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Abstract: We construct new composite Higgs/gauge-Higgs unification (GHU) models in
flat space that overcome all the difficulties found in the past in attempting to construct
models of this sort. The key ingredient is the introduction of large boundary kinetic terms
for gauge (and fermion) fields. We focus our analysis on the electroweak symmetry breaking
pattern and the electroweak precision tests and show how both are compatible with each
other. Our models can be seen as effective TeV descriptions of analogue warped models.
We point out that, as far as electroweak TeV scale physics is concerned, one can rely on
simple and more flexible flat space models rather than considering their unavoidably more
complicated warped space counterparts. The generic collider signatures of our models
are essentially undistinguishable from those expected from composite Higgs/warped GHU
models, namely a light Higgs, colored fermion resonances below the TeV scale and sizable
deviations to the Higgs and top coupling.
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1 Introduction

Many alternative scenarios of new physics beyond the Standard Model (SM) have been
proposed to address the gauge hierarchy problem. Among these, an intriguing idea is the
possibility of identifying the Higgs field with the internal component of a gauge field in
extra dimensions [1–7], resulting in the so called gauge-Higgs unification (GHU) models. In
warped space [8, 9], as suggested by the AdS/CFT duality, GHU models can be seen as a
(relatively) weakly coupled 5D dual of 4D strongly coupled conformal field theories [10–12],
where the Higgs field emerges as a composite pseudo-Goldstone bound state of the strong
sector [13, 14].1 From a wider perspective, GHU models in warped space are concrete and

1Contrary to the original AdS/CFT duality [15–17], where both sides of the duality are well-defined, the

4D dual theories of the GHU models in warped spaces are unknown. More precisely, what is so far lacking

is an UV description of the 4D theories in terms of fundamental states such as quarks, gluons or strings,

while we know, through the 5D construction, the low-energy “chiral” Lagrangian associated to them.
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successful realizations of the old idea [18, 19] of composite Higgs models. The simplest
composite Higgs models consist of two sectors: an “elementary” sector, which includes the
gauge and fermion fields of the Standard Model (SM), and a “composite” sector, which
is strongly coupled and is invariant under a suitable global symmetry. The dynamics of
the composite sector induces a spontaneous breaking of the global symmetry, giving rise
to a set of Goldstone bosons, that, for a judicious choice of the symmetry group, can be
identified with the Higgs field. A small explicit breaking of the global symmetry is induced
by gauging a part of it via the SM gauge bosons and by the weak mixing of the SM fermions
with the strong sector. The composite Higgs is thus a pseudo-Goldstone boson and acquires
a potential at the radiative level, which triggers electroweak symmetry breaking.

The symmetry structure of the composite Higgs scenario can be efficiently used to
perform some model-independent studies by using purely 4D low-energy effective field
theory considerations. This approach has been followed to find general parametrizations
of the non-linear sigma model describing the Higgs field and its interactions [20] and of the
interplay of the SM fermions of the elementary sector with the composite sector [21].

Despite the importance of understanding general qualitative properties of composite
Higgs models by means of 4D effective field theory methods, these approaches can not
furnish a complete description of the composite Higgs scenario. In particular, they do not
allow to study all the properties of the strongly coupled sector and they do not allow to
compute quantities which are related to a UV completion of the effective theory. A more
quantitative description of the composite Higgs scenario is so far only possible by con-
structing explicit GHU models in extra dimensions. These allow to extract all the relevant
low-energy observables, including the ones which are usually not computable in the 4D the-
ories, namely the Higgs potential and the detailed mass spectrum of the theory, which is a
crucial ingredient in determining the electroweak precision parameters. The symmetries of
the extra dimensional set-up can be made explicit by using a holographic effective descrip-
tion [22–25], in which the “elementary” sector of the composite Higgs models is identified
with the field components localized at one end-point of the extra-dimension (hereafter de-
noted UV brane), taken to be a segment, and the “composite” sector is identified with the
remaining field components in the bulk. In this way, it is manifest that the Higgs field
can be equivalently seen as a set of pseudo-Goldstone bosons coming from a spontaneous
breaking of the extra dimensional gauge invariance and that the theory in the low-energy
regime reproduces the symmetry structure of the SM.

Constructing a realistic composite Higgs/GHU model is not an easy task. The most
constraining electroweak bounds one should consider are given by the T and S parame-
ters [26, 27] and by the deviation δgb with respect to the SM value of the coupling between
the left-handed (LH) bottom quark and the Z vector boson. Couplings gbt,R between the
right-handed (RH) top and bottom quarks with the W± vector bosons should also be taken
into account, given the rather stringent experimental bounds on them of O(10−3) [28].
Potentially deadly tree-level corrections to T and δgb can be controlled by appropriate
custodial symmetries [29, 30], but some tension with the experimental bounds still remains
due to sizable one-loop corrections to T and δgb coming from the fermion sector of these
theories [31, 32]. Studying composite Higgs/GHU models in warped space is also not tech-
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nically easy. As a matter of fact, although a few 5D GHU models have been constructed
so far [14, 33, 34], only in one model [35] (a modified version of a model introduced in [33]
to accommodate a Dark Matter candidate) one-loop corrections to S, T and δgb (and the
Higgs potential explicitly determined) have been analyzed and the ElectroWeak Precision
Tests (EWPT) successfully passed. It is then important to look for other potentially inter-
esting models and possibly find different phenomenological features of the composite Higgs
scenario.

In the present work we want to point out that, as far as we are interested in the low-
energy phenomenology of the composite Higgs models, we do not really need to consider
the technically challenging warped models. Instead, we can rely on the much simpler flat
space implementations of the GHU idea. The resulting models may still be reinterpreted
as calculable 5D descriptions of 4D strongly coupled composite Higgs models. This is
guaranteed by the holographic interpretation, which shows that the low-energy symmetries
of the theory are independent of the specific form of the 5D metric. The Goldstone nature
of the Higgs fields, as well as the phenomenology of the fermionic and gauge sectors, are
similar on flat and warped spaces. We can also identify, through the 5D description, the low-
energy “chiral” Lagrangian associated to a would-be strongly coupled 4D dual theory. The
only relevant ingredient that warped space adds to this view is the near-conformality of the
4D strong sector. This is an important feature for what concerns the high-energy running
of the parameters of the theory and the generation of a hierarchy between the electroweak
scale and some high-energy scale, such as the Planck mass. However, as far as electroweak
symmetry breaking dynamics and collider phenomenology is concerned, these high-energy
properties are not essential and can be reliably omitted from an effective description.

Unfortunately, the simplest constructions of GHU models in flat space (see [36] for an
overview and for earlier references) turned out to be not fully satisfactory (see e.g. [37, 38]).
One of the reasons for this failure was the lack of some custodial protection mechanism for
the electroweak precision parameters. If custodial symmetries are introduced, the situation
improves but this is still not enough to build realistic theories, since one gets too low
top and Higgs masses. Another key ingredient are the so called boundary kinetic terms
(BKT) [39]. When these are introduced and taken to be large, potentially realistic models
can be constructed.2 More in detail, we construct in this paper three different models, all
based on the minimal gauge group SO(5)×U(1)X , with bulk fermions in the fundamental
or adjoint representation of SO(5). In all the models, large BKT at the UV brane for
the gauge fields are introduced. In two models, large BKT at the UV brane for the bulk
fermions are also assumed. We denote them FBKT10 and FBKT5 models, where 5 and
10 denote the SO(5) representations of the fermion bulk multiplets. In the third and last
model no fermion BKT are introduced. This model is actually not new, but rather a flat
space adaptation [36] of a model introduced in [33]. We denote it with the same acronym
used in [33], MCHM5. All the models successfully pass the EWPT, as can be seen in

2The potential interest of large BKT were already appreciated in [40], but applied to a model with

SU(3) gauge group, where the absence of a custodial symmetry led to large tree-level corrections to the T

parameter. The possibility of getting realistic flat space models with SO(5) gauge group and large BKT

was recently pointed out in [36].
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figures 1, 4 and 7. As far as naturalness is concerned, the MCHM5 model is the one with
the best performances, with a fine-tuning roughly estimated at the 10% level. This is
around a few % in the FBKT10 and FBKT5 models. The LH top and bottom doublet
and the RH top quark show a sizable degree of compositeness in all models. Considering
flat space leads to a great technical simplification in model building and to very explicit
and significantly simpler expressions for various quantities compared to the warped space
case. Moreover, the number of free parameters can be reduced and the fermion multiplet
structure in 5D can be simplified.

The structure of the paper is as follows. In section 2 we present the general framework
underlying all our models and the procedure used to compute the EWPT. In sections
3, 4 and 5 we introduce respectively the FBKT10, FBKT5 and MCHM5 models and the
corresponding results. In section 6 we conclude. We report in appendix A some simple
analytic formulas for the one-loop fermion contributions to T , S and δgb that might help
the reader to understand how the EWPT are successfully passed in our models.

2 General framework

All the models we consider in this paper share some common properties that are sum-
marized below. The bulk gauge group is taken to be G = SU(3)c × SO(5) × U(1)X .
As well-known, SO(5) is the smallest group containing an SU(2) custodial symmetry
and giving rise to only one Higgs doublet. The subgroup U(1)X is necessary to re-
produce the correct weak-mixing angle. We denote by g5 and g5X the 5D gauge cou-
pling constants of SO(5) and U(1)X , respectively. The unbroken group at y = L is
H = SU(3)c × SO(4) × U(1)X ' SU(3)c × SU(2)L × SU(2)R × U(1)X . The unbroken
group at y = 0 is H ′ = SU(3)c × SU(2)L × U(1)Y = GSM , where the hypercharge Y is
Y = X + T3R.

We work in the following in the “holographic” basis for the gauge fields, namely we
define the SM gauge fields as those which have SM couplings (with no deviations) to the
elementary fermions (i.e. completely localized at y = 0 [23]). We use holographic tech-
niques to efficiently compute the Higgs potential and tree-level corrections to electroweak
observables (see [36] for an introduction to the basic holographic techniques used in models
with extra dimensions). In the “holographic” unitary gauge Ay = 0 [25], the Higgs field is
encoded in the sigma-model field (see appendix C of [36] for our SO(5) conventions):

Σ = exp

[
4∑

â=1

i

√
2tâhâ
fπ

]
, fπ =

√
2

g5
√
L
. (2.1)

Neglecting the color SU(3)c factor, the boundary conditions (b.c.) for the (non-canonically
normalized) gauge fields are as follows:

F aµy,L = F aµy,R = Fµy,X = 0 , Aâµ = 0 , a = 1, 2, 3 , â ∈ G/H , y = L, (2.2)

F aµy,L = F 3
µy,R + Fµy,X = 0, Aâµ = A1,2

µ,R = 0, A3
µ,R = Aµ,X = Bµ , y = 0.

We introduce localized gauge kinetic terms at y = 0 only. The EW gauge Lagrangian is

Lg = L5g + L4g,0 + L4g,L, (2.3)

– 4 –



J
H
E
P
0
2
(
2
0
1
1
)
1
0
3

with

L5g =
∫ L

0
dy

{
1

2g2
5

Tr
[
− 1

2
F 2
µν + (∂yAµ)2

]
+

1
2g2

5X

[
− 1

2
F 2
µν,X + (∂yAµ,X)2

]}
.

L4g,0 = − θL
4g2

5

3∑
a=1

(W a
µν)2 − θ′L

4g2
5X

B2
µν , L4g,L = 0 . (2.4)

In eq. (2.4), Wµν and Bµν are the field strengths of the SU(2)L and U(1)Y gauge bosons,
respectively, θ and θ′ are dimensionless parameters and the SO(5) generators are normalized
as Tr tatb = δab in the fundamental representation. We do not report the holographic
Lagrangian for the SM gauge fields W a

µ and Bµ, that can be found in [36]. The SM gauge
couplings constants g, g′, and the Higgs VEV v are related as follows to the 5D parameters:

1
g2
'
L
(

1 + θ
)

g2
5

,
1
g′2
' L(1 + θ′)

g2
5X

+
L

g2
5

, v2 =
2s2α
g2
5L

= f2
πs

2
α, (2.5)

valid for α . 1/3, the region of interest. In eq. (2.5),

sα ≡ sin(α), α =
〈h〉
fh

, h =

√√√√ 4∑
â=1

h2
â , 〈h〉 ' 246 GeV. (2.6)

In the holographic basis, the custodial SU(2)D symmetry, unbroken at y = L, is completely
manifest, resulting in a vanishing T parameter at tree-level [29]. The S parameter is not
vanishing and given by

Stree '
4s2W
3αem

s2α
1 + θ

, (2.7)

where αem is the electromagnetic constant at the MZ scale, αem ' 1/129, and sW ≡ sin θW ,
with θW the weak-mixing angle. For sα . 1/3, the mass of the W is given by

MW '
sα√

2L
√
θ + 1

. (2.8)

In the same limit, the mass Mg of the lightest non-SM vector mesons is

Mg '
π

2L
. (2.9)

The gauge contribution to the Higgs potential, for θ ∼ θ′ � 1 and sα � 1, is well
approximated by

Vg '
3
2

∫
d4p

(2π)4

[
2 log

(
1 + s2α

Π−g −Π+
g

2(Π+
g + θLp2)

)
+ log

(
1 + s2α

sec2 θW (Π−g −Π+
g )

2(Π+
g + θLp2)

)]
, (2.10)

where
Π+
g (p) = p tan(pL), Π−g (p) = −p cot(pL) . (2.11)

Let us now turn to the model-dependent fermion sector of the Lagrangian. We only
consider bulk fermions in the 5 or 10 representation of SO(5). The fermion Lagrangian
that encompasses all models has the following form:

Lf = L5f + L4f,0 + L4f,L, (2.12)
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with

L5f =
∫ L

0
dy

[ n5∑
i=1

ξ̄i(i /D −mi)ξi +
n10∑
α=1

Tr ξ̄α(i /D −mα)ξα

]
, (2.13)

L4f,0 =
∑
n

Znψ̄ni /Dψn , (2.14)

L4f,L =
∑
n

m̃nψ̄nψ̃n + h.c. . (2.15)

In eq. (2.13) ξi and ξα denote the bulk fermions in the 5 and 10 of SO(5), respectively. In
eq. (2.14) ψn denote the SU(2)L×U(1)Y chiral fermion components of the bulk multiplets
that are not vanishing at y = 0, and Zn are their corresponding boundary kinetic terms.
In eq. (2.15) ψn and ψ̃n denote the SO(4)×U(1)X chiral fermion components of the bulk
multiplets that are not vanishing at y = L and can mix through the mass terms m̃n. The
fermions ψn and ψ̃n have classical dimension two in mass, like a 5D fermion, so that the
BKT Zn have dimension one and the IR mass terms m̃n are dimensionless. No localized
fermions are introduced.

Once the symmetry between the two-end points y = 0 and y = L is broken by the
BKT, the end-point (UV brane) where the BKT are non-vanishing effectively defines the
“elementary” sector of the composite Higgs model and the resulting models resemble more
closely the analogue ones in warped space. This is the main reason why we have not
introduced similar BKT at y = L for gauge and fermion fields. This choice is quantum
mechanically stable. If not introduced at a given scale, BKT at y = L will appear through
running effects [41], but with small coefficients ∼ g2/(16π2). Large BKT are also quantum
mechanically stable, since in the limit in which the BKT becomes infinite, the zero mode
of the Kaluza-Klein (KK) tower of the associated field becomes purely elementary and
decouples from the massive composite KK modes.3 Including large BKT for the fermions
is thus natural and does not affect the cut-off Λ of the model. On the contrary, the
gauge BKT have an impact on Λ and tend to lower it (for a discussion see e.g. [36]). The
difference with the fermions comes from the fact that the gauge BKT determine the 4D
gauge coupling constant. If we fix the 4D gauge coupling, in order to obtain large values
for the θ parameters we need to increase the 5D gauge coupling, thus lowering Λ.

As mentioned in the introduction, the most stringent bounds on 5D models of this sort
come from the S and T parameters and by the deviation δgb to the ZbLb̄L coupling. In all
our models we exploit the Z2 LR symmetry that allows to keep the tree-level correction to
δgb under control [30]. We compute the latter by using the holographic approach. The main
contribution to δgb arises from higher order operators with Higgs insertions, which give a
contribution of O(α2). Higher-order derivative operators are suppressed by the fermion
masses or Z boson masses and are respectively O(mbL)2 or O(mZL)2 ∼ O(α2/θ), where
eq. (2.8) has been used in the latter relation. For large BKT, θ � 1, all higher derivative
operators can be neglected and we can reliably set the momentum of all external fields to

3This can be easily seen by noticing that the shape of the zero-mode wave function is independent of

the BKT and, in the limit of infinite BKT, its normalization goes to zero.
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zero. In this limit, the computation greatly simplifies and compact analytic formulas can
be derived.

Since the symmetries protecting the T parameter and ZbLb̄L at tree-level are not
exact, one-loop effects to such observables are expected to be important and must be
included [31, 32]. Non-SM fermions, being significantly lighter than non-SM vector mesons,
play the dominant role, so it is a good approximation to just compute the one-loop fermion
(top) contribution to T and δgb.4 Performing one-loop computation using holographic
techniques is not easy, so we resort here to the more standard KK approach. Along the
lines of [31, 32], we compute the masses and the Yukawa couplings mixing the lightest KK
states with the top quark and by standard techniques compute the one-loop correction to
T and δgb [42]. We actually also compute one-loop corrections to S,5 since the one-loop
suppression factor g2/(16π2) is partially compensated by the mild hierarchy between the
masses of the lightest non-SM gauge and fermion states. Indeed, the one-loop contribution
to S given by a fermion (see appendix) is roughly O(Ncy

2v2/(4πM2
f )), where y is a Yukawa

coupling, Mf a vector-like fermion mass and Nc = 3 is the QCD color factor. Using
eqs. (2.8) and (2.9), we can write the ratio between the one-loop and the tree-level correction
to S as follows:

S1−loop
Stree

∼ Ncy
2

16π2

M2
g

M2
f

. (2.16)

Given that typically M2
g & 10M2

f , we see that one-loop corrections to S cannot totally be
ignored, although they play a sub-dominant role with respect to T and δgb.6 We report in
appendix A analytic formulas for the new physics fermion contribution to S, T and δgb in
the simplified case in which only one vector-like fermion (SU(2)L singlet, doublet or triplet)
is relevant.

Possibly dangerous WbRt̄R couplings are generated at tree-level only in the FBKT10

model. In contrast to δgb, one-loop corrections to gbt,R are expected to be negligible, being
suppressed by the small bottom Yukawa coupling.

We test our models by performing a combined χ2 fit expressed in terms of the εi param-
eters [43–45], following [46]. We use the following theoretical values for the εi parameters7

ε1 =
(
5.64− 0.86 lh

)
× 10−3 + αemTNP ,

ε2 =
(
− 7.10 + 0.16 lh

)
× 10−3 ,

ε3 =
(
5.25 + 0.54 lh

)
× 10−3 +

αem

4 sin2 θW
SNP ,

εb = −6.47× 10−3 − 2δgb,NP , (2.17)

4In the holographic basis of the gauge fields, ZbLb̄L has anyhow only fermion contributions, since the

mixing in the gauge sector (i.e. the S-parameter) is rotated away [29].
5These one-loop fermion contributions to S and T refer to the standard, rather than holographic, basis,

but the two practically coincide, because one-loop corrections from light SM fields are negligible.
6The uncalculable contribution to S due to physics at the cut-off scale is O(v/Λ)2. For Λ ∼ 10/L

(see [36]), this is two orders of magnitude smaller than Stree, and thus safely negligible.
7We thank A. Strumia for providing us with the updated numerical coefficients entering in the εi and

of the correlation matrix ρ, computed for Mt = 173.1 GeV.
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where TNP , SNP and δgb,NP , defined in eq. (A.1), encode the new physics contribution
without the SM one and lh ≡ logMH,eff/MZ , with the effective Higgs mass MH,eff defined
as [47]8

MH,eff = MH

( 1
MHL

)sin2 α
. (2.18)

The experimental values of the εi, as obtained by LEP1 and SLD data [48, 49], are

εexp1 = (5.03± 0.93)× 10−3 ,

εexp2 = (−7.73± 0.95)× 10−3 ,

εexp3 = (5.44± 0.87)× 10−3 ,

εexpb = (−6.36± 1.3)× 10−3 .

ρ =


1 0.72 0.87 −0.29

0.72 1 0.46 −0.26
0.87 0.46 1 −0.18
−0.29−0.26−0.18 1

 . (2.19)

Finally, the χ2 function is defined as

χ2 = (εi − εexpi )(σ−1)ij(εj − εexpj ) , σij = σiρijσj . (2.20)

The bound on gbt,R in the FBKT10 model is included by adding in quadratures to the
χ2 (2.20) the result coming from b→ sγ decay [28]:

gbt,R = (9± 8)× 10−4 . (2.21)

Our results have been obtained by performing a random scan on the parameter space
of the models. The possibility of having simple analytic approximate formulas for the top
and bottom masses considerably helps in the scanning procedure, allowing us to reduce
the number of free parameters. In our analysis we take into account in an approximate
way the running of the top mass by fixing its value at the energy scale 1/L in the range
Mt(1/L) = (150± 5) GeV.

In the next sections we will specify each model separately and present the results of
our combined fit.

3 Model I: FBKT10

This is probably the simplest GHU model that can be built, with just one bulk multiplet
ξ in the adjoint representation 10 of SO(5). It is also the model with the least number of
parameters we consider and probably the one with less parameters so far in the literature.
The 10 decomposes as follows under SO(4): 10 = (2,2) + (1,3) + (3,1). The boundary
conditions of the LH components of the multiplet ξ are

ξL =



xL (+−)

uL (−−)

dL (−−)

TL (+−)

[ q′L (−+) , qL (++) ]


2
3

, (3.1)

8Notice that in eq. (2.18) we have replaced Λ, as taken in [47], with 1/L, because in GHU models by

locality the Higgs contribution to εi is finite and saturated at the compactification scale 1/L, rather than

at the cut-off of the theory Λ.
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where the first and second entries in round brackets refer to the + (−) Neumann (Dirichlet)
b.c. at the y = 0 (UV) and y = L (IR) branes, respectively. The RH components will
have the opposite b.c., as usual. In eq. (3.1), q′ and q are two SU(2)L doublets, with
TR3 (q′) = 1/2, TR3 (q) = −1/2, which form the SO(4) bidoublet (2,2), TL is an SU(2)L
triplet with TR3 (T ) = 0 and the states in curly brackets are SU(2)L singlets forming a
triplet of SU(2)R. The subscript 2/3 denotes the U(1)X charge of the multiplet. We
identify the RH components of the top (tR) and bottom (bR) fields with the massless
modes of the uR and dR components respectively.

As explained in section 2, at y = 0 we add the most general BKT for the non-vanishing
field components there, namely

L4f,0 = Zq q̄Li /DqL + ZtūRi /DuR + Zbd̄Ri /DdR + Zxx̄Li /DxL + ZTTr T̄Li /DTL + Zq′ q̄
′
Ri /Dq

′
R.

(3.2)
No mass terms are allowed at y = L and hence the IR localized Lagrangian is trivial:

L4f,L = 0 . (3.3)

The holographic low-energy effective action, with the “bulk” physics integrated out, is
up to O(s2α) terms,

LH = q̄L
/p

p
Πq

0qL +
∑
a=t,b

āR
/p

p
Πa

0aR +
sα
h

(
Πt
M q̄LH

ctR + Πb
M q̄LHbR + h.c.

)
, (3.4)

where

H =
1√
2

(
h1 − ih2

−h3 − ih4

)
, Hc ≡ iσ2H

? = − 1√
2

(
h3 − ih4

h1 + ih2

)
. (3.5)

The explicit expression of the form factors appearing in eq. (3.4) is the following:

Πq
0 = pZq + Π+(c) , Πt,b

0 = pZt,b −
1

Π−(m)
, Πt

M =
Πb
M√
2

=
Π−(m)−Π+(m)√

2Π−(m)
, (3.6)

in terms of the basic form factors

Π+(m) =
G−(m)
G+(m)

, Π−(m) = −G+(−m)
G−(m)

, (3.7)

which, in turn, can be expressed in terms of the bulk to boundary fermion propagators

G+(m) = cos(ωL) +
m

ω
sin(ωL) , G−(m) =

p

ω
sin(ωL) , (3.8)

with ω ≡
√
p2 −m2.9

Very simple formulas for the top and bottom masses can be obtained by taking the
zero momentum limit of the form factors appearing in the Lagrangian (3.4). We have

M2
t

M2
W

' θ + 1
2NLNtR

,
M2
b

M2
W

' θ + 1
NLNbR

, (3.9)

9Notice that the propagators G± in eq. (3.8) differ by a factor ω from those defined in [36]. In the

form (3.8), the propagators are real also for imaginary values of ω.
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Figure 1. Scatter plot of points obtained from a scan over the parameter space of the FBKT10

model. Small red dots represent points which don’t pass EWPT at 99%C.L., square blue dots
represent points which pass EWPT at 99%C.L. but not at 90% C.L., and star shape green dots
represent points which pass EWPT at 90%C.L.. The region below the LEP bound (mH < 114 GeV)
is shaded.

where

NL = lim
p→0

Πq
0

pL
=
Zq
L

+
1

mL(cothmL+ 1)
,

NtR,bR = lim
p→0

Πt,b
0

pL
=
Zt,b
L

+
1

mL(cothmL− 1)
. (3.10)

Embedding a whole generation in a single bulk multiplet obviously implies that the upper
and lower non-canonically normalized Yukawa couplings in the holographic effective La-
grangian (3.4) are necessarily of the same order of magnitude, in our case |Yb| =

√
2|Yt|.

Thus, the hierarchy between quark masses within a single generation does not arise from
field localization in the extra dimension, but by demanding the bR to be more elementary
than tR, namely by taking the BKT Zb of bR much larger than the BKT Zt of tR, so that
NbR � NtR and hence Mb � Mt. The spectrum of fermion resonances beyond the SM,
before ElectroWeak Symmetry Breaking (EWSB), is given by KK towers of states in the
27/6, 21/6, 15/3, 12/3, 1−1/3 and 32/3 of SU(2)L ×U(1)Y .

The fermion contribution to the Higgs effective potential is the sum of three terms,
coming from the states with U(1)Q charges +5/3, +2/3 and−1/3. The former contribution,
Vex, comes entirely from heavy states, while the latter two, Vt and Vb, are related to the top
and bottom KK tower of states. These contributions cannot be written in terms of the form
factors appearing in eq. (3.4), since higher order terms in sα are missing and, moreover,
extra contributions arise from the bulk. The latter are absent only in the holographic basis
where one chooses as holographic fields all the components of a multiplet with the same
chirality [25]. This choice is manifestly not possible if we want to keep the qL, tR and
bR components as holographic fields, given that they come from the same bulk field (3.1).
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Figure 2. Higgs mass mH versus the mass of the first KK resonances (before EWSB) for the
points of the FBKT10 model with mH > 114 GeV and α ∈ [0.16, 0.23] .

The fermion contributions to the Higgs potential (mainly the top one) is quite lengthy. For
simplicity, we report in the following the explicit form of the Higgs potential only in the
relevant region in parameter space where ZT , Zq, Zx � 1 and Zb � 1. Neglecting ZT , Zq
and Zx, we get

Vt ' −2Nc

∫
d4p

(2π)4
ln

1 + s2α

(Π− −Π+)
(

2pΠ+Π−(Zt − Zq′) + Π− −Π+

)
4Π+Π−(pZq′Π+ − 1)(pZtΠ− − 1)

 ,

Vb ' −2Nc

∫
d4p

(2π)4
ln
(

1 + s2α
Π+ −Π−

2pZbΠ+Π−

)
,

Vex ' −2Nc

∫
d4p

(2π)4
ln
(

1 + s2α
Π− −Π+

Π−(pZq′Π+ − 1)

)
, (3.11)

where we have omitted the mass dependence of the form factors Π±. The total Higgs
potential is finally

Vtot = Vg + Vt + Vb + Vex , (3.12)

with Vg given in eq. (2.10).
The tree-level contribution to δgb at leading order in an expansion in α is

δgb =
e2mLmZT

1− e2mL(1 + 2mZq)
α2

2
. (3.13)

The deviation (3.13) crucially depends on the BKT of the triplet, ZT . When the latter
vanishes, δgb = 0 (this is actually true to all orders in α, at tree-level). This is a consequence
of a Z2 custodial symmetry [30]. More precisely, δgb 6= 0 anytime, after EWSB, bL sits in
5D fields where TR3 6= TL3 and the deviation is proportional to (TR3 − TL3 ). In the case at
hand, in absence of the BKT, there is a precise cancellation between the contributions of
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the TR3 = −1, TL3 = 0 and of the TR3 = 0, TL3 = −1 states. This compensation is explicitly
broken by ZT . The mass-dependence of the result has also a simple physical interpretation.
Recall that in flat space, depending on the sign of the bulk mass term, KK states with (+−)
or (−+) b.c. become light exponentially, with an exponent governed by the mass term m.
For m > 0, fermions with (+−) b.c. for the LH components become light, while for m < 0
fermions with (−+) b.c. for the LH components become light.10 When |mL| � 1 and
negative, the triplet tower is heavy and δgb is suppressed, while for positive m the triplet
tower becomes ultra-light and δgb is unsuppressed.

As we mentioned in section 2, in the FBKT10 model the coupling WtRbR is generated
at tree-level. At the leading order in α, we find

gbt,R = − α2

2
√

2
e2mL − 1

2mL
√
NtRNbR

, (3.14)

withNtR andNbR given in eq. (3.10). When Zt = Zb = 0, gbt,R is unsuppressed and it equals

gbt,R = − α2

2
√

2
, (3.15)

which is independent of m. This non-decoupling can heuristically be understood by notic-
ing that when m < 0 the masses of the KK states mixing with tR and bR are large, but tR
and bR are more composite (peaked toward the IR brane). On the contrary, when m > 0,
tR and bR are more elementary (UV peaked) but the KK states associated to the q′ tower
become ultra-light. For any m, the two effects compensate each other, resulting in an
unsuppressed gbt,R. When Zb and Zt are switched on, gbt,R is suppressed by NbR, which is
required to be large to correctly reproduce the bottom mass.

3.1 Results

The results of our numerical scan are summarized in figures 1, 2 and 3. The randomly
chosen input parameters are m, Zq, Zq′ , Zx, ZT , θ and θ′. The remaining two parameters
Zt and Zb are fixed by the top and bottom mass formulas. For stability reasons, we take
positive coefficients for all the BKT. We have scanned the parameter space over the region
mL ∈ [−1.5, 0.5], Zq/L ∈ [0, 1.5], Zq′/L ∈ [0, 2], Zx/L ∈ [0, 6], ZT /L ∈ [0, 1.5], θ ∈ [20, 30]
and θ′ ∈ [15, 25].

As can be seen in figure 1, the EWPT constrain α . 1/5, with a light Higgs mass
for the less-tuned points with α ' 0.15. The Higgs mass increases only for more tuned
configurations with α < 0.15. The lightest exotic particles are fermion SU(2)L singlets with
Y = 5/3 and SU(2)L doublets with Y = 7/6, see figure 2. After EWSB, these multiplets
give rise to 5/3 and 2/3 charged fermions. Their mass is of order 1 ÷ 2 TeV, significantly
lighter than the gauge KK modes (∼ 5 TeV). The doublet qL and the singlet tR have
typically a sizable and comparable degree of compositeness, while bR is mostly elementary.
When mL . −1, qL turns out to be even more composite than tR.

10This is completely analogous to the warped space case, in which, due to a non-vanishing spin connection,

the relevant parameters are m/k ± 1/2, where k is the AdS5 curvature scale.
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Figure 3. Scatter plot of points in the FBKT10 model with mH > 114 GeV and projected on
the TNP -SNP plane. We have set MH,eff = 120 GeV. Small red dots represent points which don’t
pass EWPT at 99% C.L., square blue dots represent points which pass EWPT at 99%C.L. but not
at 90% C.L., and star shape green dots represent points which pass EWPT at 90% C.L.. The big
and small ellipses correspond to 99% and 90% C.L. respectively.

4 Model II: FBKT5

The simplest model that can be built by using the fundamental representation of SO(5) is
constructed by embedding each generation of SM quarks in two bulk multiplets ξt and ξb.
The 5 decomposes as follows under SO(4): 5 = (2,2) ⊕ (1,1). The boundary conditions
on the fields,

ξtL =

(2, 2)tL =

[
q′1L(−+)
q1L(++)

]
(1, 1)tL = uL(−−)


2/3

, ξbL =

(2, 2)bL =

[
q2L(++)
q′2L(−+)

]
(1, 1)bL = dL(−−)


−1/3

, (4.1)

are fixed by the requirement of obtaining, out of each multiplet, the correct set of massless
components, namely a left-handed SU(2)L doublet and one SU(2)L right-handed singlet.
For the third quark generation we can identify the uR and dR zero-modes with the top
and bottom RH singlets (tR and bR). On the other hand, the q1L and q2L zero-modes
provide two copies of the LH SM doublet and we need to eliminate a linear combination
of the two states from the massless spectrum. This can be easily done by modifying the
UV boundary conditions for the doublets and requiring a linear combination of the two
left-handed components to satisfy Dirichlet conditions at the y = 0 boundary (in our case
we choose (q1L + q2L)/

√
2 as the SM doublet).11

The most general BKT for the non-vanishing field components at y = 0 are

L4f,0 = Zq q̄Li /DqL + ZtūRi /DuR + Zbd̄Ri /DdR + ZR1q̄
′
1Ri /Dq

′
1R + ZR2q̄

′
2Ri /Dq

′
2R . (4.2)

11Equivalently one could get rid of the unwanted massless doublet by introducing a right-handed massless

fermion doublet localized at the y = 0 boundary, which couples to the extra zero-mode with a large mass

mixing.
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Figure 4. Scatter plot of points obtained from a scan over the parameter space of the FBKT5

model. Small red dots represent points which don’t pass EWPT at 99%C.L., square blue dots
represent points which pass EWPT at 99%C.L. but not at 90%C.L., and star shape green dots
represent points which pass EWPT at 90%C.L.. The region below the LEP bound (mH < 114 GeV)
is shaded.

No mass terms are allowed at y = L and hence the IR localized Lagrangian is trivial:

L4f,L = 0 . (4.3)

The holographic low-energy effective action is, up to O(s2α) terms, of the form (3.4), where

Πq
0 = pZq +

1
2

(Π+(mt) + Π+(mb)) , (4.4)

Πt,b
0 = pZt,b −

1
Π−(mt,b)

, (4.5)

Πt,b
M =

Π−(mt,b)−Π+(mt,b)√
2Π−(mt,b)

. (4.6)

Simple approximate formulas for the top and bottom masses are obtained from the La-
grangian (3.4). One has

M2
t

M2
W

' θ + 1
2NLNtR

,
M2
b

M2
W

' θ + 1
2NLNbR

, (4.7)

where

NL = lim
p→0

Πq
0

pL
=
Zq
L

+
1− e−2Lmt

4Lmt
+

1− e−2Lmb

4Lmb
,

NtR,bR = lim
p→0

Πt,b
0

pL
=
Zt,b
L

+
e2Lmt,b − 1

2Lmt,b
. (4.8)

The spectrum of fermion resonances beyond the SM, before EWSB, is given by KK towers
of states in the 27/6, 2−5/6, 21/6, 12/3 and 1−1/3 of SU(2)L ×U(1)Y .
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Figure 5. Higgs mass mH versus the mass of the first KK resonances (before EWSB) for the
points of the FBKT5 model with mH > 114 GeV and α ∈ [0.16, 0.22].

The fermion contribution to the Higgs effective potential cannot be written in terms
of the form factors appearing in eq. (3.4) for the same reasons explained for the FBKT10

model above eq. (3.11). The fermion contribution to the Higgs potential comes from the top
and bottom tower of states, Vf = Vt + Vb. The explicit form of the top tower contribution
to the potential is given by

Vt = −2Nc

∫
d4p

(2π)4
ln
[
1 + sin2 α

Π+(mt)−Π−(mt)
2(pZtΠ−(mt)− 1)

(
pZt + p

ZR1 − Zt
pZR1Π+(mt)− 1

− pZtΠ+(mt)− 1
2pZq + Π+(mt) + Π+(mb)

)]
, (4.9)

while the bottom tower contribution Vb is obtained from Vt by the replacements t↔ b and
ZR1 → ZR2. The total Higgs potential is finally

Vtot = Vg + Vt + Vb , (4.10)

with Vg given in eq. (2.10).
The tree-level contribution to δgb at leading order in an expansion in α is

δgb =
1− e−2mbL

16mbLNL
α2 . (4.11)

The result (4.11) has a simple physical interpretation. According to the analysis of [30],
multiplets in which the bottom lives only in components with TR3 = TL3 do not contribute
to δgb. This condition is satisfied by the ξt multiplet, hence the only corrections come from
the ξb field. A comparison with eq. (4.8) shows that, as expected, the correction to gbL is
an O(α2) effect and is proportional to the fraction of the bL wave function which lives in
the ξb multiplet, which is encoded in the ratio on the right hand side of eq. (4.11).
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Figure 6. Scatter plot of points in the FBKT5 model with mH > 114 GeV and projected on the
TNP -SNP plane. We have set MH,eff = 120 GeV. Small red dots represent points which don’t
pass EWPT at 99% C.L., square blue dots represent points which pass EWPT at 99%C.L. but not
at 90% C.L., and star shape green dots represent points which pass EWPT at 90% C.L.. The big
and small ellipses correspond to 99% and 90% C.L. respectively.

4.1 Results

The results of our numerical scan are summarized in figures 4, 5 and 6. The randomly
chosen input parameters are mt, mb, ZR1, ZR2, Zq, θ and θ′. The remaining two parameters
Zb and Zt are fixed by the top and bottom mass formulas. For stability reasons, we take
positive coefficients for all the BKT and mbL & 1 in order to suppress δgb, as given by
eq. (4.11). More precisely, we have taken mtL ∈ [0.1, 1.3], mbL ∈ [2, 2.5], ZR1/L ∈ [0.1, 1.6],
ZR2/L ∈ [0, 1], Zq/L ∈ [0.5, 2], θ ∈ [15, 25], θ′ ∈ [15, 25]. As can be seen in figure 4, the
EWPT constrain α ' 1/5, with a very light Higgs mass. The latter increases only for more
tuned configurations with α < 0.15. Interestingly enough, the lightest exotic particle is
always a fermion singlet withQ = −1/3, see figure 5. Its mass is of order 1 TeV, significantly
lighter than the gauge KK modes (∼ 5 TeV) and the other fermion resonances, with masses
starting from around 4 TeV. The doublet qL is generically semi-composite, the singlet tR
is mostly composite and bR is mostly elementary.

5 Model III: modified MCHM5

The last model we consider is the flat space version of one of the models considered in [33]
and denoted there MCHM5. It was already noticed in [36] that this model can lead to
realistic theories also when defined on a flat segment, provided large BKT for the gauge
fields are included. Here we perform a systematic analysis of the electroweak bounds in
this model, that was neither made in [36] nor in [33]. We describe very briefly the model,
referring the reader to section 4.2 of [36] or to the original warped space version [33] for
further details. Fermion BKT can also be introduced in this model, of course, but given
the larger number of parameters present in this model with respect to the FBKT models,
we have decided, for simplicity, to neglect them.
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Figure 7. Scatter plot of points obtained from a scan over the parameter space of MCHM5. Small
red dots represent points which don’t pass EWPT at 99%C.L., square blue dots represent points
which pass EWPT at 99%C.L. but not at 90% C.L., and star shape green dots represent points
which pass EWPT at 90%C.L.. The region below the LEP bound (mH < 114 GeV) is shaded.

The SM quarks are embedded in bulk fermions transforming in the fundamental repre-
sentation of SO(5). For each quark generation, 4 bulk fermions ξq1 , ξq2 , ξu and ξd in the 5
are introduced. The holographic Lagrangian for the third quark generation can be written
to all orders in sα and has the simple form

LH = q̄L
/p

p

[
Πq

0 + s2α

(
Πqu

1

Hc(Hc)†

H†H
+ Πqd

1

HH†

H†H

)]
qL +

∑
a=u,d

āR
/p

p

(
Πa

0 + s2αΠa
1

)
aR

+
s2α
2h

(Πu
M q̄LH

cuR + Πd
M q̄LHdR + h.c.) . (5.1)

The expression of the form factors appearing in eq. (5.1) is reported in eq. (C.3) of [36].
The top and bottom quark masses are approximately given by

M2
t

M2
W

' θ|m̃u − M̃−1
u |2e2L(mu−m1)

NLNuR
,

M2
b

M2
W

'
θ|m̃d − M̃−1

d |
2e2L(md−m2)

NLNdR
, (5.2)

where

NL = lim
p→0

Πq
0

pL
=

1
L

∑
i=u,d,q1,q2

∫ L

0
dyf2

iL(y) ,

NuR = lim
p→0

Πu
0

pL
=

1
L

∫ L

0
dy
(
f2
uR(y) + f2

q1R(y)
)
,

NdR = lim
p→0

Πd
0

pL
=

1
L

∫ L

0
dy
(
f2
dR(y) + f2

q2R(y)
)
, (5.3)
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Figure 8. Higgs mass mH versus the mass of the first KK resonances (before EWSB) for the
points of the MCHM5 model with mH > 114 GeV and α ∈ [0.26, 0.34] .

with fiL,iR(y) the “holographic” wave functions of the LH/RH top and bottom quarks
before EWSB. They read

fq1L = e−m1y , fq2L = e−m2y , fuL = −m̃ue
−m1L+mu(L−y) , fdL = −m̃de

−m2L+md(L−y) ,

fuR = emuy , fq1R =
1
M̃u

emuL−m1(L−y) , fdR = emdy , fq2R =
1
M̃d

emdL−m2(L−y).

(5.4)

The spectrum of fermion resonances beyond the SM, before EWSB, is given by KK towers of
states in the 27/6, 2−5/6, 21/6, 12/3 and 1−1/3 of SU(2)L×U(1)Y . The fermion contribution
to the one-loop Higgs effective potential in this model arises only from the KK towers of
the charge +2/3 and −1/3 states, and can easily be expressed in terms of the form factors
appearing in eq. (5.1). We have Vf = Vt + Vb, with

Vi = −2Nc

∫
d4p

(2π)4
log
[(

1 + s2α
Πqi

1

Πq
0

)(
1 + s2α

Πi
1

Πi
0

)
− s22α

(Πi
M )2

8Πq
0Πi

0

]
, i = t, b . (5.5)

The total Higgs potential is
Vtot = Vg + Vt + Vb , (5.6)

with Vg given in eq. (2.10).
The tree-level contribution to δgb at leading order in an expansion in α is

δgb =
α2

2NL

∑
i=u,d,q1,q2

(
TR3,i − TL3

) ∫ L

0
dy
[ y
L

(f2
iL + fiLδfiL) +

1
2
δf2
iL

]
, (5.7)

where TL3 = −1/2, TR3,i is the SU(2)R isospin of the corresponding bidoublet component
where the bL lives, fiL are the holographic wave functions of the bidoublet components of
the 5D multiplets, reported in the first line of eq. (5.4), and δfiL = fiL − fsiL, with fsiL the
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Figure 9. Scatter plot of points in the MCHM5 model with mH > 114 GeV and projected on
the TNP -SNP plane. We have set MH,eff = 120 GeV. Star shape red dots represent points which
don’t pass EWPT at 99% C.L., small blue dots represent points which pass EWPT at 99%C.L. but
not at 90% C.L., and big green dots represent points which pass EWPT at 90% C.L.. The big and
small ellipses correspond to 99% and 90% C.L. respectively.

holographic wave functions of the singlet components of the 5D multiplets. Only multiplets
where TR3 6= TL3 contribute to δgb, as expected [30]. We have TR3,q1 = TR3,u = −1/2,
TR3,q2 = TR3,d = 1/2, so that only the latter contribute to δgb. We also have fsq2L = fq2L and
fsdL = M̃d/m̃dfdL.

5.1 Results

The results of our numerical scan are summarized in figures 7, 8 and 9. The randomly
chosen input parameters are mu, md, m1, m2, m̃u, m̃d, θ and θ′. The remaining two
parameters M̃u and M̃d are fixed by the top and bottom mass formulas. Demanding a
small δgb at tree-level requires m2L & 1, as can be verified by using eq. (5.7). We have
scanned the parameter space over the regionmuL ∈ [−3, 3], mdL ∈ [−5, 2.5], m1L ∈ [−2, 2],
m2L ∈ [2.2, 4.5], m̃u ∈ [−2.3, 4.1], m̃d ∈ [−3.5, 4], θ ∈ [17, 27], θ′ ∈ [14, 26]. As can be seen
in figure 7, the EWPT constraints are now milder, with α ' 1/3. The Higgs is still
light, but now masses up to 200 GeV can be reached in the less-tuned region α ' 1/3.
There is no definite pattern for the lightest exotic particles. As far as collider physics
is concerned, this model is the most interesting one, having a scale of new physics lower
than that associated to the FBKT models and fermion states below the TeV scale. As
expected, bR is always mostly elementary, while qL and tR typically show a sizable degree
of compositeness. Depending on the region in parameter space, qL can be semi-composite
and tR mostly composite or the other way around, with qL mostly composite and tR semi-
composite.
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6 Comments on the EWPT

We give in this section a rough qualitative picture of how the EWPT are passed in each
model. We do not try to perform here an analysis of how EWSB selects the fermion mass
spectra reported in figures 2, 5 and 8, but rather we take these spectra for granted. An
obvious feature common to all the models is SNP > 0, coming from the dominant tree-level
contribution (2.7). As well-known, given SNP > 0, the EWPT favours a light Higgs and
models where TNP > 0 rather than TNP < 0. As far as δgb is concerned, by comparing
eq. (2.17) with eq. (2.19), one finds that models where δgb,NP < 0 are slightly favoured
with respect to the ones with δgb,NP > 0. Let us now turn to each model separately.

In the FBKT10 model, the lightest resonances before EWSB are the first KK states
of the exotic 15/3 and 27/6 towers, see figure 2. The charge 5/3 states do not contribute
to δgb,NP at one-loop level, and their contribution to TNP is negligible with respect to
the one given by the charge 2/3 states (compare eq. (A.14) with eq. (A.24)). The latter
contribution to TNP is always negative. The FBKT10 model features an SU(2)L triplet
state, whose tree-level contribution to δgb,NP can be sizable and can play an important role
in the EWPT. The total combination of these effects does not allow to have large enough
values of α, which is then constrained to be at most α ∼ 0.2.

In the FBKT5 model, the lightest resonances before EWSB are the first KK states
of the 1−1/3 tower. As we already remarked, such states have a small overlap with the
bottom quark and hence a negligible contribution to SNP , TNP and δgb,NP . The next to
lightest resonances are the two towers of states in the 21/6 and 27/6, which have comparable
Yukawa couplings with the top quark. By SO(4) symmetry, the net contributions to TNP
and δgb,NP of these two states tend to compensate each other. Since typically the 27/6

states are lighter than the 21/6 ones, we get a net negative contribution to TNP and a
negligible contribution to δgb,NP , since the doublets contribution to δgb,NP is suppressed
(see eqs. (A.11) and (A.16)). In this situation, δgb is sub-dominant and we get the quite
standard behaviour depicted in figure 6, with SNP > 0 and TNP < 0.

The MCHM5 model is the most interesting and complicated to analyze, given also the
more intricate pattern of fermion spectrum depicted in figure 8. The tree-level contribution
to δgb is typically positive but small. The novelty of this model with respect to the FBKT
ones is the appearance of configurations satisfying EWPT with a sizable positive TNP , see
figure 9. This is related to two features appearing in the MCHM5 model. The first is
the possibility of having a moderate hierarchy between the Yukawa couplings λ1 and λ7

of the lightest states 21/6 and 27/6 with the top quark. It arises thanks to the presence of
four bulk fields and IR mass terms, that lead to a larger SO(5) symmetry breaking with
respect to the FBKT models. As in the FBKT5 model, the 27/6 states are lighter than the
21/6 ones (with the singlet 11/3 considerably heavier than both), but it often happens that
λ1 > λ7 resulting in a net dominance of the 21/6 state with respect to the 27/6 (a similar
pattern arises in a specific region in parameter space of the warped model studied in [35]).
The total result is a sizable TNP > 0 and a negligibly small δgb,NP . The second feature is
the possibility of having light singlet 12/3 states (compare figures 2 and 5 with figure 8).
In the FBKT models, the 12/3 states always have (++) or (−−) b.c. and are hence heavy,
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while in the MCHM5 model, due to the presence of more bulk fields and IR mass terms,
they have mixed b.c. and can be light. Their presence is important, because they positively
contribute to TNP . Taken alone, the singlets would also give rise to unacceptably positive
and large contributions to δgb,NP , but it turns out that the net effect of the 21/6, 27/6

and 12/3 states is to keep δgb,NP small, while having TNP positive and sizable. We do not
exclude that other patterns may exist, where the same desired configuration of TNP > 0
and δgb,NP ' 0 is obtained.

7 Conclusions

We have constructed three different composite Higgs/GHU models in flat space with large
BKT, based on the minimal custodially-symmetric SO(5) × U(1)X gauge group, and we
have shown that EWSB and EWPT are compatible in these models. We stress that model
building in this context is significantly simpler than in warped space.

The Higgs is predicted to be light with a mass mH ≤ 200 GeV. The lightest new-
physics particles are colored fermions with a mass as low as about 500 GeV in the MCHM5

model and 1 TeV in the FBKT models. Their electroweak quantum numbers depend on
the model and on the region in parameter space, but they are always particles with electric
charges -1/3, +2/3 or +5/3.

The next step in constructing fully realistic models would be the addition of the light
two quark generations, leptons, and flavour in general. We expect that the typical known
patterns of flavour physics in warped space, such as the so-called RS-GIM, should also
be captured by our effective flat space description. Indeed, in presence of large BKT, the
cut-off of the theory becomes effectively a function of the position in the internal space and
is maximal at the UV brane, with the SM fields becoming more elementary (peaked at the
UV brane at y = 0) and the KK states more composite (peaked at the IR brane at y = L).
In this way, otherwise too large flavour-changing violating operators might be naturally
suppressed. It would be very interesting to study this issue in detail and see whether and
to what extent this expectation is valid.

The very broad collider signatures of our models completely fall into those of compos-
ite Higgs/warped GHU models. The correct EWSB pattern in all composite Higgs/GHU
models constructed so far (warped or flat, with SO(5) or SU(3) gauge groups) seems to in-
dicate that the lightest (below TeV) new physics states beyond the SM should be fermionic
colored particles, with model-dependent SU(2)L×U(1)Y quantum numbers. Of course, this
generic prediction cannot be seen as a “signature” of composite Higgs/GHU models. More
specific predictions are the expected sizable deviations to the SM Higgs-gauge couplings or
to the SM top couplings, but at this stage of the LHC run these are details that cannot be
detected in the short term.
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A One-loop fermion contribution to the S, T parameters and the ZbLbL

vertex

We collect in this appendix the one-loop fermion contribution to T , S and δgb in particular
limits where relatively simple analytic expressions are available. This is motivated by
the fact that often in our models one or two fermion states are significantly lighter than
the others and dominate the loop corrections. The SM quantum numbers of these light
fermion states vary along the parameter space and thus it can be useful to list the single
fermion contribution to T , S and δgb. We compute the one-loop contribution to δgb in the
approximation in which the external momentum of the Z is set to zero (see [50] for a more
general computation). The contribution of the first two light quark generations, including
their KK towers, given their light masses and small Yukawa couplings with the KK modes,
is expected to be negligible. We have actually checked that even the fermion mixing in the
bottom sector is negligible, so that only the charge +2/3 states mixing with the top quark
should be considered. We define in what follows by TNP , SNP and δgb,NP the fermion
one-loop contribution given by new physics only, with the SM contribution subtracted:

TNP = T − TSM , SNP = S − SSM , δgb,NP = δgb − δgb,SM , (A.1)

where

gb,SM = −1
2

+
1
3
s2W , TSM '

Ncr

16πs2W
, SSM =

Nc

18π

(
3 + log

(
M2
b

M2
t

))
,

δgb,SM =
αem

16πs2W

r(r2 − 7r + 6 + (2 + 3r) log r)
(r − 1)2

, r ≡ M2
t

M2
W

, (A.2)

sW ≡ sin θW , and Mt is the pole top mass, Mt = 173.1 GeV [51].
We do not exploit the full SO(5) symmetry underlying our model and classify the new

fermion states by their SM quantum numbers. In this way, the explicit SO(5) symmetry
breaking effects due to the UV b.c., that can be sizable, are taken into account and more
reliable expressions are obtained. For simplicity, we take in the following all Yukawa
couplings to be real, the extension to complex ones being straightforward.

A.1 Singlet with Y = 2/3

The simplest situation arises when the top quark mixes with just one SM singlet vector-like
fermion X with hypercharge Y = 2/3. The two possible Yukawa couplings are

L ⊃ ytq̄LHctR + yX q̄LH
cXR + h.c.→ λtt̄LtR + λX t̄LXR + h.c. , (A.3)

where here and in the following we use the notation that λi = yiv/
√

2 is the mass parameter
corresponding to the Yukawa coupling yi. The λi are assumed to be small with respect
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to the vector-like mass MX of the new exotic fermions. By using standard techniques and
keeping the leading order terms in the λi/MX expansion, we get

TNP =
Ncλ

2
X

(
2λ2

t log
(M2

X

λ2
t

)
+ λ2

X − 2λ2
t

)
16πs2WM

2
WM

2
X

, (A.4)

SNP =
Ncλ

2
X

(
2 log

(M2
X

λ2
t

)
− 5
)

18πM2
X

, (A.5)

δgb,NP =
αemλ

2
X

(
2λ2

t log
(M2

X

λ2
t

)
+ λ2

X − 2λ2
t

)
16πs2WM

2
WM

2
X

, (A.6)

in agreement with [31, 32, 47]. For simplicity, in eq. (A.6) we have only reported the
leading order terms in the limit λi/MW � 1. The top mass is given by

Mt ' λt
(

1−
λ2
X

2M2
X

)
. (A.7)

As can be seen from eqs. (A.4)–(A.6), for a sufficiently large MX , TNP and δgb,NP are
closely related and positive (like SNP ).

A.2 Doublet with Y = 1/6

The two possible Yukawa couplings mixing the top with a new doublet Q1 with hypercharge
Y = 1/6 are

L ⊃ ytq̄LHctR + y1Q̄1LH
ctR + h.c.→ λtt̄LtR + λ1Q̄1uLtR + h.c. . (A.8)

We find

TNP =
Ncλ

2
1

(
6λ2

t log
(M2

1

λ2
t

)
+ 2λ2

1 − 9λ2
t

)
24πs2WM

2
WM

2
1

, (A.9)

SNP =
Ncλ

2
1

(
4 log

(M2
1

λ2
t

)
− 7
)

18πM2
1

, (A.10)

δgb,NP =
αemλ

2
1λ

2
t log

(M2
1

λ2
t

)
32πs2WM

2
WM

2
1

, (A.11)

in agreement with [31, 32]. The top mass is given by

Mt ' λt
(

1− λ2
1

2M2
1

)
. (A.12)

As can be seen from eqs. (A.9)–(A.11), for a sufficiently large M1, TNP , δgb,NP and SNP
are all positive.
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A.3 Doublet with Y = 7/6

The two possible Yukawa couplings mixing the top with a new doublet Q7 with hypercharge
Y = 7/6 are

L ⊃ ytq̄LHctR + y7Q̄7LHtR + h.c.→ λtt̄LtR + λ7Q̄7dLtR + h.c. . (A.13)

We find

TNP = −
Ncλ

2
7

(
6λ2

t log
(M2

7

λ2
t

)
− 2λ2

7 − 9λ2
t

)
24πs2WM

2
WM

2
7

, (A.14)

SNP = −
Ncλ

2
7

(
4 log

(M2
7

λ2
t

)
− 15

)
18πM2

7

, (A.15)

δgb,NP = −
αemλ

2
7λ

2
t log

(M2
7

λ2
t

)
32πs2WM

2
WM

2
7

, (A.16)

in agreement with [31, 32]. The top mass is given by

Mt ' λt
(

1− λ2
7

2M2
7

)
. (A.17)

As can be seen from eqs. (A.14)–(A.16), for a sufficiently large M7, TNP , δgb,NP and SNP
are all negative.

The contributions to T , S and δgb of the doublets with Y = 1/6 and Y = 7/6 are
almost the same in magnitude, but opposite in sign. When present together, then, there
tends to be a partial cancellation among these two contributions. In the SO(4) invariant
limit in which M1 = M7 and λ1 = λ7, their contributions to T and δgb precisely cancel.

A.4 Triplet with Y = 2/3

The two possible Yukawa couplings mixing the top with a new triplet T with hypercharge
Y = 2/3 are

L ⊃ ytq̄LHctR +
√

2yT q̄LTRHc + h.c.→ λtt̄LtR + λT t̄LT0R + h.c. , (A.18)

where T0,R is the triplet component with T3L = 0. We find

TNP =
Ncλ

2
T

(
18λ2

t log
(M2

T

λ2
t

)
+ 19λ2

T − 30λ2
t

)
48πs2WM

2
WM

2
T

, (A.19)

SNP = −
Ncλ

2
T

(
4 log

(M3
Tλt

λ4
b

)
− 29

)
18πM2

T

, (A.20)

δgb,NP = −
αemλ

2
T

(
2λ2

t log
(M2

T

λ2
t

)
− λ2

T

)
16πs2WM

2
WM

2
T

. (A.21)

The top mass is given by

Mt ' λt
(

1−
λ2
T

2M2
T

)
. (A.22)
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As can be seen from eqs. (A.19)–(A.21), TNP > 0 and δgb,NP < 0. Contrary to the
previous cases, the bottom quark mixing cannot consistently be neglected, since the same
Yukawa coupling in eq. (A.18) mixing the top with the T3L = 0 triplet component gives
also a mixing between the bottom and the T3L = −1 triplet component. This mixing is at
the origin of the log term involving the bottom Yukawa coupling λb in eq. (A.20), which
enhances the fermion one-loop contribution to S with respect to the previous cases and
gives SNP < 0.

A.5 Doublet with Y = 7/6 mixing with singlet with Y = 5/3

The two Yukawa couplings mixing a vector-like singlet X with hypercharge Y = 5/3 with
a vector-like doublet Q7 with Y = 7/6 are

L ⊃ yXLQ̄7RH
cXL + yXRQ̄7LH

cXR + h.c.→ λXLQ̄7uRXL + λXRQ̄7uLXR + h.c. . (A.23)

In the limit in which M7 = MX , we have

TNP =
Nc

(
13λ4

XL + 2λ3
XLλXR + 18λ2

XLλ
2
XR + 2λXLλ3

XR + 13λ4
XR

)
480πs2WM

2
WM

2
X

, (A.24)

SNP =
Nc

(
12λ2

XL + 79λXLλXR + 12λ2
XR

)
90πM2

X

. (A.25)

Of course, δgb vanishes, since there is no coupling between the bottom and these states.
Being given by vector-like states, eqs. (A.24) and (A.25) do not contain “large” log’s of
the form logM/λt. Assuming equality of masses and Yukawa’s, the contribution to T in
eq. (A.24) is suppressed with respect to the other contributions previously determined.
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