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CH-8093 Zürich, Switzerland

E-mail: rboughezal@hep.anl.gov, gehra@itp.phys.ethz.ch,

rimathia@phys.ethz.ch

Abstract: The antenna subtraction formalism allows to calculate QCD corrections to jet

observables. Within this formalism, the subtraction terms are constructed using antenna

functions describing all unresolved radiation between a pair of hard radiator partons. In

this paper, we focus on the subtraction terms for double real radiation contributions to

jet observables in hadron-hadron collisions evaluated at NNLO. An essential ingredient to

these subtraction terms are the four-parton antenna functions with both radiators in the

initial state. We outline the construction of the double real subtraction terms, classify all

relevant antenna functions and describe their integration over the relevant antenna phase

space. For the initial-initial antenna functions with two quark flavours, we derive the phase

space master integrals and obtain the integrated antennae.
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1 Introduction

Jet production processes constitute an important tool for precision studies due to their large

cross sections at high energy colliders. Reliable theoretical predictions for these observables

require the calculation of at least the next-to-leading order QCD corrections. For these

observables, the inclusive cross section with two incoming hadrons H1,H2 can be written

as

dσ =
∑

a,b

∫
dξ1dξ2 fa/1(ξ1) fb/2(ξ2) dσ̂ab(ξ1H1, ξ2H2) , (1.1)

where ξ1 and ξ2 are the momentum fractions of the partons of species a and b in the incom-

ing hadrons, f being the corresponding parton distribution functions and dσ̂ab(ξ1H1, ξ2H2)

is the parton-level scattering cross section for incoming partons a and b.

The partonic cross section dσ̂ab has a perturbative expansion in the strong coupling αs

such that theoretical predictions for a hadronic process at a given order in αs are obtained

when all partonic channels contributing to that order of the partonic cross section are

summed and convoluted with the appropriate parton distribution functions as in eq. (1.1).
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In general, beyond the leading order, each partonic channel contains both ultraviolet

and infrared (soft and collinear) divergences. The ultraviolet poles are removed by renor-

malisation in each channel. Collinear poles originating from the radiation off initial state

partons are cancelled by mass factorisation counterterms and absorbed in the parton dis-

tribution functions. The remaining soft and collinear poles cancel among each other when

all partonic contributions are summed over [1, 2]. As jet observables depend in a nontriv-

ial manner on the experimental criteria used to define them, they can only be calculated

numerically. The computation of hadronic observables including higher order corrections

therefore requires a systematic procedure to cancel infrared singularities among different

partonic channels before any numerical computation of the observable can be performed.

For the task of next-to-leading order (NLO) calculations, the infrared divergences

present in real radiation contributions can be systematically extracted by process-indepen-

dent procedures, called subtraction methods. The purpose of any subtraction method at

NLO is to provide a subtraction term which has the same singular behaviour as the real

radiation squared matrix element and is sufficiently simple to be integrated analytically

over the radiation phase space which has been factorised from the (m + 1)-particle phase

space. The actual form of this subtraction term depends on the subtraction formalism used.

Several successful subtraction formalisms have been proposed in the literature [3–7]. Most

notably, the FKS [4] subtraction by Frixione, Kunszt and Signer and the dipole formalism

of Catani and Seymour [3] have been implemented in an automated way, the former in [8],

the latter in [9–14]. The major challenge for NLO calculations is the computation of one-

loop amplitudes for multiparticle processes. The evaluations of 2 → 4 processes at the

next-to-leading order represent the current frontier [15–18].

Nevertheless, for some hadronic processes, in particular 2 → 1 or 2 → 2 scattering

processes such as Drell-Yan, Higgs production, dijet production, vector-boson plus jet,

vector-boson pair production or heavy quark pair production, the accuracy of the next-to-

leading order predictions is not sufficient to match the anticipated experimental accuracy,

expected to reach the order of a few percent or better. Accurate precision studies enabling

the extraction of fundamental parameters of the theory will require that the theoretical

predictions have the same precision. Those need therefore to be evaluated up to the next-

to-next-to-leading order (NNLO) in perturbative QCD.

The calculation of observables with m jets in addition to other objects (like for example

vector bosons) at the NNLO requires three distinct contributions: the double real radiation

dσ̂R
NNLO with (m + 2) final state partons, the mixed real-virtual radiation dσ̂V,1

NNLO with

(m+1) final state partons and the 2-loop contribution dσ̂V,2
NNLO, with m final state partons.

Those build the NNLO cross section which is given by

dσ̂NNLO =

∫

dΦm+2

dσ̂R
NNLO +

∫

dΦm+1

dσ̂V,1
NNLO +

∫

dΦm

dσ̂V,2
NNLO. (1.2)

The individual contributions in the m-, (m+1)- and (m+2)-parton final states are all

separately infrared divergent. After renormalisation and factorisation, their sum is finite,

though. For most massless jet observables of phenomenological interest, the two-loop

matrix elements have been computed some time ago, while the one-loop matrix elements
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are usually known from calculations of NLO corrections to (m + 1)-jet production [19, 20].

The one-loop and two-loop matrix-elements contain explicit infrared divergences from the

loop integration. Those cancel with divergences which are implicit in the real radiation for

(m + 1)- and (m + 2)-parton processes. These real radiation divergences become explicit

only once the phase space integration is carried out. The main issue of these calculations

is therefore to find a method to extract and cancel the infrared divergences among these

three contributions in order to finally evaluate numerically the finite remainders to obtain

the NNLO contribution to the cross section.

Like at NLO, a subtraction formalism is needed in order to extract the infrared diver-

gences from these contributions. At parton level, the general form of the cross section for

an m-particle final state at NNLO including subtraction terms is given by [21]:

dσ̂NNLO =

∫

dΦm+2

(
dσ̂R

NNLO − dσ̂S
NNLO

)
+

∫

dΦm+2

dσ̂S
NNLO

+

∫

dΦm+1

(
dσ̂V,1

NNLO − dσ̂V S,1
NNLO

)
+

∫

dΦm+1

dσ̂V S,1
NNLO +

∫

dΦm+1

dσ̂MF,1
NNLO

+

∫

dΦm

dσ̂V,2
NNLO +

∫

dΦm

dσ̂MF,2
NNLO. (1.3)

Here, dσ̂S
NNLO denotes the subtraction term for the (m + 2)-parton final state which

behaves like the double real radiation contribution dσ̂R
NNLO in all singular limits. Likewise,

dσ̂V S,1
NNLO is the one-loop virtual subtraction term coinciding with the one-loop (m + 1)-

particle contribution dσ̂V,1
NNLO in all singular limits. The two-loop correction to the m-parton

final state is denoted by dσ̂V,2
NNLO. In addition, when there are partons in the initial state,

there are two mass factorisation contributions, dσ̂MF,1
NNLO and dσ̂MF,2

NNLO, for the (m + 1)- and

m-particle final states respectively. Like at the next-to-leading order level, the subtraction

terms are needed in their unintegrated as well as in their integrated forms.

There have been several approaches to build a general subtraction scheme at

NNLO [21–31]. Another subtraction scheme, the qT -subtraction formalism has been pro-

posed in [32]. It has been applied to evaluate observables related to processes with colour-

less high mass final states [32–35]. In addition, there is a completely independent ap-

proach called sector decomposition which relies on a systematic expansion of the integrals

in distributions followed by a purely numerical integration. It has been developed for

virtual [36–38] and real radiation [39–42] corrections at NNLO, and applied to several

observables already [43–46].

We will follow the NNLO antenna subtraction method which was derived in [21] for

decays of a colourless initial state into massless final state partons. This formalism has

been applied in the computation of NNLO corrections to three-jet production in electron-

positron annihilation [47–50] and related event shapes [51–55], which were subsequently

used in precision determinations of the strong coupling constant [56–60].

For processes with initial-state partons, the antenna subtraction formalism has been

so far fully worked out only to NLO in [61]. It has been extended to NNLO for processes

involving one initial state parton relevant for electron-proton scattering in [62] while an
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extension of the formalism to include two initial state hadrons at NNLO is under construc-

tion [63, 64]. An essential step towards this aim is performed in [64] where an explicit

derivation of the subtraction terms needed for the double real contributions to the six-

gluon process is presented. The general structure of the unintegrated subtraction terms

relevant for the double real contributions to any hadronic observables evaluated at NNLO

is presented there as well.

In this paper, we will focus on the integrated form of the subtraction term relevant for

double real radiation for processes involving two partons in the initial state. In the antenna

subtraction formalism, the subtraction terms are built with so-called antenna functions.

The latter describe all unresolved partonic radiation off a hard pair of colour-ordered

partons, the radiators. Depending on where the two hard radiators are located, three

cases need to be distinguished: both radiators are in the final state (final-final), only one

radiator parton is in the initial state (initial-final) or both radiator partons are in the initial

state (initial-initial). The subtraction terms and the antenna functions building them are

separated corresponding to these three cases. In the most general hadronic process (two

partons in the initial state, two or more partons in the final state), all three configurations

have to be taken into account.

As discussed in [21, 62, 64] the subtraction terms are separated according to the colour

connection of the unresolved partons. In this paper, we will specialise on the subtraction

term for the case where two unresolved (soft or collinear) partons are colour connected to

the two incoming partons. This is indeed the only case where new ingredients, namely

the four-parton initial-initial antennae are needed in unintegrated as well as in integrated

forms. On a longer term we are aiming to evaluate the whole set of integrated four-parton

initial-initial antennae, those are universal building blocks for the subtraction terms for

any hadronic process evaluated at NNLO.

In a first step towards this aim, in this paper, we have focused on the crossings of two

partons from a set of three 4-parton final-final antennae involving two quark flavours. More

precisely, the paper will be organised as follows: In section 2, we present the general formu-

lae for the subtraction terms related to double real radiation for initial-initial configurations

while the colour-connected case is treated explicitly in section 3. Section 4 establishes a list

of all non-identical initial-initial four-parton antenna functions relevant to construct the

subtraction term for the double real radiation off two initial-state partons. In section 5,

the phase space mapping appropriate for initial-initial configurations is presented.

Finally, section 6 contains our results for the integrated initial-initial antenna functions

with two quark flavours and section 7 our conclusions. Since the results are lengthy, we

show only the leading pole terms in the manuscript, and attach the complete results as a

Mathematica file.

2 Antenna subtraction for double-real radiation at NNLO in the initial-

initial configuration

Antenna subtraction has been derived explicitly for final-final and initial-final configura-

tions at NLO and NNLO in [21] and in [61, 62] respectively. For the initial-initial case, it

has been derived at NLO in [61] and is under construction at NNLO.
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At NLO, the subtraction term is introduced to extract and cancel the infrared di-

vergences present in the real contributions. The general forms of the subtraction terms

required at NLO in any of the three configurations (final-final, initial-final and initial-

initial) have been given in [21, 61] and summarised in [64]. At this order, only tree-level

three-parton antenna functions involving one unresolved parton are needed to build the

subtraction terms. Those functions are usually denoted by X0
ijk, X0

i,jk, X0
ik,j in the three

configurations. Their definitions will be recalled in section 4.

At NNLO, two contributions, double real and mixed real-virtual, require the intro-

duction of a subtraction term. For final-final and initial-final configurations both types

of subtraction terms have been constructed; at this order tree-level four-particle antennae

involving two unresolved partons and one-loop three-parton antenna functions are needed

respectively. Those functions have been derived and integrated over the corresponding

factorised phase space in [21] and [62]. For initial-initial configurations, the general struc-

ture of the unintegrated subtraction terms relevant for the double real contributions to

pp → m jets is presented in [64], we will recall it in this section.

The double real radiation contribution to the m-jet cross section in pp collisions reads

dσ̂R
NNLO = N

∑

m+2

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×|Mm+2(p1, p2; k1, . . . , km+2)|2 J (m+2)
m (k1, . . . , km+2; p1, p2) . (2.1)

In this equation, |Mm+2(p1, p2; k1, . . . , km+2)|2 stands for the colour-ordered 2 → m + 2

matrix-element squared. The symmetry factor Sm+2 accounts for identical partons in the

final state. The normalisation factor N includes all QCD-independent factors as well as

the dependence on the renormalised QCD coupling constant αs.
∑

m+2 denotes the sum

over all configurations with m+2 partons. The initial state momenta are labelled as usual

as p1 and p2 whereas the m+2 momenta in the final state are labeled k1, . . . , km+2. dΦm+2

is the 2 → m + 2 particle phase space

dΦm+2(k1, . . . , km+2; p1, p2) = [dk1] . . . [dkm+2] (2π)dδd(p1 + p2 − k1 − . . . − km+2) (2.2)

where we have introduced the abbreviation [dk1] = (dd−1k1)/(2E1(2π)d−1). The jet func-

tion J
(m+2)
m (k1, . . . , km+2; p1, p2) ensures that out of (m + 2) final state partons, an observ-

able with m jets is built. The incoming parton momenta p1, p2 serve as reference directions

to define transverse momenta and rapidities of the jets.

The double real radiation contribution given in eq. (2.1) can become singular if either

one or two final state partons are unresolved (soft or collinear). Consequently, when con-

structing the corresponding subtraction term dσ̂S
NNLO in eq. (1.3), which shall correctly

subtract all those single and double unresolved singularities we must distinguish the fol-

lowing configurations according to the colour connection of the unresolved partons:

(a) One unresolved parton but the experimental observable selects only m jets.

(b) Two colour-connected unresolved partons (colour-connected).

– 5 –
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(c) Two unresolved partons that are not colour connected but share a common radiator

(almost colour-unconnected).

(d) Two unresolved partons that are well separated from each other in the colour chain

(colour-unconnected).

(e) Large angle soft gluon radiation.

This separation among subtraction contributions according to colour connection is

valid in final-final, initial-final or initial-initial configurations and in any of those the sub-

traction formulae have a characteristic structure in terms of required antenna functions.

This antenna structure has been derived for the final-final and initial-final cases in [21, 62]

and in [64] for the initial-initial case.

In here, we focus only on the initial-initial case with the kinematical situation where

two unresolved partons are colour-connected to the two incoming partons. This is the only

case where new ingredients are needed, namely the initial-initial four-parton antenna func-

tions denoted by Xil,jk. The four-particle initial-initial antenna functions will be defined

explicitly in section 4.

3 Subtraction terms for two colour-connected unresolved partons in the

initial-initial configuration

When two unresolved partons j and k are adjacent and colour-connected to two initial-

state partons, the subtraction term related to the double real contribution dσ̂R
NNLO given

in eq. (2.1) reads:

dσ̂
S,b,(ii)
NNLO =N

∑

m+2

dΦm+2(k1, . . . , km+2; p1, p2)
1

Sm+2

×
∑

il

∑

jk

(
X0

il,jk − X0
l,jkX

0
iL,K − X0

i,kjX
0
Il,J

)
(3.1)

×|Mm(p̃Î , p̃L̂; k̃1, . . . , k̃i, k̃l, . . . , k̃m+2)|2 J (m)
m (k̃1, . . . , k̃i, k̃l, . . . , k̃m+2; p̃Î , p̃L̂) ,

where the sum runs over all colour-adjacent pairs j, k and implies that the hard momenta

i, l are chosen accordingly. X0
il,jk denotes a four-particle tree-level initial-initial antenna

function defined explicitly in section 4. By construction those contain all colour connected

double unresolved limits of the 2 → m + 2 parton matrix element associated with partons

j and k being unresolved between radiators i and l.

However this antenna can also become singular in single unresolved limits associated

with j or k only where it does not coincide with limits of the matrix element. To ensure

that this subtraction term is only active in the double unresolved limits of the real matrix

elements squared we remove these single unresolved limits of the four-particle antennae.

Those limits are products of two tree-level three-particle antennae, namely products of an

initial-final antenna Xa,bc and an initial-initial antenna XAd,C . In these antennae we have

replaced the original hard radiators with new particles, Î and L̂. When both radiators

are in the initial state as it is the case here, pÎ = xipi, pL̂ = xlpl. The product of these

– 6 –
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Figure 1. Illustration of NNLO antenna factorisation representing the factorisation of both the

squared matrix elements and the (m + 2)-particle phase space when the unresolved particles j and

k are colour connected between two initial state radiators î and l̂.

three-particle antenna functions in dσ̂
S,b,(ii)
NNLO then subtracts the single unresolved limits of

the associated four-particle antenna.

The 2 → m matrix element |Mm(p̃Î , p̃L̂; k̃1, . . . , k̃i, k̃l, . . . , k̃m+2)|2 is evaluated with

new on-shell momenta which are Lorentz boosted as a result of the mapping required to

ensure factorisation of matrix element and phase space. The NNLO initial-initial mappings

have been discussed in [61] and will be recalled in this paper in section 5.

Using a factorised form for both matrix element and phase space as shown in figure 1,

one is able to obtain an integrated form of the subtraction term with m partons in the

final state which can be combined with the virtual two-loop contributions having also m

final state partons as defined in eq. (1.3).

More explicitly, the factorisation of the phase space with m + 2 final state particles

denoted by k1, . . . , km+2, reads,

dΦm+2(k1, . . . , km+2; p1, p2) = dΦm(k̃1, . . . , k̃i, k̃l, . . . , k̃m+2;x1p1, x2p2)

×δ(x1 − x̂1) δ(x2 − x̂2) [dkj ] [dkk] dx1dx2. (3.2)

Using this factorised form of the phase space we can rewrite the integrated (colour-

connected) subtraction term involving only the four-parton antennae in the form,

|Mm|2 J (m)
m dΦm

∫
[dkj] [dkk] δ(x1 − x̂1) δ(x2 − x̂2) X0

il,jkdx1dx2. (3.3)

Moreover, the integrated antennae are defined as the antenna functions integrated over

the antenna phase space as defined in eq. (3.2) including a normalisation factor to account

for powers of the QCD coupling constant by,

X 0
il,jk(xi, xl, ε) =

1

[C(ǫ)]2

∫
[dkj] [dkk] xi xl δ(xi − x̂i) δ(xl − x̂l)X0

il,jk, (3.4)

where C(ǫ) is given by,

C(ǫ) = (4π)ǫ
e−ǫγ

8π2
. (3.5)

These integrations are performed analytically in d dimensions to make the infrared

singularities explicit. The integrated initial-initial antennae are presently unknown and
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the calculation of a sub-set of those involving two quark flavours is the subject of section 6

and constitutes our main result in this paper. A list of all non-identical initial-initial

four-particle antennae will be presented in section 4.

4 Initial-initial antenna functions

In this section we shall recall how the antenna functions are defined in any of the configu-

rations and how they enter in the construction of the subtraction terms. We also present

a list of all non-identical four-parton initial-initial antenna functions.

4.1 Definitions

In the antenna formalism, in any of the three configurations (final-final, initial-final or

initial-initial) the subtraction terms are constructed from products of antenna functions

with reduced matrix elements (with fewer final state partons than the original matrix

element). The integrated subtraction terms are obtained after an integration over a phase

space which is factorised into an antenna phase space (involving all unresolved partons

and the two radiators of the antenna) multiplied with a reduced phase space (where the

momenta of radiators and unresolved radiation are replaced by two redefined momenta).

These redefined momenta can be in the initial state, if the corresponding radiator momenta

were in the initial state as we saw in section 3 in eq. (3.2) for the subtraction term σ
S,b,(ii)
NNLO .

An antenna function is determined by the external states it contains and the pair of

hard partons it collapses to in the unresolved limits. In general we denote the antenna

function as X. For antennae that collapse onto a hard quark-antiquark pair, X = A for

qgq̄. Similarly, for a quark-gluon antenna, we have X = D for qgg and X = E for qq′q̄′

final states. Finally, we characterise the gluon-gluon antennae as X = F for ggg, X = G

for gqq̄ final states.

At NLO, we only need to consider tree level three-particle antennae involving only one

unresolved parton. At NNLO we will need four-particle antennae involving two unresolved

partons and one-loop three-particle antennae.

In all cases the antenna functions are derived from physical matrix elements associated

to the decay of a colourless particle into partons: the quark-antiquark antenna functions

are derived from γ∗ → qq̄ + (partons) [65], the quark-gluon antenna functions from χ̃ →
g̃ + (partons) [66] and the gluon-gluon antenna functions from H → (partons) [67]. The

tree-level antenna functions are obtained by normalising the three- and four-parton tree-

level colour sub-amplitudes squared to that of the basic two-parton process: The final-final

three- and four-particle antennae are respectively defined by:

X0
ijk = Sijk,IK

|M0
ijk|2

|M0
IK |2 ,

X0
ijkl = Sijkl,IL

|M0
ijkl|2

|M0
IL|2

. (4.1)

where S denotes the symmetry factor associated with the antenna, which accounts both

for potential identical particle symmetries and for the presence of more than one antenna

– 8 –
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in the basic two-parton process. It is chosen such that the antenna function reproduces

the unresolved limits of a matrix element with identified particles.

The initial-final tree-level three- and four-parton antennae denoted by X0
i,jk and X0

i,jkl

are in principle obtained by crossing one-parton to the initial state starting from the cor-

responding final-final antennae. However this crossing might be ambiguous as was first

noticed in [61] for the quark-gluon type antenna. Depending on the unresolved limit con-

sidered, the pair of hard partons it collapses to may be different.

The initial-initial tree-level three- and four-parton antennae denoted by X0
ik,l and X0

il,jk

are obtained by crossing two partons to the initial state, starting from the final-final an-

tennae. This crossing procedure, unlike in the initial-final case, is free of ambiguity as the

pair of hard partons the initial-initial antenna collapses to is always uniquely defined.

More explicitly, the three-parton initial-initial antenna function X0
ik,j is defined as

X0
ik,j = Sijk,IK

∣∣∣M
(
î, j, k̂

)∣∣∣
2

∣∣∣M
(
Î , K̂

)∣∣∣
2 (4.2)

where î denotes that particle i is crossed to the initial state. Therefore we can see that the

initial-initial antenna is connected to the final-final antenna (where all coloured particles

are outgoing) by

X0
ik,j = (−1)∆F X0

3 (−pi, pj ,−pk) (4.3)

with ∆F the difference in the number of fermion crossings between the three-particle and

the two-particle subamplitude.

The tree-level four-particle initial-initial antenna X0
il,jk is defined as

X0
il,jk = Sijkl,IL

∣∣∣M(̂i, j, k, l̂)
∣∣∣
2

∣∣∣M(Î , L̂)
∣∣∣
2 (4.4)

and the relation to the final-final antenna is

X0
il,jk = (−1)∆F X0

4 (−pi, pj, pk,−pl) . (4.5)

The four-particle tree-level antenna functions are not determined by the species of the

particles alone but also by the colour-connection. We distinguish leading-colour antennae,

denoted by letters without tilde, where the particles are colour-connected in the order they

are listed and subleading colour antennae, denoted by letters with tilde, where the gluons

are photon-like. This notation has been used in [21, 62] and we will further use it in this

section in the tables below.

The unresolved limits of the initial-initial antennae can be obtained from those of the

final-final antennae by crossing. The crossing of the triple-collinear splitting functions is

explained in [68]. Those limits will be reported elsewhere.
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4.2 Catalogue of tree-level four-particle initial-initial antenna functions

Any two particles of a four-particle final-final antenna can be crossed to the initial state

to obtain an initial-initial antenna; therefore one final-final four-particle antenna gives

rise to six initial-initial antennae. Due to symmetries, at most four of these initial-initial

antennae are different. The independent crossings are listed below. To make the colour

connection clear, in this list we write out the arguments of the antennae explicitly, i.e

we write X0
4

(
î, j, k̂, l

)
(where î denotes an incoming particle) instead of X0

ik,jl. Some

initial-initial antennae are free of singular limits. These finite antennae are not needed

for the construction of subtraction terms, but their integrated form could be needed for

cross-checks. They are marked with ∗∗ below.

quark-antiquark antennae

A0
4 A0

4

(
q̂, ĝ, g, q

)
, A0

4

(
q̂, g, ĝ, q

)
, A0

4

(
q̂, g, g, q̂

)
, A0

4

(
q, ĝ, ĝ, q

)

Ã0
4 Ã0

4

(
q̂, ĝ, g, q

)
, Ã0

4

(
q̂, g, g, q̂

)
, Ã0

4

(
q, ĝ, ĝ, q

)

B0
4 B0

4

(
q̂, q̂′, q′, q

)
, B0

4

(
q̂, q′, q′, q̂

)
, B0

4

(
q, q̂′, q̂′, q

)∗∗

C0
4 C0

4

(
q̂, q̂, q, q

)
, C0

4

(
q̂, q, q̂, q

)
, C0

4

(
q, q̂, q̂, q

)∗∗
, C0

4

(
q, q, q̂, q̂

)∗∗

Ã0
4 (q̂, g, ĝ, q) is symmetric under the interchange of the two photon-like gluons. The

nonidentical-flavour antenna B0
4 is separately symmetric under interchange of q′ with q′

and of q with q.

quark-gluon antennae

D0
4 D0

4

(
q̂, ĝ, g, g

)
, D0

4

(
q̂, g, ĝ, g

)
, D0

4

(
q, ĝ, ĝ, g

)
, D0

4

(
q, ĝ, g, ĝ

)

E0
4 E0

4

(
q̂, q̂′, q′, g

)
, E0

4

(
q̂, q′, q′, ĝ

)
, E0

4

(
q, q̂′, q̂′, g

)
, E0

4

(
q, q̂′, q′, ĝ

)

Ẽ0
4 Ẽ0

4

(
q̂, q̂′, q′, g

)
, Ẽ0

4

(
q̂, q′, q′, ĝ

)
, Ẽ0

4

(
q, q̂′, q̂′, g

)
, Ẽ0

4

(
q, q̂′, q′, ĝ

)

Due to the cyclic colour connection, D0
4 is symmetric under interchange of the second and

fourth gluon.

gluon-gluon antennae

F 0
4 F 0

4

(
ĝ, ĝ, g, g

)
, F 0

4

(
ĝ, g, ĝ, g

)

G0
4 G0

4

(
ĝ, q̂, q, g

)
, G0

4

(
ĝ, q, q̂, g

)
, G0

4

(
ĝ, q, q, ĝ

)
, G0

4

(
g, q̂, q̂, g

)

G̃0
4 G̃0

4

(
ĝ, q̂, q, g

)
, G̃0

4

(
ĝ, q, q, ĝ

)
, G̃0

4

(
g, q̂, q̂, g

)

H0
4 H0

4

(
q̂, q̂, q′, q′

)
, H0

4

(
q̂, q, q̂′, q′

)

F 0
4 is symmetric under cyclic interchange of its arguments. G̃0

4 is symmetric under the

interchange of the two gluons as well as under the interchange of q with q. H0
4 has three

symmetries, q ↔ q, q′ ↔ q′ and the flavour renaming q ↔ q′, q ↔ q′.
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5 Phase space factorisation and mappings

The construction of subtraction terms requires a mapping from the original set of momenta

onto a reduced set. The mapping interpolates between the different soft and collinear lim-

its which the subtraction term regulates. An appropriate mapping for the initial-initial

case, both for single and double unresolved configurations, has been discussed in [61]. By

requiring momentum conservation and phase space factorisation, the phase space mapping

is strongly constrained. The remapping of initial state momenta can only be a rescaling,

since any transversal component would spoil the phase space factorisation. For two unre-

solved partons j and k, a complete factorisation of the phase space into a convolution of

an m-particle phase space depending on redefined momenta only and the phase space of

the unresolved partons j and k can be achieved with a Lorentz boost. This boost maps

the momentum q = p1 + p2 − kj − kk , with q2 > 0 and p1, p2 being the momenta of the

hard emitters, into the momentum q̃ = x1p1 + x2p2 , where x1 and x2 are fixed in terms

of the invariants as follows:

x1 =

(
s12 − sj2 − sk2

s12

s12 − s1j − s1k − sj2 − sk2 + sjk

s12 − s1j − s1k

) 1

2

,

x2 =

(
s12 − s1j − s1k

s12

s12 − s1j − s1k − sj2 − sk2 + sjk

s12 − sj2 − sk2

) 1

2

. (5.1)

These two definitions guarantee the overall momentum conservation in the mapped mo-

menta and the correct soft and collinear behaviours . The two momentum fractions x1 and

x2 satisfy the following limits in double unresolved configurations:

1. j and k soft: x1 → 1, x2 → 1,

2. j soft and kk = z1p1: x1 → 1 − z1, x2 → 1,

3. kj = z1p1 and kk = z2p2: x1 → 1 − z1, x2 → 1 − z2,

4. kj = z1p1, kk = z2p1: x1 → 1 − z1 − z2, x2 → 1,

and all the limits obtained from the ones above by the exchange of p1 with p2 and of kj

with kk. The construction of NNLO antenna subtraction terms also requires that all single

unresolved limits of the four-parton initial-initial antenna functions Xil,jk, with radiators

i and l, have to be subtracted, such that the resulting subtraction term is active only in

its double unresolved limits. A systematic subtraction of these single unresolved limits

by products of two three-parton antenna functions can be performed only if the NNLO

phase space mapping turns into an NLO phase space mapping in its single unresolved

limits. A detailed discussion of the corresponding translation between these two momentum

mappings can be found in [61].

The factorisation of the (m+2)-parton phase space into an m-parton phase space and

an antenna phase space involving the unresolved partons j and k given in eq. (3.2) can
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equivalently be written as

dΦm+2(k1, . . . , km+2; p1, p2) = dΦm(k̃1, . . . , k̃i, k̃l, . . . , k̃m+2;x1p1, x2p2)

× J δ(q2 − x1 x2 s12) δ(2 (x2p2 − x1p1).q)

× [dkj ] [dkk] dx1 dx2 ,

(5.2)

where J is the Jacobian factor defined by

J = s12 (x1(s12 − s1j − s1k) + x2(s12 − s2j − s2k)) .

This phase space parametrization can also be used to give an equivalent definition of

the integrated initial-initial antennae first given in eq. (3.4). Those are given as,

X 0
il,jk(x1, x2, ε) =

1

[C(ǫ)]2

∫
[dkj ][dkk] J x1 x2 δ(C1) δ(C2)X0

il,jk , (5.3)

where

C1 = q2 − x1 x2 s12 ,

C2 = 2(x2p2 − x1p1).q . (5.4)

We shall use this definition of the integrated antennae X 0
il,jk(x1, x2, ε) to compute them

in section 6.

6 Integration of the four-parton initial-initial antennae

In the first part of this section we describe how the initial-initial four-parton antennae are

integrated over the antenna phase space while in the second part of this section we restrict

ourselves to the evaluation of integrated antennae involving two quark flavours.

6.1 Calculational method

The initial-initial antenna functions have the scattering kinematics

p1 + p2 → kj + kk + q ,

where q is the momentum of the outgoing colourless particle. The momenta satisfy:

p2
1 = p2

2 = 0, k2
j = k2

k = 0, q2 = q̃2 = x1 x2 s12 .

The four-parton initial-initial antennae defined in section 4 need to be integrated over

the phase space of the unresolved partons j and k. This integration yields a result which

depends only on s12, x1 and x2. From dimensional counting, one can immediately con-

clude that the dependence on s12 is only multiplicative, according to the mass dimension

of the integral.

The initial-initial antenna phase space integrals are derived from squared matrix el-

ements and can be represented by forward scattering diagrams as illustrated in figure 2.

The two delta functions in eq. (5.2) can be represented as mass-shell conditions of fake par-
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Figure 2. Representation of the integral over the initial-initial antenna phase space as a two-loop

integral with some internal particles on-shell.

ticles and are shown in figure 2 as a thick solid line (representing a massive particle with

mass M2 = x1 x2 s12) and a dashed line (representing the other constraint) . This allows

us to use the optical theorem to transform the initial-initial antenna phase space integrals

into cut two-loop integrals and therefore use the methods developed for multi-loop calcu-

lations [69–71] . Up to eight-propagator integrals with four cut propagators are generated

in this way . Using the reduction techniques, the calculation of the integrated antennae

can be related to the evaluation of a reduced set of master integrals . For the complete

set of non-identical initial-initial four-parton antennae tabulated in section 4, we find 32

such integrals, obtained using integration-by-part (IBP, [72, 73]) and Lorentz invariance

(LI, [74]) identities, following the Laporta algorithm [75]. A private implementation as well

as a public one [76] have been used.

For those four-parton antenna functions there are 13 different propagators, including the

four that are cut in the phase space integration (Dj , Dk, Djk12, Djk123):

Dj1 = (p1 − kj)
2 ,

Dk1 = (p1 − kk)
2 ,

Dj2 = (p2 − kj)
2 ,

Dk2 = (p2 − kk)
2 ,

Djk = (kj + kk)
2 ,

Djk1 = (p1 − kj − kk)
2 ,

Djk2 = (p2 − kj − kk)
2 ,

Dj12 = (p1 + p2 − kj)
2 ,

Dk12 = (p1 + p2 − kk)
2 ,

Dj = k2
j ,

Dk = k2
k ,

Djk12 = (p1 + p2 − kj − kk)
2 − x1x2s12 ,

Djk123 = (p3 + p1 + p2 − kj − kk)
2 , (6.1)

where p3 = x2 p2 − x1 p1. To perform the reduction to master integrals, we drop any

integral where Dj , Dk, Djk12, Djk123 are not in the denominator and impose momentum

conservation. The integrands of the 32 master integrals found can all be written as rational

polynomials of the denominators above.

These master integrals are calculated using either the method of differential equations
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or by a direct evaluation of the phase space integrals in terms of hypergeometric functions.

The simplest master integral is a two loop bubble with all the internal lines cut, it is

obtained from eq. (5.3) by replacing the jacobian J and the antenna X0
il,jk with unity:

= I2(x1, x2) =

∫
ddq ddkj ddkk δd (p1 + p2 − q − kj − kk) ×

δ+
(
k2

j

)
δ+
(
k2

k

)
δ+
(
q2 − M2

)
δ(2 (x2p2 − x1p1).q) . (6.2)

This integral can actually be expressed as a hypergeometric function:

I2 = s−2ε
12

(4π)−4+2ε

Γ(2 − 2ε)

Γ(1 − ε)2

Γ(2 − 2ε)
x−ε

1 (1 − x1)
1−2ε(1 + x1)

−ε

x−ε
2 (1 − x2)

1−2ε(1 + x2)
−ε(x1 + x2)

−1+2ε

2F1

(
ε, 1 − ε, 2 − 2ε,

(1 − x1)(1 − x2)

(1 + x1)(1 + x2)

)
,

(6.3)

it has been checked against the master integral I[0] appearing in the calculation of the

gauge-boson rapidity distribution at NNLO in [70], the notation translates as u = x2/x1,

z = x1x2.

The set of master integrals which we denote by Ii(x1, x2, ε) are functions of x1, x2 and ε.

We begin by factoring out the leading behavior of the master integrals Ii(x1, x2, ε) in the

limits x1 → 1 and x2 → 1, keeping the exact ε-dependence:

Ii(x1, x2, ε) = (1 − x1)
m1−2 ε (1 − x2)

m2−2 ε Fi(x1, x2, ε). (6.4)

The integers m1,m2 are characteristic to each master integral. The functions Fi(x1, x2, ε)

are regular at x1 = 1, at x2 = 1, and at x1 = x2 = 1 and can be calculated as Laurent

series with, at most, second order poles in ε.

The integrated antennae given by X (x1, x2, ε) are linear combinations of these master

integrals Ii(x1, x2, ε), with coefficients containing poles in ε, as well as in (1 − x1) and

(1−x2). After the masters have been inserted into the integrated antennae, those take the

form

X (x1, x2, ε) = (1 − x1)
−1−2 ε(1 − x2)

−1−2 ε R(x1, x2, ε). (6.5)

where R(x1, x2, ε) is regular at the boundaries x1 = 1, x2 = 1, and at x1 = x2 = 1. The

ε-expansion of the singular factors (1 − xi)
−1−2ε is done in the form of distributions:

(1 − xi)
−1−2ε = − 1

2ε
δ(1 − xi) +

∑

n

(−2ε)n

n!
Dn(xi) , (6.6)

with

Dn(xi) =

(
lnn (1 − xi)

1 − xi

)

+

. (6.7)

To evaluate the integrated antennae, we decompose the phase space into four regions

depending on the values of x1 and x2. Those regions are given by:
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• x1 6= 1, x2 6= 1, which we refer to as the hard region

• x1 = 1, x2 6= 1, and x1 6= 1, x2 = 1, referred to as collinear regions

• x1 = 1, x2 = 1, which we denote the soft region .

In the hard region (x1 6= 1, x2 6= 1), harmonic polylogarithms of weight two appear in the

O(ε0) term of R. Therefore, the ε-expansion of the master integrals in the hard region is

needed at least up to the order at which terms of transcendentality1 two appear for the

first time generally.

In the collinear regions (x1 = 1 or x2 = 1), since the expansion in distributions (6.6)

generates additional 1/ε factors, the function R is required up to O(ε) where harmonic

polylogarithms of weight 3 appear. The masters evaluated in the collinear region need

therefore to be expanded at least up to the order at which terms of transcendentality 3

appear generally.

Finally, in the soft region (x1 = x2 = 1), since the expansion of the distributions (6.6)

generates additional 1/ε2 coefficients, the function R is required up to O(ε2) where poly-

logarithms of weight 4 appear. The masters evaluated in the soft region need therefore to

be expanded up to transcendentality 4 at least.

6.2 Integrated antennae with two quark flavours

In a first step towards the calculation of all integrated four-parton initial-initial antenna

functions for the double real radiation case, in this paper, we focus on all the crossings of two

partons from the following four-parton final-final antennae: B0
4(q, q′, q̄′, q̄), Ẽ0

4(q, q′, q̄′, g)

and H0
4 (q, q̄, q′, q̄′) defined in [21] .

We found that the reduction involving only those initial-initial antennae leads to 12

master integrals. Those without numerators are shown in figure 3. We have performed the

calculation of these integrated antennae with two choices of master integral bases differing

by four master integrals. In the first basis, the definitions of the master integrals involved

1We define the transcendentality of a product as the sum of the transcendentalities of its factors, GHPL’s

and HPL’s have transcendentality equal to their weight, log 2 has transcendentality one, ζ(n) has transcen-

dentality n.
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in the calculation are as follows:

I1 =

∫
[dkj] [dkk] δ(C1)δ(C2)(kk · p1) , (6.8)

I2 =

∫
[dkj] [dkk] δ(C1)δ(C2) ,

I3 =

∫
[dkj] [dkk] δ(C1)δ(C2)

−(kj · p1)(kj · p3)

Dk12
,

I4 =

∫
[dkj] [dkk] δ(C1)δ(C2)

(kj · p1)

Dk12
,

I5 =

∫
[dkj] [dkk] δ(C1)δ(C2)

−(kj · p3)

Dk12
,

I6 =

∫
[dkj] [dkk] δ(C1)δ(C2)

1

Dk12
,

I7 =

∫
[dkj] [dkk] δ(C1)δ(C2)

1

Djk2
,

I8 =

∫
[dkj] [dkk] δ(C1)δ(C2)

1

Dk2
,

I9 =

∫
[dkj] [dkk] δ(C1)δ(C2)

1

Dk1
,

I10 =

∫
[dkj] [dkk] δ(C1)δ(C2)

1

Djk1
,

I14 =

∫
[dkj] [dkk] δ(C1)δ(C2)

1

Dj12Djk2
,

I15 =

∫
[dkj] [dkk] δ(C1)δ(C2)

1

Dj1Dk2
,

In the other choice of basis, the masters with scalar products in the numerator

(I1, I3, I4, I5) are replaced by alternative master integrals:

I ′1 =

∫
[dkj] [dkk] δ(C1)δ(C2)Dk12

I ′3 =

∫
[dkj] [dkk] δ(C1)δ(C2)

Dj12

Dk12

I ′4 =

∫
[dkj] [dkk] δ(C1)δ(C2)

Dj2

Dk12

I ′5 =

∫
[dkj] [dkk] δ(C1)δ(C2)

1

DjkDk12
.

(6.9)
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Figure 3. Master integrals for the phase space integration of the tree-level initial-initial B0
4, H0

4

and Ẽ0
4 type antennae at NNLO . Thick solid and dashed lines refer to the conditions on the phase

space integral implemented as auxiliary propagators . All the internal lines are massless except for

the thick solid line . Only the integrals without numerators are shown in this picture.

The relation to the first basis is:

I1 = s12
1

4
I2 −

x2

2(x1 + x2)
I ′1

I3 = s12x2
2x2

1 + 9x1x2 + x2
2 − 12x2

1x
2
2 + 2ǫ(−2x2

1 − 7x1x2 − x2
2 + 10x2

1x
2
2)

8(−1 + 2ǫ)(x1 − x2)(x1 + x2)
I2 (6.10)

−s12x1

[−x2
1 + x1x2 − 4x2

2 − 4x2
1x

2
2 + 8x1x

3
2

8(−1 + 2ǫ)(x1 − x2)(x1 + x2)

+ 2ǫ
x2

1 − x1x2 + 2x2
2 + 4x2

1x
2
2 − 6x1x

3
2

8(−1 + 2ǫ)(x1 − x2)(x1 + x2)

]
I ′3

+s12
1

8
(x1 + x2 + 4x1x

2
2)I

′
4

−s3
12ǫ

(−1 + x1)x1(1 + x1)(−1 + x2)x
2
2(1 + x2)(−1 + x1x2)

2(−1 + 2ǫ)(x1 − x2)(x1 + x2)
I ′5

+s2
12x1

[−(x1 − x2)(x1 + x2)(1 + 2x2
2)

8(−1 + 2ǫ)(x1 − x2)(x1 + x2)

+2ǫ
x2

1 − 3x2
2 + 2x2

1x
2
2 − 2x4

2 + 2x2
1x

4
2

8(−1 + 2ǫ)(x1 − x2)(x1 + x2)

]
I6

I4 = −1

2
I ′3 +

1

2
I ′4 + s12

1

2
I6

I5 = −x1

2
I ′3 +

x1 + x2

2
I ′4 + s12

x1

2
I6.

Before we proceed with the details of calculating the masters, we present in ta-

ble 1 a summary of which regions contribute to the crossings of the antenna functions

B0
4(q, q′, q̄′, q̄), Ẽ0

4(q, q′, q̄′, g) and H0
4 (q, q̄, q′, q̄′). We then present results of the required
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Antenna soft collinear x1=1 collinear x2=1 hard

H12 no no no yes

H13 no no no yes

Ẽ12 no yes no yes

Ẽ14 no yes no yes

Ẽ23 no no no yes

Ẽ24 no no no yes

B12 yes yes yes yes

B13 no yes no yes

B34 no no no yes

Table 1. Summary of the regions contributing to each of the independent crossings of the three

antennae: B0
4, Ẽ0

4 , H0
4.

masters in each of these regions. As explained in section 4.2, not all of the six cross-

ings of a final-final antenna are different. Labelling the final-final antenna functions as

B0
4(1q, 3q′, 4q̄′, 2q̄), Ẽ0

4(1q, 2q′, 3q̄′, 4g) and H0
4 (1q, 2q̄, 3q′, 4q̄′), the identical crossings are

the following:

H12 = H34

H13 = H14 = H23 = H24

B13 = B14 = B23 = B24

Ẽ12 = Ẽ13

Ẽ24 = Ẽ34 (6.11)

where

H12 = H0
q̄q,q′q̄′ , (6.12)

H13 = H0
q̄q̄′,q̄q̄′ , (6.13)

B12 = B0
q̄q,q′q̄′ , (6.14)

B34 = B0
q̄′q′,qq̄ , (6.15)

B13 = B0
q̄q̄′,q̄′q̄ , (6.16)

Ẽ12 = Ẽ0
q̄q̄′,q̄′g , (6.17)

Ẽ14 = Ẽ0
q̄g,q′q̄ , (6.18)

Ẽ23 = Ẽ0
q̄′q′,q′g , (6.19)

Ẽ24 = Ẽ0
q̄′g,qq̄′ . (6.20)

As mentioned in section 4.2, B34 is free of singular limits. It will therefore not be needed for

the construction of subtraction terms and its integrated form is free of poles in ε. It might

be needed for checks of the integrated antennae, however, which is why it is included here.
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6.2.1 Master integrals

In the following, we present the results for the masters in the hard, collinear and soft

regions while restricting ourselves to those which are explicitly involved in the calculation

of the integrated antennae with two quark flavours.

a) The hard region. The master integrals defined above were computed in the hard

region mainly with the differential equations technique [74, 77–82]. The only masters that

were calculated directly are I1, I2, and I14. Since the dependence of the integrands on x1

and x2 is via the constraints, C1 and C2, as shown in eq. (5.4), we derive the differential

equations for each master integral by employing the following operators at the integrand

level:

∂

∂x1
=

∂C1

∂x1

∂

∂C1
+

∂C2

∂x1

∂

∂C2
, (6.21)

∂

∂x2
=

∂C1

∂x2

∂

∂C1
+

∂C2

∂x2

∂

∂C2
. (6.22)

The boundary conditions required for the solution of the differential equations are either

obtained from self-consistency conditions on the integrals, or by explicit evaluation in the

collinear or soft limits. The solution of the system of differential equations yields two-

dimensional generalized harmonic polylogarithms (GHPL, [83, 84]) of up to weight two, or

products of weight one harmonic polylogarithms (HPL, [85]) of argument x1 or x2. The

definition of the HPL and GHPL functions involved in the solution of the master integrals

in the hard region is recalled below:

H(1, x) = − ln(1 − x)

H(0, x) = ln x

H(−1, x) = ln(1 + x)

The harmonic polylogarithms of higher weight are defined recursively (we group weights

into vectors, b1, . . . , bw = ~b):

H(~0w, x) =
1

w!
lnw x (6.23)

while, if ~a = (a,~b) 6= ~0w

H(a,~b, x) =

∫ x

0
dzf(a, z)H(~b, z)

with weight functions

f(1, z) =
1

1 − z
,

f(0, z) =
1

z
,

f(−1, z) =
1

1 + z
.

(6.24)

This results in the derivative formula

∂

∂x
H(a1,~b, x) = f(a1, x)H(~b, x)
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The two-dimensional generalized harmonic polylogarithms are defined in a very similar

fashion:

G(0, y) = ln y ,

G(1, y) = ln (1 − y) ,

G(−1, y) = ln (1 + y) ,

G(−z, y) = ln
(
1 +

y

z

)
. (6.25)

For weight w > 1 we have

G(~0w, y) =
1

w!
lnw y , (6.26)

G(~a, y) =

∫ y

0
dy′ g(a, y′) G(~b, y′) . (6.27)

where

g(a, y) =
1

y − a
. (6.28)

and we have for the derivatives

∂

∂y
G(~a, y) = g(a, y)G(~b, y) . (6.29)

As can be seen above, two-dimensional generalized harmonic polylogarithms reduce to

harmonic polylogarithms if their weights are only 0, 1, −1, with

G(~a, x) =

{
−H(~a, x) if ~a contains an odd number of 1

H(~a, x) else.
(6.30)

In the results for the hard region below, the GHPL’s will have x1 as their argument and

0, ±1 and −x2 as their weights, the conversion to HPL’s has been inserted where possible.

An important check on our results in this region is to compare the soft and collinear limits

of the hard result against the ones derived in the soft and collinear regions calculated by

a direct integration of the phase space. We found agreement on all the powers of the ε-

expansion in the hard region using these two different methods. The results of the masters

expanded to the needed order in ε are given below. The common prefactor NΓ is defined

as:

NΓ =
(4π)−4+2 ε

Γ(2 − 2 ε)
. (6.31)
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× kk · p1 = I1 = (s12)
1−2ε NΓ (1 − x1)

−2ε (1 − x2)
−2ε

8 (x1 + x2)2
×

[
−(x1 − 1)(x2 − 1)2(x2x1 + 2x1 + x2)

+ ε
{

(x1 − 1)(x2x1 + 2x1 + x2)H(0, x1)(x2 − 1)2 − 1

2
(x1 − 1)×

(
5x1x

2
2 + 3x2

2 + 3x1x2 − 7x2 − 12x1

)
(x2 − 1)

− 2
(
x2

1x
3
2 − x3

2 − 2x1x
2
2 − 3x2

1x2 − x2 − 2x1

)
G(−x2, x1)

+ (x1 + 1)(x2 + 1)2(x2x1 − 2x1 − x2)(H(−1, x1) + H(−1, x2)

− H(0, x2)) + 4(x1 + x2)
2 log(2)

}

+ ε2
{
+(x1− 1)(x2x1 + 2x1 + x2)(H(0,−1, x2)−H(0, 0, x1)−H(0, 0, x2))×

(x2 − 1)2 − 9

4
(x1 − 1)

(
3x1x

2
2 + x2

2 + x1x2 − 5x2 − 8x1

)
(x2 − 1)

+
1

2
(x1 − 1)

(
5x1x

2
2 + 3x2

2 + 3x1x2 − 7x2 − 12x1

)
H(0, x1)(x2 − 1)

+
(
−5x2

1x
3
2 + 3x3

2 + 8x1x
2
2 + 15x2

1x2 + 7x2 + 12x1

)
G(−x2, x1)

+
(
x2

1x
3
2 − x3

2 − 2x1x
2
2 − 3x2

1x2 − x2 − 2x1

)
(2G(0,−x2, x1)

+ 2G(−x2,−1, x1) + 2G(−x2, 0, x1) − 4G(−x2,−x2, x1)

+ G(−x2, x1)(2H(−1, x2) − 2H(0, x2))) + (x1 + 1)(x2 + 1)×
(
5x1x

2
2 − 3x2

2 − 3x1x2 − 7x2 − 12x1

)(1

2
H(−1, x1) +

1

2
H(−1, x2)

−1

2
H(0, x2)

)
+
(
−x2

1x
3
2 + x3

2 + 2x1x
2
2 + 6x2

2 + 3x2
1x2 + 12x1x2

+x2 + 6x2
1 + 2x1

)
(G(1,−x2, x1) + H(−1, x2)H(1, x1) + H(1,−1, x1)

+ H(1,−1, x2)) +
(
x2

1x
3
2 − x3

2 − 2x1x
2
2 − 6x2

2 − 3x2
1x2 − 12x1x2

−x2 − 6x2
1 − 2x1

)
(H(0, x2)H(1, x1) + log(2)H(1, x1) + H(1, 0, x2)

+ H(1, x2) log(2)) + (x1 + x2)
2
(
−4 log(2)H(0, x1) − 4 log2(2)

−4H(0, x2) log(2)) + (x1 + 1)(x2 + 1)2(x2x1 − 2x1 − x2)×
(3G(−1,−x2, x1) + H(0, x1)H(0, x2) − 2H(−1,−1, x1)

−2H(−1,−1, x2) − H(−1, 0, x1) + 2H(−1, 0, x2) − H(0,−1, x1)

+H(−1, x2)(log(2) − H(0, x1)) + H(−1, x1)(−2H(−1, x2)

+2H(0, x2) + log(2)) +
π2

3

)

− 2(x1 + x2)
(
x1x

2
2 − 5x2 − 6x1

)
log(2)

}
+ O(ε3)

]
. (6.32)
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=I2 = (s12)
−2ε NΓ (1 − x1)

−2ε(1 − x2)
−2ε

(1 − 3 ε) (x1 + x2)

[
+(x1 − 1) (x2 − 1) + ε

{
2 log(2) (x1 + x2) + 2(x1x2 + 1)G(−x2, x1)

− (x1 − 1) (x2 − 1) H(0, x1) + (x1 + 1) (x2 + 1) (−H(−1, x1)

− H(−1, x2) + H (0, x2) )
}

+ ε2

{
(x1x2 + 1) (−2G(0,−x2, x1) − 2G(−x2,−1, x1) − 2G(−x2, 0, x1)

+ 4 G(−x2,−x2, x1) + G(−x2, x1) (2 H(0, x2) − 2H(−1, x2) ) )

+ (x1 − 1) (x2 − 1) (−H(0,−1, x2) + H(0, 0, x1) + H(0, 0, x2) )

+ (x2x1 + 3 x1 + 3 x2 + 1) (G(1,−x2, x1) + H(−1, x2) H(1, x1)

+ H(1,−1, x1) + H(1,−1, x2) ) + (x1 + 1) (x2 + 1) ×
(−3 G(−1,−x2, x1)− H(0, x1)H(0, x2)+2H(−1,−1, x1)+2H(−1,−1, x2)

+H(−1, 0, x1) − 2 H(−1, 0, x2) + H(0,−1, x1) + H(−1, x2) (2 H(−1, x1)

+H(0, x1) − log(2) ) + H(−1, x1) (−2H(0, x2) − log(2) ) − π2

3

)

+ (−x2x1 − 3 x1 − 3 x2 − 1) (H(0, x2) H(1, x1) + log(2) H(1, x1)

+ H(1, 0, x2) + H(1, x2) log(2) ) + (x1 + x2) (−2 log(2) H(0, x1)

−2 log2(2) − 2 H(0, x2) log(2)
)}

+ O(ε3)
]
. (6.34)

×(−(kj · p1)(kj · p3)) = I3 = (s12)
1−2ε (1 − 2ε)NΓ(1−x1)

−2ε(1−x2)
−2ε

8(x1 + x2)2
×

[
(x1 − 1)(5x1 − 1)H(0, x2)x

2
2 − 2x1(x1 − x2)H(0, x1)H(0, x2)x

2
2

−(x1−1)(5x1−x2)(x2−1)x2+x1(x2−1)
(
−4x2

2 + x1x2+2x2+x1

)
H(0, x1)

+ ε
{
−
(
−x2

1 + 4x2x1 − 6x1 + 1
)
H(0, x1)H(0, x2)x

2
2 + (x1 + 1)(5x1 + 1)×

(−H(−1, x1)H(0, x2) − H(−1, 0, x1) − H(0,−1, x2))x
2
2 + (x1 − 1)(5x1 − 1)×

(2H(0, 1, x2)−2H(0, x2)H(1, x2))x
2
2+x1(12H(0, x2) log(2)−12H(0, x1) log(2))x2

2

+ x1(x1 − x2) (−2G(0,−x2, 0, x1) − 2G(0,−x2, x1)H(0, x2)

−4G(−x2, 0, x1)H(0, x2) + H(0, x2) (2H(0,−1, x1) + 6H(0, 0, x1) − 4H(0, 1, x1)

+
5π2

6

)
+ H(0, x1) (H(0, x2)(4H(1, x1) + 4H(1, x2)) + 2H(0,−1, x2)

−4H(0, 1, x2) +
π2

2

)
+ 2H(0,−1, 0, x1) + 2H(0,−1, 0, x2) − 2H(0, 0, 0, x2)

+3ζ(3))x2
2 − (x1 − 1)(23x1 − 5x2)(x2 − 1)x2 − 2(5x1 − x2)(x1x2 + 1)×

G(−x2, x1)x2 + (x1 + 1)(5x1 − x2)(x2 + 1)(H(−1, x1) + H(−1, x2))x2

+
(
4x2x

2
1 − 6x2

1 + x2
2x1 − 15x2x1 − 4x1 + x2

2 + 3x2

)
H(0, x2)x2

− 2(5x1 − x2)(x1 + x2) log(2)x2 +
1

12
π2
(
20x1x

3
2 − 20x2

1x
2
2 + 12x1x

2
2 − 3x2

2
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+10x1x2 + 5x2
1

)
+ 2x1

(
−4x3

2 + x1x
2
2 − 2x2 − x1

)
G(0,−x2, x1)

+
(
−4x1x

3
2 + 6x2

1x
2
2 + 12x1x

2
2 + x2

2 − 2x1x2 − x2
1

)
G(−x2, 0, x1)

− (x2 − 1)
(
−6x2x

2
1 − 2x2

1 + 9x2
2x1 + 2x2x1 − x2

2

)
H(0, x1)

+
(
−4x1x

3
2 + 6x2

1x
2
2 − 12x1x

2
2 + x2

2 − 2x1x2 − x2
1

)
G(−x2, x1)H(0, x2)

+ x1(x2 + 1)
(
−4x2

2 + x1x2 − 2x2 − x1

)
×

(−H(−1, x2)H(0, x1) − H(−1, 0, x2) − H(0,−1, x1)) + x1(x2 − 1)×
(
−4x2

2 + x1x2 + 2x2 + x1

)
(−2H(0, x1)H(1, x1) − 3H(0, 0, x1)

+ H(0, 0, x2) + 2H(0, 1, x1))
}

+ O(ε2)
]
. (6.35)

× kj · p1 = I4 = (s12)
−2ε (1 − 2ε) NΓ (1 − x1)

−2ε(1 − x2)
−2ε

4(x1 + x2) 2
×

[
6(x1 − 1) (x2 − 1)x2 − 2(x1 − 1) (x2 + 2) H(0, x2)x2

+ H(0, x1) (2x2 H(0, x2) − 2(x2 − 1) (x2x1 − x1 + x2) )

+ ε
{
12x2 log(2) (x1 + x2) +

1

6
π2
(
8x1x

2
2 − 2x2

2 + 4x1x2 − 11x2 + 5x1

)

+ 2 x2 G(0,−x2, 0, x1) + H(−1, x2) (2(x2 + 1) (x2x1 + x1 − x2) H(0, x1)

− 6(x1 + 1)x2(x2 + 1) ) + G(0,−x2, x1) (2x2 H(0, x2)

−4
(
x1x

2
2 − x2 + x1

) )
+ G(−x2, 0, x1) (4x2 H(0, x2)

−2
(
2x1x

2
2 + 2x2

2 − 4x1x2 − 3x2 + x1

) )

+ H(−1, x1) (2(x1 + 1) (x2 − 2)x2 H(0, x2) − 6(x1 + 1)x2(x2 + 1) )

+ G(−x2, x1) (12x2 (x1x2 + 1)

−2
(
2x1x

2
2 − 2x2

2 + 4x1x2 − 3x2 + x1

)
H(0, x2)

)

+ 2(x1 + 1) (x2 − 2)x2 H(−1, 0, x1) + 2(x2 + 1) (x2x1 + x1 − x2)×
H(−1, 0, x2) + 2 (x2 + 1) (x2x1 + x1 − x2) H(0,−1, x1)

+ 2(x1 + 1) (x2 − 2)x2 H(0,−1, x2) + 6(x2 − 1) (x2x1 − x1 + x2)×
H(0, 0, x1) − 2(x2 − 1) (x2x1 − x1 + x2) H(0, 0, x2)

− 4(x2 − 1) (x2x1 − x1 + x2) H(0, 1, x1) − 4(x1 − 1)x2(x2 + 2)×
H(0, 1, x2) − 2x2 H(0,−1, 0, x1) − 2x2 H(0,−1, 0, x2)

+ 2 x2 H(0, 0, 0, x2) + H(0, x1) (−2H(0,−1, x2)x2 + 4 H(0, 1, x2)x2

−4(2x1 − x2) log(2)x2 −
π2x2

2
− 4(x2 − 1) (2x2x1 − x1 − x2)

+4(x2 − 1) (x2 x1 − x1 + x2) H(1, x1) + H(0, x2)×
(−2x2(x2x1 − 2x1 + x2 + 2) − 4x2 H(1, x1) − 4x2 H(1, x2) ) )

+ H(0, x2) (4(x1x2 + 2x2 + 3)x2 + 4(x1 − 1) (x2 + 2) H(1, x2)x2

−2H(0,−1, x1)x2 − 6H(0, 0, x1)x2

+4H (0, 1, x1)x2 + 4(2x1 − x2) log(2)x2 −
5π2x2

6

)

+ x2(26x2x1 − 26x1 − 26x2 − 3ζ(3) + 26)
}

+ O(ε2)
]
. (6.36)
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×(−kj · p3) =I5 = (s12)
−2ε (1 − 2 ε) NΓ (1 − x1)

−2 ε(1 − x2)
−2 ε

2 (x1 + x2)
×

[
x1(x2 − 1) H(0, x1) − (x1 − 1) x2 H(0, x2)

+ ε
{ 1

12
π2(2x2x1 + 5x1 − 3x2) − 2x1 G(0,−x2, x1)

+ (2x2x1 − x1 + x2) G(−x2, 0, x1) + (−2x2x1 − x1 + x2)×

G(−x2, x1) H(0, x2) − (x1 + 1) x2 H(−1, 0, x1)

+ x1(x2 + 1) H(−1, 0, x2) + x1(x2 + 1) H(0,−1, x1)

− (x1 + 1) x2 H(0,−1, x2) − 3x1(x2 − 1) H(0, 0, x1)

+ x1(x2 − 1) H(0, 0, x2) + 2x1(x2 − 1) H(0, 1, x1)

− 2(x1 − 1) x2 H(0, 1, x2) + H(0, x1) (2x1 (x2 − 1)

− 2x1 H(1, x1) (x2 − 1) + x1(x2 + 1) H(−1, x2)

+ (x1 − 1) x2 H(0, x2) − 2x1x2 log(2) )

+ H(0, x2) (−2(x1 − 1) x2 − (x1 + 1) H(−1, x1) x2

+ 2(x1 − 1) H(1, x2) x2 + 2x1x2 log(2))
}

+ O(ε2)
]
. (6.37)

=I6 = (s12)
−1−2ε (1 − 2 ε)NΓ (1 − x1)

−2 ε(1 − x2)
−2 ε

x1 + x2
×

[
H(0, x1) H(0, x2) + ε

{
G(0,−x2, 0, x1) + G(0,−x2, x1)H(0, x2)

+ 2 G(−x2, 0, x1)H(0, x2) + H(0, x2) (−H(0,−1, x1) − 3H(0, 0, x1)

+2 H(0, 1, x1) −
5π2

12

)
+ H(0, x1) ( H(0, x2)(−2 H(1, x1) − 2H(1, x2))

−H(0,−1, x2) + 2 H(0, 1, x2) −
π2

4

)
− H(0,−1, 0, x1) − H(0,−1, 0, x2)

+ H (0, 0, 0, x2) −
3ζ(3)

2

}
+ O(ε2)

]
. (6.38)
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=I7 = (s12)
−1−2ε (1 − 2 ε)NΓ(1 − x1)

−2 ε(1 − x2)
−2 ε

x2
×

[
G(−x2, x1) − H(−1, x1) + H(0, x2) + ε

{
−3G(−1,−x2, x1)

− G(0,−x2, x1) − G(1,−x2, x1) − G(−x2,−1, x1) − G(−x2, 0, x1)

+ 2G(−x2,−x2, x1) + G(−x2, x1) (−H(−1, x2) + H(0, x2) + 2)

− H(−1, x2) H(1, x1) + H(0, x2) (−H(0, x1) + H(1, x1) − 2H(1, x2) + 2)

+ 2H(−1,−1, x1) + H(−1, 0, x1) − 2 H(−1, 1, x1)

+ H(0,−1, x1) − H(0,−1, x2) + 2 H(0, 1, x2) − 3H(1,−1, x1)

+ H(−1, x1) (−2 H(0, x2) + 2 H(1, x1) + log(2) − 2)

+ H (1, x1) log(2) − π2

4

}
+ O(ε2)

]
. (6.38)

=I8 = (s12)
−1−2ε (1 − 2 ε)NΓ (1 − x1)

−2 ε(1 − x2)
−2 ε

x1
×

[
+

1

ε

{
G(−x2, x1) − H(−1, x1)

}

− 3G(−1,−x2, x1) + 2G(0,−x2, x1) − G(1,−x2, x1) − G(−x2,−1, x1)

− G(−x2, 0, x1) + 2G(−x2,−x2, x1)

+ G(−x2, x1) ( H(0, x2) − H(−1, x2) ) − H(−1, x2) H(1, x1)

+ H(0, x2) H(1, x1) + 2 H(−1,−1, x1) + H(−1, 0, x1) − 2H(−1, 1, x1)

− 2 H(0,−1, x1) − 3H(1,−1, x1) + H(−1, x1) (2 H(1, x1) + log(2) )

+ H(1, x1) log(2) + O(ε)
]
. (6.39)

=I9 = (s12)
−1−2ε (1 − 2 ε)NΓ (1 − x1)

−2 ε(1 − x2)
−2 ε

x2
×

[
+

1

ε

{
G(−x2, x1) − H(−1, x2) − H(0, x1) + H(0, x2)

}

− 4 G(0,−x2, x1) + 2G(1,−x2, x1) − G(−x2,−1, x1) − G(−x2, 0, x1)

+ 2 G(−x2,−x2, x1) + G(−x2, x1) ( H(0, x2) − H(−1, x2) )

+ H(0, x1) (2 H(1, x1) − 3 H(0, x2) ) + H(0, x2)(−2 H(1, x1) − 2H(1, x2))

+ 2 H(−1,−1, x2) − 2 H(−1, 0, x2) − 2 H(−1, 1, x2) + H(0,−1, x1)

−3 H(0,−1, x2)+ 3 H(0, 0, x1)+3H(0, 0, x2)−2 H(0, 1, x1)+2 H(0, 1, x2)

− 3 H(1,−1, x2) + 3H(1, 0, x2) + H(−1, x2) (3 H(0, x1) + 2 H(1, x1)

+ 2 H(1, x2) + log(2) ) + H(1, x2) log(2) +
π2

2
+ O( ε)

]
. (6.40)
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= I10 = (s12)
−1−2ε (1 − 2 ε)NΓ (1 − x1)

−2 ε(1 − x2)
−2 ε

x1
×

[
G(−x2, x1) − H(−1, x2) + H(0, x2) + ε

{
−G(0,−x2, x1)

+ 2G(1,−x2, x1) − G(−x2,−1, x1) − G(−x2, 0, x1) + 2G(−x2,−x2, x1)

− H(0, x1) H(0, x2) + G(−x2, x1) (−H(−1, x2) + H(0, x2) + 2)

+ H(0, x2) (−2H(1, x1) − 2H(1, x2) + 2) + 2H(−1,−1, x2)

− 2H(−1, 0, x2) − 2H(−1, 1, x2) + 2H(0, 1, x2) − 3H(1,−1, x2)

+ 3H(1, 0, x2) + H(−1, x2) (H(0, x1) + 2H(1, x1) + 2H(1, x2)

+ log(2) − 2) + H(1, x2) log(2) − π2

4

}
+ O( ε2)

]
. (6.41)

= I15 = (s12)
−2−2ε 2−4ε (1 − 2ε)NΓ (1 − x1)

−2ε (1 − x2)
−2ε

x1 x2
×

[
+

1

2 ε2
+

1

ε

{
H (−1, x1) + H (−1, x2) − H(0, x1) − H (0, x2)

}

− 2H (1, x1)
2 + 4 log (2) H (1, x1) − 2 H (1, x2)

2 + 3G (−1,−x2, x1)

− 3G (1,−x2, x1) + H (0, x1) (2 H (0, x2) + 2 H (1, x1))

+ H (0, x2) (3 H (1, x1) + 2H (1, x2)) − 2 H(−1,−1, x1) − 2 H(−1,−1, x2)

− H(−1, 0, x1) + 2 H (−1, 0, x2) + 2H (−1, 1, x1) + 2 H (−1, 1, x2)

− 2H (0,−1, x1) − 2 H (0,−1, x2) + 2 H (0, 0, x1) + 2H (0, 0, x2)

− 2H (0, 1, x1) − 2H (0, 1, x2) − 2H (1,−1, x1) − 2 H (1,−1, x2)

− H(1, 0, x1) + 2 H (1, 0, x2) + 4 H (1, 1, x1) + 4 H (1, 1, x2)

+ H (−1, x1) (−H (−1, x2) + H (0, x2) − 2 H (1, x1) + 4 log (2))

+ H (−1, x2) (−2 H (0, x1) − 3 H (1, x1) − 2 H (1, x2) + 4 log (2))

+ 4H (1, x2) log (2) +
3π2

4
+ O(ε)

]
(6.42)
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=I14 = (s12)
−2−2ε

(
− NΓ

b s x1 x2

)
×

[
log

(
1 + s

1 − s

)(
log

(−b s − x12 + 2

b − x12 + 2

)
+ log

(
b s − x12 + 2

b − x12 + 2

))

− log

(
b s − x12 + 2

−b s − x12 + 2

)
log

(
b + x12 − 2

b − x12 + 2

)
+ log(x1)×

(
log

(
b s − x12 + 2

−b s − x12 + 2

)
+log

(
b s + x12 + 2

−b s + x12 + 2

))
+log

(
b s + x12 + 2

−b s + x12 + 2

)
×

(
− log(x2) − 2 log

(
4x12

x2
12 + 4

))
− 2 log

(−b s + x12 + 2

−b + x12 + 2

)
log (1 − s)

+ 2 log

(
b s + x12 + 2

b + x12 + 2

)
log (1 − s) − 2 log

(−b s + x12 + 2

b + x12 + 2

)
log (s + 1)

+ 2 log

(
b s + x12 + 2

−b + x12 + 2

)
log (s + 1) − 2Li2

(
b − b s

b − x12 + 2

)

+ 2Li2

(
b + b s

b − x12 + 2

)
− 2Li2

(
1

2
(−b s − x12 )

)
+ 2Li2

(
b s − x12

2

)

+ 2Li2

( −b − b s

−b + x12 + 2

)
− 2Li2

(
b s − b

−b + x12 + 2

)
+ 2Li2

(
b − b s

b + x12 + 2

)

− 2Li2

(
b + b s

b + x12 + 2

)
+ 2Li2

(−b s + x12 − 2

b + x12 − 2

)
− 2Li2

(
x12 − b s

x12 − b

)

− 2Li2

(
x12 − b s

b + x12

)
− 2Li2

(
b s + x12 − 2

b + x12 − 2

)
+ 2Li2

(
b s + x12

x12 − b

)

+ 2Li2

(
b s + x12

b + x12

)
+ O( ε)

]
. (6.43)

where

x12 = x1 + x2 ,

b =
√

x2
12 + 4 ,

s =
√

Q3/x1/b ,

Q3 = x1 (x2
12 + 4) − 4x12 .

The master I14 was calculated using differential equations and is written in terms of log-

arithms and dilogorithms of complicated arguments instead of GHPL’s and HPL’s. The

coefficients of the differential equations for I14 involve a new denominator, cubic in x1 and

quadratic in x2,

Q3 = x1 (x1 + x2)
2 − 4x2 (6.44)

which does not occur in the differential equations for any of the other masters presented

in this paper. Because of this denominator, I14 has this more complicated form.
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The differential equations for I14 are solved by first considering the corresponding

homogeneous equations. A solution of these equations, for ε = 0, is given by

Ihom
14 =

1

x2
√

x1
√

Q3
(6.45)

Note that it is singular along the curve Q3 = 0, part of which is inside the physical region

0 < x1 < 1, 0 < x2 < 1. On the other hand, the full solution for I14, which we write as

I14 = C14 Ihom
14 (6.46)

cannot be singular inside the physical region. Therefore, the coefficient C14 must vanish

along the curve Q3 = 0. In order to solve the differential equations for I14, it is convenient

to consider them keeping x12 = x1 + x2 fixed, so that Q3 = x1(x
2
12 + 4) − 4x12 becomes

linear in x1. Using the boundary condition that C14 must vanish at the point x1 = x0
1 =

4x12/(x
2
12 + 4), where Q3 = 0, the solution of the differential equation of C14 in x1 can

then be written as a one-dimensional integral:

C14 =

∫ x1

x0
1

dx′
1

NΓ√
x′

1

√
x′

1(x
2
12 + 4) − 4x12

×
{(−2(2 − x12)

1 − x′
1

+
x2

12

x′
1 − x12

+
2 + x12

1 + x′
1

)
log(x′

1)

+
x2

12

x′
1 − x12

(
log(1 + x′

1) − log(x12)
)

+
2 + x12

1 + x′
1

log(x12 − x′
1)

}
(6.47)

The integration can be performed analytically in terms of logarithms and dilogarithms.

The final result for I14 is shown in eq. (6.43).

We have presented the result for I14 in a form where all (di)logarithms are real in the

region where Q3 > 0 and s is real. By construction, I14 has no singularity at Q3 = 0.

For Q3 < 0, s is imaginary and the arguments of the (di)logarithms that depend on s

become complex. Nevertheless, I14 remains real in this region because the factor C14 is

now imaginary.

Finally, it is worth noting that I14 is only needed up to finite order in the hard region.

It is required up to order ǫ in the collinear x1 region where it has been calculated separately

using differential equations and direct integration.

b) The collinear regions. The real-real master integrals were calculated in the collinear

regions by deriving a hypergeometric integral representation starting from their definition

as phase space integrals. This allows us to give the results in closed form. We also have

derived these results as an expansion in ε using the differential equations method, which

provides an important check on our results. We list below the results of the masters

contributing to the antennae B0
4, Ẽ0

4 , H0
4 in these regions.

• collinear x1
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In this region, only I1, I2, I7 and I8 require to be expanded up to O(ε3) since they contribute

to Ẽ12 which starts its power expansion at O(ε−3).

× kk · p1 = I1 = (s12)
1−2ε NΓ 2−2−ε (1 − x1)

1−2 ε (1 − x2)
2−2 ε x−ε

2 × (6.49)

(1 + x2)
−1+ε Γ(1 − ε)2

Γ(2 − 2 ε)

= I2 =(s12)
−2εNΓ 2−ε (1 − x1)

1−2 ε (1−x2)
1−2 εx−ε

2 (1+x2)
−1+ε Γ(1 − ε)2

Γ(2 − 2 ε)
(6.50)

× (−(kj ·p1)(kj ·p3)) = I3 = (s12)
1−2εNΓ 2−3−ε (1 − x1)

1−2 ε × (6.51)

(1 − x2)
1−2 ε x−ε

2 (1 + x2)
−1+ε ×

(
1−3 x2+2 x2

2 2F1 (1, 1−ε; 2−2 ε; 1− x2)
) Γ(1−ε)2

Γ(2−2 ε)

× kj · p1 = I4 = −(s12)
−2ε NΓ 2−1−ε (1 − x1)

1−2 ε(1 − x2)
1−2 εx−ε

2 × (6.52)

(1+x2)
−1+ε (−1 + x2 2F1 (1, 1 − ε; 2 − 2 ε; 1 − x2))

Γ(1−ε)2

Γ(2−2 ε)

× (−kj · p3) = I5 = −(s12)
−2ε NΓ 2−1−ε × (6.53)

(1 − x1)
1−2 ε (1 − x2)

1−2 ε x−ε
2 (1 + x2)

−1+ε ×

(−1 + x2 2F1 (1, 1 − ε; 2 − 2 ε; 1 − x2))
Γ(1 − ε)2

Γ(2 − 2 ε)

= I6 = (s12)
−1−2εNΓ 2−ε (1 − x1)

1−2 ε (1 − x2)
1−2 ε x−ε

2 × (6.54)

(1 + x2)
−1+ε Γ(1 − ε)2

Γ(2 − 2 ε)
2F1 (1, 1 − ε; 2 − 2 ε; 1 − x2)

= I7 = −(s12)
−1−2εNΓ 2−1−ε (1 − x1)

−2 ε (1 − x2)
1−2 ε x−1−ε

2 × (6.55)

(1 + x2)
ε

2F1

(
1, 1 − ε; 2 − 2 ε;

1 − x2

2

)
Γ(1 − ε)2

Γ(2 − 2 ε)
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= I8 = (s12)
−1−2ε NΓ 2−1−ε (1 − x1)

−2 ε (1 − x2)
1−2 ε x−1−ε

2 × (6.56)

(1 + x2)
ε

2F1

(
1, 1 − ε; 2 − 2 ε;

−1 + x2

2 x2

)
1

ε

Γ(1 − ε)2

Γ(1 − 2 ε)

= I14 = −(s12)
−2−2εNΓ 2−1−ε (1 − x1)

−2 ε (1 − x2)
1−2 ε x−1−ε

2 × (6.57)

(1+x2)
ε

2F1

(
1, 1−ε; 2−2 ε;

1−x2

2

)

2

F1 (1, 1−ε; 2−2 ε; 1−x2)
Γ(1−ε)2

Γ(2−2 ε)

• collinear x2

In this region, only the following four masters (all of them are needed up to O(ε2)) con-

tribute:

× kk · p1 = I1 = (s12)
1−2εNΓ 2−3−ε (1 − x1)

1−2 ε × (6.57)

(1 − x2)
2−2 ε x−ε

1 (1 + x1)
−2+ε (1 + 3x1)

Γ(1 − ε)2

Γ(2 − 2 ε)

= I2 = (s12)
−2εNΓ 2−ε (1 − x1)

1−2 ε (1 − x2)
1−2 ε x−ε

1 × (6.58)

(1 + x1)
−1+ε Γ(1 − ε)2

Γ(2 − 2 ε)

= I7 = −(s12)
−1−2εNΓ 2−ε (1 − x1)

−2 ε (1 − x2)
1−2 ε x−ε

1 × (6.59)

(1 + x1)
−1+ε Γ(1 − ε)2

Γ(2 − 2 ε)

= I10 = −(s12)
−1−2εNΓ 2−1−ε (1 − x1)

1−2 ε (1 − x2)
−2 ε x−1−ε

1 ×

(1 + x1)
ε Γ(1 − ε)2

Γ(2 − 2 ε)
2F1

(
1, 1 − ε; 2 − 2 ε;

1 − x1

2

)
(6.60)

c) The soft region. As discussed previously, the master integrals in the soft region are

expected to be needed at most two orders in ε higher than in the hard region. It turns out

here that the masters are only needed up to O(ε3) at most in the soft region. The reason

behind this is the absence of double soft gluon configurations in the antennae B, E and
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H. Furthermore, as can be seen from table 1, only B12 will have a contribution from the

soft region at all. This is due to the fact that only B12 allows for a singular double soft

configuration, a soft q − q̄ pair. The master integrals which are required in this case up

to O(ε3) are either I2 or I ′1 depending on the basis choice for the masters. The others are

only needed up to O(ε2).

In the soft region, the masters are calculated by a direct evaluation of the phase space

integrals. In this case, the results are products of gamma functions and therefore can be

presented in closed form.

× kk · p1 = I1 = (s12)
1−2εNΓ (1 − x1)

1−2 ε (1 − x2)
2−2 ε Γ(1 − ε)2

8Γ(2 − 2 ε)
(6.61)

= I2 = (s12)
−2εNΓ (1 − x1)

1−2 ε (1 − x2)
1−2 ε Γ(1 − ε)2

2Γ(2 − 2 ε)
(6.62)

= I7 = −(s12)
−1−2εNΓ (1 − x1)

−2ε (1 − x2)
1−2 ε Γ(1 − ε)2

2Γ(2 − 2 ε)
(6.63)

= I10 = −(s12)
−1−2εNΓ (1−x1)

1−2 ε (1−x2)
−2 ε Γ(1 − ε)2

2 (1−2 ε) Γ(1−2 ε)
(6.64)

6.2.2 Integrated antennae

In this section, we present the results for the integrated crossings of three final-final four

parton antenna functions B0
4(q, q′, q̄′, q̄), Ẽ0

4(q, q′, q̄′, g) and H0
4 (q, q̄, q′, q̄′) defined in [21].

Because the results are too long to present fully here, we show explicitly only the pole

terms (all pole terms higher than 1/ε2, and only the highest pole term if it is 1/ε). The

dimensionful prefactor (s12)
−2ε of every integrated antenna is omitted below. The complete

results are included in a Mathematica file appended to the source file of the manuscript.

The integrated form of the initial-initial antenna functions H12 and H13 are obtained

by first crossing a pair of identical or non-identical quarks in the final-final antenna

H0
4 (1q, 2q̄, 3q′, 4q̄′) to the initial state, and then calculating the phase space integrals as

described in the previous sections. They take the following form:

H12 = −1

ε

{(x1x2 + 1)
((

x4
2 +

(
x2

1 − 4
)

x2
2 + 1

)
x2

1 + x2
2

)

3 (x1 + x2 )4

}
+ O (1) , (6.65)

H13 =
1

ε2

{(x2
1 − 2x1 + 2

) (
x2

2 − 2x2 + 2
)

4x1x2

}
+ O

(
1

ε

)
. (6.66)

For the Ẽ0
4(1q, 2q′, 3q̄′, 4g) antenna, there are four independent expressions, obtained by
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crossing qq′, qg, q′q̄′ or q′g to the initial state, we list the pole terms of the integrated ones:

Ẽ12 =
1

ε3

{(
x2

2 − 2x2 + 2
)

δ(1 − x1)

4x2

}
(6.67)

+
1

ε2

{
− 1

2(x1 + 1)x2(x1 + x2)2
(
−2x2

1x
4
2 − 2x1x

4
2 − x4

2 + 2x1x
3
2

+2x3
2 + x2

1x
2
2 − 2x1x

2
2 − 2x2

2 − 2x2
1x2 + 2x2

1 − 4x1x2 + 4x1

)

−
(
x2

2 − 2x2 + 2
)
D0(x1)

2x2
+ δ(1 − x1)

((
x2

2 − 2x2 + 2
)

H(−1, x2)

2x2

−
(
3x2

2 − 6x2 + 8
)

H(0, x2)

8x2
+

(
x2

2 − 2x2 + 2
)

H(1, x2)

2x2

−8 log(2)x2
2 − 7x2

2 − 16 log(2)x2 + 24x2 + 16 log(2) − 20

16x2

) }
+ O

(
1

ε

)
,

Ẽ14 =
1

ε2

{
δ(1 − x1)

(
(x2 + 1)H(0, x2)

2
− (x2 − 1)

(
4x2

2 + 7x2 + 4
)

12x2

)}
+ O

(
1

ε

)
(6.68)

Ẽ23 =
1

ε2

{
x1x2(x1x2 + 1)2

(
x2

1 + x2
2 − 2

)

(x1 + x2)4

}
+ O

(
1

ε

)
, (6.69)

Ẽ24 =
1

ε

{
− 1

6x3
1(x1 + x2)3

[
(x2 − 1)

(
12x9

1 + 36x2x
8
1 − 6x8

1 + 41x2
2x

7
1 − 19x2x

7
1 (6.70)

−x7
1 + 19x3

2x
6
1 − 29x2

2x
6
1 − 5x2x

6
1 + 4x4

2x
5
1 − 20x3

2x
5
1 − 26x2

2x
5
1 + 15x2x

5
1

−6x4
2x

4
1 − 30x3

2x
4
1 + 73x2

2x
4
1 + 10x2x

4
1 − 2x4

1 − 12x4
2x

3
1 + 86x3

2x
3
1 + 50x2

2x
3
1

−34x2x
3
1 + 32x4

2x
2
1 + 62x3

2x
2
1 − 118x2

2x
2
1 + 24x4

2x1 − 132x3
2x1 − 48x4

2

)]

+

(
2x8

1 + x2x
7
1 − x6

1 + 2x2
2x

4
1 − x2x

3
1 − 8x2

2x
2
1 + 2x2x1 + 8x2

2

)

x4
1

×

(G(−x2, x1) − H(−1, x1)) + x2
1

(
2x2

1 + x1x2 − 1
)
H(0, x2)

}
+ O (1) .

Finally, for the B0
4(1q, 3q′, 4q̄′, 2q̄) antenna, we have three independent crossings, obtained

by crossing either the primary quarks qq̄, the secondary ones q′q̄′, or a combination of

primary and secondary quarks to the initial state. Below we show the pole terms of B12

and B13, the antenna B34 is completely finite.

B12 = − 1

ε3

{
δ(1 − x1) δ(1 − x2)

12

}
(6.71)

+
1

ε2

{
δ(1 − x1)

(
−1 + x2

12
+

1

6
D0(x2) −

5

36
δ(1 − x2)

)

+

(
1

6
D0(x1) −

1 + x1

12

)
δ(1 − x2)

}
+ O

(
1

ε

)
,

B13 =
1

ε2
δ(1 − x1)

{
(1 − x2)(4x

2
2 + 7x2 + 4)

24x2
+

1 + x2

4
H(0, x2)

}
+ O

(
1

ε

)
. (6.72)
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7 Conclusions

Within the antenna subtraction formalism, allowing the calculation of higher order QCD

corrections to jet observables, subtraction terms are constructed from antenna functions.

Those functions describe all unresolved radiation between a pair of hard radiator partons.

At NNLO, this formalism has been fully developed and applied so far only for colour-

less initial states. In this paper, we have focussed on the extension of this formalism to

evaluate NNLO corrections to jet observables at hadron colliders and concentrated on the

construction of subtraction terms for the double real radiation contributions. More pre-

cisely, we have considered the subtraction terms needed to account for the radiation of two

colour-connected unresolved partons off two initial state partons. For these subtraction

terms, four-parton tree-level initial-initial antenna functions are required in unintegrated

and integrated form. The integration over the phase space associated with two unresolved

partons has to be performed analytically.

In this paper, we have given a catalogue of all non-identical four-parton initial-initial

antenna functions. Furthermore, after applying standard reduction techniques, we found

that 32 master integrals are necessary to obtain their integrated form. As a step towards

the integration of the full set of integrated initial-initial antenna functions, in this paper

we have focussed on the initial-initial antennae obtained from crossing two partons in the

final-final antenna functions characterised by the presence of two quark flavours. After

reduction, 12 masters were required to obtain those. We presented the decomposition of

the calculation according to four phase space regions: hard, collinear and soft and we gave

the master integrals in these regions. Finally, we presented the results for those integrated

initial-initial four parton antenna functions themselves. Since the results are lengthy, we

have shown only the leading pole terms in the manuscript and have attached the complete

results as a Mathematica file.
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