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Abstract We consider the NP-hard problem of scheduling parallel jobs with release dates on

identical parallel machines to minimize the makespan. A parallel job requires simultaneously

a prespecified, job-dependent number of machines when being processed. We prove that the

makespan of any nonpreemptive list-schedule is within a factor of 2 of the optimal preemptive

makespan. This gives the best-known approximation algorithms for both the preemptive and

the nonpreemptive variant of the problem. We also show that no list-scheduling algorithm can

achieve a better performance guarantee than 2 for the nonpreemptive problem, no matter which

priority list is chosen.

List-scheduling also works in the online setting where jobs arrive over time and the length of a

job becomes known only when it completes; it therefore yields a deterministic online algorithm

with competitive ratio 2 as well. In addition, we consider a different online model in which

jobs arrive one by one and need to be scheduled before the next job becomes known. We show

that no list-scheduling algorithm has a constant competitive ratio. Still, we present the first

online algorithm for scheduling parallel jobs with a constant competitive ratio in this context.

We also prove a new information-theoretic lower bound of 2.25 for the competitive ratio of any

deterministic online algorithm for this model. Moreover, we show that 6/5 is a lower bound

for the competitive ratio of any deterministic online algorithm of the preemptive version of the

model jobs arriving over time.

Keywords multiprocessor scheduling, parallel jobs, approximation algorithms, online

algorithms, list scheduling, release dates

1. Introduction

Scheduling parallel jobs has recently gained considerable attention. The papers (Amoura et al.,

1997; B�lażewicz, Drabowski, and Wȩglarz, 1986; Chen and Miranda, 1999; Du and Leung, 1989;

Feldmann, Sgall, and Teng, 1994; Jansen and Porkolab, 1999, 2000; Ludwig and Tiwari, 1994;

Mu’alem and Feitelson, 1999; Turek, Wolf, and Yu, 1992) are just a small sample of work in this
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area. In fact, the study of computer architectures with parallel processors has prompted the design

and analysis of good algorithms for scheduling parallel jobs. Parallel jobs are often alternatively

called multiprocessor tasks. We refer to Feitelson et al. (1997) for a comprehensive introduction

to the scheduling aspect of parallel computing, and to Drozdowski (1996) for an overview of

results on computational complexity and approximation algorithms; (Feitelson, 1997) contains

a collection of further references.

We discuss the following class of scheduling problems. We are given m identical parallel

machines and a set of n independent parallel jobs j = 1, . . . , n. Each job j has a positive integer

processing time p j , which we also call its length. Job j simultaneously requires m j � m machines

at each point in time it is in process. The positive integer m j is also called the width of job j.
Note that we assume that m j is part of the input; in particular, jobs are nonmalleable. Moreover,

each job j has a nonnegative integer release date r j at which it becomes available for processing.

Every machine can process at most one job at a time. The objective is to find a feasible schedule

of minimal completion time; that is, the makespan is to be minimized. Whenever a machine

falls idle or a job is released, a list-scheduling algorithm schedules from a given priority list the

first job that is already released and that does not require more machines than are available. We

consider both the preemptive and the nonpreemptive variants of this problem. If preemptions are

allowed, a job may be interrupted at any point in time and continued later, possibly on a different

set of machines. Hence, in preemptive list-scheduling, jobs with lower priority can be preempted

by jobs with higher priority. We denote the preemptive problem by P|m j , r j , pmtn|Cmax and

the nonpreemptive problem by P|m j , r j |Cmax, following the three-field notation introduced in

Graham et al. (1979). We note that some authors use “size j ” instead of “m j ” to refer to parallel

jobs of the nature described before; see, e.g., Drozdowski (1996). Occasionally, we shall also refer

to problems featuring nonparallel jobs only; they arise as the special case in which m j = 1 for all

j = 1, . . . , n. The associated short-hand notation is P|r j , pmtn|Cmax and P|r j |Cmax, respectively,

and, in the absence of nontrivial release dates, P|pmtn|Cmax and P||Cmax.

Since both the parallel job-scheduling problems considered here are NP-hard, we are interested

in approximation algorithms. An α-approximation algorithm for a minimization problem is a

polynomial-time algorithm that constructs for any instance a solution of value at most α times

the optimal value; α is also called the performance guarantee of the algorithm. Motivated by the

application context of parallel job scheduling, we also study (deterministic) online algorithms.

While we shall consider different online scenarios, we always measure the quality of an online

algorithm in terms of its competitive ratio. An online algorithm is α-competitive if it produces

for any instance a solution of value at most α times the value of an offline optimum.

While preemptive scheduling of parallel jobs is NP-hard, even in the absence of release dates

(Drozdowski, 1994), preemptive scheduling of nonparallel jobs (that is, m j = 1) can be solved

in polynomial time (McNaughton, 1959; Horn, 1974). For the strongly NP-hard problem of

scheduling nonparallel jobs without release dates, P‖Cmax, Graham (1966) showed that every

list-scheduling algorithm is a (2 − 1/m)-approximation algorithm. Gusfield (1984) and Hall

and Shmoys (1989) observed that Graham’s result holds for nonparallel jobs with release dates,

P|r j |Cmax, as well. If nonparallel jobs are scheduled in nonincreasing order of their lengths, list-

scheduling is a ((4m − 1)/3m)-approximation algorithm for P‖Cmax, see (Graham, 1969), and a

3/2-approximation algorithm for P|r j |Cmax, see Chen and Vestjens (1997). In contrast thereto, we

provide an instance of parallel jobs with release dates that is simultaneously bad for all possible

priority lists; that is, no variant of list-scheduling can achieve a better performance guarantee

than 2 for P|m j , r j |Cmax. Hochbaum and Shmoys (1987) and Hall and Shmoys (1989) gave

polynomial-time approximation schemes for the problems P||Cmax and P|r j |Cmax, respectively.

In contrast, there is no approximation algorithm with a performance guarantee better than 3/2

for P|m j |Cmax, unless P = NP, as we point out in Section 2.
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It follows from the work of Garey and Graham (1975) on project scheduling with resource

constraints that list-scheduling has performance guarantee 2 for scheduling parallel jobs without

release dates, P|m j |Cmax. Turek, Wolf, and Yu (1992) presented a direct, simplified proof of

this result. Feldmann, Sgall, and Teng (1994) observed that the length of a nonpreemptive list-

schedule is actually at most 2 − 1/m times the optimal preemptive makespan, if no release

dates are present. This implies that there is a (3 − 1/m)-approximation algorithm for both,

P|m j , r j , pmtn|Cmax and P|m j , r j |Cmax, since a delay of the start times of all jobs by the maximal

release date increases the performance guarantee by at most 1 (see also Mu’alem and Feitelson,

1999).

In Section 4, we show that any nonpreemptive list-scheduling algorithm produces a schedule

with makespan at most twice the makespan of an optimal preemptive schedule. This leads at

the same time to a 2-approximation algorithm for both P|m j , r j |Cmax and P|m j , r j , pmtn|Cmax.

We show that in contrast to scheduling with nonparallel jobs, this approximation ratio cannot be

improved upon by applying different priority strategies.

Independently of our work, first presented in Johannes (2001), Naroska and Schwiegelshohn

(2002) also showed that list-scheduling is a 2-approximation algorithm for these problems. While

Naroska and Schwiegelshohn prove this result by induction over the number of different release

dates, we directly compare the structure of a list-schedule with that of an optimal preemptive

schedule, which results in a somewhat more perspicuous proof. As a matter of fact, we use our

techniques to obtain additional results.

For P|m j , r j , pmtn|Cmax, we show that preemptive m j -list-scheduling, that is, preemptive

list-scheduling where jobs are in order of nonincreasing widths, generates a schedule that is at

most 2 − 1/m times as long as an optimal preemptive schedule. Although this result is essentially

outperformed by the main result, we will present it anyway in Section 3, because its proof is

short, and it provides a first idea of the techniques used in the main proof.

While it is not difficult to see that list-scheduling algorithms that do not depend on job

characteristics (e.g., the length) also work in the online settings unknown running times and

jobs arriving over time with corresponding competitive ratios, no list-scheduling algorithm has a

constant competitive ratio in the context of scheduling jobs one by one. In Section 5, we present

the first online algorithm with a constant competitive ratio for scheduling parallel jobs one by

one. We also show that no deterministic online algorithm has a competitive ratio smaller than

2.25. For the preemptive version of the online model jobs arriving over time, we show that no

deterministic online algorithm can achieve a better competitive ratio than 6/5. So far, no lower

bound is known for this problem.

A problem closely related to P|m j |Cmax is strip packing, sometimes also called orthogonal

packing in two dimensions. In contrast to the model considered here, machines assigned to a job

need to be contiguous in a solution to the strip-packing problem. Turek, Wolf, and Yu (1992)

pointed out that there is indeed an advantage to using noncontiguous machine assignments. From

a parallel computer architecture perspective, P|m j |Cmax corresponds to scheduling on a PRAM,

while strip packing is equivalent to scheduling on a linear array of processors (Ludwig and Tiwari,

1994). The strip-packing problem was first posed by Baker, Coffman, and Rivest (1980). Various

authors proposed approximation algorithms with performance guarantees 3 (Baker, Coffman,

and Rivest, 1980; Coffman et al., 1980; Golan, 1981), 2.7 (Coffman et al., 1980), 2.5 (Sleator,

1980), and 2 (Steinberg, 1997), respectively. Kenyon and Remila (1996) gave an asymptotic fully

polynomial-time approximation scheme when m is fixed.

If no network topology is specified (PRAM) and the number m of machines is fixed,

Pm|m j , pmtn|Cmax can be solved as a linear programming problem in polynomial time

(B�lażewicz, Drabowski, and Wȩglarz, 1986). Jansen and Porkolab (2000) presented an algo-

rithm with running time O(n) + poly(m) if m is not fixed, thereby showing that it cannot be
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strongly NP-hard, unless P = NP. They also gave a polynomial-time approximation scheme for

the nonpreemptive problem with a fixed number of machines, Pm|m j |Cmax, see (Jansen and

Porkolab, 1999). Du and Leung (1989) showed that this problem is strongly NP-hard for any

fixed m � 5.

2. Preliminaries

In this section, we briefly discuss the limits of approximability for some parallel job-scheduling

problems as well as the running time of list-scheduling algorithms.

The problem of nonpreemptively scheduling parallel jobs of length 1 to minimize the

makespan, P|m j , p j = 1|Cmax, is equivalent to the strongly NP-hard BIN PACKING problem,

as was observed by B�lażewicz, Drabowski, and Wȩglarz (1986). It follows that there is no ap-

proximation algorithm for scheduling parallel jobs to minimize the makespan with a performance

guarantee better than 3/2, unless P = NP. Moreover, in contrast to BIN PACKING, item sizes (i.e.,

lengths of jobs) can be scaled. Therefore, we can state the following theorem.

Theorem 2.1. There is no polynomial-time algorithm that produces for every instance of
P|m j |Cmax a schedule with makespan at most αC∗

max + β with α < 3/2 and β being a poly-
nomial in n, unless P = NP. Here, C∗

max denotes the optimal makespan.

Proof: Let us consider the NP-complete decision version of the problem P2‖Cmax: Is it possible to

schedule the n nonparallel jobs of a given instance I1 on two identical parallel machines such that

the makespan is at most T? We transform I1 into an instance I2 of the problem P|m j , p j = p|Cmax

by introducing T machines and n jobs. Each job i with length pi in I1 will be transformed into

a job j in I2 with width m j = pi and length p for some p > 0. Hence, a feasible schedule for

the instance I2 has a makespan of at most 2p if and only if I1 is a yes-instance. If there was a

polynomial-time algorithm A for the problem P|m j , p j = p|Cmax with C A
max � αC∗

max + β with

α < 3/2 and β being a polynomial in n, we would have the means to recognize any yes-instance

of P2‖Cmax in polynomial time by choosing p >
β

3−2α
. �

Li (1999) gave a polynomial-time algorithm with asymptotic performance guarantee 31/18

for P|m j |Cmax. Drozdowski (1994) observed that if all jobs have length 1, then the existence of a

preemptive schedule of length 2 implies the existence of a nonpreemptive schedule of length 2 as

well. Thus, preemptive scheduling of parallel jobs with length 1 and therefore P|m j , pmtn|Cmax

do not have a better than 3/2-approximation algorithm either, unless P = NP.

It is well known that list-scheduling algorithms for classic (i.e., nonparallel) job-scheduling

problems can easily be implemented in polynomial time. However, one needs to be more careful

for parallel job-scheduling problems because we may not assume that the number m of machines

is at most the number n of jobs. Therefore, any polynomial-time scheduling algorithm that outputs

job-machine assignments has to find a compact way of encoding this output since not m, but

log m is part of the input size (as machines are identical). The following lemma ensures that

there is always an assignment of the jobs to the machines such that no job is split over too many

machines, and we may therefore safely restrict ourselves to algorithms that specify the starting

times of jobs.

Lemma 2.2. Let S be a feasible schedule for an instance of the problem P|m j , r j |Cmax, given by
job starting times. Then, there is a polynomial-time algorithm that computes a feasible assignment
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of jobs to machines (without changing the starting times of jobs). In particular, the job-machine
assignment can be represented with polynomial size.

Proof: Let t1 < t2 < · · · < tz be the different starting times of the jobs in S. Let i1 < i2 <

· · · < imt be the idle machines in S at time t and let j1, j2, . . . , jnt be the jobs that start at time

t, t = t1, . . . , tz . We assign the jobs j1, . . . , jnt to the machines i1, . . . , imt in the following way.

Job j1 is assigned to the first m j1 machines in {i1, . . . , imt }, job j2 is assigned to the next m j2
machines in {i1, . . . , imt }, and so on. Let ft be the number of machine-intervals that exist or are

created at time t, for t = 1, . . . , z. A machine-interval is a set of consecutive machines (in the

order 1, 2, . . . , m) of maximal cardinality such that all machines in this set are processing the

same job. In particular, a machine-interval is completely specified by (the index of) its first and

its last machine. Hence, we will output for every t ∈ {t1, . . . , tz} the set of machine-intervals

with the corresponding jobs.

At time t1 = 0, nt1 jobs start. Therefore, ft1 � nt1 + 1. For every additional split of a machine-

interval at time tk+1, we need a new job that starts at time tk+1. Hence, for all 1 � k � z we have

ftz � 1 + ∑tz
t=t1

nt = n + 1. We conclude that for every point in time t = t1, . . . , tz there are no

more than n + 1 machine-intervals and thus the size of the output is polynomial in the number

of jobs. �

In particular, the nonpreemptive list-scheduling algorithm described in Section 1 com-

putes a feasible schedule (including job-machine assignments) in polynomial time. For pre-

emptive list-scheduling, it is not necessary to invoke Lemma 2.2. At any event (release

date or completion time of a job,) one can simply interrupt the processing of all jobs and

then newly assign each job (highest priorities first) to consecutive machines. Hence, the

total number of preemptions is bounded from above by 2n. Thus, the job-machine assign-

ments can again be compactly described. Note also that preemptive list-scheduling only pre-

empts at integer points in time, whereas an optimal preemptive schedule may preempt at any

time.

3. Preemptive list-scheduling of parallel jobs with release dates

We now present a 2-approximation algorithm for scheduling parallel jobs with release dates

when preemptions are allowed. More specifically, we prove that preemptive m j -list-scheduling

delivers for all instances of P|m j , r j , pmtn|Cmax a schedule that is at most 2 − 1/m times

as long as an optimal preemptive schedule. The algorithm works as follows. At every deci-

sion point (i.e., release date or completion time) all currently running jobs are preempted.

Then, the already released, but not yet completed jobs are considered in order of nonin-

creasing widths m j , and as many of them are greedily assigned to the machines as feasibly

possible.

Theorem 3.1. Consider an instance of P|m j , r j , pmtn|Cmax. The length of the schedule con-
structed by the preemptive m j -list-scheduling algorithm is at most 2 − 1/m times the optimal
makespan C∗

max.

Proof: Let e be the job that determines the makespan in the preemptive list-schedule, and let Ce

be its completion time. We divide the time horizon (0, Ce] into intervals (t, t + 1] of length one

(t = 0, 1, . . . , Ce − 1). We call such an interval time-slot. We distinguish two cases.
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Case 1. me > m/2.

Let rz be the minimal point in time after which every time-slot contains a wide job (i.e., a job j
with m j > m/2) in the m j -list-schedule. It follows from the definition of m j -list-scheduling that

rz is the minimal release date of all jobs with m j > m/2 that are scheduled in this last contiguous

block of time-slots with wide jobs. Hence, rz plus the total processing time of wide jobs in this

block is a lower bound for C∗
max. Thus, Ce = rz + (Ce − rz) � C∗

max, and the list-schedule is

optimal in this case.

Case 2. me � m/2.

Suppose Ce > (2 − 1/m)C∗
max. Let rz be the minimal point in time after which every time-slot

contains a job j with m j � me in the list-schedule. By definition, rz is the minimal release date

of all jobs with m j � me that are scheduled in this last contiguous block of time-slots containing

jobs at least as wide as e. Consequently, all these jobs have to be scheduled after rz in the optimal

schedule as well. Thus, the total load of jobs to be processed in a space of (C∗
max − rz)m is strictly

more than (re − rz)me + (C∗
max(2 − 1/m) − re − pe)(m − me + 1) + peme. The first term in the

summation results from jobs j with m j � me scheduled prior to the time at which e is released,

and from the definition of rz . The second term accounts for those time-slots after the release date

of job e in which e is not scheduled. Finally, the third term is the load produced by e itself. A

simple calculation shows that this load is too much to fit into the space provided by an optimal

schedule between rz and C∗
max.

�

It is not hard to show that this approximation bound of 2 − 1/m for (preemptive) list-scheduling

of (parallel) jobs to minimize makespan is tight. The following instance has already been proposed

by Graham (1966) to show that list-scheduling for nonparallel jobs without release dates has no

better performance guarantee than 2 − 1/m.

Example 3.2. Consider an instance with m2 − m + 1 unit-width jobs, each one with length 1,

except for the last job in the list, which has length m. The resulting schedule has no preemptions

and is of length m − 1 + m = 2m − 1, while the optimal schedule has makespan m.

4. Nonpreemptive list-scheduling of parallel jobs with release dates

The following result gives a universal performance guarantee of 2 for all nonpreemptive list-

scheduling algorithms, regardless of which priority list is used. It holds for both the preemptive

and the nonpreemptive version of the problem.

Theorem 4.1. For every instance of the problems P|m j , r j , (pmtn)/Cmax, the length of the
schedule constructed by any nonpreemptive list-scheduling algorithm is less than twice the
optimal preemptive makespan.

Proof: To prove the result, we directly compare the nonpreemptive list-schedule LS of a given

instance with a preemptive optimal schedule OPT. Let C L S
max be the makespan of LS and let COPT

max

be the makespan of OPT. We partition the time horizon into periods of the same length, such

that all jobs are started, preempted, restarted, and completed at the beginning or the end of a

period. By scaling, we may assume that such a period, which we call time-slot s, starts at time

s − 1 and ends at time s (for some nonnegative integer s). The load of a time-slot is the number

of machines that are busy during this period. We define the load of a set of time-slots as the sum
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of the loads in the individual time-slots. We refer to the part of a job that is scheduled in one

time-slot as a slice. Let r0 < r1 < · · · < rz be the different release dates of the given instance.

The release date of a slice is the release date of its job. A slice of job j is wide if m j > m/2,

otherwise, it is called small. The proof will refer to slices of jobs instead of jobs since this is the

level of granularity needed to prove the result. We will combine time-slots in LS to sets and then

match sets to add up their contained load in a way that enables us to compare the load in LS to

the load in OPT. Two disjoint sets of time-slots E1 and E2 in LS of equal size (|E1| = |E2|) can

be matched if the load of any time-slot in E1 plus the load of any time-slot in E2 exceeds m,

and hence the sum of the load of all slices in E1 ∪ E2 exceeds |E1|m. For instance, if a job j is

released at time r j but started only at time s j > r j in our list-schedule, then the sum of the load

in any time-slot between r j and s j and the load in any time-slot between s j and the completion

time C j of j, is greater than m. Hence, any such two time-slots can be matched and therefore two

sets of same size, consisting of time-slots between r j and s j , and time-slots between s j and C j ,

respectively, can also be matched. Also, if we know that every time-slot in two disjoint sets of

the same size contains a wide job, then these two sets can be matched as well. Due to the fact

that our sets of time-slots defined during the proof are not necessarily of the same size, we have

occasionally to distinguish several cases. For instance, if we have two disjoint sets of time-slots

E1 and E2, and any time-slot in E1 can be matched with any time-slot in E2, then depending

on which set is greater, we might have a total load of more than |E1|m plus some remaining

unmatched time-slots in E2, or we have a total load of more than |E2|m and some remaining

unmatched time-slots in E1. For k = 0, 1, . . . , z, let D(rk) be the set of time-slots in LS after rk

that contain wide slices, which are completed in OPT before rk . In particular, D(r0) = ∅. These

sets have the properties described in Observations 1, 2, and 3. We denote by S(rk) the set of

time-slots {1, . . . , rk} ∪ D(rk), for each k = 1, . . . , z. Let S(r0) = ∅ and let S(C L S
max) be the set

of all time-slots in LS; thus, S(CLS
max) = {1, . . . , CLS

max}.

Observation 1. D(rh) ∩ {rk + 1, . . . , C L S
max} ⊆ D(rk) for 0 � h < k � z.

Observation 2. For every set D ⊆ D(rk) we define the bipartite graph B(D) in the following
way. For every time-slot h ∈ {(rk − |D| + 1), . . . , rk} we introduce one node on the left side of

the graph B(D). For every time-slot d ∈ D we introduce one node on the right side of the graph

B(D). A node h on the left side of B(D) and a node d on the right side of B(D) are adjacent if

and only if the wide slice in the time-slot d is released before h, that is, rd � h − 1. Then B(D)

contains a perfect matching.

Observation 3. The inequality |D(rk)| � rk holds for all k = 0, . . . , z.

Observation 4. For all 0 � h < k � z we have (S(C L S
max)\S(rk)) ∩ (S(rk)\S(rh)) = ∅. Moreover,

(S(C L S
max)\S(rk)) ∪ (S(rk)\S(rh)) = S(C L S

max)\S(rh).

Observation 5. If there exists a k � z with S(C L S
max)\S(rk) = ∅, then the claim of Theorem 4.1

is true.

Reason. If S(C SL
max)\S(rk) = ∅ for some k � z, then all time-slots between the time rk and C L S

max are

part of D(rk), therefore C L S
max = rk + |D(rk)|. On the other hand, COPT

max > rk and COPT
max � |D(rk)|.

This implies COPT
max >

rk+|D(rk )|
2

= C L S
max

2
.

Therefore, we assume henceforth that S(C L S
max)\S(rk) 
= ∅ for all k � z.
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We can also exclude for every release date rk, k = 1, . . . , z, the case that the time-slot rk is
empty in LS; in this case all subsequent jobs would not be released before time rk , and we could

consider the remaining part of LS separately.

We consider the following two cases for C L S
max: Either there is a release date rh, h ∈ {0, . . . , z},

such that there is more load than
|S(C L S

max)\S(rh )|m
2

in S(C L S
max)\S(rh), or there is no such release date.

Case 1. There is no release date rh, h ∈ {0, . . . , z}, such that the load in S(C L S
max)\S(rh) is more

than
|S(C L S

max)\S(rh )|m
2

.

It follows that the load in S(C L S
max)\S(rz) cannot be more than

|S(C L S
max)\S(rz )|m

2
. Together with Obser-

vation 5, this implies that there is a time-slot in S(C L S
max)\S(rz) ⊆ {rz + 1, . . . , C L S

max} containing

a small job. Let e be a small job in S(C L S
max)\S(rz) that completes last. Let re be the release

date, se the start time, and Ce the completion time of e. The load in S(C L S
max)\S(re) is at most

|S(C L S
max)\S(re)|m

2
.

We partition the set S(C L S
max)\S(re) into the disjoint sets Ē, E := E1 ∪ E2, and Ẽ . Let E be

the set of time-slots in S(C L S
max)\S(re) containing a slice of e. Let E1 be the set of time-slots in E

before the date rz , and let E2 be the set of time-slots in E after rz . Notice that E2 
= ∅. Let Ē be

the set of time-slots in S(C L S
max)\S(re) containing no slice of e and which are before rz . Let Ẽ be

the set of time-slots in S(C L S
max)\S(re), which do not contain a slice of e and which come after rz .

Finally, De
re is the set of all time-slots between re and rz that contain a slice of e, but which are

not elements of the set S(C L S
max)\S(re), and hence not part of the set E.

Observation 6. More than m
2

machines are busy in every time-slot in Ē . Moreover, any two

time-slots s1 ∈ E and s2 ∈ Ẽ can be matched.

Reason. Job e with me � m
2

is released at date re, but is started at time se only. Therefore, at least

m − me + 1 machines are busy at any time between re and se.

Observation 7. In every time-slot s1 ∈ Ẽ more than m
2

machines are busy. Any two time-slots

s1 ∈ Ẽ and s2 ∈ E2 can be matched.

Reason. Since job e with me � m
2

is released at time re, but started only at time se, the statement

is clearly true for all time-slots s1 before se. Each time-slot s1 ∈ Ẽ after Ce contains a wide slice.

We consider now a time-slot s2 ∈ E2. Either s2 contains a slice of the wide job from s1 or the

wide job could not be processed in time-slot s2 although it was already released, because too

many machines are busy in s2. In both cases the total number of busy machines in both time-slots

exceeds m.

Let us consider the set S(C L S
max)\S(rz). We partition the time-slots between date rz and C L S

max that

are part of the set S(C L S
max)\S(re), but not part of the set S(C L S

max)\S(rz), and which are therefore part

of the set D(rz), into two disjoint sets. The ones that contain a slice of e form the set DE
rz

, and those

without a slice of e form the set DẼ
rz

. Thus, we have DE
rz

= E2 ∩ D(rz) and DẼ
rz

= Ẽ ∩ D(rz). Each

time-slot in DE
rz

∪ DẼ
rz

contains a wide slice. We have therefore partitioned the set S(C L S
max)\S(rz)

into the disjoint sets E2\DE
rz

and Ẽ\DẼ
rz

. All jobs in S(C L S
max)\S(rz) are released not later than rz .

Observation 7 implies the following insight.

Observation 8. |E2\DE
rz
| > |Ẽ\DẼ

rz
|.
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We distinguish four further cases with respect to the relationship between the size of the sets Ē
and E1 and the relationship between the size of the sets E2 and Ẽ .

Case 1.A. |Ẽ | < |E2|.

Case 1.A.1. |Ē | � |E | − |Ẽ |.
Observation 7 implies that the set Ẽ and any set of |Ẽ | many time-slots in E2 can be

matched. Because of Observation 6, the set of the remaining |E2| − |Ẽ | many unmatched

time-slots in E2, together with the time-slots in E1, can be matched with any set of
|E2| − |Ẽ | + |E1| = |E | − |Ẽ | many time-slots in Ē . The number of busy machines in any

remaining unmatched time-slot in Ē exceeds m
2

. Thus, the set S(C L S
max)\S(re) contains in to-

tal more load than (|Ẽ | + |E | − |Ẽ |)m + (|Ē |−|E |+Ẽ)m
2

= (|Ē |+|E |+Ẽ)m
2

= |S(C L S
max)\S(re)|m

2
, which

contradicts the assumption of Case 1.

Case 1.A.2. |Ē | < |E | − |Ẽ |.
In this case, we have |E | >

|S(C L S
max)\S(re)|

2
. From COPT

max � re + pe and Observation 3 follows

COPT
max � re + |E | > re + |S(C L S

max)\S(re)|
2

= re + C L S
max−re−|D(re)|

2
= C L S

max

2
+ re−|D(re)|

2
� C L S

max

2
, and

Theorem 4.1 is proved in this case.

Case 1.B. |Ẽ | � |E2|.

Case 1.B.1. |Ē | � |E1|.
Observation 7 shows that we can match any set of |E2| many time-slots in Ẽ with the set E2.

Using Observation 6, we can match any set of |E1| many time-slots in Ē with the time-slots

in E1. In each of the remaining unmatched time-slots in Ẽ and Ē , more than m
2

machines are

busy. Thus, the load in S(C L S
max)\S(re) exceeds (|E1| + |E2|)m + (|Ē |−|E1|)m

2
+ (|Ẽ |−|E2|)m

2
=

(|Ē |+|E |+|Ẽ |)m
2

= |S(C L S
max)\S(re)|m

2
. This is in contradiction to the assumption of Case 1.

Case 1.B.2. |Ē | < |E1|.
We denote the set of the first |Ē | time-slots in E1 by E1

1 . Observation 6 implies that E1
1 can be

matched with Ē . From Observations 7 and 8 follows that any set of |Ẽ\DẼ
rz
| many time-slots

in E2\DE
rz

can be matched with the time-slots in Ẽ\DẼ
rz

. Furthermore, |DE
rz
| < |DẼ

rz
| because

of |Ẽ | � |E2| and Observation 8. Therefore, the set DE
rz

can be matched with any set of |DE
rz
|

many time-slots in DẼ
rz

. Since |E2| � |Ẽ |, we obtain the following inequality: |DẼ
rz
| − |DE

rz
| �

|E2\DE
rz
| − |Ẽ\DẼ

rz
|. Hence, there are |E2\DE

rz
| − |Ẽ\DẼ

rz
| many time-slots in the remaining

|DẼ
rz
| − |DE

rz
| many time-slots in DẼ

rz
that can be matched with the set of the remaining

|E2\DE
rz
| − |Ẽ\DẼ

rz
| many time-slots in E2\DE

rz
. Let Drest be the set of the |DẼ

rz
| − |DE

rz
| −

(|E2\DE
rz
| − |Ẽ\DẼ

rz
|) many presently unmatched time-slots in DẼ

rz
. By Observation 2, there

is a set Dmatch
rest of time-slots in {rz − (|DẼ

rz
| − |DE

rz
| − (|E2\DE

rz
| − |Ẽ\DẼ

rz
|)) + 1, . . . , rz} that

can be matched with Drest. We combine the time-slots in DẼ
rz

that are matched with a time-

slot in D(re) ∩ Dmatch
rest , thus with a time-slot in De

re
, which is therefore not part of the set

S(C L S
max)\S(re), in the set Dspare. The load in S(C L S

max)\S(re) is at most
|S(C L S

max)\S(re)|m
2

. Since every

time-slot in Dspare contains more load than m
2

, it follows that the load in (S(C L S
max)\S(re))\Dspare

is bounded from above by
|(S(C L S

max)\S(re))\Dspare|m
2

.

If every time-slot in E1\E1
1 has been matched with a time-slot in Drest, then every time-

slot in E has been matched with another time-slot in (S(C L S
max)\S(re))\Dspare)\E . Each of

the remaining time-slots in (S(C L S
max)\S(re))\Dspare)\E contains more than m

2
load. Thus,

(S(C L S
max)\S(re))\Dspare contains more load than

|(S(C L S
max)\S(re))\Dspare|m

2
, which is a contradiction.
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We may therefore assume that there is at least one time-slot in E1\E1
1 that has not

been matched with a time-slot in Drest. Consequently, |Dspare| � |De
re
|. Furthermore,

|E | > |Ē | + |Ẽ\DẼ
rz
| + |DE

rz
| + |E2\DE

rz
| − |Ẽ\DẼ

rz
| + (|DẼ

rz
| − |DE

rz
| − (|E2\DE

rz
| − |Ẽ\

DẼ
rz
|)) − |Dspare| = |Ē | + |Ẽ | − |DẼ

rz
| + |DE

rz
| + |E2| − |DE

rz
| − |Ẽ | + |DẼ

rz
| + |DẼ

rz
| − |DE

rz
|−

|E2| + |DE
rz
| + |Ẽ | − |DẼ

rz
| − |Dspare| = |Ē | + |Ẽ | − |Dspare|. It follows that |E | >

|(S(C L S
max)\S(re))\Dspare|

2
, and because COPT

max � re + pe we conclude that COPT
max �

re + |E | + |De
re
| > re + |De

re
| + |(S(C L S

max)\S(re))\Dspare|
2

= re + |De
re
| + C L S

max

2
− re

2
− |D(re)|

2
−

|Dspare|
2

� C L S
max

2
+ re−|D(re)|

2
+ |De

re |−|Dspare|
2

� C L S
max

2
, and herewith the correctness of Theorem 4.1

in this case.

A schematic illustration of the relevant part of the list-schedule LS for this case is given in

Fig. 1.

Case 2. There is a release date rh < CLS
max such that S(C L S

max)\S(rh) contains more load than
|S(C L S

max)\S(rh )|m
2

.

Let rk be the smallest release date of this kind. If rk = 0, the theorem follows immediately. Let

us therefore assume that rk > 0.

Observation 9. S(rk)\S(rh) 
= ∅ for every release date rh < rk .

Reason. If S(rk)\S(rh) = ∅ for rh < rk , Observation 4 implies S(C L S
max)\S(rh) =

(S(C L S
max)\S(rk)) ∪ (S(rk)\S(rh)) = S(C L S

max)\S(rk). Since S(C L S
max)\S(rk) contains more load

Fig. 1 Illustration of Case 1.B.2. The bars underneath the picture underline the time-slots that belong to the
sets S(re), S(C L S

max), or (S(C L S
max)\S(re))\Dspare, respectively. The horizontal bar within LS, going from se to Ce ,

corresponds to the job e. Sets of time-slots with the same pattern have been matched with each other.
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than
|S(C L S

max)\S(rk )|m
2

, it follows that the set S(C L S
max)\S(rh) contains more load than

|S(C L S
max)\S(rh )|m

2
,

a contradiction to the definition of rk .

Observation 10. The load of the set S(rk)\S(rh) is at most |S(rk )\S(rh )|m
2

, for every release date

rh < rk .

Reason. If the load in S(rk)\S(rh) was more than |S(rk )\S(rh )|m
2

, we would be able to merge the

loads in S(rk)\S(rh) and S(C L S
max)\S(rk), with the help of Observation 4. The cumulated load in

S(C L S
max)\S(rh) would then exceed

S(C L S
max)\S(rh )|m

2
, a contradiction to the definition of rk .

Observation 11. Every wide slice in S(C L S
max)\S(rk) is processed in OPT after rk .

Reason. The wide slices, which are processed in OPT before rk , but in LS after rk , are included

in D(rk) and therefore not part of the set S(C L S
max)\S(rk).

If all small slices in S(C L S
max)\S(rk) are not released before rk , Observation 11 and the assump-

tion of Case 2 imply COPT
max > rk + |S(C L S

max)\S(rk )|
2

� C L S
max

2
, and we are done.

We henceforth assume that there is at least one small job in S(C L S
max)\S(rk) which has been

released before rk . We call such small jobs, which are released before rk but completed by the

list-scheduling algorithm after rk out-jutting jobs.

Let j̃ be the minimum of the number of slices after rk of an out-jutting job j and the number of

time-slots between r j and rk that contain no slice of j. Thus, j̃ is an upper bound of the number

of slices of job j, which are processed in LS after rk , but in OPT possibly before rk . Let u be an

out-jutting job for which this bound is maximal among all out-jutting jobs. Let D̃before
ru

be the set of

time-slots in D(ru) ∩ {ru + 1, . . . , rk} that contain no slice of u. Let Dbefore
ru

be the set of time-slots

in D(ru) ∩ {ru + 1, . . . , rk} that contain a slice of u. Let Dafter
ru

:= D(ru) ∩ {rk + 1, . . . , C L S
max}.

We partition the time-slots between date ru and rk into the disjoint sets U, Ū , D̃before
ru

, and Dbefore
ru

.

Let U be the set of time-slots in {ru + 1, . . . , rk}\Dbefore
ru

that contain a slice of the job u. Let

Ū be the set of time-slots in {ru + 1, . . . , rk}\D̃before
ru

that do not contain a slice of the job u.

Hence, the set {ru + 1, . . . rk} ∪ (D(rk)\Dafter
ru

) is composed of the disjoint sets of time-slots

U, Ū , D̃before
ru

, Dbefore
ru

, and D(rk)\Dafter
ru

.

Observation 12. The term |Ū | + |D̃before
ru

| is an upper bound for ũ.

Observation 13. We have ũ + |D(rk)| < rk .

Reason. Because of Observation 10, the set S(rk)\S(ru) contains at most |S(rk )\S(ru )|m
2

load. To-

gether, more than m machines are busy in each pair of time-slots s1 ∈ Ū and s2 ∈ U since

there is no slice of job u in s1 although job u was already released. Moreover, more than

m − mu � m
2

machines are busy in each time-slot in Ū and D̃before
ru

. Since each time-slot in

D(rk)\Dafter
ru

contains a wide slice, more than m
2

machines are busy in each of them. Be-

cause of Observation 2, for every time-slot s1 ∈ D(rk)\Dafter
ru

there exists another time-slot

s2 ∈ {rk − |D(rk)\Dafter
ru

| + 1, . . . , rk} such that s1 and s2 can be matched. This way at most

|Dbefore
ru

| many time-slots from D(rk)\Dafter
ru

are matched with a time-slot in Dbefore
ru

. We combine

those time-slots to the set Dspare. We have |Dspare| � |Dbefore
ru

|. Since S(rk)\S(ru) contains at most
|S(rk )\S(ru )|m

2
load, it follows that (S(rk)\S(ru))\Dspare contains at most

|(S(rk )\S(ru ))\Dspare|m
2

load, be-

cause every time-slot in Dspare is loaded by more than m
2

. The set (S(rk)\S(ru))\Dspare decomposes



444 J Sched (2006) 9:433–452

into the disjoint sets Ū , U and (D(rk)\Dafter
ru

)\Dspare. If |U | � |Ū | + |(D(rk)\Dafter
ru

)\Dspare|, we

could match every time-slot in U with another time-slot in ((S(rk)\S(ru))\Dspare)\U . The re-

maining time-slots in ((S(rk)\S(ru))\Dspare)\U each contain more than m
2

load. Thus, the load

in (S(rk)\S(ru))\Dspare would exceed
|(S(rk )\S(ru ))\Dspare|m

2
, in contradiction to our earlier obser-

vations regarding this set. We conclude that |U | > |Ū | + |D(rk)\Dafter
ru

| − |Dbefore
ru

|. Combining

this inequality with Observations 12 and 3 results in ũ + |D(rk)| < |U | + |D̃before
ru

| + |Dbefore
ru

| +
|Dafter

ru
| � |U | + |D(ru)| � |U | + ru � rk .

Observation 14. The sum of the widths of all out-jutting jobs is at most m
2

.

Reason. If this would not be the case, the sum of the widths of all small jobs between rk−1 and

rk would exceed m
2

. But then there would be no time-slot between the release dates rk−1 and rk

that is filled with at most m
2

load. Using Observation 9, this is in contradiction to Observation 10

since it would follow that the load in S(rk)\S(rk−1) exceeds |S(rk )\S(rk−1)|m
2

.

Let us consider the set S(C L S
max)\S(rk). The load between rk and C L S

max, excluding the load in

the time-slots in D(rk), is more than
(C L S

max−rk−|D(rk )|)m
2

. It follows from Observations 11 and 14

that at most an amount of ũm
2

of this load can be processed in OPT before rk . Therefore, the load

in LS that has to be processed in OPT after rk exceeds
(C L S

max−rk−|D(rk )|)m
2

− ũm
2

. Consequently, by

using the inequality from Observation 13, we obtain COPT
max > rk + C L S

max−rk−|D(rk )|
2

− ũ
2

>
C L S

max

2
.

A schematic illustration of the relevant part of the list-schedule LS for this case is given in

Fig. 2.

Therefore, the length of LS is less than two times the length of the optimal preemptive schedule

OPT. �

An immediate implication on the power of preemption is stated in the following corollary.

Fig. 2 Illustration of Case 2. The bars underneath the picture underline the time-slots that belong to the sets
S(ru ), S(rk ), or (S(rk )\S(ru ))\Dspare, respectively. Sets of time-slots with the same pattern have been matched
with each other.
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Fig. 3 Worst-case example for any list-scheduling with release dates

Corollary 4.2. An optimal nonpreemptive schedule is less than twice as long as an optimal
preemptive schedule for all instances of P|m j , r j , pmtn|Cmax. This bound is tight.

Chen and Vestjens (1997) proved that the p j -list-scheduling algorithm (also called the LPT rule)

is a 3/2-approximation algorithm for P|r j |Cmax. In contrast, the following example shows that

for nonpreemptive scheduling with parallel jobs and release dates, no list-scheduling algorithm

has a performance guarantee smaller than 2, no matter which priority list is chosen.

Example 4.3. Let m be the number of machines. Let m − 3 jobs d = 1, . . . , m − 3 of length

pd = 1 and width md = m be given. We call these jobs big jobs. The release date of each big

job d = 1, . . . , m − 3 is rd := d. Let there also be m small jobs k = 1, . . . , m with length 2 and

width 1. The release date of a small job is rk := k − 1, k = 1, . . . , m. An optimal schedule has

length m, by scheduling the big jobs from time 1 to time m − 2 and using the last two time-slots

for the small jobs. The first time-slot remains empty. Each list-scheduling algorithm receives at

time 0 only one job, namely the first small job to be scheduled. This job therefore starts at time 0.

At time 1 the list-scheduling algorithm receives the second small job and the first big job. Since

there are not enough idle machines to schedule the big job, the list-scheduling algorithm assigns

the second small job to start at time 1. This pattern reoccurs at each point in time thereafter; one

small job is still running, thus preventing the start of big jobs and causing the next small job to be

started. At time m + 1 all small jobs are completed and the big jobs can be started. The resulting

schedule has length m + 1 + m − 3 = 2m − 2. Therefore, the ratio between the makespan of

any list-scheduling algorithm and the optimal makespan is 2 − 2/m.

Figure 3 illustrates Example 4.3 with eight machines.

Note that the variant of list-scheduling in which jobs are assigned to machines in order of

their priorities (sometimes called serial or job-based list-scheduling) does not lead to improved

performance guarantees either, even if jobs are in order of nonincreasing widths (Example 3.2)

or nonincreasing processing times (Example 4.3).

5. Online-scheduling

In this section, we discuss online-scheduling of parallel jobs. In an online environment, parts

of the input data are not known in advance. In scheduling, one typically distinguishes between

three basic online models, each characterized by a different dynamics of the situation (see, e.g.,

Sgall, 1998). In the first online model, scheduling jobs one by one, jobs arrive one after the
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other, and the current job needs to be (irrevocably) scheduled before the next job and all its

characteristics become known. In the model jobs arriving over time, the characteristics of a job

become known when the job becomes known, which happens at its release date. In contrast,

in the model unknown running times, the processing time of a job remains unknown until it is

completed.

Since list-scheduling (without special ordering of the list) complies with the requirements of

the online model unknown running times, it follows from the work of Garey and Graham (1975)

that list-scheduling is 2-competitive in the context of the online model unknown running times
for parallel jobs without release dates. For the same model with release dates and for the online

model jobs arriving over time, Theorem 4.1 or Theorem 4 in Naroska and Schwiegelshohn (2002)

implies that list-scheduling is 2-competitive for both the preemptive and the nonpreemptive

version. Shmoys, Wein, and Williamson (1995) showed for both versions of the online model

unknown running times that there is no deterministic online algorithm with a better competitive

ratio than 2 − 1/m, even if all jobs are nonparallel. Therefore, list-scheduling algorithms achieve

the best possible competitive ratio within the class of deterministic online algorithms for this

model.

Chen and Vestjens (1997) showed that 1.347 is a lower bound for any deterministic nonpre-

emptive online algorithm for the model jobs arriving over time, even if every job needs only one

machine for its processing. This bound does not hold if preemptions are allowed. In fact, Gonza-

lez and Johnson (1980) presented for the preemptive case of the online model jobs arriving over
time with nonparallel jobs an exact algorithm. In comparison, Example 5.1 shows that there is

no deterministic online algorithm for the preemptive version of online model jobs arriving over
time with a competitive ratio smaller than 6/5, when dealing with parallel jobs.

Example 5.1. There are four identical parallel machines. At time 0 we release three jobs, job a
and job b, each with length 1 and width 2, and job � with length 2 and width 1. If the online

algorithm decides to dedicate at most 3/5 of the first time-slot to the processing of job �, we do

not release any more jobs. In this case, the makespan of the schedule of the online algorithm is at

least 3 − 3/5, whereas the length of the optimal schedule is 2. If the online algorithm dedicates

more than 3/5 of the first time-slot to job �, we release at time 1 a job d with length 2 and width

3. In this case the online algorithm produces a schedule of length at least 3 + 3/5, whereas the

optimal makespan is 3. Both cases give us a ratio between the length of the online schedule and

the optimal makespan of 6/5.

For the online model scheduling jobs one by one, list-scheduling achieves a competitive ratio of

2 − 1/m for nonparallel jobs (Graham, 1966). In contrast, list-scheduling of parallel jobs does

not have a constant competitive ratio, which is revealed by Example 5.2 below. In fact, for parallel

jobs and the online model scheduling jobs one by one no algorithm with constant competitive

ratio was known heretofore, to the best of the author’s knowledge. We present the first such

algorithm below (Algorithm 5.4) and show that it is 12-competitive (Theorem 5.5). Theorem 5.3

provides a lower bound of 2.25 for the competitive ratio of any deterministic online algorithm

for the model scheduling jobs one by one with parallel jobs. The latter result shows again that

scheduling parallel jobs is significantly harder than scheduling nonparallel jobs. For nonparallel

job scheduling, deterministic online algorithms are known with competitive ratio smaller than 2

(Albers, 1999; Fleischer and Wahl, 2000).

Example 5.2. Let I be an instance of the online-scheduling model scheduling jobs one by one

with m machines and 2m jobs. Half of the jobs in I are wide; they have length 1 and width m. The

other jobs j = 1, . . . , m are small with width 1 and length p j = j . The list alternates between
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Fig. 4 Worst-case example for list-scheduling in the online model scheduling jobs one by one

small and wide jobs, and shorter small jobs precede longer small jobs. The optimal schedule has

length 2m, whereas the list-schedule has a makepan of m + ∑m
j=1 j = m2+3m

2
. The two schedules

of an instance with four machines are depicted in Fig. 4.

Theorem 5.3. No deterministic online algorithm for the online model scheduling jobs one by
one of the scheduling problem P|m j |Cmax has a competitive ratio smaller than or equal to 2.25.

Proof: Let A be any deterministic online algorithm for the model scheduling jobs one by one
of P|m j |Cmax with competitive ratio 2.25. We construct an instance with a list in which jobs of

width 1 and jobs of width m alternate. The length of each job is set in a way such that it can

start only after the completion time of the previous job in the list. Let the number of machines

be m := 10. The total number of jobs is at most 20.

More specifically, let ki be the ith job of width 1 in the list, and let di be the ith job of

width m, i = 1, . . . , m. Let zki be the delay introduced by A prior to starting job ki . Similarly,

let zdi be the delay before di . Then, the job lengths are defined as follows: pk1
:= 1, pki+1

:=
zki + pki + zdi + 1, and pdi := max j<i {zk j , zd j , zki } + 1.

The length of the schedule produced by Algorithm A after the completion of job ki is there-

fore zki + pki + ∑i−1
j=1(zk j + pk j + zd j + pd j ), and it is

∑i
j=1(zk j + pk j + zd j + pd j ) after the

completion of job di.

The length of an optimal schedule including all jobs from the list up to (and including) job

ki is at most pk j + ∑i−1
j=1 pd j . If the instance ends with the ith d-job, the length of an optimal

schedule is at most pki + ∑i
j=1 pd j .

We prove the lower bound of 2.25 for the competitive ratio by complete enumeration over

the possible delays zki and zdi , i = 1, . . . , 10, introduced by Algorithm A. Note that no delay

can be too large because the competitive ratio 2.25 must be satisfied at any time during the

run of the Algorithm (i.e., for every sub-instance). Using a computer program, it turns out that

there is no way for A to create delays in such a manner that its competitive ratio is 2.25 for all

sub-instances.

�

The following algorithm is the first algorithm with a constant competitive ratio for scheduling

parallel jobs one by one.

Algorithm 5.4.
1. Partition the time axis into the intervals Ii := [2i , 2i+1], i = 0, 1, . . ..
2. Schedule the arriving job j of length p j and width m j in the earliest interval Ii that is more
than twice as long as p j and in which job j can feasibly be scheduled, as follows:
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2.1. If m j > m/2, schedule job j as late as possible within Ii .
2.2. If mj � m/2, schedule job j as early as possible within Ii .

Theorem 5.5. The competitive ratio of Algorithm 5.4 for the online version scheduling jobs one
by one of the scheduling problem P|m j |Cmax is smaller than 12.

Proof: Let S be the schedule constructed by Algorithm 5.4. We denote by C S
max the length of

S and by C∗
max the optimal offline makespan. Let I� = [2�, 2�+1] be the last and therefore the

longest nonempty interval of S. Hence, C S
max ≤ 2�+1 − 1.

We distinguish two cases depending on whether I� contains a job j with p j � 2�/4 or not, in

which case I� contains only jobs that are shorter, but did not fit into the preceding interval.

Case 1. There is j ∈ I� with p j � 2�−2.

An optimal schedule cannot be shorter than the longest job of the instance. Thus, the optimal

makespan is at least C∗
max � 2�−2. Consequently C S

max/C∗
max � (2�+1 − 1)/2�−2 < 8.

Case 2. For all jobs j ∈ I� we have p j < 2�−2.

In this case, every job j ∈ I� did not fit anymore into the interval I�−1. We consider the interval

I�−1. Its length is 2�−1. We partition the set of time-slots of the interval I�−1 into the disjoint sets

K , H, L , and D. Let K be the set of time-slots that are filled to more than m/2 with small jobs,

i.e., jobs with m j � m/2. These time-slots had been filled during Step 2.2. of Algorithm 5.4

and are located at the beginning of the interval. Let H be the set of time-slots that contain only

small jobs, but in which at most m/2 machines are busy. These time-slots are located right after

the time-slots in K. All jobs in H start no later than in the first time-slot of H. Let L be the set

of empty time-slots. They are located between the time-slots of H and the time-slots belonging

to D. Let D be the set of time-slots that contain a wide job, i.e., a job with m j > m/2. These

time-slots were filled during Step 2.1. of Algorithm 5.4 and are the last time-slots of the interval

I�−1.

The sets K , H, L , and D are disjoint and we have |K | + |H | + |L| + |D| = 2�−1. The time-

slots in K and D are filled to more than half. Note that there cannot be more time-slots in H than

in the rest of the interval since all jobs in H start no later than in the first time-slot of H and all

jobs are no longer than half of the length of the interval they belong to.

We consider a job j that could have been processed within the interval I�−1 (since I�−1 is more

than twice as long as job j), but was forced into the next interval I� because there was insufficient

space. We distinguish two further cases depending on whether job j is wide or small.

Case 2.1. m j > m/2.

Obviously, p j > |L| since otherwise j would have fitted into the empty time-slots in I�−1. The

total load of job j and of jobs scheduled in the interval I�−1 is more than (|K | + |D|) m
2

+
|L|m

2
= m

2
(|K | + |D| + |L|) = m

2
(2�−1 − |H |). It follows that C∗

max � (2�−1 − |H |)/2. We also

have C∗
max � |H |. These facts combined lead to C∗

max � 2�−1/3. It follows that C S
max/C∗

max �
3(2�+1−1)

2�−1 < 12.

Case 2.2. m j � m/2.

This time p j > |H | + |L| since otherwise j could have been assigned to time-slots in H and

L. Thus, C∗
max � p j > |H | + |L|. Moreover, the time-slots in K and D together contain more

load than (|K | + |D|) m
2

= (2�−1 − (|H | + |L|)) m
2

, leading us to C∗
max > (2�−1 − (|H | + |L|))/2.

We combine both lower bounds for the optimum to obtain C∗
max � 2�−1/3. This results in

C S
max/C

∗
max � 3(2�+1−1)

2�−1 < 12. �
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Note that 8 is an asymptotic lower bound on the competitive ratio of Algorithm 5.4, as the first

case in the proof of Theorem 5.5 shows.

6. Conclusion

List-scheduling is the most expedient approach for solving scheduling problems on identical

parallel machines to minimize the makespan. List-scheduling algorithms are easy to understand,

simple to implement, fast, and in most cases they achieve a good performance guarantee; they

even work in many online environments. In this paper, we extended the study of this class of

greedy-like algorithms, which was started for parallel job scheduling by Turek, Wolf, and Yu

(1992). We provided several new upper and lower bounds for the performance guarantee of list-

scheduling algorithms for scheduling parallel jobs to minimize the makespan, offline and online.

We showed that list-scheduling with an arbitrary priority list achieves a performance guarantee of

2. We also showed that no list-scheduling algorithm can achieve a better performance guarantee

than 2 for the nonpreemptive problem with parallel jobs and release dates, no matter which priority

list is chosen. This result contrasts with traditional scheduling of nonparallel jobs, where some

list-scheduling algorithms have a performance guarantee of 3/2. If no release dates are present,

p j -list-scheduling of nonparallel jobs has a performance guarantee of 4/3, whereas we showed

that 3/2 is a lower bound for parallel job scheduling, unless P = NP. More examples of this kind

can be taken from the following Tables 1 and 2, which give an overview of the best-known offline

and online results for scheduling nonparallel jobs (Table 1) and parallel jobs (Table 2) to minimize

Table 1 Summary of results for scheduling nonparallel jobs to minimize the makespan on identical parallel
machines

Nonparallel jobs

Model Release

dates

Preemptive Nonpreemptive

Offline Without r j P, McNaughton (1959) PTAS, Hochbaum and

Shmoys (1987)

Strongly NP-hard, Garey and

Johnson (1979)

With r j P, Horn (1974) PTAS, Hall and Shmoys

(1989)

Strongly NP-hard, Garey and

Johnson (1979)

Online model – 1.923, Albers (1999)

Scheduling jobs one by one – 1.852, Albers (1999)

Online model Without r j 2 − 1/m, Graham (1966) 2 − 1/m, Graham (1966)

Unknown running times 2 − 1/m, Shmoys, Wein,

and Williamson (1995)

2 − 1/m, Shmoys, Wein, and

Williamson (1995)

With r j 2 − 1/m, Gusfield

(1984); Hall and Shmoys

(1989)

2 − 1/m, Gusfield (1984);

Hall and Shmoys (1989)

2 − 1/m, Shmoys, Wein,

and Williamson (1995)

2 − 1/m, Shmoys, Wein,

and Williamson (1995)

Online model With r j 3/2, Chen and Vestjens (1997)

Jobs arriving over time P, Gonzalez and Johnson

(1980)

1,347, Chen and Vestjens

(1997)
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Table 2 Summary of results for scheduling parallel jobs to minimize the makespan on identical parallel
machines

Parallel jobs

Model Release

dates

Preemptive Nonpreemptive

Offline Without r j 2, Feldmann, Sgall, and Teng

(1994)

2, Feldmann, Sgall, and

Teng (1994)

NP-hard Drozdowski (1994) 3/2∗

With r j 2∗, see also Naroska and

Schwiegelshohn (2002)

2∗, see also Naroska and

Schwiegelshohn (2002)

NP-hard Drozdowski (1994) 3/2∗

Online model – 12∗

Scheduling jobs one by one – 2.25∗

Online model

Unknown running times
Without r j 2, Feldmann, Sgall, and Teng

(1994)

2, Feldmann, Sgall, and

Teng (1994)

2 − 1/m, Shmoys, Wein, and

Williamson (1995)

2 − 1/m, Shmoys, Wein,

and Williamson (1995)

With r j 2∗, see also Naroska and

Schwiegelshohn (2002)

2∗, see also Naroska and

Schwiegelshohn (2002)

2 − 1/m, Shmoys, Wein, and

Williamson (1995)

2 − 1/m, Shmoys, Wein,

and Williamson (1995)

Online model

Jobs arriving over time
With r j 2∗, see also Naroska and

Schwiegelshohn (2002)

2∗, see also Naroska and

Schwiegelshohn (2002)

6/5∗ 1.347, Chen and Vestjens

(1997)

the makespan. The first row contains for each model the best-known performance guarantee or

competitive ratio, respectively. The second row contains for each model the complexity or the

best-known lower bound for the performance guarantee. The lower bounds for the performance

guarantee of approximation algorithms for offline problems assume that P 
= NP. If a problem

is solvable in polynomial time, we put a “P” in the corresponding field. We use “PTAS” to

indicate that a polynomial-time approximation scheme exists for an offline problem. References

are attached to each result; results that are marked with an asterisk are proved in this paper.

As we see, for nonparallel as well as parallel jobs, the lower and upper bounds for the

competitive ratio coincide for the online model unknown running times. The instance for the

lower bound, provided by Shmoys, Wein, and Williamson (1995), consists of nonparallel jobs

only. In contrast, for the online model jobs arriving over time we were able to make use of the size

of jobs to provide the first lower bound for the competitive ratio of any deterministic preemptive

online scheduling algorithm to minimize the makespan. It remains to improve the lower bound

for the nonpreemptive case. The most interesting problem, however, is to find an algorithm that

reduces the gap between the known performance guarantee 2 and the lower bound of 3/2. Because

of Example 4.3, we know that such an algorithm cannot be a list-scheduling procedure. Another

open problem is to decrease the gap for the online model scheduling jobs one by one, where we

proved a first lower bound and a first online algorithm with constant competitive ratio, which

appear to leave room for improvement.
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