.K. Kataria22,
V. Katchanov27, B.W. Kennedy8, K. Kloukinas10, P. Kokkas12, M. Korjik19, N. Krasnikov20, D. Krpic3,
A. Kyriakis2, M. Lebeau10, P. Lecomte38, P. Lecoq10, M.C. Lemaire11, M. Lethuillier35, W. Lin6, A.L. Lintern8,
A. Lister38, V. Litvin26, E. Locci11, A.B. Lodge8, E. Longo29, D. Loukas2, D. Luckey38, W. Lustermann38,
C. Lynch5, C.K. Mackay5, M. Malberti17, D. Maletic3, I. Mandjavidze11, N. Manthos12, A. Markou2, H. Mathez35,
A. Mathieu25, V. Matveev20, G. Maurelli35, E. Menichetti33, P. Meridiani29, P. Milenovic3, G. Milleret25, P. Mine25,
M. Mur11, Y. Musienko4,19, A. Nardulli38, J. Nash15,10, H. Neal23, P. Nedelec1, P. Negri17, F. Nessi-Tedaldi38,
H.B. Newman26, A. Nikitenko15, M.M. Obertino33,18, R.A. Ofierzynski10,38, G.C. Organtini29, P. Paganini25,
M. Paganoni17, I. Papadopoulos12, R. Paramatti10,29, N. Pastrone33, F. Pauss38, P. Poilleux25, I. Puljak31,
A. Pullia17, J. Puzovic3, S. Ragazzi17, S. Ramos13, S. Rahatlou29, J. Rander11, K. Ranjan7, O. Ravat35,
M. Raymond15, P.A. Razis24, N. Redaelli17, D. Renker36, S. Reucroft4, J.M. Reymond11, M. Reynaud35,
S. Reynaud10, T. Romanteau25, F. Rondeaux11, A. Rosowsky11, C. Rovelli17, R. Rusack18, S.V. Rusakov21,
M.J. Ryan15, H. Rykaczewski38, T. Sakhelashvili36,39, R. Salerno17, M. Santos13,14, C. Seez15, I. Semeniouk25,
O. Sharif16, P. Sharp15, C. Shepherd-Themistocleous8, S. Shevchenko26, R.K. Shivpuri7, G. Sidiropoulos12,
D. Sillou1, A. Singovski18, Y. Sirois25, A.M. Sirunyan37, B. Smith8, V.J. Smith5, M. Sproston8, H. Suter38,
J. Swain4, T. Tabarelli De Fatis17, M. Takahashi15, R.J. Tapper5, A. Tcheremoukhine9,
I. Teixeira13,14, J.P. Teixeira13,14, O. Teller10, C. Timlin15, F.A. Triantis12, S. Troshin27, N. Tyurin27, K. Ueno32,
A. Uzunian27, J. Varela13,10, N. Vaz Cardoso13, P. Verrecchia11, P. Vichoudis10, S. Vigano17, G. Viertel38,
T. Virdee15,10, M. Wang32, A. Weinstein26, J.H. Williams8, I. Yaselli16, A. Zabi15, N. Zamiatin9, S. Zelepoukine27,38,
M. Zeller23, L.Y. Zhang26, Y. Zhang15, K. Zhu26, R.Y. Zhu26

1 Laboratoire d’Annecy-le-Vieux de Physique des Particules, 74941 Annecy-le-Vieux, France
2 Institute of Nuclear Physics “Demokritos”, 153 10 Attiki, Greece
3 “Vinca” Institute of Nuclear Sciences and Faculty of Physics of University of Belgrade, 11000 Belgrade, Serbia andMontenegro
4 Northeastern University, Boston MA 02115-5096, USA
5 Bristol University, Bristol BS8 1TL, UK
6 National Central University, Chung-Li, Taiwan, ROC
7 Delhi University, Delhi 110 007, India
8 CCLRC, Rutherford Appleton Laboratory, Didcot OX11 0QX, UK
9 Joint Institute for Nuclear Research, 141980 Dubna (Moscow Region), Russia
10 European Organization for Nuclear Research, CERN, 1211 Geneva 23, Switzerland



24 TheCMSElectromagnetic Calorimeter Group: Reconstruction of the signal amplitude of theCMSECAL

11 CEA/Saclay, 91191 Gif-sur-Yvette cedex, France
12 University of Ioannina, 451 10 Ioannina, Greece
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Abstract. The amplitude of the signal collected from the PbWO4 crystals of the CMS electromagnetic
calorimeter is reconstructed by a digital filtering technique. The amplitude reconstruction has been studied
with test beam data recorded from a fully equipped barrel supermodule. Issues specific to data taken in the
test beam are investigated, and the implementation of the method for CMS data taking is discussed.

1 Introduction

The compact muon solenoid (CMS) [1] is a general pur-
pose detector to be installed at the 14 TeV proton–proton
collider, LHC, under construction at CERN and due to
start operation in 2007. The electromagnetic calorimeter
(ECAL) [2] of the detector is a hermetic homogeneous
calorimeter made of 61 200 scintillating lead tungstate
(PbWO4) crystals mounted in the central barrel part,
closed by 7324 crystals in each of the two end-caps. The
barrel part of the ECAL consists of 36 supermodules, each
covering half the barrel length and 20◦ in azimuth and con-
taining 1700 crystals together with the associated electron-
ics channels. The use of high density PbWO4 crystals [3]
has allowed the design of a calorimeter which is fast, has
fine granularity and is radiation resistant – all important
characteristics in the LHC environment. Avalanche photo-
diodes (APDs) are used as photodetectors in the barrel and
vacuum phototriodes in the end-caps [4, 5].
The electrical signal from the photodetectors is am-

plified and shaped by a multi-gain preamplifier (MGPA)
before digitization by ADCs at a frequency of 40MHz [6].
For each channel three signals, resulting from amplifica-

tion with three different gains, are simultaneously digitized
in three ADCs. Further logic chooses the highest non-
saturated digital value, allowing a dynamic range of about
5×104 from the least significant bit of about 35MeV to
saturation at 1.7 TeV in the barrel.
The data read out consists of a series of consecutive

digitizations, corresponding to a sequence of samplings of
the signal at 40MHz. It is envisaged that a time frame of
10 consecutive samplings will be read out in LHC opera-
tion, and the signal amplitude must be reconstructed using
these samplings.
The complete process of signal amplification followed

by signal digitization and amplitude reconstruction should
not degrade the energy resolution of the calorimeter other
than by the inevitable introduction of noise. The sim-
plest method of reconstructing the amplitude is to take
a sampling on the signal pulse maximum as the meas-
urement. Reading out a larger number of samples allows
identification of out of time (other bunch crossing) pile-
up and an event-by-event subtraction of the pedestal. It
also allows more sophisticated digital processing of the
signal to improve the signal to noise ratio, and a meas-
urement of the signal timing. We report here on the
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performance of a method which implements a digital
filter.
Test beam data taken in the H4 beam line at the CERN

SPS in October and November 2004 using electron beams
with a range of momenta between 20 and 250GeV/c, have
been used to investigate the method of amplitude recon-
struction. A supermodule was installed on a movable table
which allowed the beam to be directed at any part of it.
Electrons were incident at an angle� 3◦ to the direction of
the crystal axis in both transverse directions, reproducing
the average incident angle of particles emerging from the
collision region in LHC running. Plastic scintillator coun-
ters were used to trigger the read-out. The position of the
incident electrons in the transverse directions was deter-
mined by four planes of scintillating fiber hodoscopes. An
earlier test of a complete supermodule installed in the same
beam area is described in [7].
The test beam provides data for the verification of the

amplitude reconstruction method, but these data differ in
an important way from those which will be taken in run-
ning at the LHC. In the test beam the scintillation signals
have a random timing with respect to the ADC clock, while
during LHC operation the ADC clock will be synchronous
with the bunch crossing. It is necessary to identify and
investigate effects which are specific to asynchronous run-
ning before being able to achieve full performance with test
beam data. The coefficients, or weights, of the digital filter
used to reconstruct the signal amplitude are optimized to
minimize the noise contribution, but reconstruction of the
amplitude from the time frames read out in asynchronous
running imposes additional requirements. If these are not
met, an error proportional to the signal amplitude is in-
troduced which becomes a constant term in the energy
resolution function (σE/E).
In order to determine the phase between the signal peak

and the sampling time, a TDC was used to measure the de-
lay between the trigger and the 40MHz ADC digitization
clock. Verification of the performance of the amplitude re-
construction method envisaged in synchronous data taking
at the LHC has been made by selecting test beam events
within a narrow window around a chosen phase.
In this note, the principle of the digital filter method is

described first. The derivation of the weights is described,
as well as an investigation of the impact of pile-up events.
The algorithm intended for use in CMS data taking is dis-
cussed, and then issues specific to asynchronous operation
in the test beam are identified and discussed. Fuller de-
tails of the mathematical formalism used to determine the
weights of the digital filter can be found in an appendix.

2 The weights method

The method used to reconstruct the amplitude from the
digitized samples is based on a digital filtering technique.
An estimate of the signal amplitude, Â, is computed from
a linear combination of discrete time samples:

Â=
N∑

i=1

wi×Si , (1)

where wi are the weights, Si the time sample values in
ADC counts, and N is the number of samples used in the
filtering, with the index i running over the time samples.
The weights wi are obtained by minimizing the variance of
Â (see Appendix A). Requiring that the estimator of the
amplitude, Â, be not just proportional, but equal to the
amplitude, A, implies that

N∑

i=1

wifi = 1 , (2)

where fi is the value of the function, f(t), describing the
time development of the signal pulse in time, t, at the time
ti of sample i. The function is normalized to have an ampli-
tude of 1.
The question of how precisely the function f(t) needs

to be matched to the shape and timing of each channel to
enable the derivation of a set of weights giving satisfactory
amplitude reconstruction is one that we attempt to answer
in this paper.
A form of the function f(t) that provides a good de-

scription of the electronics signal is a digital representation
(profile histogram) directly built from the test beam data.
An example of such a representation, obtained using an
electron beam of 120GeV, is shown in Fig. 1. The rise time
is about 50 ns, which corresponds to the 10 ns decay time of
the crystal scintillation folded with and the 40 ns shaping
time of the MGPA. In the test beam the data were read out
so that at least three samples, which we refer to as presam-
ples, were taken before the start of the signal.
The weights are extracted by minimization of the χ2,

which is given by

χ2 =
∑

i,j

(Si−Gi)×C
−1
ij × (Sj−Gj) , (3)

where

– Si is the sample magnitude in ADC counts recorded at
the time ti;

Fig. 1. Profile of the signal pulse from a crystal of the super-
module using an electron beam of 120 GeV. The peaking time
TMax, the pedestal P and the amplitude of the signal A are
shown
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– The signal pulse is described by Gi which is a function
that depends on different parameters: Gi = Gi(A,P,
TMax) where A is the true amplitude, P is the pedestal
and TMax is the peaking time (see Fig. 1);
– C is the covariance matrix representing the noise cor-
relation between time samples i and j, obtained from
data where no signal is present.

If there is no noise correlation between time samples (C=
1lσ2, where σ is the single sample noise defined below)
and the pedestal and peaking time are known (so that
G =G(A) = Af(t)), the optimal weights are given by the
formula

wi = fi/
N∑

j=1

f2j . (4)

The derivation of this formula is given in Appendix A.
These weights give the best estimation of the amplitude

A. Since the samples contain information about the peak-
ing time and the pedestal also, two further sets of weights
can be derived to measure these parameters.

3 Optimization

3.1 The samples considered

The reconstruction of the signal amplitude could use a sin-
gle sample taken at the signal peak. In synchronous run-
ning the pulse maximum time, represented by the param-
eter TMax, can be adjusted so that the peak coincides with
one of the samplings. If the pedestal is determined indepen-
dently and subtracted from the maximum, this one sample
gives the pulse amplitude. This technique has the advan-
tage of being relatively insensitive to any possible jitter
on TMax (this will be discussed in Sect. 4). However, using
a larger number of samples allows some reduction of the
noise contribution.
When considering the weights obtained assuming no

noise correlations between time samples, as given by (4),
the square root of the variance, σÂ, of the estimated ampli-
tude is

σÂ = σ/
√∑

f2i , (5)

where σ is the noise present on a single digitization, the
single sampling noise. Thus, an increase of the number of
samples will reduce the value of the noise in the recon-
structed amplitude. Furthermore, better noise reduction
is achieved if samples near the peak, containing more sig-
nal, are used. The noise on the reconstructed amplitude
should be reduced from that of a single sampling by a fac-
tor
√∑

w2i . Calculating weights from the functional rep-
resentation shown in Fig. 1, assuming no noise correlation
between samples, it is found that the use of five samples
should give a noise reduction � 0.6 (see Fig. 2) with little
improvement when more samples are used. The 1 sample
option takes the sampling on the peak, for the 2 sample op-
tion the sampling before the peak is added, for the 3 sample

Fig. 2. Expected noise reduction (
√∑

w2i ) as a function of the

number of samples used for the reconstruction in the case of no
noise correlations between time samples (solid line) and in the
case of the correlations found in test beam data (dashed line)

option the next sampling after the peak is added, and for
4 sample and higher options the remaining samplings after
the peak are added in consecutive order. The figure also
shows the expected noise reduction if the noise correla-
tion seen in the test beam is assumed, and the weights
are calculated using the measured covariance matrix (see
Sect. 3.2.2).

3.2 Noise reduction

The noise reduction expected from using many samples
in a situation where there is no noise correlation between
samplings is not fully realized when the amplitude recon-
struction algorithm is applied to real data. This occurs
because of the presence of noise which is correlated be-
tween samples. This is partly due to pickup noise which is
also, to some degree, correlated between channels; it has
a much lower frequency than the 40MHz sampling fre-
quency and appears as a small event-to-event fluctuation
in the level of the signal baseline or pedestal. The digital
filter can be configured to subtract the pedestal using the
information present in the presamples. Such a digital filter
effectively removes the baseline fluctuation [8]. The noise
performance of different implementations were compared
using test beam data.

3.2.1 Measurement of the noise

The method was implemented in two different forms.

– The “5 weights” implementation:
The 5 weights method uses five samples as defined in
the previous section to reconstruct the signal ampli-
tude. The pedestal is determined independently and its
value is subtracted from the samples before reconstruc-
tion.
– The “pedestal-subtracting weights” implementation:
The pedestal-subtracting weights method uses 3+5
weights applied to three samples before the signal pulse
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(the three presamples) and five samples during the
pulse. The weights are calculated by minimizing (3)
with G = G(A,P ) = Af(t)+P . It may be noted that
in this situation

∑
wi = 0. Such a set of weights per-

forms a subtraction of the pedestal on an event-by-
event basis.
For completeness, a 3+1 weights pedestal-subtracting
implementation has been studied. The single weight
is applied to the sample on the peak. This allows the
demonstration of the impact of dynamic baseline sub-
traction in its simplest form.

The noise is the root mean square deviation of the re-
constructed amplitude when no signal is input. Thus the
ECAL noise is measured by examining the variation of
the reconstructed amplitude when random triggers, data
taken with no signal (often called “pedestal runs”), are re-
constructed. Table 1 shows the noise measured when using
these implementations of the method for a single chan-
nel, and for sums of channels corresponding to matrices
of 3× 3 and 5× 5 crystals (typical of ECAL shower re-
construction). Also shown, for comparison, is the single
sampling noise (as defined in Sect. 3.1). Results for sums of
channels are given because energy is reconstructed in the
ECAL from such sums: the noise in the sums represents
the noise seen when shower energy is measured. Noise co-
herent between channels will increase the total measured
in such sums above the quadratic sum of the contributions
measured in component channels. A total of 1200 events
from six different runs were used and the mean values of
noise in eight different locations across the supermodule
are given. When using the 5 weights method, the pedestal
values for all the crystals were directly measured from the
data by taking the average value, over a run, of the first
presample.
The results given in Table 1 show that the lowest

noise is achieved by the pedestal-subtracting weights. This
implies the presence of the low frequency noise, men-
tioned above, which is removed by the dynamic pedestal
subtraction.
Comparing the noise seen in a single channel with that

seen in sums of 3× 3 and 5× 5 channels, the magnitude
of the noise correlation between channels in a matrix of
crystals can be appreciated. With the pedestal-subtracting
weights filter the total noise seen in a sum of 9 (25) chan-
nels is almost exactly 3 (5) times the noise seen in a single
channel, showing that the coherent noise between channels

Table 1. Noise in ADC counts measured in a single channel and in arrays of
3×3 and 5×5 channels for various weight implementions described in the text.
The statistical errors on the measurements are also given

Method Noise (ADC counts)
1×1 3×3 5×5

single sampling 1.20±0.01 3.7±0.04 6.5±0.1
5 weights 1.11±0.02 3.8±0.1 6.7±0.1
3+1 pedestal subtracting weights 1.13±0.03 3.4±0.1 5.7±0.1
3+5 pedestal subtracting weights 1.07±0.02 3.2±0.1 5.4±0.1

has been effectively removed. This noise is not suppressed
when the average pedestal values for each channel are sub-
tracted for each event. The total noise in a sum of 25 chan-
nels is reduced by 20% as compared to what is measured by
reconstruction followed by pedestal subtraction using an
average pedestal. Dynamic subtraction of the pedestal also
avoids the effects from variation of the pedestal over time.
The table also allows comparison between the use of 3+

5 and 3+1 pedestal-subtracting weights. Using five sam-
ples in the signal, rather than one, results in a slightly lower
noise value.
Using pedestal-subtracting weights the average value

of the noise measured in 1000 channels of the supermod-
ule is roughly 40MeV/channel (1 ADC count ∼= 37MeV).
Nevertheless it can be seen from the table that this im-
plementation of the weights method is not able to reduce
the noise contribution by the factor of 0.6 expected when
there is no noise correlation. Clearly there is noise cor-
relation, so the covariance matrix might be used to de-
rive a more optimized set of weights. An investigation of
the use of the covariance matrix is described in the next
subsection.

3.2.2 Use of the covariance matrix

The covariance matrix represents the correlation of the
noise between time samples. It is defined by

Cij = 〈ni×nj〉 , (6)

where ni = Si−Pi is the difference between the sample
value and its mean (the pedestal) for sample i in the ab-
sence of a signal. The notation 〈〉 indicates an average over
many events. Thus the diagonal elements Cii = σ

2 are the
squared single sampling noise. This matrix can be built
using a pedestal run and then used in the determination of
an optimized set of weights (3).
The same six pedestal runs previously used for the re-

sults in Table 1 were processed to extract the matrix coef-
ficients. An adequate number of events was used to limit
the statistical error on these coefficients. Strong correla-
tions are present between samples which are close in time,
as should be expected since the sampling period is shorter
than the electronics shaping time. The MGPA preampli-
fier noise in the highest gain range is dominated by parallel
noise from a feedback resistor and so the correlation be-
tween pairs of samples monotonically reduces as the time
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Fig. 3. Measurements of the autocorrelation function at in-
tervals of 25 ns, obtained from the top row of the normalized
covariance matrix, averaged for six channels. The lines joining
the points are intended to guide the eye

interval between them increases, until it reaches a residual
value which corresponds to the low frequency pickup noise.
The decrease of the correlation follows an exponential law
whose time constant is related to the shaping time of the
electronics. The correlations and the form of the covariance
matrix can be displayed by plotting the values in the top
row of the normalized covariance matrix, (C1,j/σ

2) (see
Fig. 3). These values are measurements of the autocorrela-
tion function at time intervals corresponding to multiples
of the sampling time.
The optimization of the weights using the noise covari-

ance matrix results in giving more weight to the sample on
the peak. The samples near the peak have less weight, and
the weights applied to samples further away become almost
insignificant. The expected noise reduction from the single
sampling noise is 0.94 (see Fig. 2) and not 0.6 as calculated
for the case of no noise correlation. Pedestal-subtracting
weights can also be derived using the covariance matrix.
Table 2 gives the noise measured when the covariance

matrix is used to derive the weights. The results shown
are the mean values of the noise measured in 8 different
locations across the supermodule. Comparing the results
in the table with those shown in Table 1 it can be seen
that the use of the covariance matrix allows a small de-
crease in the noise contribution, but the improvement over
pedestal-subtracting weights without its use is marginal
and all further results in this paper have been obtain with-
out its use.

Table 2. Noise in ADC counts measured in a single channel and arrays
of 3×3 and 5×5 channels for two subtracting-weights implementations
of the amplitude reconstruction method where the covariance matrix
has been used to derive the weights. The statistical errors on the meas-
urements are also given

Method Noise (ADC counts)
1×1 3×3 5×5

5 weights 1.05±0.02 3.3±0.1 5.9±0.1
3+5 pedestal subtracting weights 1.05±0.02 3.0±0.1 5.2±0.1

4 Amplitude reconstruction for CMS running

An investigation of the amplitude reconstruction method
required for use with CMS data taken during LHC run-
ning, where the sampling is synchronous with the signals,
is described in this section.

4.1 Signal shape and timing

It has been observed in test beam data that the signal
shapes and timing differ from crystal to crystal. The main
difference lies in the parameter TMax which shows an rms
dispersion of roughly 3 ns across the supermodule. This
dispersion is due to the imperfect precision with which the
relative timing of the channels was adjusted at the start
of the 2004 beam test. Using a representation of the sig-
nal with a TMax different from that of the actual signal
to determine the weights changes the reconstructed ampli-
tude. Defining ∆TMax = T

rep
Max−TMax, where T

rep
Max is the

time of maximum of the signal representation used to de-
rive the weights, a timing difference of ∆TMax = 1 ns causes
approximately 0.1% bias on the reconstructed amplitude
when using the 3+5 weights method (see Fig. 4). The 3+1
weights method is less sensitive to the timing because we
have chosen to adjust the timing so that a sample is taken
on the peak. The signal samplings of the 3+5 weights are
then mostly after the peak. The small bias caused by a tim-
ing difference, if constant with time, will be absorbed into
the intercalibration of the ECAL channels. However, sys-
tematic drift or variation of the time of the signal pulse
maximum would result in a variation of the channel re-
sponse with time. To avoid such a variation the parameter
TMax needs, in the future, to be carefully controlled and
monitored. TMax can be precisely measured during data
taking (see Sect. 4.2) and adjusted for each front end card
(25 channels) with a 1 ns precision, by changing a parame-
ter downloaded to the card.
Figure 5 (left) shows the energy resolution as a func-

tion of the difference in timing between the signal repre-
sentation used to determine the weights and the signal.
The signal amplitude has been reconstructed using the 3+
5 pedestal-subtracting weights. To simulate synchronous
running, test beam data have been analyzed taking only
events in a single 1 ns bin of phase, where the sampling
phase is such that the signal maximum coincides with the
second signal sampling. Since the same set of events is used
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Fig. 4. Reconstructed amplitude over true amplitude,E[Â]/A,
as a function of timing difference ∆TMax. The solid line shows
the value obtained with 3+5 pedestal-subtracting weights, and
the dashed line shows the value obtained using 3+1 pedestal-
subtracting weights

in each case, the uncertainties on the individual results
are correlated. A range of ±3 ns was used for the scan,
corresponding to the rms dispersion of TMax observed in
the supermodule. The resolution is on average better for
∆TMax < 0. However, this is a result of the large 0.65 ns jit-
ter on the phase measurement. When ∆TMax > 0 there is
more sensitivity to timing as has been seen in Fig. 4. There
is no strong dependence on ∆TMax, as there is in the case of
aynchronous reconstruction (shown later in Fig. 13).
To study the sensitivity to differences between the pulse

shape of the representation used to derive the weights and
that of the signal, a homothetic transformation character-
ized by a contraction factor, C, has been applied to the
time scale (t→ t+C× (t−TMax)) of the representation
used to derive the weights. Fits to the data indicate that
the channel to channel pulse shape variation within the
supermodule tested corresponds to an rms dispersion of
0.05 for the parameter C. Figure 5 (right) shows that the
resolution is unaffected by variations of C within a range

Fig. 5. (Left) Energy resolution
in a 3×3 matrix of crystals meas-
ured with a 120 GeV electron
beam, as a function of ∆TMax.
(Right) Energy resolution as
a function of the contraction fac-
tor, C

corresponding to a much larger dispersion in pulse shapes
than observed in the supermodule. Other variations of the
pulse shape have been tried (varying independently the rise
and fall times) and yield the same conclusion.
These results suggest that, in the case of synchronous

running, the same reference signal representation can be
used to derive a single set of weights to be used for the sig-
nal amplitude reconstruction of all channels.

4.2 Time measurement

As already mentioned, the phase between pulse maximum
and digitization clock can be adjusted for each front end
card (25 channels) to 1 ns precision. In the supermodule
tested in 2004 it was observed that the additional disper-
sion of the channels within each front end card was less
than 1 ns. The measurement of the time of maximum used
for adjusting the front end cards and then for monitor-
ing the stability of the setting can be made using weights.
The set of weights which is derived to do this is different
from the set of weights used to determine the amplitude
(see Appendix A). They measure the time difference be-
tween the nominal time of maximum and the actual time of
maximum. As in Sect. 2, weights are obtained by minimiz-
ing χ2. Because of the linear expansion used, the time of
maximum is obtained without bias only if the difference be-
tween the nominal time of maximum and the actual time of
maximum is small. The bias on the estimated time due to
the linear expansion is shown in Fig. 6 as a function of the
time difference, δt, between the nominal time of maximum
and the actual time of maximum. The bias is less than 20 ps
if |δt|< 1 ns.
The variance of the time measurement, V (δt), can be

parameterized by

V (δt)�
a2

c2+(A/σ)2
+ b2 , (7)

where a, b, c are three parameters and σ is the single
sampling noise. The parameter c =

√
V (A)/σ2 � 0.94 be-

comes negligible when A� σ. Parameter a is related to√
V (Aδt)/σ2 and strongly depends on the position of the
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Fig. 6. Time bias, δt−E[δt], introduced by the linear approx-
imation, as a function of δt

nominal time of maximum with respect to the sampling
time, i.e. the phase choice, because V (Aδt) is proportional
to the sum of the derivatives of the signal as a function of
time. The parameter b appears when the functional repre-
sentation does not exactly reproduce the true signal, and
limits the precision of measurement for large signals.
During the 2004 test beam data taking it was not pos-

sible to directly measure the timing resolution as a function
of the signal amplitude because of an additional jitter in-
troduced bymeasurement of the trigger time. However, the
achievable time resolution can be extracted by looking at
the resolution of the measured time difference between two
channels. Figure 7 shows the resolution on the time differ-
ence between two channels as a function of the quadratic
sum of the time resolutions for the individual channels. As-
suming that the parameters a, b and c are the same for both
channels the variance on the time difference between the

Fig. 7. Resolution on time difference between two crystals as
a function of the sum of inverse square amplitudes. The fit is
made assuming that the parameters a and b of (7) are the same
for both crystals

channels, V (t1− t2), is

V (t1− t2)� V (δt1)+V (δt2)� a×

(
σ21
A21
+
σ22
A22

)
+2× b .

(8)

The value of the constant term b = 0.11 ns is obtained by
fitting this function to the data points in Fig. 7.
In summary, it can be concluded that taking recon-

structed pulses with A> 50×σ, i.e. energy > 2 GeV, TMax
can be measured to a precision much better than 1 ns,
allowing monitoring of the peak position to the required
precision (see Sect. 4.1). The time resolution is dominated
by the constant term for pulses with A> a

bσ � 500×σ. In
the 2004 beam test the constant term was measured to be
0.11 ns.

4.3 Effect of pile-up events

Shaped signals cover several bunch crossings. When using
the multi-weights method described above, up to 8 time
samples are used. Pile-up noise will occur if additional
particles reaching the calorimeter cause signals which over-
lap these samples, and if sufficiently large may affect
the set of optimum weights, as has been found for other
calorimeters [9].
The magnitude of pile-up noise expected at low lumi-

nosity (L= 2×1033 cm−2 s−1) was simulated and studied
using CMS reconstruction software. The single sampling
electronics noise was set to 40MeV per channel. Correla-
tions between time samples were simulated to reproduce
the correlations observed in the supermodule tested in the
beam. Pile-up noise was simulated using minimum bias
events generated between −5 and +3 bunch crossings be-
fore and after signal. The average number of minimum bias
events used per bunch crossing was 3.5. Figure 8 shows the
reconstructed amplitude observed with and without pile-
up in the absence of any signal (the signals from the pile-up

Fig. 8. Reconstructed amplitude in ECAL barrel channels in
the absence of a signal, without pile-up (dashed histogram) and
with pile-up (solid histogram). A Gaussian of width 40MeV is
superimposed on the dashed histogram
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Fig. 9. Distribution of ∆P versus χ2 in the
ECAL barrel, together with the projections of
these variables plotted as histograms. The dis-
tributions are shown separately for pulses which
include out of time pile-up particles with an en-
ergy greater than 200MeV and those which do
not. The bands in the scatter plot correspond to
particles from different bunch crossings

are considered as noise). The figure shows that at low lumi-
nosity the pile-up noise is small with respect to electronics
noise.
High energy pile-up particles from bunch crossings dif-

ferent from that of the signal can be identified using cuts
on χ2Min (defined in Appendix A) as well as the variable
∆P which corresponds to the difference between the re-
constructed baseline and the expected one (evaluated from
pedestal runs). Distributions of reconstructed signal pulses
with and without high energy (> 200MeV) pile-up par-
ticles are shown in Fig. 9 as a function of χ2Min and∆P . The
bands shown in the scatter plot for events containing high
energy pile-up correspond to particles from different bunch
crossings. By applying cuts on the variables χ2Min and ∆P
it is possible to remove out of time pile-up signals that de-
posit a significant amount of energy.

4.4 Amplitude reconstruction at high energy

At high energy, the data read-out contains samples recorded
with different gains. The pedestal value of the ADC digi-
tizing the lower gain signal is not the same as the pedestal
value of the ADC digitizing the higher gain signal. The
three presamplings thus do not give a measure of the
pedestal of the ADC used for the most significant sam-
plings of the signal (i.e. close to the peak). Thus a pedestal-
subtracting weights method cannot be used. There is also
little to be gained from using many weights, since noise is
negligible at these energies (the gain range change takes
place at about 150GeV for barrel channels). It is sufficient
to measure the signal amplitude with a single sampling. In

synchronous running the sample recorded on the peak is
pedestal subtracted and then multiplied by the gain ratio
(the relative calibration with respect to the highest gain
range). The gain ratios must be determined precisely to
avoid a degradation of the resolution and the introduction
of non-linearity.

5 Application to asynchronous
test beam data

In the test beam the ADC clock and the signal are asyn-
chronous, and the implementation of the amplitude recon-
struction needs to be elaborated to deal with this. The
phase between the trigger (and thus the signal pulse) and
the 40MHz ADC clock was measured with a TDC. The
data are sorted into 25 bins of 1 ns according to the meas-
ured phase. A different set of weights is determined and
used for each of the bins. This imposes an additional severe
requirement: the same amplitude must be reconstructed in
all phase bins.

5.1 Effect of channel to channel differences
in signal timing and shape

The effect of differences in signal timing and shape between
the signal pulse and the signal representation is dependent
on the phase bin and can be studied by comparing the
results obtained using weights derived from an average rep-
resentation of the signal pulse with those obtained using
weights derived from a profile built using the data collected
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Fig. 10. Signal pulses for a 120 GeV electron beam: the solid
line shows the profile of the signal in the channel under study,
and the dotted line shows the average representation of the sig-
nal

Fig. 11. Average reconstructed amplitude summed in a 3×3
matrix of crystals as a function of the phase using weights ob-
tained with the average representation of the signal (squares)
and the signal profile from the channel under study (circles).
The polynomial fit and straight line are shown to guide the eye

from the investigated channel. The average representation
is obtained by fitting the data from a large number of chan-
nels with an analytic formula and then taking the average
of the fitted parameter values. A comparison between the
average representation and a particular profile is shown in
Fig. 10. The shapes are different in the rising edge, and
the time of maximum also differs. Two collections of 25
sets of weights (one set for each phase bin) are extracted,
one for each representation, and used to reconstruct the
amplitude.
Figure 11 shows the average reconstructed amplitude

summed in a 3× 3 matrix of crystals in each of the 25
1 ns phase bins. The average reconstructed amplitude, ob-
tained from a Gaussian fit to the peak of the reconstructed
amplitude distribution, is plotted as a function of the
phase for both sets of weights. Using the weights derived
from the average representation results in a bias in the

Fig. 12. Distribution of the reconstructed amplitude in a 3×3
matrix for a 120 GeV beam using the weights derived from an
average representation of the signal pulse (dashed histogram)
and the true profile of the signal in the crystal studied (solid
histogram). Truncated Gaussian fits are superimposed on both
distributions and are used to derive the energy resolution:
0.55% for the dashed histogram, and 0.45% for the solid his-
togram. (Asynchronous data using all phase bins)

reconstructed amplitude which varies with phase and ul-
timately degrades the energy resolution as can be seen
in Fig. 12. When the weights are derived using the sig-
nal description specific to each channel, the resolution is
as good as the one obtained in a single 1 ns bin. The
bias visible in Fig. 11, when the weights used are those
derived from the average representation, could also be
corrected using the fitted line, leading to a comparable
resolution.

5.1.1 Relative importance of shape and timing

The relative importance of differences in signal timing
and shape between the signal pulse and the signal rep-
resentation used to derive the weights has been studied.
As in Sect. 4.1 the signal in each channel is character-
ized by its peaking time TMax and its width. Figure 13
shows the energy resolution measured when the weights
used to reconstruct the amplitude are derived from sig-
nal representations with peaking times and widths which
differ from those of the actual signal. The situation here
differs from that shown in Fig. 5, since here data in all
25 phase bins are being reconstructed, using 25 sets of
weights. This is a reconstruction of the full asynchronous
test beam data set, whereas Fig. 5 refers to a reconstruc-
tion of data in a single phase bin, simulating synchronous
data.
When the weights are derived using a signal representa-

tion that has a width contraction factor 0.05 (the rms dis-
persion in a supermodule) different from the signal width
the resolution is degraded from 0.45% to 0.52%. When the
weights are derived using a signal representation that has
a TMax 3 ns (the rms dispersion in the supermodule) differ-
ent from that of the signal, the resolution is degraded from
0.45% to 0.70%. Thus the most significant cause of the
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Fig. 13. Energy resolution in
a 3× 3 matrix of crystals for
a 120 GeV electron beam (left),
as a function of ∆TMax, and
(right) as a function of the con-
traction factor, C

resolution degradation resulting from the use of an average
signal pulse representation to derive the weights for re-
construction of asynchronous data is a mismatch of signal
timing. It should be possible, in the future test beam data
taking, to adjust the signal timing to within 1 ns. Alterna-
tively, the mistimings could be categorized, and a number
of different sets of weights used.

5.2 Timing jitter

As described in Sect. 5, different sets of weights are used
for events in different bins of phase. The TDC measure-
ment is used to decide which set of weights should be used.
However, an rms uncertainty of approximately 0.65 ns on
the TDC phase measurement was observed. This results in
an additional smearing of amplitudes which degrades the
energy resolution.

Fig. 14. Amplitude measurement spread due to jitter as
a function of pulse maximum time. Solid circles and open
squares correspond to simulated events with a timing jitter of
0.65 ns. The solid circles are obtained when the standard am-
plitude reconstruction is used, whereas the open squares result
from the use of jitter-compensating weights. The open trian-
gles correspond to standard amplitude reconstruction when the
jitter is equal to 0.2 ns, as expected in CMS

The derivation of the weights can be modified to ac-
count for small event-to-event variations of the pulse tim-
ing relative to the clock, or jitter, and produce what we
call “jitter-compensating” weights (see Appendix A). Fig-
ure 14 shows the results of a study using simulated signal
pulses to determine the effect of jitter on the constant term
as a function of pulse maximum time for both the standard
amplitude reconstruction method and jitter-compensating
weights. The effect of jitter in the case of CMS running
(� 0.2 ns due to the bunch length) is also shown. The re-
sults demonstrate that the effect of jitter will be negligible
in CMS running, without the use of jitter-compensating
weights, especially if the sampling is performed on the
peak.
Figure 15 shows the distribution of reconstructed am-

plitude summed in a 3×3matrix of crystals using pedestal-
subtracting weights and pedestal-subtracting weights with
jitter compensation. The improvement observed when
using jitter-compensating weights has motivated the choice
of using these special sets of weights to extract perform-
ance results from test beam data taken in 2004.

Fig. 15. Distribution of the reconstructed amplitude, for asyn-
chronous data using all phase bins, summed in a 3×3 matrix
of crystals using pedestal-subtracting weights with (solid his-
togram, σ/E = 0.43%) and without (dashed histogram, σ/E =
0.45%) jitter compensation
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6 Conclusion

Reconstruction of the signal amplitude in the CMS ECAL
can be performed using digital filtering techniques. Using
an implementation with dynamic pedestal subtraction, the
measured noise in a single channel is 40MeV, and coherent
noise between channels is effectively removed so that the
noise measured in a 3×3 (5×5) matrix of crystals is about
120MeV (200MeV). Additional noise induced by pile-up
events was investigated with simulated data and shown to
be negligible at low luminosity.
Studies of the test beam data collected in 2004 with

a fully equipped supermodule allowed investigation of the
importance of the shape and timing of the reference sig-
nal representation used to derive the weights, as well as
the effect of timing jitter on the resolution. The impact
on the resolution of the shape and timing of the reference
signal representation used to derive the weights has been
clearly demonstrated to be caused by the asynchronous
data taking mode in the test beam. The necessity to re-
construct the same amplitude for all values of the phase
imposes severe constraints on the tolerable variation of
timing and pulse shape between channels. The poor time
resolution of the phase measurement used in the 2004
test beam data taking also requires use of more complex
and sophisticated techniques to avoid degradation of the
resolution.
In synchronous running, as will be the case at LHC,

a single set of weights can be used to reconstruct the ampli-
tude in all the ECAL channels and timing information can
be provided using an additional set of weights. The time
measurement can be used to monitor possible shifts of the
signal timing.

Appendix : Weights derivation

In order to derive optimal weights, a least squares method
is used. The χ2, defined in Sect. 2, can be written in matrix
notation as

χ2 = (S−G(A, δt, P ))TC−1(S−G(A, δt, P )) , (A.1)

where S is a vector of the time samples Si withN elements,
C is the noise covariance matrix, and G(A, δt, P ) is a vec-
tor describing the mean of the measurements, modeled by

G(ti;A, δt, P ) =Af(ti+ δt)+P . (A.2)

Here A is the amplitude of the signal, f(t) is the function
which corresponds to the time development of the signal
pulse, δt is a possible timing jitter, and P is the pedestal.
If δt is small enough, (A.2) can be linearized:

G(ti;A, δt, P )�Af(ti)+ (Aδt)
df

dt
(ti)+P , (A.3)

restricting the problem to the situation in which G(A, δt,
P ) is a linear function of the free parameters:

χ2 = (S−AF− (Aδt)F′−P1)TC−1

× (S−AF− (Aδt)F′−P1) , (A.4)

whereF is a vector of f(ti), and F
′ is a vector of dfdt (ti) and

1 has all its vector elements equal to 1. Minimizing χ2 with
respect to A, Aδt and P , a linear system of three equations
is obtained:

⎛

⎝
FTC−1F FTC−1F′ FTC−11

F′
T
C−1F F′

T
C−1F′ F′

T
C−11

1TC−1F 1TC−1F′ 1TC−11

⎞

⎠

⎛

⎝
Â

Âδt̂

P̂

⎞

⎠

=

⎛

⎝
FT

F′
T

1T

⎞

⎠C−1S . (A.5)

Denoting the matrix on the left of (A.5) asM, the solution
of the system can be expressed as

⎛

⎝
Â

Âδt̂

P̂

⎞

⎠=M−1
⎛

⎝
FT

F′
T

1T

⎞

⎠C−1S=WS , (A.6)

whereW is the matrix of weights.
The covariance matrix V between the estimators is

equal to

V =E[(WS−E[WS])(WS−E[WS])T]

=WCWT =M−1 . (A.7)

Replacing the parameters by the solutions of (A.6) in
(A.4), the minimal χ2 value can be computed:

χ2Min = S
T(1l−

(
FF′1

)
W)TC−1(1l−

(
FF′1

)
W)S

= STMχ2S , (A.8)

whereMχ2 is a matrix which can be used to compute χ
2
Min

event-by-event without minimizing χ2.
All simpler cases can be derived from (A.5) and (A.6).

Two common cases are as follows.

1. The parameter A is the only free parameter. Simplify-
ing (A.5) gives

W=
FTC−1

FTC−1F
. (A.9)

In addition, ifC= σ21l:

Wi =
fi∑N
j f

2
j

. (A.10)

The variance of Â is obtained from (A.7): V (Â) =
1

FTC−1F
= σ2∑N

j f
2
j

.

2. The parameters A and P are free parameters and C=
σ21l. Solving(A.5) gives two sets of weights used to com-
pute the two estimators
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(
Â

P̂

)
=

1

NFTF− (FT1)2

(
NFT− (FT1)1T

(FTF)1T− (FT1)FT

)
S

=WS . (A.11)

The weights can also be written as

WA,i =
fi−
∑N
j fj

∑N
j f

2
j −
(∑N

j fj

)2
/N

,

WP,i =

∑N
j f

2
j −
(∑N

j fj

)
fi

N
∑N
j f

2
j −
(∑N

j fj

)2 . (A.12)

Equation (A.7) gives V (Â) = σ2∑N
j f

2
j
−(
∑N
j fj)

2/N
.

3. Jitter-compensating weights can be obtained by leaving
δt as a free parameter. In the case where A and δt are
the only two free parameters and C= σ21l, the weights
are computed as

(
Â

Âδt̂

)
=

1

(F′TF′)(FTF)− (FTF′)2

×

(
(F′TF′)FT− (FTF′)F′T

(FTF)F′
T− (FTF′)FT

)
S=WS ,

(A.13)

which gives

WA,i =

(∑N
j

dfj
dt

2
)
fi−
(∑N

j fj
dfj
dt

)
dfi
dt

(∑N
j f

2
j

)(∑N
j

dfj
dt

2
)
−
(∑N

j fj
dfj
dt

)2 .

(A.14)
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