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Abstract: The antenna subtraction method developed originally for the computation of

higher order corrections to jet observables from a colourless initial state is extended for

hadron collider processes involving a pair of massive particles and jets in the final state

at the next-to-leading order (NLO) level. Due to the presence of coloured initial states,

the subtraction terms need to be divided into three categories (final-final, initial-final and

initial-initial). In this paper, we outline their construction and derive the necessary ingredi-

ents: phase space factorisation, antenna functions and also integrated antennae, including

the effects of massive final states in all of those building parts. As a first application,

we explicitly construct the colour-ordered real radiation and the corresponding antenna

subtraction terms required at NLO for the production of a top quark pair and for the

production of a top quark pair in association with a hard jet. The latter constitutes an

essential ingredient for the computation of the hadronic production of a top-antitop pair

at NNLO.
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1 Introduction

At LHC, physics beyond the Standard Model will almost inevitably manifest itself by the

creation of massive particles which decay instantaneously into multiparticle final states.

Searches for supersymmetric particles often involve final states with four or more jets. Top

quarks [1, 2] are measured through their decay into a bottom quark and a subsequently

decaying W -boson, yielding up to six-jet final states for top quark pair production. Mean-

ingful searches for these signals require not only a very good anticipation of the expected

signal, but also of all standard model backgrounds yielding identical final state signatures.

Since leading-order calculations are affected by large uncertainties in their normalisation

and their kinematical dependence, it appears almost mandatory to include NLO correc-

tions. For a long time, these corrections were available only for at most three final state

particles. Up to recently, the principle obstacle to NLO calculations of final states with

higher multiplicities were the one-loop virtual corrections to multi-parton scattering ampli-

tudes. Application of standard quantum field theory methods to those produced extremely

large and numerically unstable expressions. In the recent past, several new algorithms have

emerged to circumvent these numerical instabilities [3–8]. The recently released packages

CutTools [9], BlackHat [10], Golem [11], Rocket [12] and Samurai [13] provide automated

implementations of these new methods. They were already applied to in a number of

pioneering calculations [14–25].

With a mass mt = 173 ± 1.3 GeV, the top quark is the heaviest particle produced

at colliders and due to its very large mass it decays before it hadronises. By studying its

properties in detail, it is hoped to elucidate the origin of particle masses and the mechanism

of electroweak symmetry breaking. Since its discovery at the Fermilab Tevatron, a number

of its properties (mass, couplings) have been determined to an accuracy of ten to twenty

per cent. With the large number of top quark pairs expected to be produced at the LHC,

the study of its properties will become precision physics. This large production rate will

– 1 –



J
H
E
P
0
4
(
2
0
1
1
)
0
6
3

allow precise measurements of their properties and their production cross sections with an

expected experimental accuracy of five per cent.

Current theoretical predictions for the top quark pair production cross section include

NLO corrections [24–27] and next-to-leading-logarithmic resummation (NLL) [28–30].

More recently even the NNLL resummation effects have been completed in [31]. These

predictions lead to a theoretical uncertainty of the order of ten per cent. The same precision

is available for single top quark production [32], top-pair-plus-jets production [23, 33, 34]

and for top-pair-plus-bottom-pair production [21, 22].

The top quark appears as virtual particle in hadron collider processes and due to the

small ratio between the top quark width and its mass, it is possible to factor the cross

section of processes involving top quarks into the product of the production cross section

for on-shell top quarks and the top quark decay width. Most of the calculations mentioned

above are performed for on-shell top quark pair production. Only most recently, the decay

of the top quark has been included in NLO calculations [24, 25, 35] leading to a similar

theoretical accuracy.

Even for on-shell top quark pair production, a full fixed order calculation of the total

top-antitop rate at NNLO, required to match the experimental accuracy, is missing. NNLO

calculations involving massive quarks require the same ingredients as their massless coun-

terparts. Three classes of contributions enter: double real, mixed real-virtual and two-loop

type virtual contributions. However, the quark mass introduces one additional scale into

the calculation. Especially the two-loop virtual corrections become therefore more involved

than in the massless case. On the other hand, the treatment of the real radiation n + 2

parton processes is expected to be easier, since the heavy quark mass acts as an extra

infrared regulator, thus eliminating part of the singularity structure.

Recent progresses has been accomplished concerning the two-loop contributions. Part

of these two-loop virtual corrections are built with products of one-loop virtual amplitudes.

Those corrections have been computed in [37–39]. Concerning the two-loop virtual correc-

tions build with product of two-loop and tree-level amplitudes, the situation is different.

The two-loop virtual corrections for the processes qq̄ → tt̄ and gg → tt̄ are not fully avail-

able at present. A purely numerical evaluation of the quark-initiated process [40] could be

partly confirmed by analytical results [41–43], which were most recently extended also to

the gluon-induced subprocess.

Real radiation corrections involving heavy quarks have up to now been investigated

only at NLO. Most recently a semi-numerical scheme to evaluate the double real radiation

corrections at NNLO has been introduced and applied to top quark pair production [44–46].

In this paper, towards calculating the double real contributions to top-antitop pro-

duction in hadronic collisions at NNLO, we extend the antenna subtraction formalism to

be applicable to the production of massive heavy quark pairs in the presence of coloured

initial states and present results for the real and subtraction contributions for tt̄ and tt̄

+jet production at NLO.
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Generally, for hard scattering observables, the inclusive cross section with two incoming

hadrons H1,H2 can be written as

dσ =
∑

a,b

∫
dξ1

ξ1

dξ2

ξ2
fa/1(ξ1) fb/2(ξ2) dσ̂ab(ξ1H1, ξ2H2) , (1.1)

where ξ1 and ξ2 are the momentum fractions of the partons of species a and b in both incom-

ing hadrons, f being the corresponding parton distribution functions and dσ̂ab(ξ1H1, ξ2H2)

is the parton-level scattering cross section for incoming partons a and b.

The partonic cross section dσ̂ab has a perturbative expansion in the strong coupling αs

such that theoretical predictions for a hadronic process at a given order in αs are obtained

when all partonic channels contributing to that order to the partonic cross section are

summed and convoluted with the appropriate parton distribution functions as in eq. (1.1).

In general, beyond the leading order, each partonic channel contains both ultraviolet

and infrared (soft and collinear) divergences. The ultraviolet poles are removed by renor-

malisation in each channel. Collinear poles originating from the radiation of initial state

partons are cancelled by mass factorisation counterterms and absorbed in the parton distri-

bution functions. The remaining soft and collinear poles cancel among each other when all

partonic contributions are summed over [47, 48]. As these observables depend in a non triv-

ial manner on the experimental criteria needed to define them, they can only be calculated

numerically. The computation of hadronic observables including higher order corrections

therefore requires a systematic procedure to cancel infrared singularities among different

partonic channels before any numerical computation of the observable can be performed.

For the task of next-to-leading order (NLO) calculations [49, 50], the infrared diver-

gencies present in real radiation contributions can be systematically extracted by process-

independent procedures, called subtraction methods.

More specifically, let us consider the hadronic production of m-jets at NLO. A theoret-

ical prediction for this observable is obtained by summing the following massless partonic

contributions: At LO, the tree-level contribution contains m partons in the final state

which build m jets.

At NLO, the differential cross section for the production of m-jets, dσ̂NLO may sym-

bolically be written as,

dσ̂NLO =

∫

dΦm+1

dσ̂R
NLO J (m+1)

m +

∫

dΦm

(
dσ̂V

NLO + dσ̂MF
NLO

)
J (m)

m (1.2)

where
∫
dΦN

corresponds to the integration over the N parton phase space. The cross

section is built with the real radiation cross section contribution dσ̂R which has (m + 1)

massless partons in the final state, the one-loop cross section dσ̂V and the mass factorisation

counterterm dσMF
NLO which have both m partons in the final state. A jet algorithm is applied

separately on each of these contributions to ensure that out of n partons, m jets are built

in the final state. Symbolically this recombination procedure is denoted by J
(n)
m .

The purpose of any subtraction method is to provide a subtraction term dσ̂S
NLO which

has the same singular behaviour as the real radiation squared matrix element and is suffi-

ciently simple to be integrated analytically over a factorised form of the (m+1)-phase space.
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Using a subtraction method, the NLO partonic cross section given in eq. (1.2) may

then be written as,

dσ̂NLO =

∫

dΦm+1

(
dσ̂R

NLO − dσ̂S
NLO

)
J (m+1)

m

+

∫

dΦm

(∫

1
dσ̂S

NLO + dσ̂V
NLO + dσ̂MF

NLO

)
J (m)

m . (1.3)

With this, the first integral is finite and can be integrated numerically in four dimen-

sions. The integrated form of the subtraction term has the same number of final-state

partons as the virtual contributions and the mass factorisation counterterms. It can there-

fore be combined with those thereby canceling analytically the explicit infrared divergences.

The second integral in eq. (1.3) is therefore finite as well.

The actual form of the subtraction term dσ̂S
NLO depends on the subtraction formalism

used. The approximations of the matrix-element in the unresolved limits being non unique,

several successful subtraction formulations have been proposed in the literature [51–55].

The dipole formalism of Catani and Seymour [51] and the FKS [52] of Frixione, Kunszt

and Signer have been implemented in an automated way in [56–61]. In its original formu-

lation, the formalism of Catani-Seymour [51] deals with massless partons in final and/or

initial state at NLO.

An alternative subtraction formalism is given by the the antenna subtraction method

. This formalism [62–64] was originally derived for processes involving only (massless)

final state partons in e+e− collisions. It has been applied in the computation of NNLO

corrections to three-jet production in electron-positron annihilation [65–68] and related

event shapes [69–73], which were subsequently used in precision determinations of the

strong coupling constant [74–78].

For processes with initial-state partons and massless final states, the antenna subtrac-

tion formalism has been so far fully worked out only to NLO in [62, 63, 79]. It has been

extended to NNLO for processes involving one initial state parton relevant for electron-

proton scattering in [80] while an extension of the formalism to include two initial state

hadrons at NNLO is under construction [81, 82].

Subtraction formalisms which deal with massive final state particles have been so far

only developed up to the NLO level [83–86]. The kinematics is more involved due to the

finite value of the parton masses. QCD radiation from massive particles can lead to soft

divergencies but cannot lead to strict collinear divergencies, since the mass is acting as an

infrared regulator. In a calculation of observables involving massive final state fermions,

logarithmic terms of the form ln(Q2/M2), where M is the parton mass and Q, the typ-

ical scale of the hard scattering process can be generated. In kinematical configurations

where Q ≫ M , these logarithmically enhanced contributions can become large and can

spoil the numerical convergence of the calculation. The cross section calculation of tt̄ at

LHC is an example where such enhanced logarithmic terms arise. These terms are related

to a process-independent behaviour of the matrix elements; its singular behaviour in the

massless limit (M → 0). This singular behaviour is related to the quasi-collinear [83] limit

of the matrix element. In the presence of massive particles, the factorisation properties of

– 4 –
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matrix element and phase space in collinear and soft limits need to be generalised to take

the mass effects into account.

The dipole formalism of Catani and Seymour [51] and the FKS formalism [52] have

been extended to deal with massive particles in [83] for colourless and for coloured initial

states up to the NLO. The subtraction terms constructed within this formalism account

for the quasi-collinear limits of the matrix-element squared.

The antenna subtraction method has so far only been extended to deal with the produc-

tion of massive fermions from a colourless initial state in [86]. It is the purpose of this paper

to present an extension of this method to include radiation off final state massive fermions

produced in hadronic processes. In this paper we aim to derive all necessary ingredients,

massive antennae, phase space factorisation and finally integrated massive antennae for

this extension. As a first application, we construct the subtraction terms dσ̂S
NLO required

for the hadronic production of a top quark pair in association with no or one hadronic jet.

These two processes, pp → tt̄ and pp → tt̄ +jet have been calculated in [28, 33] using

the dipole subtraction method [83]. Our aim here is however not to redo this calculation

using another subtraction scheme. Instead, we construct here the subtraction terms for

tt̄ +jet production in a colour-ordered form which is essential for the computation of top

quark pair production without any jets at NNLO within the framework of the antenna

formalism. Those subtraction terms can be used to capture all single unresolved radiation

from the double real radiation contribution for the tt̄ pair production at NNLO.

The plan of this paper is as follows. In section 2 we outline the construction of the

subtraction terms for the hadronic production of a heavy quark pair in association with

(m− 2)-jets at NLO. We present the form of the subtraction terms in all kinematical con-

figurations with particular emphasis on the changes caused by the presence of massive final

state particles in the expressions of the subtraction terms compared to those expressions

in the massless case. Section 3 contains a list of all massive antenna functions required. In

section 4 we tabulate all non-vanishing single unresolved limits of those massive antennae

while in section 5 results for the integrated antennae are given. Section 6 presents a check

on one of the integrated antenna. In section 7, for all partonic process involved, we present

the colour ordered real contributions and their subtraction terms required to evaluate the

hadronic production cross section of a tt̄ pair and of tt̄ pair and a jet at NLO. Finally

section 8 contains our conclusions.

2 Antenna subtraction with massive final states

In this section, we present the general formalism necessary to evaluate the hadronic pro-

duction of a pair of heavy quarks QQ̄ in association with (m−2) jets at the next-to-leading

order (NLO) in perturbative QCD.

– 5 –
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2.1 Real radiation contributions to heavy quark pair production in association

with jets

The leading order (LO) m-parton contribution to the hadronic production of a pair of

heavy quarks QQ̄ in association with (m − 2) jets may be written as,

dσ̂LO(p1, p2) = N
∑

m−2

dΦm(kQ, kQ̄, k1, . . . , km−2; p1, p2)

× 1

Sm−2
|Mm(kQ, kQ̄, k1, . . . , km−2; p1, p2)|2 J (m)

m (kQ, kQ̄, k1, . . . , km−2). (2.1)

The momenta p1 and p2 are the momenta of the initial state partons, the massive partons

Q and Q̄ have momenta kQ and kQ̄, while the momenta of the remaining (m− 2) massless

final state partons are labelled k1 . . . km−2. Sm−2 is a symmetry factor for identical massless

partons in the final state. J
(m)
m (kQ, kQ̄, k1, . . . km−2) is the jet function. It ensures that out

of (m − 2) massless partons and a pair of heavy quarks Q and Q̄ present in the final

state at parton level, an observable with a pair of heavy quark jets in association with

(m − 2) jets is built. At this order each massless or massive parton forms a jet on its

own. The normalization factor N includes all QCD-independent factors as well as the

dependence on the renormalised QCD coupling constant αs.
∑

m−2 denotes the sum over

all configurations with (m − 2) massless partons. dΦm is the phase space for an m-parton

final state containing (m−2) massless and two massive partons with total four-momentum

pµ
1 + pµ

2 . In d = 4 − 2ǫ space-time dimensions, this phase space takes the form:

dΦm(kQ, kQ̄, k1, . . . , km−2; p1, p2) =
dd−1kQ

2EQ(2π)d−1

dd−1kQ̄

2EQ̄(2π)d−1

× dd−1k1

2E1(2π)d−1
. . .

dd−1km−2

2Em−2(2π)d−1
(2π)d δd(p1 + p2 − kQ − kQ̄ − k1 − · · · km−2) , (2.2)

In eq. (2.1) |Mm|2 denotes a colour-ordered tree-level m-parton matrix element squared for

m partons out of which two are massive. These terms only account for the leading colour

contributions to the squared matrix elements. On the other hand, colour subleading contri-

butions are, in general, given by the interference between two colour-ordered n-parton am-

plitudes. However, to keep the notation simpler we denote these interference contributions

also as |Mm|2. Related to these interference terms, it is here worth noting the following: As

soon as more than five coloured partons are present in a given partonic process, the subtrac-

tion of infrared singularities present in interference terms is more involved than for colour

ordered squared matrix elements. This particular issue will be treated in section 7.2.1.

At, NLO the real radiation partonic contribution to the production of the heavy quark

pair production in association with (m − 2) jets involves (m + 1)-final state partons with

two of them being massive. It may be written as,

dσ̂R
NLO(p1, p2) = N

∑

m+1

dΦm+1(kQ, kQ̄, k1, . . . , km−1; p1, p2)

× 1

Sm+1
|Mm+1(kQ, kQ̄, k1, . . . , . . . , km−1, ; p1, p2)|2 J (m+1)

m (kQ, kQ̄, k1, . . . , km−1). (2.3)

– 6 –
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The jet function J
(m+1)
m ensures that out of (m − 1)-massless partons and a QQ̄ pair, an

observable with a pair of heavy quark jets in addition to (m − 2) jets, are built. In other

words, an m-jet observable is formed.

In this contribution, when the real matrix element squared |Mm+1|2 is integrated over

the phase space, it develops singularities when one parton in the final state is unresolved.

In the presence of massive partons in the final state, a parton is called unresolved, either

when it becomes soft or collinear to another massless parton or when it is quasi-collinear

to a massive parton. In this latter case, it leads to finite logarithmic terms involving the

mass of the massive parton. The notion of quasi-collinear limit will be explicitly presented

in section 4. To extract the unresolved behaviours of the real matrix element, subtraction

terms which take both the massless and massive effects need to be considered.

At the next-to-leading order, the subtraction terms derived in the antenna formal-

ism [62–64, 79] are constructed solely with tree-level three-parton antenna functions. Those

functions encapsulate all singular limits due to the emission of one unresolved parton be-

tween two colour-connected hard partons, called radiators.

Depending where the two radiators are located, in the initial or in the final state, we

distinguish three types of configurations: final-final, initial-final and initial-initial. In any

of those configurations, the radiated parton is always in the final state.

The subtraction terms in a given configuration are constructed from products of the

corresponding antenna functions with reduced matrix elements. Those can be integrated

over a phase space which is factorised into an antenna phase space (involving all unresolved

partons and the two radiators) multiplied by a reduced phase space, where the momenta of

radiators and unresolved radiation are replaced by two redefined momenta. These redefined

momenta can be in the initial or in the final state depending on where the corresponding

radiator momenta are and are defined by appropriate mappings. The full subtraction

term is then obtained by summing over all antennae required in one configuration and by

summing over all configurations needed for the problem under consideration.

The antenna subtraction terms do not provide a strictly local subtraction of collinear

singularities in the case of a gluon splitting to two gluons or to a quark-antiquark pair. In

these, the antenna subtraction term accounts for the singular behavior only after integration

over the azimuthal angle of the two parton system with respect to the collinear direction.

As a consequence, the numerical integration of the difference of matrix element and antenna

subtraction term is potentially unstable. By an appropriate partitioning of the final state

phase space [65, 87], this azimuthal integration variable can be separated off for each

limit. Once this variable is separated, the angular terms can be averaged out by a smooth

one-dimensional integration, or by combining different phase space points.

The massless and massive three parton final-final antenna functions, besides being

fundamental entities of the antenna subtraction formalism developed for colourless ini-

tial states and for massless partons in [64] or for massive partons in [86] have another

fundamental role. Those can be used as basic ingredients in parton showers. The event

generator VINCIA uses these antenna functions as evolution kernels. In its present formula-

tion [88, 89], VINCIA describes the evolution of timelike showers based on the massless [64]

– 7 –
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and the massive [86] antenna functions. A study concerning the importance of quark mass

effects is currently ongoing. The results presented in this paper concerning the massive

initial-final antennae will become relevant for initial-state parton showers for observables

with massive final states.

For the NLO corrections to QQ̄ + jets production in hadronic collisions, we will need

all three types of subtraction terms and therefore all three types of antenna functions. Since

one massive radiator is always in the final state, the subtraction terms will involve final-

final and initial-final massive antennae but no initial-initial antennae with massive particles.

Antennae involving only massless partons though, will be needed in all three configurations.

Those have been derived and integrated in [64, 79, 82]. All required massive antenna

functions will be presented in section 3 and their integrated forms will be given in section 5.

In the following, we shall present the general form of the subtraction terms needed

in each of the three configurations (final-final, initial-final and initial-initial) to account

for single unresolved radiation in processes involving a heavy quark pair in association

with jets in the final state. We will in particular focus on the changes introduced in the

subtraction terms due to the presence of massive final state particles compared to those

when only massless partons are involved [64, 79, 82].

2.2 Subtraction terms for final-final configurations

In the final-final configuration, the subtraction term related to the real contributions to the

partonic process yielding a heavy quark pair in association with (m−2) jets given in eq. (2.3)

has to take into account the presence of an unresolved parton j of momentum kj emitted

between two hard final-state radiators i and k of momenta ki and kk respectively. It reads,

dσ̂
S,(ff)
NLO = N

∑

m+1

dΦm+1(k1, . . . , ki, kj , kk, km+1; p1, p2)
1

Sm+1

×
∑

j

X0
ijk |Mm(k1, . . . ,KI ,KK , . . . , km+1; p1, p2)|2

×J (m)
m (k1, . . . ,KI ,KK , . . . , km+1) . (2.4)

This subtraction term involves the phase space for the production of m+1 partons,dΦm+1,

the massive final-final three-parton antenna function X0
ijk, the reduced m-parton ampli-

tude squared |Mm|2 and the jet function J
(m)
m . The jet function J

(m)
m ensures that out

of (m − 2) massless partons and a pair of massive partons, (m − 2) jets and a QQ̄ jet

pair is build. The jet function and the reduced m-parton amplitude do not depend on the

individual momenta ki, kj and kk, but will only depend on the redefined momenta kI and

kK which are linear combinations of the original momenta ki, kj , kk.

Two cases are implicitly considered here. Either i and k are massive hard final state

radiators in which case the redefined partons I and K are massive or, i is massless and k is

massive and the redefined partons I and K are massless and massive respectively. In this

case, one of the parton momenta ka with a 6= i, k is massive in order to obtain a reduced

matrix element with two massive final state partons.
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Eq. (2.4) holds strictly fot the subtraction of singularities of colour ordered matrix ele-

ments squared. Furthermore, as mentioned before, also interferences between partial ampli-

tudes with different colour orderings appear in the subleading colour pieces. It will be seen

in section 7.2.1 that the subtraction of infrared singularities appearing in these interferences

needs a special treatment. However, to keep equations as brief and clear as possible, we

still write our subtraction terms in the final-final configuration symbolically as in eq. (2.4).

Most of the massive final-final three-parton antenna functions X0
ijk needed to evaluate

the NLO corrections to QQ̄ + jets production have been derived in [86]. Those will be

listed in section 3. Solely, the new flavour-violating massive antennae, which are related to

flavour violating vertices, will be explicitly derived in that section.

The phase space dΦm+1 can be factorised as follows,

dΦm+1(k1, . . . , ki, kj , kk, . . . , km+1; p1, p2) =

= dΦm(k1, . . . ,KI ,KK , . . . , km+1; p1, p2) · dΦXijk
(ki, kj , kk;KI + KK) . (2.5)

dΦm is the d-dimensional phase space for m outgoing particles with momenta k1, . . . , km+1

with two of those momenta being massive, dΦXijk
is the NLO final-final antenna phase

space. It is proportional to a massive three-particle phase space relevant to a 1 → 3

decay [86]. Depending whether the two radiators are of equal masses or whether one of

them is massless, different parametrisations of this antenna phase space are obtained. The

parametrisations necessary to integrate the final-final massive antenna functions will be

given in section 5.

Appropriate final-final phase space mappings are furthermore required to define the

final-state momenta kI and kK in the relevant kinematical configurations. Those are how-

ever not unique. A possible mapping can be found in [83]. As in the massless case, the

mapping given in [83] is not symmetric under the exchange of i and k. A possible symmetric

version for a massive final-final definition of the mapped momenta will be given elsewhere.

For the analytic integration, we can use the phase space factorisation formula given in

eq. (2.5) to rewrite each of the subtraction terms in eq. (2.4) in the form

|Mm(k1, . . . ,KI ,KK , . . . , km+1; p1, p2)|2 J (m)
m dΦm

∫
dΦXijk

X0
ijk. (2.6)

The integrated massive final-final antennae, normalised appropriately are defined by

analogy to the massless case by

X 0
ijk(sijk) =

1

C(ǫ)

∫
dΦXijk

X0
ijk (2.7)

with, the normalisation factor

C(ǫ) = (4π)ǫ
e−ǫγE

8π2
. (2.8)

The integration is performed analytically in d-dimensions such that the integrated subtrac-

tion terms can be combined with the one-loop m-parton contribution.
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2.3 Subtraction terms for initial-final configurations

In the initial-final configuration, the subtraction term related to the real contributions given

in eq. (2.3) has to take into account the presence of an unresolved parton j of momentum kj ,

(which can be massive), emitted between a massless initial state radiator i of momentum

pi and a massive final state radiator k of momentum kk and mass mk. It is given by,

dσ̂
S,(if)
NLO = N

∑

m+1

dΦm+1(k1, . . . , kj , kk, . . . , km+1; pi, p2)
1

Sm+1
(2.9)

×
∑

j

X0
i,jk |Mm(k1, . . . ,KK , . . . , km; pi, p2)|2 J (m)

m (k1, . . . ,KK , . . . , km).

This subtraction term involves the phase space for the production of (m + 1) par-

tons, dΦm+1, the massive three parton initial-final antenna function denoted by X0
i,jk, the

reduced m-parton amplitude squared |Mm|2 and the jet function J
(m)
m . The reduced m-

parton matrix element squared |Mm|2 does not contain any explicit dependence on the

original final state momenta kj and kk, but only depends on them through the redefined

momentum KK . The same holds for the jet function J
(m)
m . The three parton massive

antenna functions X0
i,jk depend only on the momenta pi, kj and kk and on the masses of

the final state partons mj and mk. These will be presented in section 3.

In this configuration, the initial state radiator i is always massless while the final state

radiator k is always massive. The unresolved parton j can be either massless or massive

such that two situations are covered in eq. (2.9). In case it is massless, one of the partons

with ka where a 6= j, k has to be taken massive in order to build an event with a pair of

massive partons in addition to (m − 2) jets. Depending whether the unresolved parton

is massless or massive, different phase space parametrisations will be needed. Those will

be presented in section 5 when the massive initial-final antennae are integrated over the

unresolved phase space.

As it was mentioned for the final-final case, the subtraction terms as presented in

eq. (2.9) are strictly valid for the subtraction of infrared singularities of colour ordered

matrix elements squared. Interferences of different partial amplitudes which also generate

infrared singularities need a special treatment which we shall present in section 7.2.1. To

keep our equations as brief and clear as possible, we still write our subtraction terms in

the initial-final configuration symbolically as in eq. (2.9).

2.3.1 Phase space factorisation and mappings

For the subtraction term to be integrated and then added to the virtual contributions and

mass factorisation counterterms, we need the phase space to factorise adequately. As the

presence of massive final states lead to differences in this factorisation with respect to the

massless case considered in [79] we derive this phase space factorisation explicitly below.

We start from the 2 → (m + 1)-particle phase space with a priori two massive final

state particles of momenta kj and kk and the remaining (m− 1) particles staying massless.
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The momenta of the initial state partons are named pi and p2.

dΦm+1 (k1, . . . , km+1; pi, p2) = (2π)d δ

(
pi + p2 −

∑

l

kl

)
∏

l

[dkl] , (2.10)

where the phase space measure for massless and massive partons are respectively given

by: [dkl] = ddk δ+
(
k2

l

)
/ (2π)d−1 for l 6= j, k and [dkl] = ddkl δ+

(
k2

l − m2
l

)
/ (2π)d−1 for

l = j, k. We insert

1 =

∫
ddq δ(q + pi − kj − kk), (2.11)

and, to take into account the masses of the final state particles j and k we insert

1 =
Q2 + m2

K

2π

∫
dxi

xi

∫
[dKK ](2π)d δ(q + pI − KK) (2.12)

with

Q2 = −q2 xi =
Q2 + m2

K

2pi · q
and pI = xi pi. (2.13)

We find that the original phase space for (m+1) partons given in eq. (2.10) can be written

as the product of an m-parton (dΦm ) and a two-to-two particle phase space (dΦ2) as

follows,

dΦm+1(k1, . . . , km+1; pi, p2) = dΦm(k1, . . . ,KK , . . . , km+1;xipi, p2)

×(Q2 + m2
K)

2π
dΦ2(kj , kk; pi, q)

dxi

xi
. (2.14)

Replacing this phase space in the subtraction term given in eq. (2.9) we can explicitly

carry out the integration of the antenna functions over the two-to-two particle phase space

and get the integrated expression for the subtraction term to be added to the virtual

contributions and the mass factorisation counterterms. For this purpose it is convenient

to define the integrated massive initial-final antenna as,

Xi,,jk =
1

C(ǫ)

∫
dΦ2

(Q2 + m2
K)

2π
Xi,jk, (2.15)

where C(ǫ) is given in eq. (2.8) and the initial-final massive antenna phase space denoted

by dΦXi,jk
is given by,

dΦXi,jk
= dΦ2

(Q2 + m2
K)

2π
. (2.16)

Due to the presence of massive particles, the phase space mapping for initial-final

configurations derived in the massless case in [79] needs to be generalized as well: In a

process of the form pi + q → kj + kk with (q2 < 0) , to find a mapping from the original

momenta pi in the initial state, kj and kk in the final state, to the redefined momenta

pI and KK that ensures phase space factorisation, the following conditions need to be

fulfilled: The remapped final state momentum KK must be on-shell, and momentum must

be conserved. This implies,

pi − kj − kk = xipi − KK = pI − KK (2.17)
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for the phase space to factorise as in eq. (2.14).

In addition, concerning the single unresolved behaviour of the remapped momenta, the

following requirements have to be satisfied:

xipi → pi KK → kk when j becomes soft (2.18)

xipi → pi KK → kj + kk when j becomes collinear or quasi-collinear with k

xipi → pi − kj KK → kk when j becomes collinear or quasi-collinear with i.

It can be seen that when parton j becomes soft, collinear or quasi-collinear to parton k we

have xi → 1, while for the case in which partons i and j are collinear or quasi-collinear,

xi → 1 − z, with z being the fraction of the initial state momentum pi carried by the

unresolved momentum j. The notion of quasi-collinear limit can be viewed as an extension

of the collinear limit when at least one of the partons becoming collinear to another is

massive. Its explicit definition in this initial-final configuration will be given in section 4.

All these conditions given above are interpolated by,

KK = kj + kk − (1 − xi)pi

xi =
sij + sik − sjk

sij + sik
. (2.19)

With this choice, the mass relation for momenta before and after mapping reads,

m2
K = m2

k + m2
j . (2.20)

Note also that in eq. (2.19), sab stand for 2pa · pb. as everywhere in this paper. In terms of

those, massless [79] and massive definitions of xi are the same. The massless phase space

factorisation and mappings given in [79] can be recovered by setting the masses of the final

state particles to zero.

2.4 Subtraction terms for initial-initial configurations

Additional divergent contributions may finally also occur in the real matrix element squared

given in eq. (2.3) when a massless final state parton becomes unresolved with respect to

two initial state partons. In this case, the subtraction terms are constructed exclusively

with massless three parton initial-initial antennae. In those, the initial state partons are

the hard radiators and this situation was studied in detail in [79].

The subtraction term associated to an unresolved massless parton j and two hard

initial state radiators i and k with momenta pi and pk in the partonic process pi + pk →
kj + kQ + kQ̄ + (m − 2) partons takes the form

dσ
S,(ii)
NLO = N

∑

m+1

dΦm+1(kQ, kQ̄, k1, . . . , kj , . . . , km−1; pi, pk)
1

Sm+1

×
∑

j

X0
ik,j |Mm(k̃Q, k̃Q̄, k̃1, . . . , k̃j−1, k̃j+1 . . . , km−1;xipi, xkpk)|2

×J (m)
m (k̃Q, k̃Q̄, k̃1, . . . , k̃j−1, k̃j+1 . . . , . . . , k̃m−1). (2.21)
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This subtraction term involves the phase space for the production of (m + 1) partons,

dΦm+1, the massless three parton initial-initial antenna function denoted by X0
ik,j, the

reduced m-parton amplitude squared |Mm|2 and the jet function J
(m)
m . As mentioned for

the final-final and initial-final cases, the subtraction terms as presented in eq. (2.21) are

strictly valid for the subtraction of infrared singularities of colour ordered matrix elements

squared only. Interferences of different partial amplitudes need a special treatment which

we shall present in section 7.2.1. However, to keep our equations as brief and clear as pos-

sible, we still write our subtraction terms in the initial-initial configuration symbolically as

in eq. (2.21).

All momenta (massless and massive) in the arguments of the reduced matrix elements

|Mm|2 and the jet function J
(m)
m have to be redefined. They are denoted with tildes in

eq. (2.21). The two hard radiators are simply rescaled by factors xi and xk respectively.

The other momenta present in the reduced matrix element squared are boosted by a Lorentz

transformation onto the new set of momenta {k̃l, l 6= j} as described for massless partons

in [79]. We have checked that the same boost [51] required to redefine the momenta of

the massless partons can be used to redefine the momenta of the massive partons. Conse-

quently, the presence of massive partons in the final state does not influence the way the

phase space factorises and how the mapping is defined so that the massless factorisation [79]

can be used in this context.

The phase space dΦm+1 factorises into the convolution of a massive m-particle phase

space involving only redefined momenta and a massless initial-initial antenna phase space

related to the phase space of the unresolved parton j, as in the massless case.

All required initial-initial massless antennae X0
ik,j needed for the construction of the

subtraction terms for tt̄ production in association with jets have been derived and inte-

grated in [79, 82].

3 Massive antenna functions

In this section, we aim to list all massive antenna functions which are needed to con-

struct the subtraction terms for the hadronic production of a heavy quark pair and for the

production of a heavy quark pair in association with one additional jet at NLO.

3.1 General features of antenna functions

In section 2, we saw that the subtraction terms defined in the three configurations (final-

final, initial-final and initial-initial) are built with products of the corresponding antenna

functions (denoted by X) with reduced matrix element squared. At this order (NLO),

only tree level three-particle antenna functions are required. Those describe all unresolved

(soft, collinear and quasi-collinear) radiation emitted between a pair of colour-ordered hard

partons, the radiators. Originally, in [64], the antenna functions were derived for massless

final-final configurations. Those are defined by the pair of hard partons they collapse to

in the unresolved limits and in all cases, the antenna functions are derived from physical

matrix elements. Generally, the quark-antiquark antenna functions are obtained from

– 13 –



J
H
E
P
0
4
(
2
0
1
1
)
0
6
3

γ → qq̄ + (partons), the quark-gluon antenna functions from χ̃ → g̃ + (partons) [90] and

the gluon-gluon antenna functions from H → (partons) [91].

The three parton final-final antenna functions were obtained by normalising the colour-

ordered three-parton tree level matrix elements squared to the matrix element squared for

the basic two-parton process, omitting all couplings and colour factors. As such the tree-

level three parton massless or massive final-final antenna functions are scalars in colour

space, have mass dimension (−2) and are defined by [64, 86] as,

X0
ijk = Sijk,IK

|M0
ijk|2

|M0
IK |2 . (3.1)

S denotes the symmetry factor associated to the antenna, which accounts both for potential

identical particle symmetries and for the presence of more than one antenna in the basic

two-parton process. It is chosen such that the antenna function reproduces the unresolved

limits of a matrix element with identified particles.

At NLO the existing three parton tree level massless final-final X0
ijk antennae are:

• Quark-antiquark: the only antenna functions of this kind at NLO are the A-Type

antennae, and they are obtained from the ratio |M(γ∗ → qq̄g)|2/|M(γ∗ → qq̄)|2.
Since the quark and the antiquark are of the same flavour, in the following these

antennae will be referred as flavour conserving A-Type antennae.

• Quark-gluon: there are two different antenna functions of this kind: D-Type and

E-Type. The D-Type antennae are obtained from the ratio |M(χ̃ → g̃gg)|2/|M(χ̃ →
g̃g)|2, while the E-Type are computed from |M(χ̃ → g̃qq̄)|2/|M(χ̃ → g̃g)|2 [90].

• Gluon-gluon: there are also two different antennae of this kind: F-Type and G-Type.

The F-Type antenna functions are obtained from |M(H → ggg)|2/|M(H → gg)|2,
while the G-Type are calculated from the ratio |M(H → gqq̄)|2/|M(H → gg)|2 [91].

The initial-final antennae and the initial-initial antennae denoted respectively by X0
i,jk

and X0
ik,j are in principle defined by crossing one or two massless partons from the final

to the initial state in the final-final antennae X0
ijk. However, this crossing may not be

unambiguous for initial-final configurations [79].

All these types of antenna functions are needed for the construction of the subtraction

terms for heavy quark pair production except the G-Type antennae. Those antennae are

required in all three (final-final, initial-final or initial-initial) configurations and in their

massless or massive versions. In the latter case, the final state quark (q) or gluino (g̃)

is taken massive. Note that if both of those partons are present in the final state, the

corresponding massive antenna is obtained by taking only the gluino g̃ to be massive. The

antenna obtained taking both of these partons massive is not required for the construction

of the subtraction terms for heavy quark pair production +jets at NLO, considered here.

In addition to these flavour conserving antennae, we will also need flavour violating

massive quark-antiquark A-Type antennae in both final-final and initial-final configura-

tions. Those involve flavour violating vertices and will be defined below.
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In all these antennae denoted by Xijk in the final-final configuration and crossings of

those, the labels i, j, k can either stand for massless or massive partons. The particle with

label j always denotes the unresolved parton. The massive antennae will depend on the

invariants sij, sik and sjk (with sab = 2papb throughout this paper) and on the masses of

the final states heavy partons.

In the following, when presenting the expressions of the required massive antennae we

will use a clear labeling of those antennae. We shall specify which partons in them are

taken massless, those will be indexed with q, or taken massive and then indexed with Q.

For conciseness, the O(ǫ) in the expression of the unintegrated antennae will be omitted.

3.1.1 Flavour-violating antennae

For the construction of the subtraction terms for tt̄ +jet production at NLO, we encounter

two types of flavour violating antennae. Both are A-Type quark-antiquark antennae and

are labelled: A0
qgQ̄

and A0
qgQ. In those, q represents a massless quark and Q and Q̄ rep-

resent a massive quark or antiquark of different flavour than the massless quark q. Note

that for symmetry reasons of the A-Type antenna, the role of q and Q̄ in A0
qgQ̄

or of q and

Q in A0
qgQ are interchangeable resulting in the same two flavour-violating antennae. We

encounter these two types of flavour violating antennae in final-final and initial-final config-

urations. In the latter case, a massless quark is always in the initial state and plays the role

of the initial state radiator. It is worth noting that the limits covered by flavour violating

antennae with a gluon in the initial state can be covered by flavour conserving initial-final

antennae, such that these gluon initiated flavour violating antennae are not required here.

The massive final-final flavour violating antennae have their massless counterparts

given by Aqgq̄′ and Aqgq′ where q′ and q̄′ are massless quarks or antiquarks of different

flavour than q. These massless counterparts have been used as essential ingredients for

the construction of the subtraction terms required for the computation of e+e− → 3 jets

at NNLO [65]. Those massless A-Type flavour violating antennae have exactly the same

properties and singular structure as a massless flavour-conserving A-Type quark-antiquark

antenna given by A0
qgq̄ [64]. Those have also the same unintegrated form as this antenna.

In the massive case, the final-final flavour violating A-Type antennae A0
qgQ̄

and A0
qgQ,

having one massive particle in the final state, have the same properties and singular struc-

ture as a massive flavour-conserving A-Type antenna of the form A0
QgQ̄

where the massive

quark Q or the massive antiquark Q̄ (by symmetry arguments) present in this flavour

conserving antenna is taken massless.

By construction, within the antenna formalism, in the unresolved (collinear, soft or

quasi-collinear) limits, the three parton antennae yield massless or massive universal un-

resolved factors given either by splitting functions or eikonal factors in their massless or

massive forms. The spin properties of the final states are determinant to obtain these

unresolved factors. Consequently, all flavour-violating antennae (massless or massive) can

be generated by processes resulting from the decay of a charged W-boson into massless or

massive final state fermions. When the particle in the final state is a (massless or massive)

antiquark such that the flavour violating antenna contains a quark and an antiquark of

different flavours, those final states can be Dirac fermions. When the particles in the an-
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tennae are two quarks of different flavours, those final states can be produced in extended

versions of the Standard Model [92, 93] and will involve Dirac and Majorana fermions.

3.2 Massive NLO final-final antenna functions

For the construction of the subtraction terms relevant for heavy quark pair production

at hadron colliders at NLO, we will need three-parton massive final-final flavour conserv-

ing and flavour violating A-Type antennae and flavour conserving quark-gluon antenna

functions. All flavour-conserving massive final-final antennae required have been derived

in [86]. They are given below for completeness. The flavour violating massive final-final

antennae are new.

The generic process considered to define the massive three-parton final-final antenna

X0
ijk is given by q → ki +kj +kk where q is the virtuality of the colourless initial state, with

q2 > 0. In the following, the center of mass energy of the decaying particle Ecm will be used

instead of q with q2 = E2
cm The final state radiator partons i and k are either both massive or

only one of them is such. Parton j defines always the unresolved massless final state parton.

The massive three-parton final-final antenna X0
ijk will depend on on the invariants sij,

sjk and sik, on the masses mi and mk of the final state partons i and k and on E2
cm.

3.2.1 Quark-Antiquark antennae

The flavour conserving quark-antiquark massive antenna function denoted by A0
QgQ̄

has a

massive quark Q and a massive antiquark Q̄ as radiators and reads,

A0
3(1Q, 3g, 2Q̄) =

1

4
(
E2

cm + 2m2
Q

)4

(
2s2

12

s13s23
+

2s12

s13
+

2s12

s23
+

s23

s13
+

s13

s23

+m2
Q

(
8s12

s13s23
− 2s12

s2
13

− 2s12

s2
23

− 2s23

s2
13

− 2

s13
− 2

s23
− 2s13

s2
23

)

+m4
Q

(
− 8

s2
23

− 8

s2
13

))
+ O (ǫ) .

(3.2)

This function is normalised to the two-particle process γ∗ → QQ̄, whose matrix element

squared (omitting couplings) is given by

A0
2(1Q, 2Q̄) = 4

[
(1 − ǫ)E2

cm + 2m2
Q

]
. (3.3)

3.2.2 Quark-Gluon antennae

For the subtraction terms required for the production of heavy particles in addition to jets,

only massive quark-gluon antennae with one massive radiator in the final state are needed.

The quark-gluon massive antennae with either two gluons or a massless quark-

antiquark pair in the final state are normalised by the two-particle matrix element squared

relevant for the process χ̃ → g̃g, with the gluino g̃ being massive with mass mQ and the

gluon g being massless. This two-particle matrix element squared omitting couplings reads,

X0
2 (1Q, 2g) = 4 (1 − ǫ)

(
E2

cm − m2
Q

)2
, (3.4)
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where X can stand for the E or D-Type antennae here.

The quark-gluon massive antenna E0
Qq′q̄′ with a pair of massless quarks q′q̄′ and a

massive radiator quark Q in the final state reads,

E0
3(1Q, 3q′ , 4q̄′) =

1

4(E2
cm − m2

Q)2
4

(
s13 + s14 +

s2
13

s34
+

s2
14

s34
− 2EcmmQ

)
+ O (ǫ) . (3.5)

The quark-gluon massive antenna D0
Qgg with two gluons and a massive radiator Q in

the final state reads,

D0
3(1Q, 3g, 4g) =

1

4(E2
cm − m2

Q)2
4

((
9s13 + 9s14 +

4s2
13

s14
+

4s2
14

s13
+

4s2
13

s34
+

2s3
13

s14s34

+
6s13s14

s34
+

4s2
14

s34
+

2s3
14

s13s34
+6s34+

3s13s34

s14
+

3s14s34

s13
+

s2
34

s13
+

s2
34

s14

)

−m2
Q

(
6 +

2s2
13

s2
14

+
4s13

s14
+

4s14

s13
+

2s2
14

s2
13

+
6s34

s13
+

4s13s34

s2
14

+
6s34

s14
+

4s14s34

s2
13

+
2s2

34

s2
13

+
2s2

34

s2
14

+
2s2

34

s13s14

)

+2EcmmQ − Ecmm3
Q

2s34

s13s14
+ m4

Q

2s34

s13s14

)
+ O (ǫ) .

(3.6)

This tree-level antenna function D0
3(1Q, 3g, 4g) contains two antennae, corresponding

to the following configurations: gluon (3g) radiated between the massive quark and gluon

(4g) and also the configuration where gluon (4g) is radiated between the quark and gluon

(3g). The separation between these two configurations is not free from ambiguity, since

the collinear limit of the two gluons has to be split between the two configurations. We

consider the following decomposition

D0
3(1Q, 3g, 4g) = d0

3(1Q, 3g, 4g) + d0
3(1Q, 4g, 3g) (3.7)

where the sub-antenna denoted by d0
3 is given by

d0
3(1Q, 3g, 4g) =

1

(E2
cm − m2

Q)2

×
[
9s13 + 9s14 + 6s34

2
+

4s2
14

s13
+

4s2
14

s34
+

2s3
14

s13s34
+

3s13s14

s34
+

3s14s34

s13
+

s2
34

s13

−m2
Q

(
3 +

2s2
14

s2
13

+
4s14

s13
+

6s34

s13
+

6s14

s13
+

4s14s34

s2
13

+
2s2

34

s2
13

+
s2
34

s13s14

)
(3.8)

+EcmmQ − (Ecm − mQ)m3
Q

s34

s13s14

]
+ O(ǫ)

Both of these sub-antennae will be needed individually to construct the subtraction

term for tt̄ +jet at NLO. Those will not need to be integrated separately though.
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3.2.3 Flavour violating antennae

In addition to the massive flavour-conserving final-final antennae given above, for the con-

struction of the subtraction terms for tt̄ +jet production at NLO, we also need two types

of massive flavour violating final-final antennae. We will require an antenna involving as

radiators: one massive quark Q and one massless antiquark q̄ , denoted by A0
Qgq̄ and one

antenna with a massive quark Q and a massless quark q denoted by A0
Qgq̄ . The expressions

of these two antennae are related by the exchange of a massless quark versus an antiquark

in the final state. Therefore, we here present only one of those namely A0
Qgq̄. It is given by,

A0
3(1Q, 3g, 2q̄) =

1

(E2
cm + m2

Q)

[
2s12

s13
+

2s12

s23
+

2s2
12

s13s23
+

s13

s23
+

s23

s13

−m2
Q

(
2s12

s2
13

+
2s23

s2
13

+
2

s13

)]
+ O(ǫ) (3.9)

This antenna function is normalised with the following two-parton matrix element

squared:

A0
2(1Q, 2q̄) = 4 (1 − ǫ)

[
E2

cm + m2
Q

]
. (3.10)

It is worth noting that the expression of this final-final flavour violating antenna A0
Qgq̄ given

in eq. (3.9) differs significantly from the flavour conserving antenna A0
QgQ̄

given above in

eq. (3.2) as expected.

3.3 Massive NLO initial-final antenna functions

To construct our subtraction terms for heavy quark pair production in association with

jets at NLO, we will also need massive initial-final antennae of different types. Flavour-

conserving and flavour-violating massive quark-antiquark A-Type antennae and flavour

conserving massive quark-gluon antennae are required.

In principle, the massive initial-final massive antennae can be obtained from the

corresponding expressions for the massive final-final antennae given above by appropriately

crossing one massless parton from the final to the initial state. By this crossing procedure,

the presence of an overall uneven number of fermions crossed to define the initial-final

antenna leads to an overall minus sign in the definition of the antennae. Furthermore, this

crossing procedure is not non ambiguous for the quark-gluon D-Type antennae initiated

by a gluon.

In general, the initial-final antennae Xi,jk are normalised to the reduced two-parton

matrix element squared |M0
I,K |2 to which the three-parton matrix element squared

|M0
i,jk|2 tends in the limits. For the D-Type antennae initiated by a gluon, depending

which limit is considered, the reduced two-parton matrix element to which the three-parton

matrix element collapses to, can be different. In particular, the nature of the initial state

parton in the three and two-parton matrix elements squared needed as ratio to define the

antennae may change.

The generic process necessary to define the massive initial-final three parton antenna

X0
i,jk is given by q + pi → kj + kk with q2 < 0 and q2 = −Q2. In this process, pi is

the momentum of the initial state radiator i whereas kj and kk are the momenta of the
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unresolved parton j and the final state radiator k respectively. Depending on the situation

considered, the one massive parton present in the final state can either be the unresolved

parton or the final state radiator.

In any case, the initial-final antennae Xi,jk will depend on the invariants sij, sjk and

sik, on the masses mj and mk of the final state partons j and k and on Q2.

3.3.1 Quark-Antiquark antennae

By crossing a gluon to the initial state in the expression of the final-final massive quark-

antiquark antenna A0
QgQ̄

one obtains the initial-final massive quark-antiquark antenna

A0
g;QQ̄

. In it, the gluon plays the role of the initial state radiator, the final state radi-

ator is a massive quark or an antiquark (by symmetry arguments). The unresolved parton

is correspondingly either a massive antiquark or a quark which can become quasi-collinear

to the initial state gluon. This antenna is given by,

A0
3(3g; 1Q, 2Q̄) = − 1

[Q2 − 2m2
Q]

(
− 2s2

12

s13s23
+

2s12

s13
+

2s12

s23
− s13

s23
− s23

s13

−m2
Q

(
8s12

s13s23
− 2s12

s2
13

− 2s12

s2
23

+
2s13

s2
23

+
2s23

s2
13

+
2

s13
+

2

s23

)
(3.11)

−m4
Q

(
− 8

s2
13

− 8

s2
23

))
+ O(ǫ).

This function has been normalised to the two-particle matrix element related to the

process γ∗Q → Q. It corresponds to the matrix element in which the process γ∗g → QQ̄

reduces to in all its limits. Omitting couplings, this normalisation factor is given by

A0
2(1Q; 2Q) = 4

[
(1 − ǫ)Q2 − 2m2

Q

]
. (3.12)

Note that the resulting antenna has an overall minus sign made explicit in eq. (3.11)

due to the uneven number of fermions crossed to define it.

3.3.2 Quark-gluon antennae

As in the massless case, the quark-gluon final-final massive antennae are separated into

two categories depending if the final state radiator gluon splits into a quark-antiquark

pair (E-Type) or into two gluons (D-Type). These initial-final massive antennae depend

furthermore on the mass mχ of the decaying neutralino with momentum q. Following our

definition of Q2, it is given by mχ =
√

−Q2.

A) E-Type antennae.

Only one case of E-Type initial-final massive antenna functions is required:

E0
3(4q; 3q, 1Q) which has a massless initial state radiator 4q, a massive final state

radiator denoted by 1Q and an unresolved parton which is the final state quark 3q of

the same flavour as the initial state quark 4q. This antenna accounts for the massless

initial state collinear behaviour and is given by,

E0
3(4q; 3q, 1Q)=− 1

(
Q2 + m2

Q

)2

(
−s14+s13−

s2
13

s34
− s2

14

s34
−2mQmχ

)
+ O(ǫ). (3.13)
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It is normalised to a gluon initiated process, namely χ̃g → Q. The corresponding

two-particle matrix element squared omitting couplings reads,

E0
2(2g; 1Q) = 4 (1 − ǫ)

(
Q2 + m2

Q

)2
. (3.14)

As a consequence of the crossing procedure, the antenna defined in eq. (3.13) has an

overall minus sign made explicit in that expression.

B) D-Type antennae.

The massive final-final D-Type antenna denoted by D0
3(1Q, 3g, 4g) has only one mas-

sive final state particle, the quark denoted by 1Q. The massive initial-final D-Type

antenna is in principle obtained by crossing one of the two gluons in this function to

the inital state. However, since the initial state gluon can split either into a quark-

antiquark pair or into two gluons, two possible reduced matrix elements can serve

as normalization for this antenna. A simple crossing of a gluon from the final-final

quark-gluon antenna is not sufficient to define it unambiguously. This ambiguity

requires the decomposition of the gluon-initiated D-type antenna function into sub-

antennae according to the reduced matrix elements it factorises to in the different

limits. According to the limit considered, those reduced matrix elements are related

to the process χ̃+g → Q or to the process χ̃+Q → g. These two different reduced ma-

trix elements define the two different limiting behaviours in which the antenna needs

to be decomposed. The decomposition can be achieved by separating the terms in

the crossed function according to their contributions to a given limiting behaviour.

For those terms which give contributions to more than one limiting behaviour, par-

tial fractioning is applied. The antenna corresponding to a reduced matrix element

initiated by a quark will be denoted by D0
g,Qg and the antenna corresponding to a

reduced matrix element initiated by a gluon by D0
g;gQ.

For D0
g;Qg, the final state hard radiator is a gluon and the parton becoming unresolved

is a massive quark Q which can become quasi-collinear to the initial state gluon. This

antenna is given by,

D0
3(4g; 1Q, 3g) = − 1

(
Q2 + m2

Q

)2

×
(
− 4s2

13

s14
+

2s3
13(

Q2 + s13 + m2
Q

)
s14

+
3s13s34

s14
− s2

34

s14

− m2
Q

(
2s2

13

s2
14

− 4s13

s14
+

6s34

s14
− 4s13s34

s2
14

+
2s2

34

s2
14

− 2s2
34

s13s14

)

+ 2m4
Q

s34

s13s14
− 2m3

Qmχ
s34

s13s14

)
+ O(ǫ). (3.15)

This antenna is normalised to the matrix element associated to the process χ̃Q → g

with a massive quark in the initial state. Omitting couplings it reads,

D0
2(1Q; 2g) = 4 (1 − ǫ)

(
Q2 + m2

Q

)2
. (3.16)
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As this D-Type antenna is initiated by a gluon but normalised by a quark-initiated

process, it has an overall minus sign made explicit in eq. (3.15).

For D0
g,gQ , the final state hard radiator is a massive quark and the parton becoming

unresolved is a gluon which can become soft, collinear to the initial state gluon or

quasi-collinear to the final-state massive quark. This three-parton antenna reads,

D0
3(4g; 3g, 1Q) =

1
(
Q2 + m2

Q

)2

(
9s13 − 9s14 − 6s34 +

4s2
14

s13
− 4s2

13

s34
− 4s2

14

s34
+

s2
34

s13

+
2s3

13(
Q2 + s13 + m2

Q

)
s34

+
2s3

14

s13s34
+

6s13s14

s34
+

3s14s34

s13

−m2
Q

(
6 +

2s2
14

s2
13

− 4s14

s13
− 6s34

s13
+

4s14s34

s2
13

+
2s2

34

s2
13

)

+2mQmχ

)
+ O(ǫ). (3.17)

This function is normalised to the matrix element associated to the gluon-initiated

process χ̃g → Q with the corresponding two-particle matrix element squared omitting

couplings reading,

D0
2(1g; 2g) = 4 (1 − ǫ)

(
Q2 + m2

Q

)2
. (3.18)

Being initiated and normalised by a gluon, this antenna has no overall minus sign.

3.3.3 Flavour violating antennae

Finally, as for the final-final case, in addition to the flavour conserving antennae given

above, for the construction of the subtraction terms for QQ̄ +jets production at NLO, we

also need two types of massive flavour violating initial-final antennae. Those are such that

in both cases a massless quark is playing the role of the initial state radiator; the final state

radiators can either be a massive quark or a massive antiquark. The expressions of these

two antennae are related by the exchange of a massive quark versus a massive antiquark

in the final state such that only one expression is given below. The unintegrated form of

the antenna having a massive quark and a gluon in the final state given by A0
q,gQ is,

A0
3(2q; 3g, 1Q) =

1

Q2 − m2
Q

[
2s2

12

s13s23
+

2s12

s13
− 2s12

s23
+

s13

s23
+

s23

s13

−m2
Q

(
2s12

s2
13

+
2s23

s2
13

− 2

s13

)]
+ O(ǫ). (3.19)

This antenna function is normalised with the following two-parton matrix element

squared:

A0
2(2q; 1Q) = 4 (1 − ǫ)

[
Q2 − m2

Q

]
(3.20)

and has therefore no overall minus sign.
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4 Singular limits of the massive antennae

The factorisation properties of tree-level QCD squared matrix elements for massless partons

are well known [94]. An (m + 1)-parton squared amplitude factorises into a product of a

reduced m-parton squared matrix element and a soft eikonal factor in the soft limit, or an

Altarelli-Parisi splitting function in the collinear case. If massive partons are involved the

factorisation still takes place but the collinear and soft behaviour have to be generalised

to take the mass effects into account. Those generalised limits will be described both in

final-final and initial-final configurations below.

In the following, we shall here first recall all unresolved factors (massless and massive)

in the final-final and initial-final configurations before tabulating the limits of all antenna

functions encountered in section 3.

4.1 Single unresolved massless factors

When only massless partons are involved, when a gluon j emitted between two massless

hard radiators i and k becomes soft, the squared matrix element factorises and the eikonal

factor that factorises off the squared matrix element is

Sijk =
2sik

sijsjk
. (4.1)

When two massless partons become collinear, the matrix element factorises yielding

specific Altarelli-Parisi splitting functions corresponding to a particular parton-parton split-

ting. Those functions depend on z, the fractional momentum carried by the unresolved

parton. Depending whether the unresolved parton is collinear to an initial or to a final

state parton, the definition of z will be different. For two final state particles i and j of

momenta pi and pj becoming collinear, we have, in the limit,

pi → zpij , pj → (1 − z)pij , sik → zsijk, sjk → (1 − z)sijk , (4.2)

whereas for a final state particle j of momentum pj becoming collinear with an initial state

parton i of momentum pi we have

pj → zpi, pij → (1 − z)pi, sik → sijk

1 − z
, sjk → zsijk

1 − z
. (4.3)

The splitting functions denoted by Pij→(ij)(z) corresponding to the collinear limit of

two final state partons i and j are given in [95] by,

Pqg→Q(z) =
1 + (1 − z)2 − ǫz2

z
(4.4)

Pqq̄→G(z) =
z2 + (1 − z)2 − ǫ

1 − ǫ
(4.5)

Pgg→G(z) = 2

[
z

1 − z
+

1 − z

z
+ z(1 − z)

]
. (4.6)

When the collinearity arises between an initial i and a final state parton j, the splitting

functions denoted by Pij←(ij)(z) are given in [95] by,

Pgq←Q(z) =
1 + z2 − ǫ(1 − z)2

(1 − ǫ)(1 − z)2
=

1

1 − z

1

1 − ǫ
Pqg→Q(1 − z) (4.7)
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Pqg←Q(z) =
1 + (1 − z)2 − ǫz2

z(1 − z)
=

1

1 − z
Pqg→Q(z) (4.8)

Pqq̄←G(z) =
z2 + (1 − z)2 − ǫ

1 − z
=

1 − ǫ

1 − z
Pqq̄→G(z) (4.9)

Pgg←G(z) =
2(1 − z + z2)2

z(1 − z)2
=

1

1 − z
Pgg→G(z). (4.10)

The additional factors (1−ǫ) and 1/(1−ǫ) account for the different number of polarizations

of quark and gluons in the cases in which the particle entering the hard processes changes

its type.

In all splitting functions defined above, the label q can stand for a massless quark or

an antiquark since charge conjugation implies that Pqg→Q = Pq̄g→Q̄ and Pqg←Q = Pq̄g←Q̄ .

The labels Q and G in those denote the parent parton of the two collinear partons, which

is massless.

4.2 Single unresolved massive factors

When the final state partons are massive, the emission of extra radiation from those can

still lead to soft divergences, but not to collinear singularities since the mass of the final

state parton regulates those. The relation between matrix element squared and the splitting

functions needs to be extended from massless to massive. Similar factorisation formulae for

matrix elements as in the massless case hold provided the collinear limit is generalized [83]

to the quasi-collinear limit.

4.2.1 Quasi-collinear limit in final-final and initial-final configurations

In the final-final configuration, two final state massive partons can become quasi-collinear

to each other resulting in a parent parton which is massive. The limit when a massive

parton (ij) of momentum p(ij) and mass m(ij) decays quasi-collinearly into two massive

partons i and j of masses mi and mj is defined by,

pµ
j → zpµ

(ij), pµ
i → (1 − z)pµ

(ij) (4.11)

p2
(ij) = m2

(ij) (4.12)

with the constraints

pi · pj, mi, mj, m(ij) → 0, (4.13)

at fixed ratios
m2

i

pi · pj
,

m2
j

pi · pj
,

m2
(ij)

pi · pj
. (4.14)

The difference obtained between taking the quasi-collinear limit between two final state

particles or taking this limit when one initial and one final state particles are involved is

closely related to the difference obtained in these two situations for the massless collinear

limit. When a massive parton of momentum pj becomes quasi-collinear to an initial state

massless parton pi we have,

pj → zpi, p(ij) → (1 − z)pi, (4.15)
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with the constraints,

pi · pj, mj , m(ij) → 0, (4.16)

at fixed ratios
m2

j

pi · pj
,

m2
(ij)

pi · pj
. (4.17)

Only the fractional momentum z carried by the unresolved parton needs to be defined

accordingly in both final-final and initial-final situations. For the quasi-collinear limits,

it is defined exactly as for the collinear limits. For the final-final case, z is defined as in

eq. (4.2) whereas in the initial-final case it is defined by eq. (4.15).

The key difference between the massless collinear limit and the quasi-collinear limit is

given by the constraint that the on-shell masses squared of the final state partons have to

be kept of the same order as the invariant sij = 2pi · pj, with the latter becoming small.

4.2.2 Factorisation in the quasi-collinear limits

In these quasi-collinear limits (final-final or initial-final), the (m+1)-parton matrix element

squared factorises into a reduced m-parton matrix element and unresolved massive factors.

These single unresolved massive factors are generalizations of the massless unresolved

factors defined above.

The generalized soft eikonal factor Sijk(mi,mk) for a massless gluon j emitted between

two massive partons i and k depends on the invariants slm = 2pl ·pm built with the partons

i, j and k but also on the masses mi and mk of partons i and k. It is given by [83, 86]

Sijk(mi,mk) =
2sik

sijsjk
− 2m2

i

s2
ij

− 2m2
k

s2
jk

. (4.18)

The massive splitting functions will depend on z, the fractional momentum carried by

the unresolved parton j and on the masses mi and mj of the partons i and j becoming

quasi-collinear. All the mass dependence can be parametrized by µ(ij) given by,

µ(ij) =
m2

i + m2
j

(pi + pj)2 − m2
(ij)

. (4.19)

The massive splitting functions denoted by Pij→(ij)(z, µ2
ij) for a massive parton (ij)

which splits into partons i and j, both being in the final state, have been given in the

appendix of [84] and in [86]. Those read,

Pqg→Q(z, µ2
qg) =

1 + (1 − z)2 − ǫz2

z
− 2µ2

qg (4.20)

Pqq̄→G(z, µ2
qq̄) =

z2 + (1 − z)2 − ǫ + µ2
qq̄

1 − ǫ
, (4.21)

where

µ2
qg =

m2
Q

sqg
and µ2

qq̄ =
2m2

Q

sqq̄
. (4.22)
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Naturally, the gluon-gluon splitting function Pgg→G(z) is left unchanged. The splitting

function Pqq̄→G(z, µ2
qq̄) given in eq. (4.21) and related to the quasi-collinear limit of two

massive partons does not correspond to a limiting behaviour of the antenna functions

required here and given in section 3. It is given here for completeness.

So far we have treated all generalisations of soft and collinear massless factors needed

to treat final-final configurations involving massive partons. For the initial-final situations,

since all the initial state partons are taken massless the only initial-final splitting function

that changes when we allow massive partons in the final state is Pqq̄←G(z, µ2
qg) given by,

Pqq̄←G(z, µ2
qg) =

z2 + (1 − z)2 − ǫ

1 − z
+ 2µ2

qg. (4.23)

The definition of the momentum fraction z present in this formula will be the same as in

the massless case given by eq. (4.3).

4.3 Singular limits of the massive antenna functions

In this subsection we list all the non-vanishing soft, collinear and quasi-collinear limits of the

massive final-final and initial-final antenna functions given in section 3. The limits of the

massless antennae also needed to construct the subtraction terms for QQ̄+ jet production

can be found in [64, 79, 82].

4.3.1 Final-final antenna functions

The limits of the massive flavour conserving quark-antiquark and quark-gluon antenna

functions have been derived in [86]. We give them here for completeness. The limits of the

flavour violating antennae are new.

The singular limits of the massive quark-antiquark antenna A0
QgQ̄

are

A0
3(1Q, 3g, 2Q̄)

3g→0−−−→ S132(mQ,mQ),

A0
3(1Q, 3g, 2Q̄)

3g‖1Q−−−−→ 1

s13
Pqg→Q(z, µ2

qg),

A0
3(1Q, 3g, 2Q̄)

3g‖2Q̄−−−−→ 1

s23
Pqg→Q(z, µ2

qg).

(4.24)

The only non-vanishing singular limit of the quark-gluon E-Type antenna E0
Qq′q̄′ is the

collinear massless limit of the massless quark-antiquark pair,

E0
3(1Q, 3q′ , 4q̄′)

3q′‖4q̄′−−−−→ 1

s34
Pqq̄→G(z), (4.25)

while for the D-type D0
Qgg and d-type d0

Qgg antennae we have,

D0
3(1Q, 3g, 4g)

3g→0

−→ S134(mQ, 0)

D0
3(1Q, 3g, 4g)

4g→0

−→ S143(mQ, 0)

d0
3(1Q, ig, jg)

ig→0

−→ S1ij(mQ, 0)
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d0
3(1Q, ig, jg)

jg→0

−→ 0

D0
3(1Q, 3g, 4g)

1Q||3g

−→ 1

s13
Pqg→Q(z, µ2

qg)

D0
3(1Q, 3g, 4g)

1Q||4g

−→ 1

s14
Pqg→Q(z, µ2

qg) (4.26)

d0
3(1Q, ig, jg)

1Q||ig

−→ 1

s1i
Pqg→Q(z, µ2

qg)

d0
3(1Q, ig, jg)

1Q||jg

−→ 0

D0
3(1Q, 3g, 4g)

3g ||4g−→ 1

s34
Pgg→G(z)

d0
3(1Q, 3g, 4g)

3g ||4g−→ 1

s34

(
Pgg→G(z) − 2z

1 − z
− z(1 − z)

)

d0
3(1Q, 4g, 3g)

3g ||4g−→ 1

s34

(
Pgg→G(z) − 2(1 − z)

z
− z(1 − z)

)
.

For the massive A-Type flavour violating antenna A0
Qgq̄ we have

A0
3(1Q, 3g, 2q̄)

3g→0

−→ S132(mQ, 0) (4.27)

A0
3(1Q, 3g, 2q̄)

1Q||3g

−→ 1

s13
Pqg→Q(z, µ2

qg) (4.28)

A0
3(1Q, 3g, 2q̄)

2q̄ ||3g

−→ 1

s23
Pqg→Q(z). (4.29)

Again, for symmetry reasons the role of Q and q̄ are interchangeable in these formulae.

4.3.2 Initial-final antenna functions

For the quark-antiquark initial-final massive antenna A0
g,QQ̄

, only quasi-collinear limits are

present. Those are:

A0
3(3g; 1Q, 2Q̄)

1Q||3g

−→ 1

s13
Pqq̄←G(z, µ2

qg) (4.30)

A0
3(3g; 1Q, 2Q̄)

2
Q̄

||3g

−→ 1

s23
Pqq̄←G(z, µ2

qg) (4.31)

For the E-Type antenna E0
q;qQ, the only non-vanishing singular limit is,

E0
3(4q; 3q, 1Q)

3q ||4q−→ 1

s34
Pgq←Q(z). (4.32)

The limits of the two quark-gluon D-Type antennae initiated by a gluon Dg,Qg and

Dg,gQ are given by:

D0
3(4g; 1Q, 3g)

1Q||4g

−→ 1

s14
Pqq̄←G(z, µ2

Qg), (4.33)

which has only a quasi-collinear limit when the unresolved quark 1Q is collinear to the

initial-state gluon. The limits of D0
3(4g; 3g, 1Q) with an unresolved gluon are

D0
3(4g; 3g, 1Q)

1Q||3g

−→ 1

s13
Pqg→Q(z, µ2

qg) (4.34)
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D0
3(4g; 3g, 1Q)

3g ||4g−→ 1

s34
Pgg←G(z) (4.35)

D0
3(4g; 3g, 1Q)

3g→0−→ S134(mQ, 0). (4.36)

Finally, the initial-final flavour violating antenna A0
q,gQ has its limits given by,

A0
3(2q; 3g, 1Q)

1Q||3g

−→ 1

s13
Pqg→Q(z, µ2

qg) (4.37)

A0
3(2q; 3g, 1Q)

2q ||3g−→ 1

s23
Pqg←Q(z) (4.38)

A0
3(2q; 3g, 1Q)

3g→0

−→ S132(mQ, 0). (4.39)

5 Integrated massive antenna functions

To combine the antenna subtraction terms with the virtual corrections and the mass

factorization counterterms in a given kinematical configuration, the antenna functions have

to be integrated over the appropriate factorised antenna phase space. After integration,

the implicit soft and collinear singularities present in the antenna functions turn into

explicit poles in the dimensional regularization parameter ǫ, and the remaining phase

space corresponds to the same n-particle kinematics as the virtual contributions or the

mass factorisation counterterms. In this section, we derive the integrated forms of the

massive antenna functions defined in section 3. Only full antennae, denoted by capital

letters Xijk (or crossing of those), need to be integrated, while partial antennae denoted

xijk sum up to Xijk prior to integration.

5.1 Properties of the integrated massive antennae

The results will be presented in two forms, in expanded and unexpanded forms in the

dimensional regularization parameter ǫ. The unexpanded forms of the integrated antennae

are functions of a few master integrals obtained after standard reduction techniques [96–

100] have been applied. The masters will be given here analytically to all orders in ǫ.

Additionally, the integrated antennae will be presented after an ǫ-expansion has been

performed on these all-order results up to finite order in ǫ. In this expanded form, the

poles in ǫ become explicit and can be related to process independent infrared singularity

operators and splitting kernels.

Final-final integrated antennae have their pole part entirely related to colour ordered

massive infrared singularity operators I
(1)
ij

, which will be defined below. For initial-final

antennae, those infrared operators are not sufficient to capture all singularities present in

the integrated antennae. Additional pole terms can arise due to the presence of massless

intial-final parton-parton collinear singularities which cancel against the mass factorisation

counterterms. These pole terms are proportional to universal and process-independent

splitting kernels p
(0)
ij (x). Those are defined for example in [79] and will be given below.

As a check on our results for the expanded forms of the integrated antennae we

consider the following: At NLO, a particular antenna can be regarded as the sum of two
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particular dipoles in the dipole formalism of [51, 83]. The two radiators present in an

given antenna play then both the role of emitter and spectator in the corresponding two

dipoles. Up to terms which do not give rise to singularities when integrated over the phase

space, the sum of these two dipoles and the antenna are the same (up to coupling factors).

The pole parts of a given integrated antenna and those of the corresponding integrated

dipoles can therefore be related. For each of the integrated antenna we will specify how

this comparison is performed.

5.1.1 Infrared singularity structure

Owing to the universal factorisation properties of QCD amplitudes in infrared singular

limits, it is possible to describe the infrared pole structure of virtual loop corrections and,

consequently, also of integrated subtraction terms, by the product of infrared singularity

operators with tree level amplitudes. These infrared singularity operators are a priori

tensors in colour space. In a colour ordered framework, they decompose into different

colour-ordered infrared singularity operators. In massless QCD, there is solid evidence to

assume that the infrared singularity operators consist only of combinations of two-particle

correlations [101–104] at all orders in perturbation theory. Explicit forms of the massless

operators are known to three-loop order [105]. In massive QCD, only the one-loop infrared

singularity operator is made up entirely of two-parton correlations [84], while multi-particle

correlations can contribute at higher loop order [106, 107]. The explicit form of the massive

infrared singularity operators is known to two loops [106, 107] and was used to predict the

pole structure of the two-loop matrix elements for qq̄ → tt̄ and gg → tt̄.

We are concerned only with the infrared singularity structure at NLO in the present

study. Consequently, the integrated massive antenna functions will contain a pole

structure in terms of the massive one-loop infrared singularity operators. Containing

only two-parton correlations irrespective of the particle masses involved, these can be

expressed straightforwardly in a colour-ordered form. We introduce the mass-dependent

colour-ordered NLO real radiation singularity operator

I
(1)
ij (ǫ, sij ,mi,mj , λµ2) , (5.1)

which describes the unresolved real radiation between partons i and j. It is a function

of the invariant mass of the parton pair, of the masses of the partons and of a product

of kinematical parameters λµ2, which determines the logarithmic pole coefficient. In this

form, µ2 is dependent only on the mass combination of the radiator partons, while λ takes

account of the nature of the kinematically allowed endpoint in the different kinematical

configurations. λ = 1 for all final-final antenna functions and for initial-final antenna

functions with equal masses, while λ = x2
0 with

x0 =
Q2

Q2 + m2
Q

(5.2)

for initial-final antenna functions with one massless and one massive radiator.
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In their most general form those infrared operators have their functional dependence

given by,

I
(1)

QQ̄
(ǫ, sQg,mQ,mQ, µ2), I

(1)
Qg(ǫ, sQg,mQ,mQ, λµ2) and I

(1)
Qg,F (ǫ, sij ,mQ, 0, µ2).

The third operator describes contributions arising from the splitting of a gluon into a

quark-antiquark pair which are proportional to the number of light quark flavours NF .

The massive infrared operators which have a non-trivial mass dependence, required in

both final-final and intial-final configurations are,

I
(1)

QQ̄

(
ǫ, sQQ̄,mQ,mQ, λ

1 −√
r

1 +
√

r

)
=

= − eǫγE

2Γ(1 − ǫ)

[
sQQ̄ + 2m2

Q

s2
QQ̄

]ǫ{
1

ǫ

(
(1 + r)

2
√

r
) ln

(
1 −√

r

1 +
√

r

)
+ 1

)}

I
(1)
Qg

(
ǫ, sQg,mQ, 0, λ

m2
Q

sQg + m2
Q

)
=

= − eǫγE

2Γ(1 − ǫ)

[
sQg + m2

Q

s2
Qg

]ǫ{
1

2ǫ2
+

1

2ǫ

(
17

6

)
+

1

2ǫ
ln

(
λm2

Q

sQg + m2
Q

)}

I
(1)
Qg,F

(
ǫ, sQg,mQ, 0,

m2
Q

sQg + m2
Q

)
=

eǫγE

2Γ(1 − ǫ)

[
sQg + m2

Q

s2
Qg

]ǫ(
1

6ǫ

)
, (5.3)

with

r = 1 −
4m2

Q

sQQ̄ + 2m2
Q

. (5.4)

The antiquark-gluon operators are obtained by charge conjugation:

I
(1)

gQ̄
(ǫ, sgQ̄,mQ, 0, λµ2) = I

(1)
Qg(ǫ, sgQ,mQ, 0, λµ2),

I
(1)

gQ̄,F
(ǫ, sgQ̄,mQ, 0, µ2) = I

(1)
gQ,F (ǫ, sgQ,mQ, 0, µ2) .

In addition to these infrared operators which have their massless counterparts defined

in [64], we also have an infrared operator associated with the flavour-violating antennae

AQgq̄ and AQgq defined in section 3. As those antennae have the same unintegrated form

both of them are related to one infrared operator denoted by I
(1)

qQ̃
, where Q̃ can stand

for a massive quark or antiquark. As the quark-gluon operator I
(1)
Qg, this operator has

a mass-dependent logarithmic term proportional to λµ2 with λ = x2
0 in the initial-final

configuration. It is given by,

I
(1)

qQ̃

(
ǫ, sqQ̃,mQ̃, 0, λ

m2
Q̃

sqQ̃ + m2
Q̃

)
= (5.5)

= − eǫγE

2Γ(1 − ǫ)

[
sqQ̃ + m2

Q̃

s2
qQ̃

]ǫ{
1

2ǫ2
+

1

2ǫ

(
5

2

)
+

1

2ǫ
ln

(
λ m2

Q̃

sqQ̃ + m2
Q̃

)}
.
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5.2 Integrated massive final-final antennae

The integrated massive final-final flavour conserving antennae have been derived as function

of a few master integrals in [86]. In this section, all final-final integrated antennae will be

presented in expanded form such that their pole part can be related to the colour-ordered

massive singularity operators I
(1)
ij defined above. Before we shall derive the integrated

massive flavour-violating antenna and give its expanded and unexpanded forms.

In general, the integrated final-final antennae denoted by Xijk are given as the

integration over the final-final antenna phase space dΦXijk
of the unintegrated final-final

antennae Xijk as given in eq. (2.7). Those will depend on the masses of the final state

particles and on E2
cm.

We start by giving the NLO massive final-final antenna phase space dΦXijk
necessary to

evaluate these integrated final-final antennae. In the most general case, where the involved

partons i, j, k have three different masses mi,mj and mk, the massive antenna phase space

dΦ
(mi,mj ,mk)
Xijk

is given by [85, 86],

∫
dΦ

(mi,mj ,mk)
Xijk

(sij , sjk, sik) =

(2π)1−d 2πd/2−1

Γ
(

d
2 − 1

) 1

4

(
(E2

cm − m2
I − m2

K)2 − 4m2
Im

2
K

) 3−d
2

∫
dsij dsjk dsik δ(E2

cm − m2
i − m2

j − m2
k − sij − sjk − sik)

[4∆3(pi, pj, pk)]
d−4
2 θ(∆3(pi, pj, pk)).

(5.6)

The masses mI and mK appearing in this equation are combinations of the masses mi,mj

and mk. The function ∆3(pi, pj , pk) is the Gram determinant for massive particles of

momenta pi, pj , pk given in terms of invariants sij = 2pi · pj and masses mi,mj,mk by,

∆3(pi, pj , pk) =
1

4

(
sijsiksjk − m2

i s
2
jk − m2

ks
2
ij − m2

js
2
ik + 4m2

i m
2
jm

2
k

)
. (5.7)

To be able to evaluate the integrated flavour-violating massive final-final antennae we

need to consider the case where only one particle in the final state is massive while the

other two are taken massless. We consider, mi = mj = 0 and mk = mQ, in which case

the masses of the remapped momenta pI and pK have their masses given by mI = mi = 0,

mK = mk. We use the following parametrisation of the final-final massive antenna phase

space with one massive parton dΦ
(0,0,m)
Xijk

given by,

dΦ
(0,0,m)
Xijk

=
(4π)ǫ−2

Γ(1 − ǫ)

(
E2

cm

)1−ǫ
(u0)

2−2ǫ

∫ 1

0
duu1−2ǫ(1 − u)1−2ǫ(1 − u0u)−1+ǫ

∫ 1

0
dvv−ǫ(1 − v)−ǫ, (5.8)

with

u0 = 1 −
m2

Q

E2
cm

,
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sij = E2
cmu2

0

u(1 − u)v

(1 − u0u)
,

sik = E2
cmu0(1 − u). (5.9)

Integrating the flavour violating antenna A0
3(1Q, 3g, 2q̄) given in eq. (3.9) over this

phase space dΦ
(0,0,m)
Xijk

we obtain,

A0
3(1Q, 3g, 2q̄) =

8π2(4π)−ǫeǫγE

2E4
cmu2

0(1 − u0)ǫ2(1 − 2ǫ)

×
{

E2
cm

[
12(1 − u0)

2 − 2ǫ(29 − 54u0 + 24u2
0) + ǫ2(98 − 176u0 + 73u2

0)

+ǫ3(−68 + 120u0 − 47u2
0) + 2ǫ4(8 − 12u0 + 3u2

0)
]
I
(0,0,m)
1 (5.10)

+3(1 − ǫ)
[
4(1 − u0) + 2ǫ(−7 + 6u0) + ǫ2(14 − 11u0) + 2ǫ3(−2 + u0)

]
I
(0,0,m)
2

}
.

In this expression, the master integrals required are I
(0,0,m)
1 and I

(0,0,m)
2 were derived in [86].

The master integral I
(0,0,m)
1 corresponding to the integrated 1 → 3 phase space measure

with one massive final state is given by,

I
(0,0,m)
1 =

∫
dΦ

(0,0,m)
Xijk

(5.11)

= (E2
cm)1−ǫu2−2ǫ

0 2−4+2ǫπ−2+ǫ Γ(2 − 2ǫ)Γ(1 − ǫ)

Γ(4 − 4ǫ)
2F1 (1 − ǫ, 2 − 2ǫ, 4 − 4ǫ;u0) ,

while I
(0,0,m)
2 is given by,

I
(0,0,m)
2 =

∫
dΦ

(0,0,m)
Xijk

(sik) (5.12)

= (E2
cm)2−ǫu3−2ǫ

0 2−5+2ǫπ−2+ǫ Γ(2 − 2ǫ)Γ(1 − ǫ)

Γ(4 − 4ǫ)
2F1 (1 − ǫ, 2 − 2ǫ, 5 − 4ǫ;u0) ,

Expanding the integrated flavour-violating A-Type antenna A0
Qgq̄ given in eq. (5.10)

in powers of ǫ up to finite order, we obtain

A0
Qgq̄(1Q, 3g, 2q̄) = −2I

(1)

Q̃q̄

(
ǫ, sQgq̄,mQ, 0,

m2
Q

m2
Q + sQgq̄

)
−
[

1

1 − µ2
− 19

4
+

5π2

12

+

(
1

(1 − µ2)2
− 5

4

)
ln(µ2) +

1

4
ln2(µ2) + Li2(1 − µ2)

]
+ O(ǫ), (5.13)

where

µ2 =
m2

Q

E2
cm

. (5.14)

All other integrated flavour conserving final-final antennae given in terms of masters

in [86] can be written in terms of the real infrared singularity operators I
(1)
ij defined above

up to finite order as follows,

A0
3(1Q, 3g, 2Q̄) = −2I

(1)

QQ̄

(
ǫ, sQgQ̄,mQ,mQ,

1 −√
r

1 +
√

r

)
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+
1

8
√

r

{
1

r − 3

[
− 40 ln(2)(r − 3)(1 + r) tanh−1(

√
r)

+2
√

r(−39 + 17r − 16 ln(2)(r − 3))

+(−33 + 10r − r2 + 16 ln(2)(r − 3)(1 + r)) ln

(
1 +

√
r

1 −√
r

)

−16(r − 3) tanh−1(1 − 2r)

(
−2

√
r + (1 + r) ln

(
1 +

√
r

1 −√
r

))
(5.15)

+10(r − 3)(1 + r)
(
ln2
(
1 +

√
r
)
− ln2

(
1 −√

r
)) ]

+4(1 + r)

[
5Li2

(
1 +

√
r

2

)
− 5Li2

(
1 −√

r

2

)
+ 3Li2(r) − 12Li2

(√
r
)

+2 ln

(
1 + r

2

)(
1 + ln

(
1 −√

r

1 +
√

r

))]}
+ O(ǫ),

E0
3 (1Q, 3q′ , 4q̄′) = −4I

(1)
Qg,F

(
ǫ, sQq′q̄′ ,mQ, 0,

m2
Q

m2
Q + sQq′q̄′

)

− 1

6(1 − µ2)3

[
6 + 3µ − 14µ2 + 14µ4 − 3µ5 − 14µ2 + 14µ4 − 3µ5 − 6µ6

−2µ3(−3 − 3µ + µ3) ln(µ2)

]
+ O(ǫ), (5.16)

D0
3(1Q, 3g, 4g) = −4I

(1)
Qg

(
ǫ, sQgg,mQ, 0,

m2
Q

m2
Q + sQgg

)
+

1

12(1 − µ2)3

×
[
− 2(1 − µ2)(4(−14 + π2) − 3µ + µ2(126 − 8π2) + 9µ3 + µ4(−74 + 4π2))

−2(−3 + 33µ2 + 6µ3 − 51µ4 + 17µ6) ln(µ2) + 3(1 − µ)2(−2 − 4µ − µ2 + µ3) ln2(µ2)

+12(1 − µ)2(−2 − 4µ − µ2 + µ3)Li2(1 − µ2)

]
+ O(ǫ), (5.17)

with r and µ defined as in eq. (5.4) and eq. (5.14) respectively.

Let us notice that the last term present in the expansion of AQgQ̄ arises through the

expansion at finite order of

1

ǫ

(
(1 + r)

2
√

r

)
ln

(
1 −√

r

1 +
√

r

) [
1 −

2m2
Q

E2
cm

]+2ǫ

with E2
cm = sQgQ̄ + 2m2

Q. This term arises since we have chosen to factor

(
sQQ̄ + 2m2

Q

s2
QQ̄

)+ǫ

in I
(1)

QQ̄
as unexpanded overall factor whereas the integrated antenna AQgQ̄ is naturally

proportional to
[
sQgQ̄ + 2m2

Q

]−ǫ
. We have chosen to define the I

(1)

QQ̄
operator such, in

order to have similar overall factors in all I
(1)
ij -type operators.
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From these results on the expanded integrated final-final antennae, we see that the

pole parts of all of those can be captured solely with poles present in the massive colour-

orderered I
(1)
ij operators defined above.

Finally, for all integrated final-final antennae, we have compared the pure pole parts of

those with the pure pole parts of the corresponding sums of the integrated dipoles presented

in [85]. Setting couplings and colour factors to one we found full agreement.

More explicitly, the poles of AQgQ̄ can be compared with the poles of two dipoles having

both two massive final states, a spectator Q and an emitter Q̄. The poles of EQq′q̄′ can be

compared with those of two dipoles with a massless final state emitter q and a massive final-

state spectator Q while the poles of DQgg have to be compared with the sum of two dipoles

where the massive quark and the gluon in the final state can both be emitter or spectator.

5.3 Integrated massive initial-final antennae

In order to obtain the integrated massive initial-final antennae Xi,jk, the massive unin-

tegrated initial-final antennae Xi,jk defined in section 3 need to be integrated over the

initial-final massive antenna phase space dΦXi,jk
as given in eq. (2.16). As a result, the

integrated antennae will all depend on Q2 = −q2, on x, the momentum fraction carried by

the initial state parton pi, and on the masses of the final states present in a given antenna.

As we saw in section 2, the momentum fraction x depends on the number of massive par-

ticles present in the final state in a given antenna. For two massive final states j and k of

masses mj and mk x is given by,

x =
Q2 + m2

j + m2
k

2pi · q
.

Generally, the pole parts of the integrated massive initial-final antennae are related to

the massive I
(1)
ij

operators defined above and to the x-dependent colour ordered splitting

kernels p
(0)
ij (x) . The splitting kernels describe the initial-final massless collinear singulari-

ties and are given by [79],

p(0)
qq (x) =

3

2
δ(1 − x) + 2D0(x) − 1 − x ,

p(0)
qg (x) = 1 − 2x + 2x2 ,

p(0)
gq (x) =

2

x
− 2 + x ,

p(0)
gg (x) =

11

6
δ(1 − x) + 2D0(x) +

2

x
− 4 + 2x − 2x2 ,

p
(0)
gg,F (x) = −1

3
δ(1 − x) , (5.18)

with the distributions

Dn(x) =

(
lnn(1 − x)

1 − x

)

+

.

In the following, we shall specify the phase space parametrisations for the initial-final

antenna phase space dΦXi,jk
needed to integrate the different antenna types before giving

the results for the integrated initial-final massive antennae in unexpanded and expanded

forms.
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5.3.1 Phase space parametrisations for initial-final configurations

In the most general case, the massive two-to-two phase space dΦ2 to which the initial-final

antenna phase space dΦXi,jk
defined in eq. (2.16) is proportional to, is related to the process

q + pi → pj + pk with pj and pk the momenta of the final state partons with masses mj

and mk. It can be written as

dφ2(mj ,mk) =
(4π)ǫ

8πΓ(1 − ǫ)
E2ǫ−2

cm

[(
E2

cm − m2
j − m2

k

)2 − 4m2
jm

2
k

] 1−2ǫ
2

dy y−ǫ(1 − y)−ǫ,

(5.19)

where y runs from 0 to 1. In this parametrisation the invariants take the following form

2pi · pj =
Q2 + m2

j + m2
k

2xE2
cm

×

×
(

E2
cm + m2

j − m2
k − (2y − 1)

√(
E2

cm − m2
j − m2

k

)2
− 4m2

jm
2
k

)
(5.20)

2pi · pk =
Q2 + m2

j + m2
k

2xE2
cm

×

×
(

E2
cm − m2

j + m2
k + (2y − 1)

√(
E2

cm − m2
j − m2

k

)2
− 4m2

jm
2
k

)
, (5.21)

and the partonic center of mass energy reads

Ecm =
√

(p + q)2 =

√
Q2(1 − x) + m2

j + m2
k

x
. (5.22)

In this case also x is defined as,

x =
Q2 + m2

j + m2
k

2pi.q
.

In our application to tt̄ +jet production, we are only interested in the cases where

mj = mk = mQ or in the case where mj 6= 0 and mk = 0. For the first case, the

parametrisation given above simplifies to

dφ2(mQ,mQ) =
(4π)ǫ−1

2Γ(1 − ǫ)
E2ǫ−2

cm

[(
E2

cm − 2m2
Q

)2 − 4m4
Q

] 1−2ǫ
2

dy y−ǫ(1 − y)−ǫ, (5.23)

while the invariants read

2pi · pj =
Q2 + 2m2

Q

2xE2
cm

(
E2

cm − (2y − 1)

√(
E2

cm − 2m2
Q

)2
− 4m4

Q

)
(5.24)

2pi · pk =
Q2 + 2m2

Q

2xE2
cm

(
E2

cm + (2y − 1)

√(
E2

cm − 2m2
Q

)2
− 4m4

Q

)
, (5.25)

and the center of mass energy is

Ecm =

√
Q2(1 − x) + 2m2

Q

x
with x =

Q2 + 2m2
Q

2pi.q
. (5.26)
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In the case in which mk = 0 and mj = mQ the phase space reduces to

dφ2(mQ, 0) =
(4π)ǫ−1

2Γ(1 − ǫ)
E2ǫ−2

cm

(
E2

cm − m2
Q

)1−2ǫ
dy y−ǫ(1 − y)−ǫ, (5.27)

the invariants are

2pi · pj =
Q2 + m2

Q

xE2
cm

[
E2

cm − y
(
E2

cm − m2
Q

)]
(5.28)

2pi · pk =
Q2 + m2

Q

xE2
cm

[
y
(
E2

cm − m2
Q

)]
(5.29)

and the center of mass energy is

Ecm =

√
Q2(1 − x) + m2

Q

x
with x =

Q2 + m2
Q

2pi · q
. (5.30)

5.3.2 Integrated forms of the initial-final massive antennae

The integrated forms of the antennae can be obtained using reduction techniques, using

the extension of the integration by parts method [96, 97] in [98, 99] to reduce the phase

space integrals to master integrals. In this task, we express all the invariants in the antenna

functions as massive propagators and write the three on-shell conditions p2
a = m2

a (a = j, k)

as cut propagators. Since the invariants sab appearing in the antennae are not all inde-

pendent from each other, the integrated antennae are written as a one-loop diagrams with

on-shell conditions and not as two-loop diagrams as in the final-final case. The reduction to

master integrals is therefore easier. It was done using the Laporta algorithm [100] with two

independent implementations: the Mathematica package FIRE [108], and an in-house im-

plementation in FORM [109]. For all integrated initial-final antennae required and defined

in section 3, we find four master integrals. Those can be evaluated analytically in terms of

gamma functions and hypergeometric functions. The all order expressions as well as the

expanded expressions of all initial-final massive antenna functions will be presented below.

A) Quark-Antiquark antennae.

The integrated form of the massive three-parton initial-final quark antiquark antenna

given by Ag,QQ̄ is obtained by integrating its unintegrated form Ag,Q,Q̄ defined in

eq. (3.11) over the initial-final massive antenna phase dΦXi,jk
given in eq. (2.16)

using the parametrisation of the two-to-two parton phase space dΦ2(mQ,mQ) given

in eq. (5.23). It depends on the virtuality of the incoming boson Q2, the masses of

the final states both being mQ and on x given by x =
Q2+2m2

Q

2pi·q
. It reads,

A0
3(3g; 1Q, 2Q̄) =

2(4π)1−ǫeǫγE

Q2 + 2m2
Q

×
{[

−1 −
2m2

Q(2 − ǫ)

Q2(1 − ǫ) − 2m2
Q

+ 2x(1 − 2ǫ)

(
1 − Q2x

Q2 + 2m2
Q

)]
I2(mQ,mQ)
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+
1

x

[
4(2 − ǫ)2m4

Q

Q2(1 − ǫ) − 2m2
Q

+ 2m2
Q(2 − ǫ + 2x2ǫ)

+(1 − 2x + 2x2)(1 − ǫ)(Q2 + 2m2
Q)

]
I3(mQ,mQ, s13)

}
. (5.31)

I2(mQ,mQ) is the integrated phase space measure with two massive final states. It

is given by

I2(mQ,mQ)=(4π)ǫ−1 Γ(1 − ǫ)

2Γ(2−2ǫ)

(
x

Q2(1−x)+2m2
Q

)ǫ(
1−

4m2
Qx

Q2(1−x)+2m2
Q

) 1−2ǫ
2

,

(5.32)

while the remaining master integral reads

I3(mQ,mQ, sij) =

∫
dΦ2(mQ,mQ)

1

sij

= (4π)ǫ−1 Γ(1 − ǫ)

Γ(2 − 2ǫ)

(
x

Q2 + 2m2
Q

)(
x

Q2(1 − x) + 2m2
Q

)ǫ

×v1−2ǫ

1 + v
2F1

(
1, 1 − ǫ, 2 − 2ǫ;

2v

1 + v

)
(5.33)

where,

v =

(
1 −

4m2
Q

E2
cm

) 1
2

=

(
1 −

4m2
Qx

Q2(1 − x) + 2m2
Q

) 1
2

. (5.34)

The integrated form of the gluon-initiated quark-antiquark massive antenna A0
g;QQ̄

is finite, since it has only quasi-collinear limits. Expanding the all order result given

in eq. (5.31) in powers of ǫ up to finite order, we find

A0
3(3g; 1Q, 2Q̄) =

1

(Q2 + 2m2
Q)2(Q2 − 2m2

Q)

×
{[

Q4(1 − 2x + 2x2) + 4m2
QQ2 + m4

Q(4 + 8x − 8x2)
]
ln

(
1 − v

1 + v

)
(5.35)

+v
[
Q4(1 − 2x + 2x2) + 4mQQ2(1 − x) + m4

Q(4 − 8x)
] }

+ O(ǫ).

B) Quark-Gluon antennae.

As only one massive parton is present in the final state, the fractional momentum

x carried by the initial state momentum pi is defined as x =
Q2+m2

Q

2pi·q
. For the

initial-final antenna phase space dΦXi,jk
over which the antennae are integrated, we

use the parametrisation of the two-by-two parton phase space dΦ2(mQ, 0) given in

eq. (5.27). After reduction, we found that two master integrals are needed.
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The master integral I2(mQ, 0) corresponds to the integrated phase space in eq. (5.27)

and reads,

I2(mQ, 0) = (4π)ǫ−1 Γ(1 − ǫ)

2Γ(2 − 2ǫ)

(
x

Q2(1 − x) + m2
Q

)ǫ(
1 −

m2
Qx

Q2(1 − x) + m2
Q

)1−2ǫ

,

(5.36)

while the remaining integral is given by

I3(mQ, 0, sik) =

∫
dΦ2(mQ, 0)

1

sik

= (4π)1−ǫ Γ(1 − ǫ)

2Γ(2 − 2ǫ)

(
x

Q2 + m2
Q

)(
x

Q2(1 − x) + m2
Q

)ǫ

(5.37)

× u1−2ǫ
2F1 (1, 1 − ǫ, 2 − 2ǫ;u)

with u being given by

u = 1 −
xm2

Q

Q2(1 − x) + m2
Q

.

B.1) E-Type antennae.

The integrated form of E0
q,qQ is only proportional to the integrated phase space

measure I2(mQ, 0) and reads,

E0
3 (4q; 3q, 1Q) =

(4π)1−ǫeǫγE

[Q2 + m2
Q]

×
{

2mQmχ−
(Q2(1−x)+m2

Q)(1+(1−x)2)

ǫx(1−x)
+m2

Q

(
1+x

1−x

)
−Q2(1−2x)

}
I2(mQ, 0)

(5.38)

Its ǫ expansion is given by,

E0
3 (4q; 3q, 1Q) =

eǫγE

Γ(1 − ǫ)

[
Q2 + m2

Q

]−ǫ ×
{

− 1

2ǫ
p(0)

qg (x)

+
1

2x
(2 − 2x + x2) [−2 + 2 ln(1 − x) − ln(x) − ln(1 − x0x)] (5.39)

+
Q2(−1 + 3x − 2x2) + m2

Q(1 + x) + 2mQmχ(1 − x)

2(Q2(1 − x) + m2
Q)

+ O(ǫ)

}
,

with x0 being given in eq. (5.2), and where we have kept the natural phase

space factor for initial-final quark-gluon integrated antennae,

eǫγE

Γ(1 − ǫ)

[
Q2 + m2

Q

]−ǫ

unexpanded. Since this antenna has only one massless initial-final collinear

limit, the pole part in its integrated form is only related to the x-dependent

splitting kernel p
(0)
qg (x). This expression can be directly compared with the

expression obtained in [85] for the integrated dipole involving a massless initial

emitter q and a massive final-state spectator Q and full agreement is found.
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B.2) D-Type antennae.

The integrated form of the gluon-initiated initial-final antenna D0
g,Qg, which is

such that the reduced matrix element is induced by a quark and which has a

massive quark Q as unresolved parton, is

D0
3(4g; 1Q, 3g) =

(4π)1−ǫeǫγE

(Q2 + m2
Q)

1

(1 − ǫ)x(1 − x)

×
{

1

2(Q2 + m2
Q)(Q2(1 − x) + m2

Q)

×
[
Q6(1 − x)2

[
−3 + 6x − 4x2 + 4x3 + 2ǫ(1 − 4x + 6x2 − 6x3)

+ǫ2(1 + 2x − 8x2 + 8x3)
]

−Q4m2
Q(1 − x)

[
9 − 25x + 32x2 − 16x3 + 4x4 − 2ǫ(3 − 14x + 30x2

−24x3 + 6x4) − ǫ2(3 + 5x − 24x2 + 32x3 − 8x4)
]

+Q2m4
Q

[
−9+32x−57x2+38x3−8x4+ǫ(6−32x+82x2−76x3+24x4)

+ǫ2(3 + 4x − 25x2 + 38x3 − 16x4)
]

+m6
Q

[
−3 + 10x − 19x2 + 4x3 + 2ǫ(1 − 5x + 12x2 − 6x3)

+ǫ2(1 + 2x − 7x2 + 8x3)
]

(5.40)

+2ǫ(1 − ǫ)Q4mQmχ(−1 − x + 2x2)

−4Q2m3
Qmχx

[
−x(1 − x) + ǫ(1 − ǫ)(1 + x − x2)

]

+2m5
Qmχx

[
2x − ǫ(1 + x) + ǫ2(1 + x)

] ]
I2(mQ, 0)

−
[
(1 − ǫ)2Q4x(1 − 3x + 4x2 − 2x3)

+2Q2m2
Q

[
1−4x+4x2−2x3+ǫ(−2+7x−6x2+2x3)+ǫ2(1−2x+2x2)

]

+m4
Q

[
1 − 7x + 4x2 − 2x3 + ǫ(−2 + 8x − 4x2) + ǫ2(1 − x + 2x3)

]

−2ǫ(1 − ǫ)Q2mQmχx + 2(1 − ǫ + ǫ2)m3
Qmχx

]
I3(mQ, 0, sik)

}

Its expansion up to finite order in ǫ reads,

D0
3(4g; 1Q, 3g) =

1

4(Q2 + m2
Q)2 (1 − x)

×
{

(Q2 + m2
Q)(1 − x)

(Q2(1−x)+m2
Q)2x

[
Q6(1−x)2(−3+6x−4x2+4x3)−Q4m2

Q(1−x)(9−25x

+32x2 − 16x3 + 4x4) + Q2m4
Q(−9 + 32x − 57x2 + 38x3 − 8x4)

+m6
Q(−3 + 10x − 19x2 + 4x3) + 4Q2m3

Qmχx2(1 − x) + 4m5
Qmχx2

]

−2 ln

(
m2

Qx

Q2(1−x)+m2
Q

)[
Q4(1−x)(1−2x+2x2)−2Q2m2

Q(−1+4x−4x2+2x3)

−m4
Q(−1 + 7x − 4x2 + x3) + 2m3

Qmχx

]}
+ O(ǫ) (5.41)
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This integrated antenna is finite since its unintegrated form has only

quasi-collinear limits.

Finally, the integrated form of the initial-final massive D-Type quark-gluon

antenna D0
g,gQ which is initiated by a gluon, which has a reduced matrix

element induced by a gluon and where the final state gluon is the unresolved

parton, is given by,

D0
3(4g; 3g, 1Q) =

(4π)1−ǫeǫγE

2

×
{

Q2(1 − ǫ)2 + 2mQmχǫ(1 − ǫ) + m2
Q(3 − 4ǫ − ǫ2)

(1 − ǫ)[Q2(1 − x) + m2
Q]

−
4(1 − 2ǫ)[Q2(1 − x) + m2

Q]
(
1 − x + x2

)2

ǫx(1 − x)2(Q2 + m2
Q)

+
2

(1 − ǫ)(1 − x)2(Q2 + m2
Q)

[
2mQmχ(1 − ǫ + ǫ2)(1 − x)2 (5.42)

+Q2(1 − x)[−5 + 3x + ǫ(8 − 6x) − ǫ2(1 − x)]

+m2
Q[−9 + 16x − 9x2 + 2ǫ(4 − 7x + 4x2) + ǫ2(1 − x)2]

]}
I2(mQ, 0)

The ǫ expansion of this integrated antenna reads

D0
3(4g; 3g, 1Q) = −2I

(1)
Qg

(
ǫ,Q2,mQ, 0, x2

0

m2
Q

Q2 + m2
Q

)
δ(1 − x) − 1

2ǫ
p(0)

gg (x)

−3

2
+

(
1 − π2

12

)
δ(1 − x) −D0(x) + 2D1(x)

+
1

4(Q2(1 − x) + m2)2

[
Q4(1 − x) − 2Q2m2

Q(1 − x)(2 − 9x) − 5m4
Q(1 − 3x)

+4Q2mQmχ(1 − x)2 + 4m3
Qmχ(1 − x)

]
(5.43)

+2

(
−2 +

1

x
+ x − x2

)
ln(1 − x) +

(
1

2
δ(1 − x) +

1

1 − x
−D0(x)

)
ln(1 − x0)

+
1

2
δ(1 − x)

(
17

6
ln(x2

0) + ln(x2
0) ln(1 − x0) +

1

2
ln2(x2

0) +
1

2
ln2(1 − x0)

)

−(1 − x + x2)2

x(1 − x)
[ln(x) + ln(1 − x0x)] − 1

2
p(0)

gg (x) ln

(
x2

0(Q
2 + m2)

Q4

)
+ O(ǫ),

where x0 is given in eq. (5.2).

From this expansion it can be seen that all the pole parts are contained in the

infrared singularity operator

I
(1)
Qg

(
ǫ,Q2,mQ, 0, x2

0

m2
Q

Q2 + m2
Q

)
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as well as in the splitting kernel p
(0)
gg (x). A factor x2

0 appears explicitly in the

mass-dependent logarithmic term in the infrared operator I
(1)
Qg. It is necessary

in order to capture all poles parts proportional to δ(1 − x) of the integrated

antenna, D0
3(4g; 3g, 1Q).

Furthermore, we can compare this expanded result for D0
g,gQ with the corre-

sponding integrated dipoles in [85]. The pole parts of our expression given in

eq. (5.43) corresponds to the pole part of the sum of two dipoles which have

either a massless initial spectator and a massive final-state emitter or a massless

initial state emitter and a massive final state spectator. Full agreement is found

providing us with a strong check on our result for D0
g,gQ.

C) Flavour violating antennae.

In addition to the flavour conserving integrated inital-final antennae, we also

need to consider the integration over the massive initial-final antenna phase

space of the unintegrated initial-final flavour-violating antenna A0
q;gQ. The phase

space parametrisation of the initial-final antenna phase required here is the same

parametrisation as the one used for integrating the initial-final quark-gluon anten-

nae. One uses the parametrisation of the two-to-two particle phase space given by

dΦ2(mQ, 0) in eq. (5.27). The integrated flavour violating antenna A0
q;gQ can be

written in term of the phase space measure I2(mQ, 0) only. In term of this master

integral, its integrated form reads,

A0
3(2q; 3g, 1Q) = − (4π)1−ǫeǫγE

2ǫ(Q2 + m2
Q)(Q2(1 − x) + m2

Q)(1 − x)2

×
{
Q4(1 − x)2

[
2(1 + x2) − ǫ(7 − 8x + 6x2) + ǫ2(1 − 2x)2

]
(5.44)

+2m2
QQ2(1 − x)

[
2(1 + x2) − ǫ(7 − 9x + 6x2) + ǫ2(1 − 3x + 2x2)

]

+m4
Q

[
2(1 + x2) − ǫ(7 − 10x + 7x2) + ǫ2(1 − x)2

]}
I2(mQ, 0)

Expanding in powers of ǫ we obtain

A0
3(2q; 1Q, 3g) = −2I

(1)

qQ̃

(
ǫ,Q2,mQ, 0, x2

0

m2
Q

Q2 + m2
Q

)
δ(1 − x) − 1

2ǫ
p(0)

qq (x)

+
3

2
+

(
1 − π2

12

)
δ(1 − x) −D0(x) + 2D1(x) − x

2
−

m2
Q

4Q2(1 − x0x)2

+
1

4(1 − x0)(1 − x0x)
+

(
1

2
δ(1 − x) +

1

1 − x
−D0(x)

)
ln(1 − x0) (5.45)

+
1

4
δ(1 − x)

(
5 ln(x2

0) + 2 ln(x2
0) ln(1 − x0) + ln2(x2

0) + ln2(1 − x0)
)

−(1 + x) ln(1 − x) − 6(1 + x2)

1 − x
[ln(x) − ln(1 − x0x)]

−1

2
p(0)

qq (x) ln

(
x2

0(Q
2 + m2)

Q4

)
+ O(ǫ),
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All the pole pieces are contained in the following infrared singularity operator

I
(1)

qQ̃

(
ǫ,Q2,mQ, 0, x2

0

m2
Q

Q2 + m2
Q

)

and the splitting kernel p
(0)
qq (x). As for the integrated gluon-initiated quark-gluon

antenna D0
g,gQ, a factor x2

0 appears in the mass-dependent logarithmic term in the

infrared operator I
(1)

qQ̃
. It is necessary in order to capture all poles parts proportional

to δ(1 − x) of the integrated flavour violating antenna, A0
3(2q; 3g, 1Q).

In summary, in this subsection 5.3 we have shown that all integrated massive initial-

final antennae have their pole parts related either to massive infrared operators or to

splitting kernels or both.

6 Check of A0
g;QQ̄

A strong check can be performed on the integrated quark-antiquark antenna A0
g;QQ̄

by

comparing its expression given in eq. (5.31) and known results from the literature on the

leading order heavy-quark coefficient functions.

To compare our results with γ induced deep inelastic scattering we consider the con-

traction of the hadronic tensor W µν with the metric tensor −gµν . This corresponds to the

trace of the hadronic tensor, which in terms of the structure functions F2 and FL is given by,

− W µ
µ = −d − 1

2
FL

(
z,Q2

)
+

d − 2

2
F2

(
z,Q2

)
, (6.1)

where the structure functions can be expanded in powers of the strong coupling constant.

To zeroth order in αs these structure functions are given by the simple parton model

result

F (0)
L,q = F (0)

L,g = 0 , F (0)
2,q = δ (1 − z) , F (0)

2,g = 0 . (6.2)

We find that the correct normalisation of W µ
µ to be checked against the antenna A0

g;QQ̄
is

as in the massless case [80] given by

− 2

d − 2
W µ

µ = F2 −
d − 1

d − 2
FL . (6.3)

such that the following relation should hold

A0
g;QQ̄ ×

[
Q2(1 − ǫ) − 2m2

Q

]
= −1 − ǫ

2

[
F (1)

2,g (x,Q2) − 3 − 2ǫ

2 − 2ǫ
F (1)

L,g(x,Q2)

]
(6.4)

with F (1)
2,g and F (1)

L,g being the leading order heavy quark coefficient functions.

The factor on the left-hand side of this equation which multiplies the integrated antenna

corresponds to the massive two-parton antenna AQ;Q serving to normalise the three parton

antenna and given in eq. (3.12).
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The coefficient functions are given up to finite order in ǫ in [110] with a different choice

of variable x. x ≡ xB = Q2

2p·q is used instead of our expression for x given in eq. (5.26) by

x =
Q2+2m2

Q

2p·q , which includes the masses mQ of the final states Q and Q̄.

We used this second definition of x in our expression of the integrated antenna Ag;QQ̄

since this definition of x is required in order to guarantee phase space factorisation in

our subtraction formalism. Adapting the results given in [110] to this mass-dependent

definition of x, the heavy quark coefficient functions read,

F (1)
2,g (x,Q2) = − 2

(Q2 + 2m2
Q)2

{
v
[
Q4(1 − 8x + 8x2) − 4Q2m2

Q(−1 + 3x + x2)

+m4
Q(4 + 8x)

]
+
[
Q4(1 − 2x + 2x2) + 4Q2m2

Q(1 − 3x2) (6.5)

+m4(4 + 8x − 8x2)
]
log

(
1 − v

1 + v

)}
+ O(ǫ)

F (1)
L,g(x,Q2) =

8Q2x

(Q2+2m2
Q)2

{
v
[
Q2(1 − x) + 2m2

Q

]
+ 2m2

Qx log

(
1 − v

1 + v

)}
+O(ǫ). (6.6)

To the finite order in ǫ, one can show that

−1

2
F (1)

2,g +
3

4
F (1)

L,g

=
1

(Q2 + 2m2
Q)2

{
v
[
Q4(1 − 2x + 2x2) + 4Q2m2

Q(1 − x2) + m4
Q(4 + 8x)

]
(6.7)

+
[
Q4(1 − 2x + 2x2) + 4Q2m2

Q + m4
Q(4 + 8x − 8x2)

]
log

(
1 − v

1 + v

)}
,

with the variable v defined as in eq. (5.34) since the redefinition of x in [110] does not

affect the definition of v. The expression given in eq. (6.7) coincides with the O(ǫ0) term of

our expanded form for Ag;QQ̄ after we undo the normalisation of this antenna function by

multiplying it by [Q2 − 2m2
Q]. The relation given by eq. (6.4) is therefore herewith proven

at O(ǫ0) giving us a strong check on the integrated antenna Ag;QQ̄ itself.

7 Application to top quark pair production at LHC

In this section we shall give the colour-ordered real emission contributions for all partonic

processes contributing to tt̄ and tt̄ + jet production at the LHC present at NLO. Together

with these, we shall present their corresponding antenna subtraction terms which capture

all single unresolved (soft, collinear and quasi-collinear) radiation of the real matrix-element

squared for each partonic process involved.

The results presented here for the real contributions and subtraction terms for the

process pp → tt̄ +1 jet at NLO are essential ingredients for the computation of the dou-

ble real contributions and their subtraction terms to the production of tt̄ at NNLO. Our

subtraction terms enable to capture all single unresolved radiation present in those double

real contributions. Furthermore, concerning the colour decomposition of the real matrix
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element squared for tt̄ +1 jet production at NLO, in the limit where the heavy quarks

present in the final state are taken massless, the colour decomposition provided here corre-

sponds to the colour decomposition of the real matrix elements to the processes involving

a massless quark-antiquark pair for two jet production at NNLO.

For all partonic processes involved, starting from well-known amplitudes given in [28–

30, 33, 34], the colour decomposition of the real matrix elements squared is presented and

where possible, checked against results in the literature. Wherever possible, decoupling

identities are used to reduce the size of the colour ordered decomposition of the real matrix-

element squared and in some cases to eliminate the interference terms in those.

The colour ordered subtraction terms are explicitly constructed as sums of terms in-

volving the product of antenna functions with reduced matrix element squared and jet

functions, as explained in section 2.

Concerning the notation of the matrix elements appearing in the real contributions,

those matrix elements denoted by M represent colour-ordered amplitudes in which the

coupling constants and colour factors have been omitted. Furthermore, to explicitly visu-

alize the colour connection between particles in these colour ordered amplitudes, a double

semicolon is used in the labeling of the partons contributing to a given matrix elements.

This double semi colon serves to separate strings of colour connected partons. Partons

within a pair of double semicolons are colour-connected.

Since in the antenna framework a parton can only be unresolved with respect to its

colour-connected neighbours, this notation helps to identify the unresolved limits present

in a given colour ordered amplitude and therefore helps to construct the corresponding

subtraction terms. Notationwise, we also denote gluons which are photon-like and only

couple to quark lines, with the index γ instead of g, to manifestly separate leading from

subleading contributions. In amplitudes where all gluons are photon-like no semicolons are

used, since the concept of colour connection in not meaningful in those configurations.

Concerning the notation in the subtraction terms themselves, the reduced matrix-

element squared present in those are also to be taken without coupling constants and

coupling factors. In those matrix elements, the crossed momenta are denoted with a hat,

the remapped final-state momenta are denoted with tildes and the remapped momenta of

initial state hard radiators are denoted by a bar and a hat.1

7.1 tt̄ production at LHC

Following the general factorisation formula given in eq. (1.1) for hadronic collision pro-

cesses, the real NLO contributions to the production of a massive quark-antiquark pair in

a hadronic collision can be written as

dσR =

∫
dξ1

ξ1

dξ2

ξ2

{∑

q

[
fq(ξ1)fq̄(ξ2)dσ̂qq̄→QQ̄g + fq(ξ1)fg(ξ2)dσ̂qg→QQ̄q (7.1)

+fq̄(ξ1)fg(ξ2)dσ̂q̄g→QQ̄q̄

]
+ fg(ξ1)fg(ξ2)dσ̂gg→QQ̄g

}
.

1This notation for the remapped initial state momenta was already used in [82].
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fi(ξj) denotes the parton distribution function of parton i, which carries a fraction ξj

of one of the incoming hadron momenta and dσ̂ are the partonic cross sections. These

process-dependent partonic cross sections dσ̂ are, in turn given by

dσ̂qq̄→QQ̄g = dΦ3(kQ, kQ̄, kg; pq, pq̄)|M0
qq̄→QQ̄g|2J

(3)
2 (kQ, kQ̄, kg), (7.2)

dσ̂qg→QQ̄q = dΦ3(kQ, kQ̄, kq; pq, pg)|M0
qg→QQ̄q|2J

(3)
2 (kQ, kQ̄, kq), (7.3)

dσ̂gg→QQ̄g = dΦ3(kQ, kQ̄, kg; pg1, pg2)|M0
gg→QQ̄g|2J

(3)
2 (kQ, kQ̄, kg), (7.4)

where the momenta labels in the matrix elements are omitted for the sake of conciseness.

Each of these process-dependent partonic cross sections involves a massive two-to-three

parton phase space, dΦ3, the corresponding matrix element squared |M0|2 and the appro-

priate jet function J
(3)
2 related to the selection criteria of 2-jet events. Out of three partons,

from which two are a Q and Q̄ , an event with two jets having each a heavy quark Q or

a heavy anti-quark Q̄ in them is formed. In the corresponding subtraction terms, the jet

functions will all be of the type J
(2)
2 and will only depend on the hard final-state momenta

appearing in the reduced matrix-element squared.

In order to obtain the subtraction terms, the colour decomposition of the real matrix

elements present in the partonic cross sections given above in eqs. (7.2), (7.3), (7.4) has to

be performed. However, since colour ordering does not distinguish between initial and final

state partons, it is sufficient to consider the colour decomposition for the two unphysical

processes 0 → QQ̄qq̄g and 0 → QQ̄ggg, and obtain the matrix elements needed for tt̄

production from two initial state partons by appropriate crossings. We shall follow this

strategy in the following.

7.1.1 Processes derived from 0 → QQ̄qq̄g

At amplitude level, the colour decomposition for this unphysical process 0 → QQ̄qq̄g is

M0
5 (1Q, 2Q̄, 3q, 4q̄, 5g) = g3

√
2

[
(T a5)i1,i4δi2,i3M0

5(1Q, 5g, 4q̄; ; 2Q̄, 3q)

+(T a5)i3,i2δi1,i4M0
5(1Q, 4q̄; ; 2Q̄, 5g, 3q) (7.5)

− 1

Nc
(T a5)i1,i2δi3,i4M0

5(1Q, 5g, 2Q̄; ; 3q, 4q̄)

− 1

Nc
(T a5)i3,i4δi1,i2M0

5(1Q, 2Q̄; ; 3q, 5g, 4q̄)

]
,

Squaring, and using the photon decoupling identities stating that

M0
5(1Q, 2Q̄, 3q, 4q̄, 5γ) = M0

5(1Q, 5g, 4q̄; ; 2Q̄, 3q) + M0
5(1Q, 4q̄; ; 2Q̄, 5g, 3q)

= M0
5(1Q, 5g, 2Q̄; ; 3q, 4q̄) + M0

5(1Q, 2Q̄; ; 3q, 5g, 4q̄) (7.6)

gives

|M0
5 (1Q, 2Q̄, 3q, 4q̄, 5g)|2 = g6(N2

c − 1)

×
[
Nc

(
|M0

5(1Q, 5g, 4q̄; ; 2Q̄, 3q)|2 + |M0
5(1Q, 4q̄; ; 2Q̄, 5g, 3q)|2

)
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+
1

Nc

(
|M0

5(1Q, 5g, 2Q̄; ; 3q, 4q̄)|2 + |M0
5(1Q, 2Q̄; ; 3q, 5g, 4q̄)|2 (7.7)

−2|M0
5(1Q, 2Q̄, 3q, 4q̄, 5γ)|2

) ]
,

where in M0
5(1Q, 2Q̄, 3q, 4q̄, 5γ) the parton with momentum label 5 is a U(1) photon-like

gluon that only couples to the quark lines.

Upon the crossing of 3q and 4q̄ to the initial state, an expression for the squared matrix

element |M0
qq̄→QQ̄g

|2 in terms of colour-ordered amplitudes is obtained by replacing 3q and

4q̄ by 3̂q̄ and 4̂q in the expression given in eq. (7.7).

This, together with the phase space and the jet function as given in eq. (7.2) leads to

the corresponding real emission differential cross section due to this partonic process in a

colour ordered way.

Analogously, the crossing of 4q̄ and 5g in eq. (7.7) together with the phase space and the

jet function in eq. (7.3) gives the colour ordered real emission corrections to the production

of a top-antitop pair from the partonic process qg → QQ̄q. The corresponding subtraction

terms for these two crossings are given below.

After the crossing of 3q and 4q̄ in eq. (7.7), we find that the subtraction term for the

partonic process qq̄ → QQ̄g is

dσ̂S
qq̄→QQ̄g = g6(N2

c − 1)dΦ3(k1Q, k2Q̄, k5g; p4q, p3q̄)

×
{

Nc

[
A0

3(4q; 1Q, 5g)|M0
4((1̃5)Q, 2Q̄, 3̂q̄,

ˆ̄4q)|2J (2)
2 (kf15, k2)

+A0
3(3q̄; 2Q̄, 5g)|M0

4(1Q, (2̃5)Q̄, ˆ̄3q̄, 4̂q)|2J (2)
2 (k1, kf25)

]

− 1

Nc

[
A0

3(1Q, 5g, 2Q̄)|M0
4((1̃5)Q, (2̃5)Q̄, 3̂q̄, 4̂q)|2J (2)

2 (kf15, kf25) (7.8)

+A0
3(4q, 3q̄; 5g)|M0

4(1̃Q, 2̃Q̄, ˆ̄3q̄, ˆ̄4q)|2J (2)
2 (k̃1, k̃2)

]}
.

Only A-Type quark-antiquark antennae are required in all three configurations. In the

intial-final configuration, both flavour conserving and flavour violating massive antennae

are needed.

If 4q̄ and 5g are crossed instead, the subtraction term for qg → QQ̄q will be constructed

with massive flavour-conserving quark-antiquark A-Type and quark-gluon E-Type anten-

nae in both final-final and initial-final configurations in addition to massless initial-initial

A-type antennae. It reads,

dσ̂S
qg→QQ̄q = g6(N2

c − 1)dΦ3(k1Q, k2̄Q, k3q; p4q, p5g)

×
{

Nc

[
1

2
A0

3(5g; 1Q, 2Q̄)

(
|M0

4((1̃2)Q, ˆ̄5Q, 3q, 4̂q)|2 + |M0
4(

ˆ̄5Q̄, (1̃2)Q̄, 3q, 4̂q)|2
)

J
(2)
2 (kf12, k3)

+A0
3(4q, 5g; 3q)|M0

4(1̃Q, 2̃Q̄, ˆ̄4q,
ˆ̄5q̄)|2J (2)

2 (k̃1, k̃2)

+
1

2
E0

3(4q; 3q, 1Q)

(
|M0

4((1̃3)Q, 5̂g,
ˆ̄4g, 2Q̄)|2 + |M0

4((1̃3)Q, ˆ̄4g, 5̂g, 2Q̄)|2
)

J
(2)
2 (kf13, k2)
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+
1

2
E0

3(4q; 3q, 2Q̄)

(
|M0

4(1Q, 5̂g, ˆ̄4g, (2̃3)Q̄)|2+|M0
4(1Q, ˆ̄4g, 5̂g, (2̃3)Q̄)|2

)
J

(2)
2 (k1, kf23)

]

− 1

Nc

[
1

2
A0

3(5g; 1Q, 2Q̄)

(
|M0

4((1̃2)Q, ˆ̄5Q, 3q, 4̂q)|2 + |M0
4(

ˆ̄5Q̄, (1̃2)Q̄, 3q, 4̂q)|2
)

J
(2)
2 (kf12, k3)

+A0
3(4q, 5g; 3q)|M0

4(1̃Q, 2̃Q̄, ˆ̄4q,
ˆ̄5q̄)|2J (2)

2 (k̃1, k̃2)

+
1

2
E0

3(4q; 3q, 1Q)|M0
4((1̃3)Q, ˆ̄4γ , 5̂γ , 2Q̄)|2J (2)

2 (kf13, k2) (7.9)

+
1

2
E0

3(4q; 3q, 2Q̄)|M0
4(1Q, ˆ̄4γ , 5̂γ , (2̃3)Q̄)|2J (2)

2 (k1, kf23)

]}
.

7.1.2 Partonic process gg → QQ̄g

The colour decomposition for the unphysical process 0 → QQ̄ggg is

M0
5 (1Q, 2Q̄, 3g, 4g, 5g) = (g

√
2)3

∑

(i,j,k)∈P (3,4,5)

(T aiT ajT ak)i1i2M
0
5(1Q, ig, jg, kg, 2Q̄). (7.10)

Squaring and crossing gluons 4g and 5g to the initial state gives

|M0
5 (1Q, 2Q̄, 3g, 4̂g, 5̂g)|2 = g6(N2

c − 1)

×
{ ∑

(i,j)∈P (4,5)

[
N2

c

(
|M0

5(1Q, 3g, îg, ĵg, 2Q̄)|2 + |M0
5(1Q, îg, 3g, ĵg, 2Q̄)|2

+|M0
5(1Q, îg, ĵg, 3g, 2Q̄)|2

)

−
(
|M0

5(1Q, 3g, îg, ĵγ , 2Q̄)|2 + |M0
5(1Q, îg, 3g, ĵγ , 2Q̄)|2

+|M0
5(1Q, îg, ĵg, 3γ , 2Q̄)|2

) ]
(7.11)

+

(
N2

c + 1

N2
c

)
|M0

5(1Q, 3g, 4̂g, 5̂g, 2Q̄)|2
}

.

We have used the following photon decoupling identity,

M0
5(1Q, ig, jg, kγ , 2Q̄) = (7.12)

M0
5(1Q, ig, jg, kg, 2Q̄) + M0

5(1Q, ig, kg, jg, 2Q̄) + M0
5(1Q, kg, ig, jg, 2Q̄)

where gluon k is a U(1) boson decoupled from the other gluons, and

M0
5(1Q, 3g, 4g, 5g, 2Q̄) =

∑

(i,j,k)∈P (3,4,5)

M0
5(1Q, ig, jg, kg, 2Q̄), (7.13)

where all gluons are photon-like.

The colour decomposition of the matrix element squared with two gluons in the initial

state given by eq. (7.11) is obtained as follows: After squaring the amplitude for the process

0 → QQ̄ggg and expanding the sum of permutations concerning the three final state gluons,

the crossing of two gluons 4g and 5g is performed. As the final state gluon labelled 3g is

fixed, the terms are then regrouped and a sum over the permutations for the two initial

state gluons 4g and 5g only is performed.
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Only colour ordered squared matrix elements are involved in eq. (7.11) for which unre-

solved radiation can be captured by a single antenna function. Massive flavour-conserving

quark-antiquark A-Type antennae, massive quark-gluon D-type antennae together with

massless initial-initial gluon-gluon F-Type antennae are required.

The subtraction term reads,

dσ̂S
gg→QQ̄g = g6(N2

c − 1)dΦ3(k1Q, k2Q̄, k3g; p4g, p5g)

×
{

∑

(i,j)∈P (4,5)

[
N2

c

[
1

2
A0

3(ig; 1Q, 2Q̄)
(
|M0

4((1̃2)Q, 3g, ĵg,
ˆ̄iQ)|2 + |M0

4 (̂̄iQ̄, 3g, ĵg, (1̃2)Q̄)|2

+|M0
4((1̃2)Q, ĵg, 3g

ˆ̄iQ)|2 + |M0
4 (̂̄iQ̄, ĵg, 3g(1̃2)Q̄)|2

)
J

(2)
2 (kf12, k3)

+D0
3(ig; 3g, 1Q)|M0

4((1̃3)Q, ˆ̄ig, ĵg, 2Q̄)|2J (2)
2 (kf13, k2)

+D0
3(ig; 3g, 2Q̄)|M0

4(1Q, ĵg,
ˆ̄ig, (2̃3)Q̄)|2J (2)

2 (k1, kf23)

+F 0
3 (ig, jg; 3g)|M0

4(1̃Q, ˆ̄ig,
ˆ̄jg, 2̃2Q̄)|2J (2)

2 (k̃1, k̃2)

]

−A0
3(1Q, 3g, 2Q̄)|M0

4((1̃3)Q, ig, jg, (2̃3)Q̄)|2J (2)
2 (kf13, kf23) (7.14)

−1

2
A0

3(ig; 1Q, 2Q̄)
(
|M0

4((1̃2)Q, 3g, ĵg,
ˆ̄iQ)|2 + |M0

4 (̂̄iQ̄, 3g, ĵg, (1̃2)Q̄)|2

+|M0
4((1̃2)Q, ĵg, 3g

ˆ̄iQ)|2 + |M0
4 (̂̄iQ̄, ĵg, 3g(1̃2)Q̄)|2

+|M0
4((1̃2)Q, 3γ , ĵγ , ˆ̄iQ)|2 + |M0

4 (̂̄iQ̄, 3γ , ĵγ , (1̃2)Q̄)|2
)
J

(2)
2 (kf12, k3)

−D0
3(ig; 3g, 1Q)|M0

4((1̃3)Q, ˆ̄iγ , ĵγ , 2Q̄)|2J (2)
2 (kf13, k2)

−D0
3(ig; 3g, 2Q̄)|M0

4(1Q, ĵγ , ˆ̄iγ , (2̃3)Q̄)|2J (2)
2 (k1, kf23)

+
1

2N2
c

A0
3(ig; 1Q, 2Q̄)

(
|M0

4((1̃2)Q, 3γ , ĵγ , ˆ̄iQ̄)|2

+|M0
4 (̂̄iQ̄, 3γ , ĵγ , (1̃2)Q̄)|2

)
J

(2)
2 (kf12, k3)

]

+

(
N2

c + 1

N2
c

)
A0

3(1Q, 3g, 2Q̄)|M0
4((1̃3)Q, 4̂γ , 5̂γ , (2̃3)Q̄)|2J (2)

2 (kf13, kf23)

}
.

7.1.3 Consistency check

We have performed a powerful check on all subtraction terms required for tt̄ production

given above. For each of those subtraction terms, which is a sum of terms multiplied by

colour factors proportional to Nc, we have verified that it gives the correct non-colour

ordered collinear or/and quasi-collinear behaviour. We have checked this feature for all

collinear and quasi-collinear limits present in all subtraction terms presented above. We

have verified that each subtraction term obey

dσ̂S a||b−→ g2 C
Pab(z)

sab
× |M0

m|2 × dΦm J (m)
m , (7.15)

where C = CA, CF , TR is the corresponding Casimir, M0
m is the non-colour ordered reduced

matrix element and Pab(z) stands for a massless or massive spitting function governing the
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particular collinear or quasi-collinear limit as defined in section 4.

Let us now check all collinear and quasi-collinear limits of the subtraction term

dσ̂S
gg→QQ̄g

given in eq. (7.14) in this way. This subtraction term has the following collinear

and quasi-collinear limits: 1Q||3g,3g||4̂g and 1Q||4̂g.

The following relation between the non-colour ordered and colour ordered amplitudes

squared for the process gg → QQ̄ is needed. It reads,

|M0
4 (1Q, 2Q̄, îg, ĵg)|2 = g4

(
N2

c − 1

Nc

)[
N2

c

(
|M0

4(1Q, îg, ĵg, 2Q̄)|2

+|M0
4(1Q, ĵg, îg, 2Q̄)|2

)
− |M0

4(1Q, îγ , ĵγ , 2Q̄)|2
]
. (7.16)

When the final-state quasi-collinear limit 1Q||3g is taken in the subtraction term given

in eq. (7.14), we obtain

dσ̂S
gg→QQ̄g

1Q||3g−→ g6

(
N2

c − 1

Nc

)2 Pqg→Q(z, µ2
qg)

s13

×
[
N2

c

(
|M0

4((1 + 3)Q, 4̂g, 5̂g, 2Q̄)|2 + |M0
4((1 + 3)Q, 5̂g, 4̂g, 2Q̄)|2

)

−|M0
4((1 + 3)Q, 4̂γ , 5̂γ , 2Q̄)|2

]
dΦ2(k(1+3)Q, k2Q̄; p4g, p5g)J

(2)
2 (k1+3, k2) (7.17)

= g2 CF

Pqg→Q(z, µ2
qg)

s13
|M0

4 ((1 + 3)Q, 2Q̄, 4̂g, 5̂g)|2

×dΦ2(k(1+3)Q, k2Q̄; p4g, p5g)J
(2)
2 (k1+3, k2),

where we have used eq. (7.16) with the momentum of the massive final state quark 1Q

being given by (k1 + k3). In the limit 1Q||3g, the contributing terms in eq. (7.14) are

proportional to the antenna A0
3(1Q, 3g, 2Q̄) multiplied by a reduced colour-ordered matrix

elements squared involving the remapped momenta k(1̃3) and k(2̃3) In the 1Q||3g limit, those

remapped momenta k(1̃3) and k(2̃3) are respectively given by (k1 + k3) and k2.

Similarly, in the same subtraction term given in eq. (7.14) we can see that in the

3g||4̂g limit we obtain

dσ̂S
gg→QQ̄g

3g||4̂g−→ g6 N2
c − 1

N2
c

Pgg←G(z)

s34

×
[
N2

c

(
|M0

4(1Q, (4̂ − 3)g, 5̂g, 2Q̄)|2 + |M0
4(1Q, 5̂g, (4̂ − 3)g, 2Q̄)|2

)

−|M0
4(1Q, (4̂ − 3)γ , 5̂γ , 2Q̄)|2

]
dΦ2(k1Q

, k2Q̄; p(4−3)g , p5g)J
(2)
2 (k1, k2) (7.18)

= g2 CA

Pgg→G(z, µ2
qg)

s34
|M0

4 (1Q, 2Q̄, (4̂ − 3)g, 5̂g)|2

×dΦ2(k1Q, k2Q̄; p(4−3)g , p5g)J
(2)
2 (k1, k2).

We have used eq. (7.16) with incoming momenta (p4 − k3) and p5. In the 3g||4̂g limit,

the contributing terms in eq. (7.14) are proportional either to D0
3(4g; 3g, 1Q) or to
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F 0
3 (4g, 5g; 3g). In the first case, the remapped momenta (1̃3) and ˆ̄4 present in the reduced

matrix elements multiplying by D0
3(4g; 3g, 1Q) are given by k1 and (p4 − k3) respectively.

In the second case, the remapped momenta ˆ̄4 and ˆ̄5 present in the reduced matrix-element

squared multiplying F 0
3 (4g, 5g; 3g), are given by (p4 − k3) and p5 respectively.

Finally, for the 1Q||4̂g limit, we see that

dσ̂gg→QQ̄g

1Q||4̂g−→ g6

(
N2

c − 1

Nc

)2 Pqq̄←G(z, µ2
qg)

s14

×
[
N2

c

(
|M0

4((4̂ − 1)Q̄, 5̂g, 3g, 2Q̄)|2 + |M0
4((4̂ − 1)Q̄, 3g, 5̂g, 2Q̄)|2

)

−|M0
4((4̂ − 1)Q̄, 3γ , 5̂γ , 2Q̄)|2

]
dΦ2(k2Q̄, k3g; p(4−1)Q̄, p5g)J

(2)
2 (k2, k3) (7.19)

= g2 CF

Pqq̄←G(z, µ2
qg)

s14
|M0

4 ((4̂ − 1)Q̄, 2Q̄, 3g, 5̂g)|2

×dΦ2(k2Q̄, k3g; p(4−1)Q̄, p5g)J
(2)
2 (k2, k3).

Again, the relation between the full matrix element squared and the partial amplitudes

given by eq. (7.16) has been used. in this case the final state quark denoted by 1Q and the

gluon denoted by 4g have been crossed to the initial state.

Since colour decomposition does not distinguish between initial and final state coloured

particles, this crossings can be safely done with the relation still being true. The terms

in eq. (7.14) that contribute to this limit are those involving A0
3(4g; 1Q, 2Q̄) and the cor-

responding remapped momenta appearing in the reduced squared amplitude multiplying

this antenna become k(f12) → k2 and pˆ̄4
→ (p4 − k1).

These same verifications have been performed on all collinear and quasi-collinear

limits of all subtraction terms listed in this section providing us with strong consistency

check on our results for the subtraction terms required to compute the cross section for

pp → tt̄ at NLO.

7.2 tt̄ + jet production at LHC

The real emission correction to the production of a massive quark-antiquark pair in asso-

ciation with a jet in a hadronic collision is given by,

dσR =

∫
dξ1

ξ1

dξ2

ξ2

{∑

q

[
fq(ξ1)fq̄(ξ2)dσ̂qq̄→QQ̄gg + fq(ξ1)fg(ξ2)dσ̂qg→QQ̄qg

+fq̄(ξ1)fg(ξ2)dσ̂q̄g→QQ̄q̄g + fq(ξ1)fq̄(ξ2)dσ̂qq̄→QQ̄qq̄

+fq(ξ1)fq(ξ2)dσ̂qq→QQ̄qq + fq̄(ξ1)fq̄(ξ2)dσ̂q̄q̄→QQ̄q̄q̄

]
(7.20)

+
∑

q 6=q′

[
fq(ξ1)fq(ξ2)dσ̂qq̄→QQ̄q′q̄′ + fq(ξ1)fq′(ξ2)dσ̂qq′→QQ̄qq′

+fq̄(ξq)fq̄′(ξ2)dσ̂q̄q̄′→QQ̄q̄q̄′ + fq(ξ1)fq̄′(ξ2)dσ̂qq̄′→QQ̄qq̄′
]

+fg(ξ1)fg(ξ2)
(
dσ̂gg→QQ̄gg + dσ̂gg→QQ̄qq̄

)}
,

– 49 –



J
H
E
P
0
4
(
2
0
1
1
)
0
6
3

with the partonic cross sections given by

dσ̂qq̄→QQ̄gg = dΦ4(kQ, kQ̄, kg1 , kg2 ; pq, pq̄)|M0
qq̄→QQ̄gg|2J

(4)
3 (kQ, kQ̄, kg1 , kg2) (7.21)

dσ̂qg→QQ̄qg = dΦ4(kQ, kQ̄, kg, kq; pq, pg)|M0
qg→QQ̄qg|2J

(4)
3 (kQ, kQ̄, kq, kg) (7.22)

dσ̂qq̄→QQ̄q′ q̄′ = dΦ4(kQ, kQ̄, kq′ , kq̄′ ; pq, pq̄)|M0
qq̄→QQ̄q′q̄′ |2J

(4)
3 (kQ, kQ̄, kq′ , kq̄′) (7.23)

dσ̂qq′→QQ̄qq′ = dΦ4(kQ, kQ̄, kq, kq′ ; pq, pq′)|M0
qq′→QQ̄qq′ |2J

(4)
3 (kQ, kQ̄, kq, kq′) (7.24)

dσ̂gg→QQ̄gg = dΦ4(kQ, kQ̄, kg1 , kg2 ; pg3 , pg4)|M0
gg→QQ̄gg|2J

(4)
3 (kQ, kQ̄, kg1 , kg2) (7.25)

dσ̂gg→QQ̄qq̄ = dΦ4(kQ, kQ̄, kq, kq̄; pg1, pg2)|M0
gg→QQ̄qq̄|2J

(4)
3 (kQ, kQ̄, kq, kq̄). (7.26)

The jet functions appearing in the partonic cross section are all of the type J
(4)
3 and

correspond to the selection criteria of 3-jet events. Out of four partons, from which two are

a QQ̄ pair, an event with three jets is build. From these 3-jets, one jet is made of massless

partons and two other jets have each a heavy quark Q or a heavy antiquark Q̄ in them. In

the corresponding subtraction terms, the jet functions are of the type J
(3)
3 and those depend

only on the hard final-state momenta appearing in the reduced matrix-element squared.

In order to obtain the colour decomposition of the matrix element squared for the

partonic processes defined above and given in eq. (7.26), we will follow the same strategy

as for tt̄ production. We will use the colour decomposition of unphysical processes and

then consider appropriate crossings. For tt̄ +1 jet production the unphysical processes to

be considered are 0 → QQ̄qq̄q′q̄′, 0 → QQ̄qq̄gg and 0 → QQ̄gggg.

However, the presence of one additional parton in the final state introduces a few

difficulties. In the first place, the number of partial amplitudes as well as the number of

unresolved limits to subtract increases. Also, identical quark flavour contributions must be

considered. But most importantly, in the contributions related to the partonic processes

derived from 0 → QQ̄qq̄gg and 0 → QQ̄gggg, the colour decomposition of the partonic

amplitudes squared leads to interferences between partial amplitudes with different colour

orderings that cannot be removed using any decoupling identities. Those require subtrac-

tion in an uncommon way in the antenna formalism, which we shall explain below.

7.2.1 Interference terms

The subtraction of infrared singularities in a colour ordered squared amplitude is easy

within the antenna formalism: a suitable antenna function multiplied by a reduced squared

matrix element with its momenta properly remapped accomplishes the task. However, this

is not the case for interferences between partial amplitudes with different coulour orderings.

Those interference terms which are most generally of the form

M0
n+1(. . . , a, s, b, . . .)M0

n+1(. . . , c, s, d, . . .)†

with gluon s colour connected to partons a and b in one amplitude and colour-connected

to partons c and d in the other amplitude, lead to soft singularities when integrated over

the phase space. Those singular behaviours cannot be straightforwardly subtracted with
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just one suitable antenna function multiplied by a reduced squared matrix element with

remapped momenta.

In order to understand how to subtract the soft singularities in these interferences

terms, we appeal to the factorisation properties of colour ordered matrix elements at the

amplitude level. Quite generally, when a gluon s with helicity λ becomes soft between

partons a and b, the colour ordered amplitude factorises [112, 113] as

M0
n+1(. . . , a, sλ, b, . . .)

ks→0−→ ǫλ(ps) · [Ja(ps) − Jb(ps)] M0
n(. . . , a, b, . . .), (7.27)

where ǫλ(ps) is the polarisation vector of the soft gluon, and Jµ
a (ps) is the soft gluon current,

given by

Jµ
a (ps) =

pµ
a√

2 pa · ps

. (7.28)

Eq. (7.27) holds in d dimensions and is absolutely general: it does not depend on the

identity of partons a and b (they can be either gluons, massive quarks or massless quarks)

nor on their helicities. Therefore, summing over the helicities of the soft gluon, we find

that the interference of two partial amplitudes with different colour orderings factorises in

the soft limit, ks → 0, as

∑

λ=±

M0
n+1(. . . , a, sλ, b, . . .)M0

n+1(. . . , c, sλ, d, . . .)†

ks→0−→
(
∑

λ=±

ǫµ
λ(ps)ǫ

ν
−λ(ps)

)
[Ja(ps) − Jb(ps)]µ[Jc(ps) − Jd(ps)]ν (7.29)

×Mn(. . . , a, b, . . .)Mn(. . . , c, d, . . .)†.

Since colour ordered amplitudes are gauge invariant, we can replace

∑

λ=±

ǫµ
λ(ps)ǫ

ν
−λ(ps) → −gµν (7.30)

and thus obtain the following limit for the interference term:

M0
n+1(. . . , a, s, b, . . .)M0

n+1(. . . , c, s, d, . . .)† (7.31)

ks→0−→
(

sad

sassds
+

sbc

sbsscs
− sac

sasscs
− sbd

sbssds

)
M0

n(. . . , a, b, . . .)M0
n(. . . , c, d, . . .)†.

In this soft limit, we see that the interference term given by

M0
n+1(. . . , a, s, b, . . .)M0

n+1(. . . , c, s, d, . . .)†

factorises into a difference of four (half) eikonal factors times the interference of the reduced

(i.e where the soft gluon is absent) interference term given by

M0
n(. . . , a, b, . . .)M0

n(. . . , c, d, . . .)†.
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Each of these half eikonal factors can be reproduced by a single antenna function. The

soft singularities of an interference term like M0
n+1(. . . , a, s, b, . . .)M0

n+1(. . . , c, s, d, . . .)† for

the case where a, b, c and d are all different can therefore be subtracted with

1

2
X0

3 (a, s, d)M0
n,1(. . . , ãs, b̃s, . . .)M0

n,1(. . . , c̃s, d̃s, . . .)†

+
1

2
X0

3 (b, s, c)M0
n,2(. . . , ãs, b̃s, . . .)M0

n,2(. . . , c̃s, d̃s, . . .)† (7.32)

−1

2
X0

3 (a, s, c)M0
n,3(. . . , ãs, b̃s, . . .)M0

n,3(. . . , c̃s, d̃s, . . .)†

−1

2
X0

3 (b, s, d)M0
n,4(. . . , ãs, b̃s, . . .)M0

n,4(. . . , c̃s, d̃s, . . .)†.

In this equation, each of the antenna functions denoted as X0
3 can be either final-final,

initial-final or initial-initial, depending on whether the partons a, b, c and d are in the ini-

tial or final state, and they can be either massive or massless depending on whether the hard

radiators are massive or massless. The absence of mass terms in eq. (7.31) is respected by

eq. (7.32) even when one of the hard radiators (and therefore all the antenna functions in-

volving that parton) is massive: In the soft limit, although a massive antenna yields a mas-

sive soft eikonal factor including explicitly mass terms, as seen in section 4, in the combina-

tion of massive antennae required in eq. (7.32) those mass terms cancel amongst each other.

In eq. (7.32), the different labels on the reduced matrix elements denoted by M(0)
n,i

do not mean that the matrix elements themselves are different, but that the momentum

mapping is, in principle, different for each term. The remapping in each case is done in

accordance with the type of antenna function involved.

A very important feature about this way of treating the interference terms is that not

only soft singularities are subtracted with eq. (7.32), as it was originally intended, but

also no “extra” collinear singularities are introduced by this subtraction term itself. The

collinear limits of gluon s collinear with partons a, b, c and d are correctly dealt with.

Indeed, if a and b are different from c and d, the interference term does not contain any

collinear singularities. It has square-root singularities that do not give rise to ǫ poles upon

integration. In this case, the subtraction terms in eq. (7.32) do not contain any collinear

singularities either: all the collinear limits introduced by the first two terms, are subtracted

by the last two. And, in the case where two partons are equal in eq. (7.29), for example,

when a and c are the same, the interference term develops a collinear singularity when a||s.
In the limit where s becomes soft, setting c = a in eq. (7.29) gives

M0
n+1(. . . , a, s, b, . . .)M0

n+1(. . . , a, s, d, . . .)† (7.33)

ks→0−→
(

sad

sassds
+

sab

sassbs
− sbd

sbssds
− m2

a

s2
as

)
M0

n(. . . , a, b, . . .)M0
n(. . . , c, d, . . .)†.

The corresponding subtraction terms are

1

2
X0

3 (a, s, d)M0
n,1(. . . , ãs, b̃s, . . .)M0

n,1(. . . , ãs, d̃s, . . .)†

+
1

2
X0

3 (a, s, b)M0
n,2(. . . , ãs, b̃s, . . .)M0

n,2(. . . , ãs, d̃s, . . .)† (7.34)
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−1

2
X0

3 (b, s, d)M0
n,3(. . . , ãs, b̃s, . . .)M0

n,3(. . . , ãs, d̃s, . . .)†,

from where it can be seen that these combination of subtraction terms also subtracts the

a||s (quasi)-collinear limit, in addition to the soft s limit.

Taking this construction of the subtraction terms required for the interference terms of

massive amplitudes into account, let us now present our results for the real contributions

and their corresponding subtraction terms for all partonic processes involved in tt̄+jet

production at NLO. We start with processes involving only quarks and derived from

0 → QQ̄qq̄q′q̄′, which is the easiest case since only colour-ordered matrix-element squared

are involved.

7.2.2 Processes derived from 0 → QQ̄qq̄q′q̄′

We choose to separate the colour decompositions of the real contributions related to pro-

cesses derived from 0 → QQ̄qq̄q′q̄ with and without identical quarks explicitly.

The colour decomposition for the unphysical partonic process 0 → QQ̄qq̄q′q̄′ in the

non-indentical flavour case (q 6= q′) is given by,

M0
6 (1Q, 2Q̄, 3q, 4q̄, 5q′ , 6q̄′) = g4

[
δi1,i4δi3,i6δi5,i2M0

6(1Q, 4q̄; ; 3q , 6q̄′ ; 5q′ , 2Q̄)

+δi1,i6δi3,i2δi5,i4M0
6(1Q, 6q̄′ ; ; 3q, 2Q̄; ; 5q′ , 4q̄)

− 1

Nc
δi1,i4δi3,i2δi5,i6M0

6(1Q, 4q̄; ; 3q, 2Q̄; ; 5q′ , 6q̄′)

− 1

Nc
δi1,i6δi3,i4δi5,i2M0

6(1Q, 6q̄′ ; ; 3q, 4q̄; ; 5q′ , 2Q̄) (7.35)

− 1

Nc
δi1,i2δi3,i6δi5,i4M0

6(1Q, 2Q̄; ; 3q , 6q̄′ ; ; 5q′ , 4q̄)

+
1

N2
c

δi1,i2δi3,i4δi5,i6M0
6(1Q, 2Q̄; ; 3q, 4q̄; ; 5q′ , 6q̄′)

]
.

Squaring, and using the fact that the partial amplitudes satisfy

M0
6(1Q, 2Q̄; 3q, 4q̄; 5q′ , 6q̄′)

= M0
6(1Q, 4q̄; ; 3q, 6q̄′ ; ; 5q′ , 2Q̄) + M0

6(1Q, 6q̄′ ; ; 3q, 2Q̄; ; 5q′ , 4q̄) (7.36)

=
1

2

(
M0

6(1Q, 4q̄; ; 3q, 2Q̄; 5q′ , 6q̄′) + M0
6(1Q, 6q̄′ ; ; 3q, 4q̄; 5q′ , 2Q̄) + M0

6(1Q, 2Q̄; ; 3q, 6q̄′ ; 5q′ , 4q̄)
)

gives

|M0
6 (1Q, 2Q̄, 3q, 4q̄, 5q′ , 6q̄′)|2 = g8(N2

c − 1)
{

Nc

(
|M0

6(1Q, 4q̄; ; 3q , 6q̄′ ; ; 5q′ , 2Q̄)|2 + |M0
6(1Q, 6q̄′ ; ; 3q, 2Q̄; ; 5q′ , 4q̄)|2

)

+
1

Nc

(
|M0

6(1Q, 4q̄; ; 3q, 2Q̄; ; 5q′ , 6q̄′)|2 + |M0
6(1Q, 6q̄′ ; ; 3q , 4q̄; ; 5q′ , 2Q̄)|2 (7.37)

+|M0
6(1Q, 2Q̄; ; 3q, 6q̄′ ; ; 5q′ , 4q̄)|2 − 3|M0

6(1Q, 2Q̄; ; 3q , 4q̄; ; 5q′ , 6q̄′)|2
)}

which represents the colour decomposition for squared amplitude of the unphysical process

0 → QQ̄qq̄q′q̄′ (with q and q′ of different flavour). It has no interference terms. Depending
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on which partons are crossed in eq. (7.37) a sum over final state quark flavours might need

to be performed. When a quark-antiquark pair of the same flavour is crossed to the initial

state resulting in the the colour ordered squared amplitude for the process qq̄ → QQ̄q′q̄′,

the result must be multiplied2 by (NF − 1).

The identical flavour case is obtained taking the difference of two colour-ordered non-

identical cases. At the amplitude level, we use the following relation

M0
6 (1Q, 2Q̄, 3q, 4q̄, 5q, 6q̄) = M0

6 (1Q, 2Q̄, 3q, 4q̄, 5q′ , 6q̄′) − M0
6 (1Q, 2Q̄, 3q, 6q̄, 5q′ , 4q̄′), (7.38)

which, upon squaring, gives the colour decomposition of the matrix-element squared for

the identical flavour case,

|M0
6 (1Q, 2Q̄, 3q, 4q̄, 5q, 6q̄)|2 = g8(N2

c − 1)

×
{

Nc

(
|M0

6(1Q, 4q̄; ; 3q , 6q̄′ ; ; 5q′ , 2Q̄)|2 + |M0
6(1Q, 6q̄; ; 3q , 4q̄′ ; ; 5q′ , 2Q̄)|2

+|M0
6(1Q, 6q̄′ ; ; 3q, 2Q̄; ; 5q′ , 4q̄)|2 + |M0

6(1Q, 4q̄′ ; ; 3q , 2Q̄; ; 5q′ , 6q̄)|2
)

+2Re(M0
6(1Q, 4q̄′ ; ; 3q, 2Q̄; ; 5q′ , 6q̄)M0

6(1Q, 4q̄; ; 3q , 2Q̄; ; 5q′ , 6q̄′)
†)

+2Re(M0
6(1Q, 4q̄′ ; ; 3q, 6q̄; ; 5q′ , 2Q̄)M0

6(1Q, 4q̄; ; 3q , 6q̄′ ; ; 5q′ , 2Q̄)†)

+2Re(M0
6(1Q, 6q̄; ; 3q, 2Q̄; ; 5q′ , 4q̄′)M0

6(1Q, 6q̄′ ; ; 3q, 2Q̄; ; 5q′ , 4q̄)
†)

+2Re(M0
6(1Q, 6q̄; ; 3q, 4q̄′ ; ; 5q′ , 2Q̄)M0

6(1Q, 6q̄′ ; ; 3q, 4q̄; ; 5q′ , 2Q̄)†)

−2Re(M0
6(1Q, 2Q̄; ; 3q, 6q̄; ; 5q′ , 4q̄′)M0

6(1Q, 2Q̄; ; 3q, 4q̄; ; 5q′ , 6q̄′)
†) (7.39)

+
1

Nc

(
|M0

6(1Q, 4q̄; ; 3q, 2Q̄; ; 5q′ , 6q̄′)|2 + |M0
6(1Q, 6q̄; ; 3q, 2Q̄; ; 5q′ , 4q̄′)|2

+|M0
6(1Q, 6q̄′ ; ; 3q, 4q̄; ; 5q′ , 2Q̄)|2 + |M0

6(1Q, 4q̄′ ; ; 3q , 6q̄; ; 5q′ , 2Q̄)|2

+|M0
6(1Q, 2Q̄; ; 3q , 6q̄′ ; ; 5q′ , 4q̄)|2 + |M0

6(1Q, 2Q̄; ; 3q , 4q̄′ ; ; 5q′ , 6q̄)|2

−3|M0
6(1Q, 2Q̄; ; 3q, 4q̄; ; 5q′ , 6q̄′)|2 − 3|M0

6(1Q, 2Q̄; ; 3q , 6q̄; ; 5q′ , 4q̄′)|2
)

− 1

N2
c

(
6Re(M0

6(1Q, 2Q̄; ; 3q, 6q̄; ; 5q′ , 4q̄′)M0
6(1Q, 2Q̄; ; 3q, 4q̄; ; 5q′ , 6q̄′)

†)

−2Re(M0
6(1Q, 2Q̄; ; 3q , 6q̄; ; 5q′ , 4q̄′)M0

6(1Q, 2Q̄; ; 3q , 6q̄′ ; ; 5q′ , 4q̄)
†)

−2Re(M0
6(1Q, 2Q̄; ; 3q , 4q̄′ ; ; 5q′ , 6q̄)M0

6(1Q, 2Q̄; ; 3q , 4q̄; ; 5q′ , 6q̄′)
†)

)}
.

The interference terms present in eq. (7.39) lead only to finite contributions when

integrated over the phase space. Indeed, they lead to square root singularities which do

not need subtraction.

Furthermore, apart from those interference terms, the identical-quark flavour contribu-

tions involve all six colour-ordered matrix element squared appearing in the non-identical

flavour case plus additional ones. In all cases, identical or non-identical quark and in all

2Note that the result needs to be multiplied by (NF − 1) and not NF since we are explicitly separating

the identical flavour contributions from the non-identical ones.
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crossings required, the only singular behaviours which have to be captured by the anten-

nae in the subtraction terms are final-final and initial-final collinear singularities between

identical-flavour massless quark-(anti)quarks. Due to the presence of a massive radiator

in the final state, only one antenna, the quark-gluon massive antenna E0
3 is required in

final-final and initial-final configurations.

After the crossing of 3q and 4q̄ to the initial state, in the non-identical matrix element

squared for the process 0 → QQ̄qq̄q′q̄′ given in eq. (7.37) we obtain the colour ordered

matrix element squared for qq̄ → QQ̄q′q̄′. Its subtraction term is,

dσ̂S
qq̄→QQ̄q′ q̄′ =

g8(N2
c − 1)(NF − 1)

2
dΦ4(k1Q, k2Q̄, k5q′ , k6q̄′ ; p3q̄, p4q)

×
{

Nc

[
E0

3(1Q, 5q′ , 6q̄′)
(
|M0

5((1̃5)Q, 4̂q; ; 3̂q̄, (5̃6)g, 2Q̄)|2

+|M0
5((1̃5)Q, (5̃6)g, 4̂q; ; 3̂q̄, 2Q̄)|2

)
J

(3)
3 (kf15, k2, kf56)

+E0
3(2Q̄, 5q′ , 6q̄′)

(
|M0

5(1Q, 4̂q; ; 3̂q̄, (5̃6)g, (2̃5)Q̄)|2

+|M0
5(1Q, (5̃6)g, 4̂q; ; 3̂q̄, (2̃5)Q̄)|2

)
J

(3)
3 (k1, kf25, kf56)

]

+
1

Nc

[
E0

3(1Q, 5q′ , 6q̄′)
(
|M0

5((1̃5)Q, 2Q̄; ; 3̂q̄, (5̃6)g, 4̂q)|2

+|M0
5((1̃5)Q, (5̃6)g, 2Q̄; ; 3̂q̄, 4̂q)|2 (7.40)

−2|M0
5((1̃5)Q, 2Q̄, 3̂q̄, 4̂q, (5̃6)γ)|2

)
J

(3)
3 (kf15, k2, kf56)

+E0
3(2Q̄, 5q′ , 6q̄′)

(
|M0

5(1Q, (2̃5)Q̄; ; 3̂q̄, (5̃6)g, 4̂q)|2

+|M0
5(1Q, (5̃6)g, (2̃5)Q̄; ; 3̂q̄, 4̂q)|2

−2|M0
5(1Q, (2̃5)Q̄, 3̂q̄, 4̂q, (5̃6)γ)|2

)
J

(3)
3 (k1, kf25, kf56)

]}
.

If, instead, 4q̄ and 6q̄′ are crossed in eq. (7.37), we obtain the squared matrix element

for the process qq′ → QQ̄qq′. The corresponding subtraction term reads

dσ̂S
qq′→QQ̄qq′ =

g8(N2
c − 1)

2
dΦ4(k1Q, k2Q̄, k3q, k5q′ ; p4q, p6q′)

×
{

Nc

[
E0

3(4q; 3q, 1Q)
(
|M0

5((1̃3)Q, 6̂q′ ; ; 5q′ ,
ˆ̄4g, 2Q̄)|2

+|M0
5((1̃3)Q, ˆ̄4g, 6̂q′ ; ; 5q′ , 2Q̄)|2

)
J

(3)
3 (kf13, k2, k5)

+E0
3(4q; 3q, 2Q̄)

(
|M0

5(1Q, 6̂q′ ; ; 5q′ ,
ˆ̄4g, (2̃3)Q̄)|2

+|M0
5(1Q, ˆ̄4g, 6̂q′ ; ; 5q′ , (2̃3)Q̄)|2

)
J

(3)
3 (k1, kf23, k5)

+E0
3(6q′ ; 5q′ , 1Q)

(
|M0

5((1̃5)Q, 4̂q; ; 3q,
ˆ̄6g, 2Q̄)|2

+|M0
5((1̃5)Q, ˆ̄6g, 4̂q; ; 3q , 2Q̄)|2

)
J

(3)
3 (kf15, k2, k3)

+E0
3(6q′ ; 5q′ , 2Q̄)

(
|M0

5(1Q, 4̂q; ; 3q ,
ˆ̄6g, (2̃5)Q̄)|2
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+|M0
5(1Q, ˆ̄6g, 4̂q; ; 3q , (2̃5)Q̄)|2

)
J

(3)
3 (k1, kf25, k3)

]

+
1

Nc

[
E0

3(4q; 3q, 1Q)
(
|M0

5((1̃3)Q, 2Q̄; ; 5q′ ,
ˆ̄4g, 6̂q′)|2 (7.41)

+|M0
5((1̃3)Q, ˆ̄4g, 2Q̄; ; 5q′ , 6̂q′)|2

−2|M0
5((1̃3)Q, 2Q̄, 5q′ , 6̂q′ ,

ˆ̄4γ)|2
)

J
(3)
3 (kf13, k2, k5)

+E0
3(4q; 3q, 2Q̄)

(
|M0

5(1Q, (2̃3)Q̄; ; 5q′ ,
ˆ̄4g, 6̂q′)|2

+|M0
5(1Q, ˆ̄4g, (2̃3)Q̄; ; 5q′ , 6̂q′)|2

−2|M0
5(1Q, (2̃3)Q̄, 5q′ , 6̂q′ ,

ˆ̄4γ)|2
)

J
(3)
3 (k1, kf23, k5)

+E0
3(6q′ ; 5q′ , 1Q)

(
|M0

5((1̃5)Q, 2Q̄; ; 3q ,
ˆ̄6g, 4̂q)|2

+|M0
5((1̃5)Q, ˆ̄6g, 2Q̄; ; 3q, 4̂q)|2

−2|M0
5((1̃5)Q, 2Q̄, 3q, 4̂q,

ˆ̄6γ)|2
)

J
(3)
3 (kf15, k2, k3)

+E0
3(6q′ ; 5q′ , 2Q̄)

(
|M0

5(1Q, (2̃5)Q̄; ; 3q ,
ˆ̄6g, 4̂q)|2

+|M0
5(1Q, ˆ̄6g, (2̃5)Q̄; ; 3q, 4̂q)|2

+|M0
5(1Q, (2̃5)Q̄, 3q, 4̂q,

ˆ̄6γ)|2
)

J
(3)
3 (k1, kf25, k3)

]}
.

For the identical flavour-case, the same two crossings, 3q and 4q̄ on one hand and the

crossing of 4q̄ and 6q̄ on the other hand need to be considered. As the real matrix-element

in the identical quark case are given by those in the non-identical quark case plus

additional terms, similarly the subtraction terms for the identical-quark case are obtained

by adding to the subtraction terms valid for the non-identical case additional subtraction

terms related to the new colour ordered matrix-element squared appearing only in the

identical-flavour case only and given in eq. (7.39).

If 3q and 4q̄ are crossed in the identical flavour squared matrix element given in

eq. (7.39), the squared matrix element for qq̄ → QQ̄qq̄ is obtained in a colour ordered

way. The subtraction term for this process is,

dσ̂S
qq̄→QQ̄qq̄ =

g8(N2
c − 1)

2
dΦ4(k1Q, k2Q̄, k5q, k6q̄; p3q̄, p4q)

×
{

Nc

[
E0

3(1Q, 5q, 6q̄)
(
|M0

5((1̃5)Q, 4̂q; ; 3̂q̄ , (5̃6)g, 2Q̄)|2

+|M0
5((1̃5)Q, (5̃6)g, 4̂q; ; 3̂q̄ , 2Q̄)|2

)
J

(3)
3 (kf15, k2, kf56)

+E0
3(2Q̄, 5q, 6q̄)

(
|M0

5(1Q, 4̂q; ; 3̂q̄ , (5̃6)g, (2̃5)Q̄)|2

+|M0
5(1Q, (5̃6)g, 4̂q; ; 3̂q̄, (2̃5)Q̄)|2

)
J

(3)
3 (k1, kf25, kf56)

+E0
3(4q; 5q, 1Q)

(
|M0

5((1̃5)Q, 6q̄; ; 3̂q̄,
ˆ̄4g, 2Q̄)|2

+|M0
5((1̃5)Q, ˆ̄4g, 6q̄; ; 3̂q̄, 2Q̄)|2

)
J

(3)
3 (kf15, k2, k6)
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+E0
3(4q; 5q, 2Q̄)

(
|M0

5(1Q, 6q̄; ; 3̂q̄ ,
ˆ̄4g, (2̃5)Q̄)|2

+|M0
5(1Q, ˆ̄4g, 6q̄; ; 3̂q̄, (2̃5)Q̄)|2

)
J

(3)
3 (k1, kf25, k6)

+E0
3(3q̄; 6q̄, 1Q)

(
|M0

5((1̃6)Q, 4̂q; ; 5q,
ˆ̄3g, 2Q̄)|2

+|M0
5((1̃6)Q, ˆ̄3g, 4̂q; ; 5q, 2Q̄)|2

)
J

(3)
3 (kf16, k2, k5)

+E0
3(3q̄; 6q̄, 2Q̄)

(
|M0

5(1Q, 4̂q; ; 5q ,
ˆ̄3g, (2̃6)Q̄)|2

+|M0
5(1Q, ˆ̄3g, 4̂q; ; 5q, (2̃6)Q̄)|2

)
J

(3)
3 (k1, kf26, k5)

]

+
1

Nc

[
E0

3(1Q, 5q, 6q̄)
(
|M0

5((1̃5)Q, 2Q̄; ; 3̂q̄ , (5̃6)g, 4̂q)|2 (7.42)

+|M0
5((1̃5)Q, (5̃6)g, 2Q̄; ; 3̂q̄, 4̂q)|2

−2|M0
5((1̃5)Q, 2Q̄, 3̂q̄, 4̂q, (5̃6)γ)|2

)
J

(3)
3 (kf15, k2, kf56)

+E0
3(2Q̄, 5q, 6q̄)

(
|M0

5(1Q, (2̃5)Q̄; ; 3̂q̄ , (5̃6)g, 4̂q)|2

+|M0
5(1Q, (5̃6)g, (2̃5)Q̄; ; 3̂q̄, 4̂q)|2

−2|M0
5(1Q, (2̃5)Q̄, 3̂q̄, 4̂q, (5̃6)γ)|2

)
J

(3)
3 (k1, kf25, kf56)

+E0
3(4q; 5q, 1Q)

(
|M0

5((1̃5)Q, 2Q̄; ; 3̂q̄ ,
ˆ̄4g, 6q̄)|2

+|M0
5((1̃5)Q, ˆ̄4g, 2Q̄; ; 3̂q̄, 6q̄)|2

−2|M0
5((1̃5)Q, 2Q̄, 3̂q̄, 6q̄,

ˆ̄4γ)|2
)

J
(3)
3 (kf15, k2, k6)

+E0
3(4q; 5q, 2Q̄)

(
|M0

5(1Q, (2̃5)Q̄; ; 3̂q̄ ,
ˆ̄4g, 6q̄)|2

+|M0
5(1Q, ˆ̄4g, (2̃5)Q̄; ; 3̂q̄, 6q̄)|2

−2|M0
5(1Q, (2̃5)Q̄, 3̂q̄, 6q̄,

ˆ̄4γ)|2
)

J
(3)
3 (k1, kf25, k6)

+E0
3(3q̄; 6q̄, 1Q)

(
|M0

5((1̃6)Q, 2Q̄; ; 5q ,
ˆ̄3g, 4̂q)|2

+|M0
5((1̃6)Q, ˆ̄3g, 2Q̄; ; 5q, 4̂q̄)|2

−2|M0
5((1̃6)Q, 2Q̄, 5q, 4̂q,

ˆ̄3γ)|2
)

J
(3)
3 (kf16, k2, k5)

+E0
3(3q̄; 6q̄, 2Q̄)

(
|M0

5(1Q, (2̃6)Q̄; ; 5q ,
ˆ̄3g, 4̂q)|2

+|M0
5(1Q, ˆ̄3g, (2̃6)Q̄; ; 5q, 4̂q)|2

−2|M0
5(1Q, (2̃6)Q̄, 5q, 4̂q,

ˆ̄3γ)|2
)

J
(3)
3 (k1, kf26, k5)

]}
.

The squared matrix element for qq → QQ̄qq in terms of colour ordered partial ampli-

tudes is obtained by crossing 4q̄ and 6q̄ in eq. (7.39). In this case, the subtraction term reads

dσ̂S
qq→QQ̄qq =

g8(N2
c − 1)

2
dΦ4(k1Q, k2Q̄, k3q, k5q ; p4q, p6q)

×
{

Nc

[
E0

3(4q; 3q, 1Q)
(
|M0

5((1̃3)Q, 6̂q; ; 5q,
ˆ̄4g, 2Q̄)|2
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+|M0
5((1̃3)Q, ˆ̄4g, 6̂q; ; 5q , 2Q̄)|2

)
J

(3)
3 (kf13, k2, k5)

+E0
3(4q; 3q, 2Q̄)

(
|M0

5(1Q, 6̂q; ; 5q,
ˆ̄4g, (2̃3)Q̄)|2

+|M0
5(1Q, ˆ̄4g, 6̂q; ; 5q , (2̃3)Q̄)|2

)
J

(3)
3 (k1, kf23, k5)

+E0
3(4q; 5q, 1Q)

(
|M0

5((1̃5)Q, 6̂q; ; 3q,
ˆ̄4g, 2Q̄)|2

+|M0
5((1̃5)Q, ˆ̄4g, 6̂q; ; 3q , 2Q̄)|2

)
J

(3)
3 (kf15, k2, k3)

+E0
3(4q; 5q, 2Q̄)

(
|M0

5(1Q, 6̂q; ; 3q,
ˆ̄4g, (2̃5)Q̄)|2

+|M0
5(1Q, ˆ̄4g, 6̂q; ; 3q , (2̃5)Q̄)|2

)
J

(3)
3 (k1, kf25, k3)

+E0
3(6q; 5q, 1Q)

(
|M0

5((1̃5)Q, 4̂q; ; 3q,
ˆ̄6g, 2Q̄)|2

+|M0
5((1̃5)Q, ˆ̄6g, 4̂q; ; 3q , 2Q̄)|2

)
J

(3)
3 (kf15, k2, k3)

+E0
3(6q; 3q, 1Q)

(
|M0

5((1̃3)Q, 4̂q; ; 5q,
ˆ̄6g, 2Q̄)|2

+|M0
5((1̃3)Q, ˆ̄6g, 4̂q; ; 5q , 2Q̄)|2

)
J

(3)
3 (kf13, k2, k5)

+E0
3(6q; 5q, 2Q̄)

(
|M0

5(1Q, 4̂q; ; 3q, ˆ̄6g, (2̃5)Q̄)|2

+|M0
5(1Q, ˆ̄6g, 4̂q; ; 3q , (2̃5)Q̄)|2

)
J

(3)
3 (k1, kf25, k3)

]

+E0
3(6q; 3q, 2Q̄)

(
|M0

5(1Q, 4̂q; ; 5q,
ˆ̄6g, (2̃3)Q̄)|2

+|M0
5(1Q, ˆ̄6g, 4̂q; ; 5q , (2̃3)Q̄)|2

)
J

(3)
3 (k1, kf23, k5)

]

+
1

Nc

[
E0

3(4q; 3q, 1Q)
(
|M0

5((1̃3)Q, 2Q̄; ; 5q ,
ˆ̄4g, 6̂q)|2 (7.43)

+|M0
5((1̃3)Q, ˆ̄4g, 2Q̄; ; 5q, 6̂q)|2

−2|M0
5((1̃3)Q, 2Q̄, 5q, 6̂q,

ˆ̄4γ)|2
)

J
(3)
3 (kf13, k2, k5)

+E0
3(4q; 3q, 2Q̄)

(
|M0

5(1Q, (2̃3)Q̄; ; 5q,
ˆ̄4g, 6̂q)|2

+|M0
5(1Q, ˆ̄4g, (2̃3)Q̄; ; 5q, 6̂q)|2

−2|M0
5(1Q, (2̃3)Q̄, 5q, 6̂q,

ˆ̄4γ)|2
)

J
(3)
3 (k1, kf23, k5)

+E0
3(4q; 5q, 1Q)

(
|M0

5((1̃5)Q, 2Q̄; ; 3q,
ˆ̄4g, 6̂q)|2

+|M0
5((1̃5)Q, ˆ̄4g, 2Q̄; ; 3q, 6̂q)|2

−2|M0
5((1̃5)Q, 2Q̄, 3q, 6̂q,

ˆ̄4γ)|2
)

J
(3)
3 (kf15, k2, k3)

+E0
3(4q; 5q, 2Q̄)

(
|M0

5(1Q, (2̃5)Q̄; ; 3q,
ˆ̄4g, 6̂q)|2

+|M0
5(1Q, ˆ̄4g, (2̃5)Q̄; ; 3q, 6̂q)|2

−2|M0
5(1Q, (2̃5)Q̄, 3q, 6̂q,

ˆ̄4γ)|2
)

J
(3)
3 (k1, kf25, k3)

– 58 –



J
H
E
P
0
4
(
2
0
1
1
)
0
6
3

+E0
3(6q; 5q, 1Q)

(
|M0

5((1̃5)Q, 2Q̄; ; 3q,
ˆ̄6g, 4̂q)|2

+|M0
5((1̃5)Q, ˆ̄6g, 2Q̄; ; 3q, 4̂q)|2

−2|M0
5((1̃5)Q, 2Q̄, 3q, 4̂q,

ˆ̄6γ)|2
)

J
(3)
3 (kf15, k2, k3)

+E0
3(6q; 5q, 2Q̄)

(
|M0

5(1Q, (2̃5)Q̄; ; 3q,
ˆ̄6g, 4̂q)|2

+|M0
5(1Q, ˆ̄6g, (2̃5)Q̄; ; 3q, 4̂q)|2

−2|M0
5(1Q, (2̃5)Q̄, 3q, 4̂q,

ˆ̄6γ)|2
)

J
(3)
3 (k1, kf25, k3)

+E0
3(6q; 3q, 1Q)

(
|M0

5((1̃3)Q, 2Q̄; ; 5q,
ˆ̄6g, 4̂q)|2

+|M0
5((1̃3)Q, ˆ̄6g, 2Q̄; ; 5q, 4̂q)|2

−2|M0
5((1̃3)Q, 2Q̄, 5q, 4̂q,

ˆ̄6γ)|2
)

J
(3)
3 (kf13, k2, k5)

+E0
3(6q; 3q, 2Q̄)

(
|M0

5(1Q, (2̃3)Q̄; ; 5q, ˆ̄6g, 4̂q)|2

+|M0
5(1Q, ˆ̄6g, (2̃3)Q̄; ; 5q, 4̂q)|2

+|M0
5(1Q, (2̃3)Q̄, 5q, 4̂q,

ˆ̄6γ)|2
)

J
(3)
3 (k1, kf23, k5)

]}
.

7.2.3 Processes derived from 0 → QQ̄qq̄gg

The colour decomposition for the unphysical process 0 → QQ̄qq̄gg is

M0
6 (1Q, 2Q̄, 3q, 4q̄, 5g, 6g)

= 2g4
∑

(i,j)∈P (5,6)

{
δi3,i2(T

aiT aj )i1,i4M0
6(1Q, ig, jg, 4q̄; ; 3q , 2Q̄)

+(T ai)i1,i4(T
aj )i3,i2M0

6(1Q, ig, 4q̄; ; 3q, jg, 2Q̄)

+δi1,i4(T
aiT aj )i3,i2M0

6(1Q, 4q̄; ; 3q, ig, jg, 2Q̄) (7.44)

− 1

Nc
δi3,i4(T

aiT aj )i1,i2M0
6(1Q, ig, jg, 2Q̄; ; 3q , 4q̄)

− 1

Nc
(T ai)i1,i2(T

aj )i3,i4M0
6(1Q, ig, 2Q̄; ; 3q, jg, 4q̄)

− 1

Nc
δi1,i2(T

aiT aj )i3,i4M0
6(1Q, 2Q̄; ; 3q, ig, jg, 4q̄)

}
,

and the partial amplitudes satisfy

M0
6(1Q, 2Q̄, 3q, 4q̄, 5γ , 6γ)

=
∑

(i,j)∈P (5,6)

(
M0

6(1Q, ig, jg, 4q̄; ; 3q, 2Q̄) + M0
6(1Q, ig, 4q̄; ; 3q, jg, 2Q̄)

+M0
6(1Q, 4q̄; ; 3q, ig, jg, 2Q̄)

)
(7.45)

=
∑

(k,l)∈P (5,6)

(
M0

6(1Q, kg, lg, 2Q̄; ; 3q, 4q̄) + M0
6(1Q, kg, 2Q̄; ; 3q, lg, 4q̄)

+M0
6(1Q, 2Q̄; ; 3q , kg, lg, 4q̄)

)
.
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Squaring, and using the identity eq. (7.45) to rearrange the result, we obtain

|M0
6 (1Q, 2Q̄, 3q, 4q̄, 5g, 6g)|2 =

g8(N2
c − 1)

N2
c

×
∑

(i,j)∈P (5,6)

{

(N2
c − 1)

[
N2

c

(
|M0

6(1Q, ig, jg, 4q̄; ; 3q, 2Q̄)|2 + |M0
6(1Q, ig, 4q̄; ; 3q, jg, 2Q̄)|2

+|M0
6(1Q, 4q̄; ; 3q, ig, jg, 2Q̄)|2

)

+|M0
6(1Q, ig, jg, 2Q̄; ; 3q , 4q̄)|2 + |M0

6(1Q, ig, 2Q̄; ; 3q, jg, 4q̄)|2

+|M0
6(1Q, 2Q̄; ; 3q, ig, jg, 4q̄)|2

]
+ |M0

6(1Q, 2Q̄, 3q, 4q̄, iγ , jγ)|2

+N2
c

[
2Re(M0

6(1Q, ig, jg, 4q̄; ; 3q , 2Q̄)M0
6(1Q, 4q̄; ; 3q, ig, jg, 2Q̄)†)

+2Re(M0
6(1Q, ig, jg, 4q̄; ; 3q, 2Q̄)M0

6(1Q, 4q̄; ; 3q, jg, ig, 2Q̄)†)

+Re(M0
6(1Q, ig, 4q̄; ; 3q, jg, 2Q̄)M0

6(1Q, jg, 4q̄; ; 3q, ig, 2Q̄)†)

−Re(M0
6(1Q, ig, jg, 4q̄; ; 3q, 2Q̄)M0

6(1Q, jg, ig, 4q̄; ; 3q, 2Q̄)†)

−Re(M0
6(1Q, 4q̄; ; 3q , ig, jg, 2Q̄)M0

6(1Q, 4q̄; ; 3q , jg, ig, 2Q̄)†)

−2Re(M0
6(1Q, ig, jg, 4q̄; ; 3q, 2Q̄)M0

6(1Q, ig, jg, 2Q̄; ; 3q, 4q̄)
†)

−2Re(M0
6(1Q, ig, 4q̄; ; 3q, jg, 2Q̄)M0

6(1Q, ig, jg, 2Q̄; ; 3q, 4q̄))
†)

−2Re(M0
6(1Q, 4q̄; ; 3q, ig, jg, 2Q̄)M0

6(1Q, ig, jg, 2Q̄; ; 3q, 4q̄)
†)

−2Re(M0
6(1Q, ig, jg, 4q̄; ; 3q, 2Q̄)M0

6(1Q, ig, 2Q̄; ; 3q, jg, 4q̄)
†) (7.46)

−2Re(M0
6(1Q, ig, 4q̄; ; 3q, jg, 2Q̄)M0

6(1Q, ig, 2Q̄; ; 3q, jg, 4q̄)
†)

−2Re(M0
6(1Q, ig, 4q̄; ; 3q, jg, 2Q̄)M0

6(1Q, jg, 2Q̄; ; 3q , ig, 4q̄)
†)

−2Re(M0
6(1Q, 4q̄; ; 3q, ig, jg, 2Q̄)M0

6(1Q, jg, 2Q̄; ; 3q , ig, 4q̄)
†)

−2Re(M0
6(1Q, ig, jg, 4q̄; ; 3q, 2Q̄)M0

6(1Q, 2Q̄; ; 3q , ig, jg, 4q̄))
†)

−2Re(M0
6(1Q, 4q̄; ; 3q, ig, jg, 2Q̄)M0

6(1Q, 2Q̄; ; 3q , ig, jg, 4q̄)
†)

−2Re(M0
6(1Q, ig, 4q̄; ; 3q, jg, 2Q̄)M0

6(1Q, 2Q̄; ; 3q , jg, ig, 4q̄)
†)

]

+Re(M0
6(1Q, ig, 2Q̄; ; 3q, jg, 4q̄)M0

6(1Q, jg, 2Q̄; ; 3q, ig, 4q̄)
†)

−Re(M0
6(1Q, ig, jg, 2Q̄; ; 3q , 4q̄)M0

6(1Q, jg, ig, 2Q̄; ; 3q , 4q̄)
†)

−Re(M0
6(1Q, 2Q̄; ; 3q, ig, jg, 4q̄)M0

6(1Q, 2Q̄; ; 3q, jg, ig, 4q̄)
†)

+2Re(M0
6(1Q, ig, jg, 2Q̄; ; 3q, 4q̄)M0

6(1Q, 2Q̄; ; 3q, ig, jg, 4q̄)
†)

+2Re(M0
6(1Q, ig, jg, 2Q̄; ; 3q, 4q̄)M0

6(1Q, 2Q̄; ; 3q, jg, ig, 4q̄)
†)

}
.

Besides colour-ordered amplitudes squared this expression includes interference terms

between amplitudes with different colour orderings which require subtraction.
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After appropriate crossings, for each of the colour-ordered matrix-element squared ap-

pearing on the right hand side of this equation, an antenna capturing the single unresolved

radiation is determined. For the soft radiation behaviour present in the interference terms,

the subtraction terms are constructed with the difference of four antennae as explained

in section 7.2.1. For the subtraction terms, we will need all types of massive final-final

and initial final antennae defined in section 3 in addition to massless antennae in all three

(final-final, initial-final and initial-initial) configurations which were defined in [64, 79, 82].

By crossing 3q and 4q̄ in eq. (7.46) to the initial state, the matrix element for the process
qq̄ → QQ̄gg is obtained. From the unresolved limits of this squared matrix element we
obtain the following subtraction term,

dσ̂S
qq̄→QQ̄gg

= g8(N2
c − 1)dΦ4(k1Q, k2Q̄, k5g, k6g; p3q̄, p4q)

∑

(i,j)∈(5,6)

{

N2
c

[
A0

3(4q; 1Q, ig)|M0
5((1̃i)Q, ˆ̄4q; ; 3̂q̄, jg, 2Q̄)|2J (3)

3 (ke1i, k2, kj)

+A0
3(3q̄; 2Q̄, ig)|M0

5(1Q, jg, 4̂q; ; ˆ̄3q̄, (2̃i)Q̄)|2J3
3 (k1, ke2i, kj)

+d0
3(1Q, ig, jg)|M0

5((1̃i)Q, (ĩj)g, 4̂q; ; 3̂q̄, 2Q̄)|2J (3)
3 (ke1i, keij , k2)

+d0
3(2Q̄, ig, jg)|M0

5(1Q, 4̂q; ; 3̂q̄, (ĩj)g, (2̃i)Q̄)|2J (3)
3 (k1, ke2i, keij)

+d0
3(4q; jg, ig)|M0

5(1Q, (ĩj)g, ˆ̄4q; ; 3̂q̄, 2Q̄)|2J (3)
3 (k1, k2, keij)

+d0
3(3q̄; ig, jg)|M0

5(1Q, 4̂q; ;
ˆ̄3q̄, (ĩj)g, 2Q̄)|2J (3)

3 (k1, k2, keij)
]

+A0
3(1Q, ig, 2Q̄)

(
|M0

5((1̃i)Q, (2̃i)Q̄; ; 3̂q̄, jg, 4̂q)|2

+2Re(M0
5((1̃i)Q, 4̂q; ; 3̂q̄, jg, (2̃i)Q̄)M0

5((1̃i)Q, jg, 4̂q; ; 3̂q̄, (2̃i)Q̄)†)

−2Re(M0
5((1̃i)Q, (2̃i)Q̄; ; 3̂q̄, jg, 4̂q)M0

5((1̃i)Q, 4̂q; ; 3̂q̄, jg, (2̃i)Q̄)†)

−2Re(M0
5((1̃i)Q, (2̃i)Q̄; ; 3̂q̄, jg, 4̂q)M0

5((1̃i)Q, jg, 4̂q; ; 3̂q̄, (2̃i)Q̄)†)
)

J
(3)
3 (ke1i, ke2i, kj)

−A0
3(4q; 1Q, ig)

(
|M0

5((1̃i)Q, jg, ˆ̄4q; ; 3̂q̄, 2Q̄)|2 + |M0
5((1̃i)Q, ˆ̄4q; ; 3̂q̄, jg, 2Q̄)|2

+2Re(M0
5((1̃i)Q, ˆ̄4q; ; 3̂q̄, jg, 2Q̄)M0

5((1̃i)Q, 2Q̄; ; 3̂q̄, jg, ˆ̄4q)
†)

+2Re(M0
5((1̃i)Q, ˆ̄4q; ; 3̂q̄, jg, 2Q̄)M0

5((1̃i)Q, jg, 2Q̄; ; 3̂q̄, ˆ̄4q)
†)
)

J
(3)
3 (ke1i, k2, kj)

+A0
3(3q̄; 1Q, ig)

(
2Re(M0

5((1̃i)Q, 4̂q; ;
ˆ̄3q̄, jg, 2Q̄)M0

5((1̃i)Q, jg, 2Q̄; ; ˆ̄3q̄, 4̂q)
†)

+2Re(M0
5((1̃i)Q, jg, 4̂q; ;

ˆ̄3q̄, 2Q̄)M0
5((1̃i)Q, 2Q̄; ; ˆ̄3q̄, jg, 4̂q)

†)

−2Re(M0
5((1̃i)Q, jg, 4̂q; ; ˆ̄3q̄, 2Q̄)M0

5((1̃i)Q, 4̂q; ; ˆ̄3q̄, jg, 2Q̄)†)
)

J
(3)
3 (ke1i, k2, kj)

+A0
3(4q; 2Q̄, ig)

(
2Re(M0

5(1Q, ˆ̄4q; ; 3̂q̄, jg, (2̃i)Q̄)M0
5(1Q, (2̃i)Q̄; ; 3̂q̄, jg,

ˆ̄4q)
†)

+2Re(M0
5(1Q, jg,

ˆ̄4q; ; 3̂q̄, (2̃i)Q̄)M0
5(1Q, jg, (2̃i)Q̄; ; 3̂q̄,

ˆ̄4q)
†)

−2Re(M0
5(1Q, ˆ̄4q; ; 3̂q̄, jg, (2̃i)Q̄)M0

5(1Q, jg, ˆ̄4q; ; 3̂q̄(2̃i)Q̄)†)
)

J
(3)
3 (k1, ke2i, kj)

−A0
3(3q̄; 2Q̄, ig)

(
|M0

5(1Q, 4̂q; ; ˆ̄3q̄, jg, (2̃i)Q̄)|2 + |M0
5(1Q, jg, 4̂q; ; ˆ̄3q̄, (2̃i)Q̄)|2

+2Re(M0
5(1Q, jg, 4̂q; ; ˆ̄3q̄, (2̃i)Q̄)M0

5(1Q, (2̃i)Q̄; ; ˆ̄3q̄, jg, 4̂q)
†)

+2Re(M0
5(1Q, jg, 4̂q; ; ˆ̄3q̄, (2̃i)Q̄)M0

5(1Q, jg, (2̃i)Q̄; ; ˆ̄3q̄, 4̂q)
†)
)

J
(3)
3 (k1, ke2i, kj)
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+A0
3(3q̄, 4q; ig)

(
|M0

5(1̃Q, j̃g, 2̃Q̄; ; ˆ̄3q̄, ˆ̄4q)|2

+2Re(M0
5(1̃Q, ˆ̄4q; ; ˆ̄3q̄, j̃g, 2̃Q̄)M0

5(1̃Q, jg, ˆ̄4q; ; ˆ̄3q̄, 2̃Q̄)†)

−2Re(M0
5(1̃Q, ˆ̄4q; ; ˆ̄3q̄, j̃g, 2̃Q̄)M0

5(1̃Q, j̃g, 2̃Q̄; ; ˆ̄3q̄, ˆ̄4q)
†)

−2Re(M0
5(1̃Q, j̃g, ˆ̄4q; ; ˆ̄3q̄, 2̃Q̄)M0

5(1̃Q, j̃g, 2̃Q̄; ; ˆ̄3q̄, ˆ̄4q)
†)
)

J
(3)
3 (k̃1, k̃2, k̃j)

+d0
3(1Q, ig, jg)

(
|M0

5((1̃i)Q, (ĩj)g, 2Q̄; ; 3̂q̄, 4̂q)|2

+2Re(M0
5((1̃i)Q, 4̂q; ; 3̂q̄, (ĩj)g, 2Q̄)M0

5((1̃i)Q, 2Q̄; ; 3̂q̄, (ĩj)g, 4̂q)
†)

−2Re(M0
5((1̃i)Q, 4̂q; ; 3̂q̄, (ĩj)g, 2Q̄)M0

5((1̃i)Q, (ĩj)g, 2Q̄; ; 3̂q̄, 4̂q)
†)

−2Re(M0
5((1̃i)Q, (ĩj)g, 4̂q; ; 3̂q̄, 2Q̄)M0

5((1̃i)Q, 2Q̄; ; 3̂q̄, (ĩj)g, 4̂q)
†)

−2Re(M0
5((1̃i)Q, (ĩj)g, 4̂q; ; 3̂q̄, 2Q̄)M0

5((1̃i)Q, (ĩj)g, 2Q̄; ; 3̂q̄, 4̂q)
†)
)

J
(3)
3 (ke1i, k2, keij)

+d0
3(2Q̄, ig, jg)

(
|M0

5(1Q, (ĩj)g, (2̃i)Q̄; ; 3̂q̄, 4̂q)|2

+2Re(M0
5(1Q, (ĩj)g, 4̂q; ; 3̂q̄, (2̃i)Q̄)M0

5(1Q, (2̃i)Q̄; ; 3̂q̄, (ĩj)g, 4̂q)
†)

−2Re(M0
5(1Q, 4̂q; ; 3̂q̄, (ĩj)g, (2̃i)Q̄)M0

5(1Q, (2̃i)Q̄; ; 3̂q̄, (ĩj)g, 4̂q)
†)

−2Re(M0
5(1Q, 4̂q; ; 3̂q̄, (ĩj)g, (2̃i)Q̄)M0

5(1Q, (ĩj)g, (2̃i)Q̄; ; 3̂q̄, 4̂q)
†)

−2Re(M0
5(1Q, (ĩj)g, 4̂q; ; 3̂q̄, (2̃i)Q̄)M0

5(1Q, (ĩj)g, (2̃i)Q̄; ; 3̂q̄, 4̂q)
†)
)

J
(3)
3 (k1, ke2i, keij)

+d0
3(4q; ig, jg)

(
|M0

5(1Q, 2Q̄; ; 3̂q̄, (ĩj)g, ˆ̄4q)|2

+2Re(M0
5(1Q, ˆ̄4q; ; 3̂q̄, (ĩj)g, 2Q̄)M0

5(1Q, (ĩj)g, 2Q̄; ; 3̂q̄, ˆ̄4q)
†)

−2Re(M0
5(1Q, ˆ̄4q; ; 3̂q̄, (ĩj)g, 2Q̄)M0

5(1Q, 2Q̄; ; 3̂q̄, (ĩj)g, ˆ̄4q)
†)

−2Re(M0
5(1Q, (ĩj)g, ˆ̄4q; ; 3̂q̄, 2Q̄)M0

5(1Q, 2Q̄; ; 3̂q̄, (ĩj)g, ˆ̄4q)
†)

−2Re(M0
5(1Q, (ĩj)g, ˆ̄4q; ; 3̂q̄, 2Q̄)M0

5(1Q, (ĩj)g, 2Q̄; ; 3̂q̄, ˆ̄4q)
†)
)

J
(3)
3 (k1, k2, keij)

+d0
3(3q̄; ig, jg)

(
|M0

5(1Q, 2Q̄; ; ˆ̄3q̄, (ĩj)g, 4̂q)|2

+2Re(M0
5(1Q, (ĩj)g, 4̂q; ; ˆ̄3q̄, 2Q̄)M0

5(1Q, (ĩj)g, 2Q̄; ; ˆ̄3q̄, 4̂q)
†)

−2Re(M0
5(1Q, 4̂q; ;

ˆ̄3q̄, (ĩj)g, 2Q̄)M0
5(1Q, (ĩj)g, 2Q̄; ; ˆ̄3q̄, 4̂q)

†)

−2Re(M0
5(1Q, 4̂q; ; ˆ̄3q̄, (ĩj)g, 2Q̄)M0

5(1Q, 2Q̄; ; ˆ̄3q̄, (ĩj)g, 4̂q)
†)

−2Re(M0
5(1Q, (ĩj)g, 4̂q; ; ˆ̄3q̄, 2Q̄)M0

5(1Q, 2Q̄; ; ˆ̄3q̄, (ĩj)g, 4̂q)
†)
)

J
(3)
3 (k1, k2, keij)

+
1

N2
c

[
A0

3(1Q, ig, 2Q̄)
(
2|M0

5((1̃i)Q, (2̃i)Q̄, 3̂q̄, 4̂q, jγ)|2 − |M0
5((1̃i)Q, (2̃i)Q̄; 3̂q̄, jg, 4̂q)|2

−|M0
5((1̃i)Q, jg, (2̃i)Q̄; ; 3̂q̄, 4̂q)|2

)
J

(3)
3 (ke1i, ke2i, kj)

+A0
3(3q̄, 4q; ig)

(
2|M0

5(1̃Q, 2̃Q̄, ˆ̄3q̄, ˆ̄4q, j̃γ)|2 − |M0
5(1̃Q, 2̃Q̄; ; ˆ̄3q̄, j̃g, ˆ̄4q)|2

−|M0
5(1̃Q, j̃g, 2̃Q̄; ; ˆ̄3q̄, ˆ̄4q)|2

)
J

(3)
3 (k̃1, k̃2, k̃j)

+A0
3(4q; 1Q, ig)2Re(M0

5((1̃i)Q, 2Q̄; ; 3̂q̄, jg, ˆ̄4q)M0
5((1̃i)Q, jg, 2Q̄; ; 3̂q̄, ˆ̄4q)

†)J
(3)
3 (ke1i, k2, kj)

+A0
3(3q̄; 2Q̄, ig)2Re(M0

5(1Q, (2̃i)Q̄; ; ˆ̄3q̄, jg, 4̂q)M0
5(1Q, jg, (2̃i)Q̄; ; ˆ̄3q̄, 4̂q)

†)J
(3)
3 (k1, ke2i, kj)

−A0
3(3q̄; 1Q, ig)2Re(M0

5((1̃i)Q, 2Q̄; ; ˆ̄3q̄, jg, 4̂q)M0
5((1̃i)Q, jg, 2Q̄; ; ˆ̄3q̄, 4̂q)

†)J
(3)
3 (ke1i, k2, kj)

−A0
3(4q; 2Q̄, ig)2Re(M0

5(1Q, (2̃i)Q̄; ; 3̂q̄, jg, ˆ̄4q)M0
5(1Q, jg, (2̃i)Q̄; ; 3̂q̄, ˆ̄4q)

†)J
(3)
3 (k1, ke2i, kj)

]}
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When 4q and 6g are crossed to the initial state in eq. (7.46), the squared matrix element
for qg → QQ̄qg in terms of colour ordered subamplitudes is obtained. The subtraction term
in this case reads,

dσ̂
S
qg→QQ̄qg = g

8(N2
c − 1)dΦ4(k1Q, k2Q̄, k3q , k5g ; p4q, p6g)


N

2
c

h
A

0
3(3q , 5g , 2Q̄)|M0

5(1Q, 6̂g, 4̂q ; ; (f35)q, (f25)Q̄)|2J
(3)
3 (k1, kf25, kf35)

+A
0
3(4q; 1Q, 5g)|M0

5((f15)Q, ˆ̄4q ; ; 3q , 6̂g , 2Q̄)|2J
(3)
3 (kf15, k2, k3)

+
1

2
A

0
3(6g; 1Q, 2Q̄)

“
|M0

5((f12)Q, 5g , 4̂q ; ; 3q , ˆ̄6Q)|2 + |M0
5((f12)Q, 4̂q; ; 3q , 5g, ˆ̄6Q)|2

+|M0
5(

ˆ̄6Q̄, 5g , 4̂q ; ; 3q , (f12)Q̄)|2 + |M0
5(

ˆ̄6Q̄, 4̂q ; ; 3q , 5g , (f12)Q̄)|2
”

J
(3)
3 (kf12, k3, k5)

+A
0
3(4q, 6g ; 3q)

“
|M0

5(1̃Q, ˆ̄4q ; ; ˆ̄6q̄ , 5̃g, 2̃Q̄)|2 + |M0
5(1̃Q, 5̃g , ˆ̄4q ; ; ˆ̄6q̄ , 2̃Q̄)|2

”
J

(3)
3 (k̃1, k̃2, k̃5)

+D
0
3(6g ; 5g , 1Q)|M0

5((f15)Q, ˆ̄6g , 4̂q; ; 3q, 2Q̄)|2J
(3)
3 (kf15, k2, k3)

+D
0
3(6g ; 5g , 2Q̄)|M0

5(1Q, 4̂q ; ; 3q ,
ˆ̄6g, (f25)Q̄)|2J

(3)
3 (k1, kf25, k3)

+D
0
3(6g ; 5g , 3q)|M

0
5(1q , 4̂q ; ; (f35)q,

ˆ̄6g , 2Q̄)|2J
(3)
3 (k1, k2, kf35)

+D
0
3(4q , 6g ; 5g)|M0

5(1̃Q, ˆ̄6g, ˆ̄4q; ; 3̃q, 2̃Q̄)|2J
(3)
3 (k̃1, k̃2, k̃3)

+
1

2
E

0
3(4q ; 3q , 1Q)

“
|M0

5((f13)Q, 5g, 6̂g , ˆ̄4g , 2Q̄)|2 + |M0
5((f13)Q, 5g, ˆ̄4g , 6̂g , 2Q̄)|2

+|M0
5((f13)Q, ˆ̄4g, 5g , 6̂g , 2Q̄)|2 + |M0

5((f13)Q, 6̂g, 5g , ˆ̄4g , 2Q̄)|2

+|M0
5((f13)Q, 6̂g, ˆ̄4g , 5g , 2Q̄)|2 + |M0

5((f13)Q, ˆ̄4g, 6̂g , 5g , 2Q̄)|2
”

J
(3)
3 (kf13, k2, k5)

+
1

2
E

0
3(4q ; 3q , 2Q̄)

“
|M0

5(1Q, 5g , 6̂g , ˆ̄4g , (f23)Q̄)|2 + |M0
5(1Q, 5g, ˆ̄4g , 6̂g , (f23)Q̄)|2

+|M0
5(1Q, 6̂g , 5g , ˆ̄4g, (f23)Q̄)|2 + |M0

5(1Q, ˆ̄4g, 5g , 6̂g , (f23)Q̄)|2

+|M0
5(1Q, 6̂g , ˆ̄4g , 5g, (f23)Q̄)|2 + |M0

5(1Q, ˆ̄4g, 6̂g , 5g , (f23)Q̄)|2
”

J
(3)
3 (k1, kf23, k5)

i

+A
0
3(1Q, 5g , 2Q̄)

“
|M0

5((f15)Q, (f25)Q̄; ; 3g, 6̂g , 4̂q)|
2

+2Re(M0
5((f15)Q, 4̂q ; ; 3q , 6̂g , (f25)Q̄)M0

5((f15)Q, 6̂g, 4̂q ; ; 3q , (f25)Q̄)†)

−2Re(M0
5((f15)Q, 4̂q ; ; 3q , 6̂g , (f25)Q̄)M0

5((f15)Q, (f25)Q̄; ; 3g, 6̂g, 4̂q)
†)

−2Re(M0
5((f15)Q, 6̂g , 4̂q ; ; 3q , (f25)Q̄)M0

5((f15)Q, (f25)Q̄; ; 3g, 6̂g, 4̂q)
†)

”
J

(3)
3 (kf15, kf25, k3)

+A
0
3(1Q, 5g , 3q)

“
2Re(M0

5((f15)Q, 4̂q ; ; (f35)q, 6̂g , 2Q̄)M0
5((f15)Q, 6̂g , 2Q̄; ; (f35)q , 4̂q)

†)

+2Re(M0
5((f15)Q, 6̂g , 4̂q ; ; (f35)q, 2Q̄)M0

5((f15)Q, 2Q̄; ; (f35)q , 6̂g, 4̂q)
†)

−2Re(M0
5((f15)Q, 4̂q ; ; (f35)q, 6̂g , 2Q̄)M0

5((f15)Q, 6̂g, 4̂q ; ; (f35)q, 2Q̄)†)
”

J
(0)
3 (kf15, k2, kf35)

−A
0
3(3q , 5g , 2Q̄)

“
|M0

5(1Q, 4̂q; ; (f35)q , 6̂g, (f25)Q̄)|2

+|M0
5(1Q, 6̂g , 4̂q ; ; (f35)q, (f25)Q̄)|2

+2Re(M0
5(1Q, 6̂g , 4̂q; ; (f35)q , (f25)Q̄)M0

5(1Q, (f25)Q̄; ; (f35)q , 6̂g, 4̂q)
†)

+2Re(M0
5(1Q, 6̂g , 4̂q; ; (f35)q , (f25)Q̄)M0

5(1Q, 6̂g, (f25)Q̄; ; (f35)q, 4̂q)
†)

”
J

(3)
3 (k1, kf25, kf35)

−A
0
3(4q ; 1Q, 5g)

“
|M0

5((f15)Q, 6̂g, ˆ̄4q ; ; 3q , 2Q̄)|2

+|M0
5((f15)Q, ˆ̄4q; ; 3q, 6̂g , 2Q̄)|2

+2Re(M0
5((f15)Q, ˆ̄4q ; ; 3q , 6̂g , 2Q̄)M0

5((f15)Q, 2Q̄; ; 3q, 6̂g , ˆ̄4q)
†)

+2Re(M0
5((f15)Q, ˆ̄4q ; ; 3q , 6̂g , 2Q̄)M0

5((f15)Q, 6̂g, 2Q̄; ; 3q ,
ˆ̄4q)

†)
”

J
(3)
3 (kf15, k2, k3)
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P
0
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(
2
0
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1
)
0
6
3

+A
0
3(4q ; 2Q̄, 5g)

“
2Re(M0

5(1Q, ˆ̄4q ; ; 3q , 6̂g , (f25)Q̄)M0
5(1Q, (f25)Q̄; ; 3q , 6̂g, ˆ̄4q)

†)

+2Re(M0
5(1Q, 6̂g , ˆ̄4q; ; 3q , (f25)Q̄)M0

5(1Q, 6̂g , (f25)Q̄; ; 3q , ˆ̄4q)
†)

−2Re(M0
5(1Q, ˆ̄4q ; ; 3q , 6̂g , (f25)Q̄)M0

5(1Q, 6̂g , ˆ̄4q ; ; 3q , (f25)Q̄)†)
”

J
(3)
3 (k1, kf25, k3)

+A
0
3(4q ; 3q , 5g)

“
|M0

5(1Q, 6̂g, 2Q̄; (f35)q, ˆ̄4q)|
2

+2Re(M0
5(1Q, ˆ̄4q ; ; (f35)q, 6̂g , 2Q̄)M0

5(1Q, 6̂g , ˆ̄4q ; ; (f35)q, 2Q̄)†)

−2Re(M0
5(1Q, ˆ̄4q ; ; (f35)q, 6̂g , 2Q̄)M0

5(1Q, 6̂g , 2Q̄; ; (f35)q, ˆ̄4q)
†)

−2Re(M0
5(1Q, 6̂g , ˆ̄4q; ; (f35)q , 2Q̄)M0

5(1Q, 6̂g , 2Q̄; ; (f35)q,
ˆ̄4q)

†)
”

J
(3)
3 (k1, k2, kf35)

+
1

2
A

0
3(6g; 1Q, 2Q̄)

“
|M0

5((f12)Q, ˆ̄6Q; ; 3q , 5g, 4̂q)|
2 + |M0

5((f12)Q, 5g, ˆ̄6Q; ; 3q , 4̂q)|
2

+|M0
5(

ˆ̄6Q̄, (f12)Q̄; ; 3q, 5g , 4̂q)|
2 + |M0

5(
ˆ̄6Q̄, 5g , (f12)Q̄; ; 3q , 4̂q)|

2

−|M0
5((f12)Q, 4̂q; ; 3q, 5g , ˆ̄6Q)|2 − |M0

5((f12)Q, 5g , 4̂q ; ; 3q , ˆ̄6Q)|2

−|M0
5(

ˆ̄6Q̄, 4̂q ; ; 3q , 5g , (f12)Q̄)|2 − |M0
5(

ˆ̄6Q̄, 5g , 4̂q ; ; 3q , (f12)Q̄)|2

−2|M0
5((f12)Q, ˆ̄6Q, 3q , 4̂q, 5γ)|2 − 2|M0

5(
ˆ̄6Q̄, (f12)Q̄, 3q , 4̂q , 5γ)|2

”
J

(3)
3 (kf12, k3, k5)

+A
0
3(4q , 6g ; 3q)

“
|M0

5(1̃Q, 5̃g, 2̃Q̄; ; ˆ̄6q̄ ,
ˆ̄4q)|

2 + |M0
5(1̃Q, 2̃Q̄; ; ˆ̄6q̄ , 5̃g , ˆ̄4q)|

2

−|M0
5(1̃Q, 5̃g , ˆ̄4q ; ; ˆ̄6q̄ , 2̃Q̄)|2 − |M0

5(1̃Q, ˆ̄4q ; ; ˆ̄6q̄ , 5̃g, 2̃Q̄)|2

−2|M0
5(1̃Q, 2̃Q̄, ˆ̄6q̄, ˆ̄4q, 5̃γ)|2

”
J

0
3 (k̃1, k̃2, k̃5)

+D
0
3(6g ; 5g , 1Q)

“
|M0

5((f15)Q, ˆ̄6g , 2Q̄; ; 3q , 4̂q)|
2

+2Re(M0
5((f15)Q, 4̂q ; ; 3q , ˆ̄6g , 2Q̄)M0

5((f15)Q, 2Q̄; ; 3q, ˆ̄6g, 4̂q)
†)

−2Re(M0
5((f15)Q, 4̂q ; ; 3q , ˆ̄6g , 2Q̄)M0

5((f15)Q, ˆ̄6g, 2Q̄; ; 3q , 4̂q)
†)

−2Re(M0
5((f15)Q, ˆ̄6g , 4̂q ; ; 3q , 2Q̄)M0

5((f15)Q, ˆ̄6g, 2Q̄; ; 3q , 4̂q)
†)

−2Re(M0
5((f15)Q, ˆ̄6g , 4̂q ; ; 3q , 2Q̄)M0

5((f15)Q, 2Q̄; ; 3q,
ˆ̄6g, 4̂q)

†)
”

J
(3)
3 (kf15, k2, k3)

+D
0
3(6g ; 5g , 2Q̄)

“
|M0

5(1q, ˆ̄6g , (f25)Q̄; ; 3q , 4̂q)|
2

+2Re(M0
5(1Q, ˆ̄6g , 4̂q ; ; 3q , (f25)Q̄)M0

5(1Q, (f25)Q̄; ; 3q, ˆ̄6g, 4̂q)
†)

−2Re(M0
5(1Q, 4̂q ; ; 3q , ˆ̄6g , (f25)Q̄)M0

5(1Q, (f25)Q̄; ; 3q, ˆ̄6g, 4̂q)
†)

−2Re(M0
5(1Q, 4̂q ; ; 3q , ˆ̄6g , (f25)Q̄)M0

5(1Q, ˆ̄6g, (f25)Q̄; ; 3q , 4̂q)
†)

−2Re(M0
5(1Q, ˆ̄6g , 4̂q ; ; 3q , (f25)Q̄)M0

5(1Q, ˆ̄6g, (f25)Q̄; ; 3q , 4̂q)
†)

”
J

(3)
3 (k1, kf25, k3)

+D
0
3(6g ; 5g , 3q)

“
|M0

5(1Q, 2Q̄; ; (f35)q, ˆ̄6g , 4̂q)|
2

+2Re(M0
5(1q ,

ˆ̄6g , 4̂q ; ; (f35)q, 2Q̄)M0
5(1Q, ˆ̄6g, 2Q̄; ; (f35)q, 4̂q)

†)

−2Re(M0
5(1q , 4̂q ; ; (f35)q, ˆ̄6g , 2Q̄)M0

5(1Q, 2Q̄; ; (f35)q, ˆ̄6g, 4̂q)
†)

−2Re(M0
5(1q , 4̂q ; ; (f35)q, ˆ̄6g , 2Q̄)M0

5(1Q, ˆ̄6g, 2Q̄; ; (f35)q, 4̂q)
†)

−2Re(M0
5(1q ,

ˆ̄6g , 4̂q ; ; (f35)q, 2Q̄)M0
5(1Q, 2Q̄; ; (f35)q,

ˆ̄6g, 4̂q)
†)

”
J

(3)
3 (k1, k2, kf35)

+D
0
3(4q , 6g ; 5g)

“
|M0

5(1̃Q, 2̃Q̄; ; 3̃q ,
ˆ̄6g , ˆ̄4q)|

2

+2Re(M0
5(1̃Q, ˆ̄4q ; ; 3̃q ,

ˆ̄6g , 2̃Q̄)M0
5(1̃Q, ˆ̄6g , 2̃Q̄; ; 3̃q ,

ˆ̄4q)
†)

−2Re(M0
5(1̃Q, ˆ̄4q ; ; 3̃q ,

ˆ̄6g , 2̃Q̄)M0
5(1̃Q, 2̃Q̄; ; 3̃q ,

ˆ̄6g , ˆ̄4q)
†)

−2Re(M0
5(1̃Q, ˆ̄6g , ˆ̄4q ; ; 3̃q , 2̃Q̄)M0

5(1̃Q, 2̃Q̄; ; 3̃q ,
ˆ̄6g , ˆ̄4q)

†)

−2Re(M0
5(1̃Q, ˆ̄6g , ˆ̄4q ; ; 3̃q , 2̃Q̄)M0

5(1̃Q, ˆ̄6g , 2̃Q̄; ; 3̃q , ˆ̄4q)
†)

”
J

(3)
3 (k̃1, k̃2, k̃3)
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−
1

2
E

0
3(4q ; 3q, 1Q)

“
|M0

5((f13)Q, 5g , 6̂g , ˆ̄4γ , 2Q̄)|2 + |M0
5((f13)Q, 6̂g , 5g , ˆ̄4γ , 2Q̄)|2

+|M0
5((f13)Q, 5g, ˆ̄4g , 6̂γ , 2Q̄)|2 + |M0

5((f13)Q, ˆ̄4g , 5g , 6̂γ , 2Q̄)|2

+|M0
5((f13)Q, 6̂g, ˆ̄4g , 5γ , 2Q̄|2 + |M0

5((f13)Q, ˆ̄4g , 6̂g , 5γ , 2Q̄|2
”

J
(3)
3 (kf13, k2, k5)

−
1

2
E

0
3(4q ; 3q, 2Q̄)

“
|M0

5(1Q, 5g , 6̂g , ˆ̄4γ , (f23)Q̄)|2 + |M0
5(1Q, 6̂g , 5g, ˆ̄4γ , (f23)Q̄)|2

+|M0
5(1Q, 5g , ˆ̄4g , 6̂γ , (f23)Q̄)|2 + |M0

5(1Q, ˆ̄4g , 5g , 6̂γ , (f23)Q̄)|2

+|M0
5(1Q, 6̂g , ˆ̄4g , 5γ , (f23)Q̄)|2 + |M0

5(1Q, ˆ̄4g , 6̂g , 5γ , (f23)Q̄)|2
”

J
(3)
3 (k1, kf23, k5)

+
1

N2
c

h
A

0
3(1Q, 5g , 2Q̄)

“
2|M0

5((f15)Q, (f25)Q̄, 3q , 4̂q , 6̂γ)|2

−|M0
5(f15)Q, (f25)Q̄; ; 3q, 6̂g , 4̂q)|

2 − |M0
5(f15)Q, 6̂g , (f25)Q̄; ; 3q , 4̂q)|

2
”

J
(3)
3 (kf15, kf25, k3)

+A
0
3(3q, 5g , 2Q̄)2Re(M0

5(1Q, (f25)Q̄; ; (f35)q , 6̂g, 4̂q)M
0
5(1Q, 6̂g , (f25)Q̄; ; (f35)q, 4̂q)

†)J
(3)
3 (k1, kf25, kf35)

−A
0
3(1Q, 5g , 3q)2Re(M0

5((f15)Q, 2Q̄; ; (f35)q , 6̂g, 4̂q)M
0
5((f15)Q, 6̂g , 2Q̄; ; (f35)q, 4̂q)

†)J
(3)
3 (kf15, k2, kf35)

+A
0
3(4q; 1Q, 5g)2Re(M0

5((f15)Q, 2Q̄; ; 3q , 6̂g, ˆ̄4q)M
0
5((f15)Q, 6̂g , 2Q̄; ; 3q , ˆ̄4q)

†)J
(3)
3 (kf15, k2, k3)

−A
0
3(4q; 2Q̄, 5g)2Re(M0

5(1Q, (f25)Q̄; ; 3q , 6̂g, ˆ̄4q)M
0
5(1Q, 6̂g , (f25)Q̄; ; 3q , ˆ̄4q)

†)J
(3)
3 (k1, kf25, k3)

+A
0
3(4q; 3q , 5g)

“
2|M0

5(1Q, 2Q̄, (f35)q, 4̂q , 6̂γ)|2

−|M0
5(1Q, 6̂g , 2Q̄; (f35)q , 4̂q)|

2 − |M0
5(1Q, 2Q̄; ; (f35)q , 6̂g, 4̂q)|

2
”

J
(3)
3 (k1, k2, kf35)

+
1

2
A

0
3(6g; 1Q, 2Q̄)

“
2|M0

5((f12)Q, ˆ̄6Q, 3q , 4̂q , 5γ)|2 + 2|M0
5(

ˆ̄6Q̄(f12)Q̄, 3q, 4̂q, 5γ)|2

−|M0
5((f12)Q, 5g , ˆ̄6Q; ; 3q , 4̂q)|

2 − |M0
5(

ˆ̄6Q̄, 5g, (f12)Q̄; ; 3q, 4̂q)|
2

−|M0
5((f12)Q, ˆ̄6Q; ; 3q , 5g , 4̂q)|

2 − |M0
5(

ˆ̄6Q̄, (f12)Q̄; ; 3q , 5g, 4̂q)|
2
”

J
(3)
3 (kf12, k3, k5)

+A
0
3(4q, 6g ; 3q)

“
2|M0

5(1̃Q, 2̃Q̄, ˆ̄6q̄ , ˆ̄4q , 5̃γ)|2

−|M0
5(1̃Q, 5̃g , 2̃Q̄; ; ˆ̄6q̄ ,

ˆ̄4q)|
2 − |M0

5(1̃Q, 2̃Q̄; ; ˆ̄6q̄, 5̃g, ˆ̄4q)|
2
”

J
(3)
3 (k̃1, k̃2, k̃5)

+
1

2
E

0
3(4q ; 3q , 1Q)|M0

5((f13)Q, 2Q̄, ˆ̄4γ , 5γ , 6̂γ)|2J
(3)
3 (kf13, k2, k5)

+
1

2
E

0
3(4q ; 3q , 2Q̄)|M0

5(1Q, (f25)Q̄, ˆ̄4γ , 5γ , 6̂γ)|2J
(3)
3 (k1, kf23, k5)

– ff

Finally, when gluons 5g and 6g are crossed to the initial state in eq. (7.46), the squared
matrix element for gg → QQ̄qq̄ is obtained. This partonic process only contains collinear
and quasi-collinear limits but no soft limits as no gluons are present in the final state. Using
the decoupling identities given in eqs. (7.6), (7.12), (7.13), the reduced matrix elements mul-
tiplying each antenna function can be rewritten in a fairly compact form with no interfer-
ence terms left. After doing this simplification the subtraction term for this process reads,

dσ̂S
gg→QQ̄qq̄

= g8 NF (N2
c − 1)dΦ4(k1Q, k2Q̄, k3q, k4q̄; p5g, p6g)

×
{ ∑

(i,j)∈P (5,6)

[

N2
c

[
1

2
A0

3(ig; 1Q, 2Q̄)
(
|M0

5((1̃2)Q, 4q̄; ; 3q, ĵg,
ˆ̄iQ)|2 + |M0

5 (̂̄iQ̄, 4q̄; ; 3q, ĵg, (1̃2)Q̄)|2

+|M0
5((1̃2)Q, ĵg, 4q̄; ; 3q,

ˆ̄iQ)|2 + |M0
5 (̂̄iQ̄, ĵg4q̄; ; 3q, (1̃2)Q̄)|2

)
J

(3)
3 (kf12, k3, k4)

+
1

2
A0

3(ig; 3q, 4q̄)
(
|M0

5(1Q, ˆ̄iq; ; (3̃4)q, ĵg, 2Q̄)|2 + |M0
5(1Q, (3̃4)q̄; ;

ˆ̄iq̄, ĵg, 2Q̄)|2
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+|M0
5(1Q, ĵg,

ˆ̄iq; ; (3̃4)q, 2Q̄)|2 + |M0
5(1Q, ĵg, (3̃4)q̄; ;

ˆ̄iq̄, 2Q̄)|2
)

J
(3)
3 (k1, k2, kf34)

+
1

2
E0

3(1Q, 3q, 4q̄)
(
|M0

5((1̃3)Q, îg, ĵg, (3̃4)g, 2Q̄|2 + |M0
5((1̃3)Q, îg, (3̃4)g, ĵg, 2Q̄|2

+|M0
5((1̃3)Q, (3̃4)g, îg, ĵg, 2Q̄|2

)
J

(3)
3 (kf13, k2, kf34)

+
1

2
E0

3(2Q̄, 3q, 4q̄)
(
|M0

5(1Q, îg, ĵg, (3̃4)g, (2̃3)Q̄)|2 + |M0
5(1Q, îg, (3̃4)g, ĵg, (2̃3)Q̄)|2

+|M0
5(1Q, (3̃4)g, îg, ĵg, (2̃3)Q̄)|2

)
J

(3)
3 (k1, kf23, kf34)

]

+
1

2
A0

3(ig; 1Q, 2Q̄)
(
|M0

5((1̃2)Q, ˆ̄iQ; ; 3q, ĵg, 4q̄)|2 + |M0
5 (̂̄iQ̄, (1̃2)Q̄; ; 3q, ĵg, 4q̄)|2

+|M0
5((1̃2)Q, ĵg,

ˆ̄iQ; ; 3q, 4q̄)|2 + |M0
5 (̂̄iQ̄, ĵg, (1̃2)Q̄; ; 3q, 4q̄)|2

−|M0
5((1̃2)Q, 4q̄; ; 3q, ĵg,

ˆ̄iQ)|2 − |M0
5 (̂̄iQ̄, 4q̄; ; 3q, ĵg, (1̃2)Q̄)|2 (7.47)

−|M0
5((1̃2)Q, ĵg, 4q̄; ; 3q,

ˆ̄iQ)|2. − |M0
5 (̂̄iQ̄, ĵg4q̄; ; 3q, (1̃2)Q̄)|2

−2|M0
5((1̃2)Q, ˆ̄iQ, 3q, 4q̄, ĵγ)|2 − 2|M0

5 (̂̄iQ̄, (1̃2)Q̄, 3q, 4q̄, ĵγ)|2
)

J
(3)
3 (kf12, k3, k4)

+
1

2
A0

3(ig; 3q, 4q̄)
(
|M0

5(1Q, 2Q̄; ; (3̃4)q, ĵg,
ˆ̄iq)|2 + |M0

5(1Q, 2Q̄; ; ˆ̄iq̄, ĵg, (3̃4)q̄)|2

+|M0
5(1Q, ĵg, 2Q̄; ; (3̃4)q,

ˆ̄iq)|2 + |M0
5(1Q, ĵg, 2Q̄; ; ˆ̄iq̄, (3̃4)q̄)|2

−|M0
5(1Q, ˆ̄iq; ; (3̃4)q, ĵg, 2Q̄)|2 − |M0

5(1Q, (3̃4)q̄; ;
ˆ̄iq̄, ĵg, 2Q̄)|2

−|M0
5(1Q, ĵg,

ˆ̄iq; ; (3̃4)q, 2Q̄)|2 − |M0
5(1Q, ĵg, (3̃4)q̄; ;

ˆ̄iq̄, 2Q̄)|2

−2|M0
5(1Q, 2Q̄, (3̃4)q,

ˆ̄iq, ĵγ)|2 − 2|M0
5(1Q, 2Q̄, ˆ̄iq̄, (3̃4)q̄, ĵγ)|2

)
J

(3)
3 (k1, k2, kf34)

−1

2
E0

3 (1Q, 3q, 4q̄)
(
|M0

5((1̃3)Q, îg, ĵg, (3̃4)γ , 2Q̄)|2 + |M0
5((1̃3)Q, îg, (3̃4)g, ĵγ , 2Q̄)|2

+|M0
5((1̃3)Q, (3̃4)g, îg, ĵγ , 2Q̄)|2

)
J

(3)
3 (kf13, k2, kf34)

−1

2
E0

3 (2Q̄, 3q, 4q̄)
(
|M0

5(1Q, îg, ĵg, (3̃4)γ , (2̃3)Q̄)|2 + |M0
5(1Q, îg, (3̃4)g, ĵγ , (2̃3)Q̄)|2

+|M0
5(1Q, (3̃4)g, îg, ĵγ , (2̃3)Q̄)|2

)
J

(3)
3 (k1, kf23, kf34)

− 1

2N2
c

[
A0

3(ig; 1Q, 2Q̄)
(
|M0

5((1̃2)Q, ˆ̄iQ; ; 3q, ĵg, 4q̄)|2 + |M0
5 (̂̄iQ̄, (1̃2)Q̄; ; 3q, ĵg, 4q̄)|2

+|M0
5((1̃2)Q, ĵg,

ˆ̄iQ; ; 3q, 4q̄)|2 + |M0
5 (̂̄iQ̄, ĵg, (1̃2)Q̄; ; 3q, 4q̄)|2

−2|M0
5((1̃2)Q, ˆ̄iQ, 3q, 4q̄, ĵγ)|2 − 2|M0

5 (̂̄iQ̄, (1̃2)Q̄, 3q, 4q̄, ĵγ)|2
)

J
(3)
3 (kf12, k3, k4)

+A0
3(ig; 3q, 4q̄)

(
|M0

5(1Q, 2Q̄; ; (3̃4)q, ĵg,
ˆ̄iq)|2 + |M0

5(1Q, 2Q̄; ; ˆ̄iq̄, ĵg, (3̃4)q̄)|2

+|M0
5(1Q, ĵg, 2Q̄; ; (3̃4)q,

ˆ̄iq)|2 + |M0
5(1Q, ĵg, 2Q̄; ; ˆ̄iq̄, (3̃4)q̄)|2

−2|M0
5(1Q, 2Q̄, (3̃4)q,

ˆ̄iq, ĵγ)|2 − 2|M0
5(1Q, 2Q̄, ˆ̄iq̄, (3̃4)q̄, ĵγ)|2

)
J

(3)
3 (k1, k2, kf34)

]

−N2
c − 1

4N2
c

(
E0

3 (1Q, 3q, 4q̄)|M0
5((1̃3)Q, (3̃4)γ , îγ , ĵγ , 2Q̄)|2J (3)

3 (kf13, k2, kf34)

+E0
3(2Q̄, 3q, 4q̄)|M0

5(1Q, (3̃4)γ , îγ , ĵγ , (2̃3)Q̄)|2J (3)
3 (k1, kf23, kf34)

) ]}
.

For all three crossings considered, we have performed the consistency check explained in

section 7.1.3. We have checked that in all collinear or quasi-collinear limits contained in

these subtraction terms, the sum of the terms contributing to a given limit collapses to
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the appropriate colour factor multiplying a given massless or massive splitting function,

corresponding to the given collinear splitting, times the appropriate non-colour ordered

matrix-element squared.

7.2.4 Partonic process gg → QQ̄gg

The colour decomposition for the unphysical process 0 → QQ̄gggg is

M0
6 (1Q, 2Q̄, 3g, 4g, 5g, 6g) = 4g4

∑

(i,j,k,l)∈P (3,4,5,6)

(T aiT ajT akT al)i1,i2M(i, j, k, l), (7.48)

where we used M(i, j, k, l) = M0
6(1Q, ig, jg, kg, lg, 2Q̄) for simplification of the formulae.

Squaring gives

|M0
6 (1Q, 2Q̄, 3g, 4g, 5g, 6g)|2 =

g8(N2
c − 1)

N3
c

×
{ ∑

(i,j,k,l)∈P (3,4,5,6)

[
N6

c |M(i, j, k, l)|2 − N4
c |M(i, j, k; ; l)|2 +

N2
c

2!
|M(i, j; ; k, l)|2

−N4
c Re

((
M(j, i, l, k) + M(j, l, i, k) + M(j, l, k, i)

+M(k, i, l, j) + M(k, j, l, i) + M(l, i, k, j) (7.49)

+M(l, j, i, k) + M(l, k, j, i)
)
×M(i, j, k, l)†

)

+
(N4

c − 3N2
c − 1)

4!
|M̄(i, j, k, l)|2

]}
,

where when the gluon labelled with l, when the gluons labelled with l and with k or when

all four gluons decouple we have respectively,

M(i, j, k; ; l) = M0
6(1Q, ig, jg, kg, lγ , 2Q̄) (7.50)

= M(i, j, k, l) + M(i, j, l, k) + M(i, l, j, k) + M(l, i, j, k)

M(i, j; ; k, l) = M0
6(1Q, ig, jg, kγ , lγ , 2Q̄)

= M(i, j, k, l) + M(i, j, l, k) + M(i, k, j, l) + M(i, l, j, k) (7.51)

+M(i, k, l, j) + M(i, l, k, j) + M(k, i, j, l) + M(l, i, j, k)

+M(k, i, l, j) + M(l, i, k, j) + M(k, l, i, j) + M(l, k, i, j)

M̄(3, 4, 5, 6) = M0
6(1Q, 3γ , 4γ , 5γ , 6γ , 2Q̄) (7.52)

=
∑

(i,j,k,l)∈P (3,4,5,6)

M0
6(1Q, ig, jg, kg, lg, 2Q̄)

This colour-ordered decomposition for the squared amplitude for gg → QQ̄gg has also been

derived in [112]. Our result is in complete agreement with it.

Crossing gluons 5g and 6g in eq. (7.49) gives the squared matrix element for

gg → QQ̄gg reading,

|M0
6 (1Q, 2Q̄, 3g, 4g, 5̂g, 6̂g)|2 =

g8(N2
c − 1)

N3
c
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×
{ ∑

(i,j)∈P (3,4),(k,l)∈P (5,6)

[
N6

c

(
|M(i, j, k̂, l̂)|2 + |M(i, k̂, j, l̂)|2 + |M(i, k̂, l̂, j)|2

+|M(k̂, i, jl̂)|2 + |M(k̂, i, l̂, j)|2 + |M(k̂, l̂, i, j)|2
)

−N4
c

(
|M(i, j, k̂; ; l̂)|2 + |M(i, k̂, j; ; l̂)|2 + |M(i, k̂, l̂; ; j)|2

+|M(k̂, i, j; ; l̂)|2 + |M(k̂, i, l̂; ; j)|2 + |M(k̂, l̂, i; ; j)|2
)

−N4
c

[
Re

((
M(j, i, l̂, k̂) + M(j, l̂, i, k̂) + M(j, l̂, k̂, i) + M(k̂, i, l̂, j)

+M(k̂, j, l̂, i) + M(l̂, i, k̂, j) + M(l̂, j, i, k̂) + M(l̂, k̂, j, i)
)
×M(i, j, k̂, l̂)†

)

+Re

((
M(k̂, i, l̂, j) + M(k̂, l̂, i, j) + M(k̂, l̂, j, i) + M(j, i, l̂, k̂)

+M(j, k̂, l̂, i) + M(l̂, i, j, k̂) + M(l̂, k̂, i, j) + M(l̂, j, k̂, i)
)
×M(i, k̂, j, l̂)†

)

+Re

((
M(k̂, i, j, l̂) + M(k̂, j, i, l̂) + M(k̂, j, l̂, i) + M(l̂, i, j, k̂)

+M(l̂, k̂, j, i) + M(j, i, l̂, k̂) + M(j, k̂, i, l̂) + M(j, l̂, k̂, i)
)
×M(i, k̂, l̂, j)†

)

+Re

((
M(i, k̂, l̂, j) + M(i, l̂, k̂, j) + M(i, l̂, j, k̂) + M(j, k̂, l̂, i)

+M(j, i, l̂, k̂) + M(l̂, k̂, j, i) + M(l̂, i, k̂, j) + M(l̂, j, i, k̂)
)
×M(k̂, i, j, l̂)†

)

+Re

((
M(i, k̂, j, l̂) + M(i, j, k̂, l̂) + M(i, j, l̂, k̂) + M(l̂, k̂, j, i)

+M(l̂, i, j, k̂) + M(j, k̂, l̂, i) + M(j, i, k̂, l̂) + M(j, l̂, i, k̂)
)
×M(k̂, i, l̂, j)†

)

+Re

((
M(l̂, k̂, j, i) + M(l̂, j, k̂, i) + M(l̂, j, i, k̂) + M(i, k̂, j, l̂)

+M(i, l̂, j, k̂) + M(j, k̂, i, l̂) + M(j, l̂, k̂, i) + M(j, i, l̂, k̂)
)
×M(k̂, l̂, i, j)†

)]

+N2
c

[
1

2
|M(i, j; ; k̂, l̂)|2 + |M(i, k̂; ; j, l̂)|2 + |M(k̂, i; ; j, l̂)|2 +

1

2
|M(k̂, l̂; ; i, k)|2

]

+
(N4

c − 3N2
c − 1)

4
|M̄(i, j, k̂, l̂)|2

]}
, (7.53)

The expression above is obtained as follows. We start by expanding the sum over permuta-

tions for all four gluons present in the final state in the colour decomposition for the unphys-

ical process 0 → QQ̄gggg , given in eq. (7.49). Then, gluons 5g and 6g are crossed to the

initial state. Finally, the terms are recombined in a double sum over permutations for the
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two initial state and the two final state gluons. The corresponding subtraction term reads,

dσ̂S
gg→QQ̄gg = g8(N2

c − 1)dΦ4(k1Q, k2Q̄, k3g, k4g; p5g, p6g)

×
∑

(i,j)∈P (3,4),(k,l)∈P (5,6)

{

N3
c

[
1

2
A0

3(lg; 1Q, 2Q̄)
(
|M0

5((1̃2)Q, ig, jg, k̂g,
ˆ̄lQ)|2 + |M0

5(
ˆ̄lQ̄, ig, jg, k̂g, (1̃2)Q̄)|2

+|M0
5((1̃2)Q, ig, k̂g, jg,

ˆ̄lQ)|2 + |M0
5(

ˆ̄lQ̄, ig, k̂g, jg, (1̃2)Q̄)|2

+|M0
5((1̃2)Q, k̂g, ig, jg,

ˆ̄lQ)|2 + |M0
5(

ˆ̄lQ̄, k̂g, ig, jg, (1̃2)Q̄)|2
)

J
(3)
3 (kf12, k3, k4)

+d0
3(1Q, ig, jg)|M0

5((1̃i)Q, (ĩj)g, k̂g, l̂g, 2Q̄)|2J (3)
3 (ke1i, k2, keij)

+d0
3(2Q̄, ig, jg)|M0

5(1Q, k̂g, l̂g, (ĩj)g, (2̃i)Q̄)|2J (3)
3 (k1, ke2i, keij)

+D0
3(lg; ig, 1Q)

(
|M0

5((1̃i)Q, ˆ̄lg, jg, k̂g, 2Q̄)|2

+|M0
5((1̃i)Q, ˆ̄lg, k̂g, jg, 2Q̄)

)
|2J (3)

3 (ke1i, k2, kj)

+D0
3(lg; ig, 2Q̄)

(
|M0

5(1Q, jg, k̂g,
ˆ̄lg, (2̃i)Q̄)|2

+|M0
5(1Q, k̂g, jg,

ˆ̄lg, (2̃i)Q̄)|2
)

J
(3)
3 (k1, ke2i, kj)

+f0
3 (lg; ig, jg)

(
|M0

5(1Q, (ĩj)g,
ˆ̄lg, k̂g, 2Q̄)|2 + |M0

5(1Q, ˆ̄lg, (ĩj)g, k̂g, 2Q̄)|2

+|M0
5(1Q, k̂g, (ĩj)g,

ˆ̄lg, 2Q̄)|2 + |M0
5(1Q, k̂g,

ˆ̄lg, (ĩj)g, 2Q̄)|2
)

J
(3)
3 (k1, k2, keij)

+F 0
3 (kg, lg; ig)

(
|M0

5(1̃Q, ˆ̄kg,
ˆ̄lg, j̃g, 2̃Q̄)|2 + |M0

5(1̃Q, j̃g,
ˆ̄kg,

ˆ̄lg, 2̃Q̄)|2
)

J
(3)
3 (k̃1, k̃2, k̃j)

]

−Nc

[
A0

3(1Q, ig, 2Q̄)
(
|M0

5((1̃i)Q, jg, k̂g, l̂g, (2̃i)Q̄)|2 − (1/2)|M0
5((1̃i)Q, jγ , k̂γ , l̂γ , (2̃i)Q̄)|2

+|M0
5((1̃i)Q, k̂g, jg, l̂g, (2̃i)Q̄)|2 + |M0

5((1̃i)Q, k̂g, l̂g, jg, (2̃i)Q̄)|2

+Re(M0
5((1̃i)Q, jg, k̂g, l̂g, (2̃i)Q̄)M0

5((1̃i)Q, jg, l̂g, k̂g, (2̃i)Q̄)†)

+Re(M0
5((1̃i)Q, k̂g, jg, l̂g, (2̃i)Q̄)M0

5((1̃i)Q, l̂g, jg, k̂g, (2̃i)Q̄)†)

+Re(M0
5((1̃i)Q, k̂g, l̂g, jg, (2̃i)Q̄)M0

5((1̃i)Q, l̂g, k̂g, jg, (2̃i)Q̄)†)

+2Re(M0
5((1̃i)Q, jg, k̂g, l̂g, (2̃i)Q̄)M0

5((1̃i)Q, k̂g, jg, l̂g, (2̃i)Q̄)†)

+2Re(M0
5((1̃i)Q, jg, k̂g, l̂g, (2̃i)Q̄)M0

5((1̃i)Q, l̂g, k̂g, jg, (2̃i)Q̄)†)

+2Re(M0
5((1̃i)Q, k̂g, jg, l̂g, (2̃i)Q̄)M0

5((1̃i)Q, k̂g, l̂g, jg, (2̃i)Q̄)†)
)

J
(3)
3 (ke1i, ke2i, kj)

+
1

2
A0

3(lg; 1Q, 2Q̄)
(
|M0

5((1̃2)Q, ig, jg, k̂g,
ˆ̄lQ)|2 + |M0

5(
ˆ̄lQ̄, ig, jg, k̂g, (1̃2)Q̄)|2

+|M0
5((1̃2)Q, ig, k̂g, jg,

ˆ̄lQ)|2 + |M0
5(

ˆ̄lQ̄, ig, k̂g, jg, (1̃2)Q̄)|2

+|M0
5((1̃2)Q, k̂g, ig, jg,

ˆ̄lQ)|2 + |M0
5(

ˆ̄lQ̄, k̂g, ig, jg, (1̃2)Q̄)|2

+|M0
5((1̃2)Q, ig, jg, k̂γ , ˆ̄lQ)|2 + |M0

5(
ˆ̄lQ̄, ig, jg, k̂γ , (1̃2)Q̄)|2

+|M0
5((1̃2)Q, ig, k̂g, jγ , ˆ̄lQ)|2 + |M0

5(
ˆ̄lQ̄, ig, k̂g, jγ , (1̃2)Q̄)|2
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+|M0
5((1̃2)Q, k̂g, ig, jγ , ˆ̄lQ)|2 + |M0

5(
ˆ̄lQ̄, k̂g, ig, jγ , (1̃2)Q̄)|2

−(1/2)|M0
5((1̃2)Q, iγ , jγ , k̂γ , ˆ̄lQ)|2

−(1/2)|M0
5(

ˆ̄lQ̄), iγ , jγ , k̂γ , (1̃2)Q̄)|2
)

J
(3)
3 (kf12, ki, kj)

+d0
3(1Q, ig, jg)

(
|M0

5((1̃i)Q, (ĩj)g, k̂g, l̂γ , 2Q̄)|2

+Re(M0
5((1̃i)Q, k̂g, (ĩj)g, l̂g, 2Q̄)M0

5((1̃i)Q, l̂g, (ĩj)g, k̂g, 2Q̄)†)

−Re(M0
5((1̃i)Q, (ĩj)g, k̂g, l̂g, 2Q̄)M0

5((1̃i)Q, (ĩj)g, l̂g, k̂g, 2Q̄)†)

−Re(M0
5((1̃i)Q, k̂g, l̂g, (ĩj)g, 2Q̄)M0

5((1̃i)Q, l̂g, k̂g, (ĩj)g, 2Q̄)†)

+2Re(M0
5((1̃i)Q, k̂g, l̂g, (ĩj)g, 2Q̄)M0

5((1̃i)Q, l̂g, (ĩj)g, k̂g, 2Q̄)†)

−2Re(M0
5((1̃i)Q, (ĩj)g, k̂g, l̂g, 2Q̄)M0

5((1̃i)Q, l̂g, (ĩj)g, k̂g, 2Q̄)†)

−2Re(M0
5((1̃i)Q, (ĩj)g, k̂g, l̂g, 2Q̄)M0

5((1̃i)Q, l̂g, k̂g, (ĩj)g, 2Q̄)†)
)

J
(3)
3 (ke1i, k2, keij)

+d0
3(2Q̄, ig, jg)

(
|M0

5(1Q, k̂g, (ĩj)g, l̂γ , (2̃i)Q̄)|2

+Re(M0
5(1Q, k̂g, (ĩj)g, l̂g, (2̃i)Q̄)M0

5(1Q, l̂g, (ĩj)g, k̂g, (2̃i)Q̄)†)

−Re(M0
5(1Q, (ĩj)g, k̂g, l̂g, (2̃i)Q̄)M0

5(1Q, (ĩj)g, l̂g, k̂g, (2̃i)Q̄)†)

−Re(M0
5(1Q, k̂g, l̂g, (ĩj)g, (2̃i)Q̄)M0

5(1Q, l̂g, k̂g, (ĩj)g, (2̃i)Q̄)†)

+2Re(M0
5(1Q, (ĩj)g, k̂g, l̂g, (2̃i)Q̄)M0

5(1Q, l̂g, (ĩj)g, k̂g, (2̃i)Q̄)†)

−2Re(M0
5(1Q, k̂g, l̂g, (ĩj)g, (2̃i)Q̄)M0

5(1Q, l̂g, (ĩj)g, k̂g, (2̃i)Q̄)†)

−2Re(M0
5(1Q, (ĩj)g, k̂g, l̂g, (2̃i)Q̄)M0

5(1Q, l̂g, k̂g, (ĩj)g, (2̃i)Q̄)†)
)

J
(3)
3 (k1, ke2i, keij)

+D0
3(lg; ig, 1Q)

(
|M0

5((1̃i)Q, ˆ̄lg, jg, k̂γ , 2Q̄)|2 + |M0
5((1̃i)Q, ˆ̄lg, k̂g, jγ , 2Q̄)|2

+2Re(M0
5((1̃i)Q, jg,

ˆ̄lg, k̂g, 2Q̄)M0
5((1̃i)Q, k̂g, jg,

ˆ̄lg, 2Q̄)†)

+2Re(M0
5((1̃i)Q, jg,

ˆ̄lg, k̂g, 2Q̄)M0
5((1̃i)Q, k̂g,

ˆ̄lg, jg, 2Q̄)†)

+2Re(M0
5((1̃i)Q, jg, k̂g,

ˆ̄lg, 2Q̄)M0
5((1̃i)Q, k̂g,

ˆ̄lg, jg, 2Q̄)†)

−2Re(M0
5((1̃i)Q, jg,

ˆ̄lg, k̂g, 2Q̄)M0
5((1̃i)Q, ˆ̄lg, k̂g, jg, 2Q̄)†)

−2Re(M0
5((1̃i)Q, jg, k̂g,

ˆ̄lg, 2Q̄)M0
5((1̃i)Q, ˆ̄lg, k̂g, jg, 2Q̄)†)

−2Re(M0
5((1̃i)Q, ˆ̄lg, jg, k̂g, 2Q̄)M0

5((1̃i)Q, ˆ̄lg, k̂g, jg, 2Q̄)†)

−2Re(M0
5((1̃i)Q, jg, k̂g,

ˆ̄lg, 2Q̄)M0
5((1̃i)Q, k̂g, jg,

ˆ̄lg, 2Q̄)†)

−2Re(M0
5((1̃i)Q, ˆ̄lg, jg, k̂g, 2Q̄)M0

5((1̃i)Q, k̂g, jg,
ˆ̄lg, 2Q̄)†)

−2Re(M0
5((1̃i)Q, ˆ̄lg, jg, k̂g, 2Q̄)M0

5((1̃i)Q, k̂g,
ˆ̄lg, jg, 2Q̄)†)

)
|2J (3)

3 (ke1i, k2, kj)

+D0
3(lg; ig, 2Q̄)

(
|M0

5(1Q, jg,
ˆ̄lg, k̂γ , (2̃i)Q̄)|2 + |M0

5(1Q, k̂g,
ˆ̄lg, jγ , (2̃i)Q̄)|2

+2Re(M0
5(1Q, jg,

ˆ̄lg, k̂g, (2̃i)Q̄)M0
5(1Q, ˆ̄lg, k̂g, jg, (2̃i)Q̄)†)

+2Re(M0
5(1Q, jg,

ˆ̄lg, k̂g, (2̃i)Q̄)M0
5(1Q, k̂g,

ˆ̄lg, jg, (2̃i)Q̄)†)

+2Re(M0
5(1Q, ˆ̄lg, jg, k̂g, (2̃i)Q̄)M0

5(1Q, k̂g,
ˆ̄lg, jg, (2̃i)Q̄)†)
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−2Re(M0
5(1Q, jg, k̂g,

ˆ̄lg, (2̃i)Q̄)M0
5(1Q, ˆ̄lg, k̂g, jg, (2̃i)Q̄)†)

−2Re(M0
5(1Q, ˆ̄lg, jg, k̂g, (2̃i)Q̄)M0

5(1Q, ˆ̄lg, k̂g, jg, (2̃i)Q̄)†)

−2Re(M0
5(1Q, jg,

ˆ̄lg, k̂g, (2̃i)Q̄)M0
5(1Q, k̂g, jg,

ˆ̄lg, (2̃i)Q̄)†)

−2Re(M0
5(1Q, jg, k̂g,

ˆ̄lg, (2̃i)Q̄)M0
5(1Q, k̂g, jg,

ˆ̄lg, (2̃i)Q̄)†)

−2Re(M0
5(1Q, ˆ̄lg, jg, k̂g, (2̃i)Q̄)M0

5(1Q, k̂g, jg,
ˆ̄lg, (2̃i)Q̄)†)

−2Re(M0
5(1Q, jg, k̂g,

ˆ̄lg, (2̃i)Q̄)M0
5(1Q, k̂g,

ˆ̄lg, jg, (2̃i)Q̄)†)
)

J
(3)
3 (k1, ke2i, kj)

+f0
3 (lg; ig, jg)

(
|M0

5(1Q, (ĩj)g,
ˆ̄lg, k̂γ , 2Q̄)|2 + |M0

5(1Q, ˆ̄lg, (ĩj)g, k̂γ , 2Q̄)|2

+4Re(M0
5(1Q, (ĩj)g, k̂g,

ˆ̄lg, 2Q̄)M0
5(1Q, ˆ̄lg, k̂g, (ĩj)g, 2Q̄)†)

−4Re(M0
5(1Q, (ĩj)g,

ˆ̄lg, k̂g, 2Q̄)M0
5(1Q, k̂g, (ĩj)g,

ˆ̄lg, 2Q̄)†)

−4Re(M0
5(1Q, ˆ̄lg, (ĩj)g, k̂g, 2Q̄)M0

5(1Q, k̂g, (ĩj)g,
ˆ̄lg, 2Q̄)†)

−4Re(M0
5(1Q, (ĩj)g,

ˆ̄lg, k̂g, 2Q̄)M0
5(1Q, k̂g,

ˆ̄lg, (ĩj)g, 2Q̄)†)

−4Re(M0
5(1Q, ˆ̄lg, (ĩj)g, k̂g, 2Q̄)M0

5(1Q, k̂g,
ˆ̄lg, (ĩj)g, 2Q̄)†)

)
J

(3)
3 (k1, k2, keij)

+F 0
3 (kg, lg; ig)

(
|M0

5(1̃Q, ˆ̄kg,
ˆ̄lg, j̃γ , 2̃Q̄)|2

+2Re(M0
5(1̃Q, ˆ̄kg, j̃g,

ˆ̄lg, 2̃Q̄)M0
5(1̃Q, ˆ̄lg, j̃g,

ˆ̄kg, 2̃Q̄)†)

−4Re(M0
5(1̃Q, j̃g,

ˆ̄kg,
ˆ̄lg, 2̃Q̄)M0

5(1̃Q, ˆ̄kg,
ˆ̄lg, j̃g, 2̃Q̄)†)

−4Re(M0
5(1̃Q, j̃g,

ˆ̄kg,
ˆ̄lg, 2̃Q̄)M0

5(1̃Q, ˆ̄lg,
ˆ̄kg, j̃g, 2̃Q̄)†)

)
J

(3)
3 (k̃1, k̃2, k̃j)

]

+
1

Nc

[
A0

3(1Q, ig, 2Q̄)
(
|M0

5((1̃i)Q, jg, k̂g, l̂γ , (2̃i)Q̄)|2 + |M0
5((1̃i)Q, k̂g, jg, l̂γ , (2̃i)Q̄)|2

+|M0
5((1̃i)Q, k̂g, l̂g, jγ , (2̃i)Q̄)|2

−(3/2)|M0
5((1̃i)Q, jγ , k̂γ , l̂γ , (2̃i)Q̄)|2

)
J

(3)
3 (ke1i, ke2i, kj)

+
1

2
A0

3(lg; 1Q, 2Q̄)
(
|M0

5((1̃2)Q, ig, jg, k̂γ , ˆ̄lQ)|2 + |M0
5(

ˆ̄lQ̄, ig, jg, k̂γ , (1̃2)Q̄)|2

+|M0
5((1̃2)Q, ig, k̂g, jγ , ˆ̄lQ)|2 + |M0

5(
ˆ̄lQ̄, ig, k̂g, jγ , (1̃2)Q̄)|2

+|M0
5((1̃2)Q, k̂g, ig, jγ , ˆ̄lQ)|2 + |M0

5(
ˆ̄lQ̄, k̂g, ig, jγ , (1̃2)Q̄)|2

)
J

(3)
3 (kf12, ki, kj)

+
1

2
d0
3(1Q, ig, jg)|M0

5((1̃i)Q, (ĩj)γ , k̂γ , l̂γ , 2Q̄)|2J (3)
3 (ke1i, k2, keij)

+
1

2
d0
3(2Q̄, ig, jg)|M0

5(1Q, (ĩj)γ , k̂γ , l̂γ , (2̃i)Q̄)|2J (3)
3 (k1, ke2i, keij)

+D0
3(lg; ig, 1Q)|M0

5((1̃i)Q, jγ , k̂γ , ˆ̄lγ , 2Q̄)|2J (3)
3 (ke1i, k2, kj)

+D0
3(lg; ig, 2Q̄)|M0

5(1Q, jγ , k̂γ , ˆ̄lγ , (2̃i)Q̄)|2J (3)
3 (k1, ke2i, kj)

]

− 1

2N3
c

[
A0

3(1Q, ig, 2Q̄)|M0
5((1̃i)Q, jγ , k̂γ , l̂γ , (2̃i)Q̄)|2J (3)

3 (ke1i, ke2i, kj)
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+
1

2
A0

3(lg; 1Q, 2Q̄)
(
|M0

5((1̃2)Q, iγ , jγ , k̂γ , ˆ̄lQ)|2

+|M0
5(

ˆ̄lQ̄, iγ , jγ , k̂γ , (1̃2)Q̄)|2
)

J
(3)
3 (kf12, ki, kj)

]}

For this subtraction term, we have also checked that in all its collinear and quasi-

collinear limits, it reduces to the product of a Casimir factor multiplied by a splitting

function corresponding to the given limit and the appropriate non-colour ordered matrix-

element squared as explained in section 7.4.1, providing us with a powerful check on the

correctness of our result.

8 Conclusions

We have presented the extension of the antenna formalism required for the calculation of

hadronic processes involving massive final states in association with jets at the NLO level.

The construction of massive subtraction terms with all its mass-dependent ingredients is

presented in all required configurations (final-final, initial-final, initial-initial). The un-

known massive antenna functions are derived, their limiting behaviour is presented and

those are finally integrated over a factorised form of the massive phase space. Besides

the massive extension of the flavour-conserving antennae, new massive flavour-violating

antennae were derived in unintegrated and integrated forms. One of the integrated mas-

sive initial-final antenna, Ag;QQ̄, can be directly related to the well-known heavy quark

coefficient function. A special section is dedicated to this comparison and full agreement

is found. In section 5, when all antennae are integrated over the appropriate factorised

massive phase space, we showed that we can capture all poles of the massive integrated

antennae in universal factors. Those poles are related either to massive colour ordered I
(1)
ij -

type operators or well-known splitting kernels p(ij)(x) associated to initial-final massless

collinear singularities. The colour-ordered massive I
(1)
ij -type operators are here presented

for the first time. As a first application of our massive extension of the antenna formal-

ism, we constructed the colour ordered real contributions and subtraction terms for the

production of a top quark pair and for the production of a top quark pair and a jet at

NLO. In the second case, the presence of interference terms in the colour decomposition

of the real matrix element squared renders the construction of the subtraction terms more

involved. The treatment of those terms is explained in detail in the paper in section 7.2.1.

All colour-ordered subtraction terms constructed have been checked in all soft, collinear

and quasi-collinear limits of the real matrix element squared. Furthermore, for each sub-

traction term, it has been verified that in all collinear and/or quasi-collinear limits present

in it, the sum of all terms contributing to a given limit add up to reproduce the product

of the required splitting function with the corresponding Casimir factor multiplied with

the non colour-ordered matrix element squared. This check is explicitly derived for the

subtraction term related to the process gg → QQ̄g contributing to the process pp → tt̄ at

NLO. This verification provides us with an extremely powerful test on the correctness of

our results for the subtraction terms for tt̄ and tt̄ +1 jet production at NLO.
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The results presented in this paper represent a substantial step towards the calculation

of the NNLO corrections to top quark pair production within the antenna subtraction

formalism. The decomposition of the real matrix elements into colour-ordered amplitudes

squared and the identification of the different leading and subleading colour structures,

including the treatment of interference terms, described in section 7.2.1, will allow the

application of the NNLO antenna subtraction method to compute the double real radiation

contributions to pp → tt̄ at NNLO. The NLO antenna subtraction terms for pp → tt̄

+jet, provided in this paper, are already part of the NNLO corrections to tt̄ production

at hadron colliders.
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