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Coda Wave Interferometry for Accurate Simultaneous
Monitoring of Velocity and Acoustic Source
Locations in Experimental Rock Physics

J. Singh1,3 , A. Curtis1,2,3 , Y. Zhao1 , A. Cartwright-Taylor1,3 , and I. Main1,3

1School of GeoSciences, University of Edinburgh, Edinburgh, UK, 2Department of Earth Sciences, ETH Zurich, Zurich,
Switzerland, 3The International Centre for Carbonate Reservoirs, Edinburgh, UK

Abstract In many geoscientific, material science, and engineering applications it is of importance to
estimate a representative bulk seismic velocity of materials or to locate the source of recorded seismic or
acoustic waves. Such estimates are necessary in order to interpret industrial seismic and earthquake
seismological data, for example, in nondestructive evaluation and monitoring of structural materials, and
as an input to rock physics models that predict other parameters of interest. Bulk velocity is commonly
estimated in laboratories from the time of flight of the first-arriving wave between a source and a receiver,
assuming a linear raypath. In heterogeneous media, that method provides biased estimates of the
bulk velocity, and of derived parameters such as temporal velocity changes or the locations of acoustic
emissions. We show that coda wave interferometry (CWI) characterizes changes in the bulk properties of
scattering media far more effectively on the scale of laboratory rock samples. Compared to conventional
methods, CWI provides significant improvements in both accuracy and precision of estimates of velocity
changes, and distances between pairs of acoustic sources, remaining accurate in the presence of
background noise, and when source location and velocity perturbations occur simultaneously. CWI also
allows 3-D relative locations of clusters of acoustic emissions to be estimated using only a single sensor.
We present a method to use CWI to infer changes in both P and S wave velocities individually. These
innovations represent significant improvements in our ability to characterize the evolution of properties of
media for a variety of applications.

1. Introduction
Experimental studies of wave propagation in rock cores are often performed to deduce relationships between
changes in external conditions and seismic properties such as seismic velocity (Wang, 2001), anisotropy
(Christensen, 1966; Sayers & Kachanov, 1995), and attenuation (Sams et al., 1997; Toksöz et al., 1979) and
to examine the process of rock fracturing (Pyrak-Nolte et al., 1990) or the distribution of acoustic emissions
(Lockner, 1993; Lockner et al., 1992). Established relationships between seismic attributes and underlying
rock physical properties are particularly important for monitoring purposes in the hydrocarbon industry and
in subsurface CO2 storage projects, notably for relating effective stress changes during subsurface injection
or production to changes that may be observed in the seismic velocity (Arts et al., 2004; Brown, 2002; Guilbot
& Smith, 2002; Herwanger & Horne, 2009; Stork et al., 2018). It is therefore of great importance that models
developed from laboratory experiments accurately represent the response of in situ rocks.

Standard methods for measuring either the velocity or changes in the velocity of a medium involve pick-
ing of first-break arrival times of seismic waves traveling between a fixed source and receiver pair. The term
“first break” is ambiguous and can be taken to mean the signal onset, which is the time of first-arriving
energy (Brillouin, 1960), the arrival time of the first peak, or the time of first zero crossing (Hornby, 1998).
Manual picking of first breaks is slow and may incur inconsistent user bias and error; therefore, there are
many methods available for automatic picking of first breaks (Boschetti et al., 1996; Earle & Shearer, 1994;
Ervin et al., 1983; Hatherly, 1982; Molyneux & Schmitt, 1999; Peraldi & Clement, 1972). Here, unless oth-
erwise stated, we use the term first-break method to mean picking the first maximum (or extremum). This
represents the point with the highest signal-to-noise ratio. The velocity of the medium is then estimated
using the known straight-line distance between the source and receiver. For many laboratory experiments
measuring such velocities, the wavelengths used are on the same order as heterogeneities in the medium
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(e.g., pore and grain sizes). Obvious problems then occur: (1) The measured velocity is not sensitive to the
bulk properties of a medium, but rather to properties along a very specific (fastest) raypath between the
source and receiver, resulting in a bias toward higher velocities. (2) The path followed by the first-arriving
energy is unlikely to be straight, so that velocity estimates made using the straight-line path are biased toward
lower values. (3) Biases in points 1 and 2 are generally unrelated so are not expected to cancel. (4) The effects
of small perturbations in the medium that are not located along the specific source-receiver path cannot
be detected. (5) Such systematic and random errors in velocity estimation are carried forward to any subse-
quent calculations, notably, for example, to the location of acoustic source positions. Also, the presence of
attenuation and dispersion changes the shape of a propagating wave (Molyneux & Schmitt, 2000); thus, the
determination of meaningful velocity measurements can be problematic.

Weaver and Lobkis (2001) and Lobkis and Weaver (2001) showed that information about a medium
can be extracted from recordings of coda waves and background ambient noise. Coda waves are the
multiply-scattered waves that are recorded after the arrival of the main ballistic waves. Recordings of coda
waves are far more sensitive than first arrivals to changes in pore pressure, fracture density, and temperature
(Snieder et al., 2002; Vlastos et al., 2006, 2007), due to the fact that coda waves follow much longer and more
complex paths, eventually sampling the entire medium and sampling any subvolume of the medium mul-
tiple times. There are now established methods grouped under the name coda wave interferometry (CWI)
that estimate changes in the velocity of the medium (rather than the absolute velocity) or changes in the
locations of sources or receivers using the coda (Snieder, 2006). There have been several field and laboratory
applications of CWI to date, including the monitoring of velocity changes in ice sheets (James et al., 2017;
Mordret et al., 2016), concrete (Larose & Hall, 2009; Planès & Larose, 2013), mining environments (Grêt et
al., 2006), and volcanic regions (Sens-Schönfelder & Wegler, 2006). CWI has also been used to study earth-
quake focal mechanisms (Robinson et al., 2007), earthquake separation distances (Robinson et al., 2011;
Snieder & Vrijlandt, 2005), and source network locations of induced microseismic events (Zhao & Curtis,
2019; Zhao et al., 2017). So far its implications for the interpretation of laboratory rock physics experiments
have been comparatively limited.

In this paper we test the hypothesis that CWI can provide an improvement in accuracy and precision when
inferring and quantifying the changes in bulk velocity and relative source locations in rock samples in labo-
ratory settings. We test the hypotheses that CWI provides more representative measures of bulk properties,
in comparison with commonly used methods in numerical and laboratory experiments at the core scale,
and at high frequencies commonly used in a laboratory setting.

First we outline the theory of CWI and how it can be used in an experimental setting. Then we examine
multiple samples of varying rock type and heterogeneity using both numerical simulations and laboratory
experiments, where changes in source location and velocity are estimated using both CWI and standard
methods (manually picked first breaks for velocities and multilateration for source locations). We show how
changes in source position and velocity can be jointly estimated by CWI when both perturbations occur
simultaneously. We then demonstrate an optimization algorithm for estimating the relative locations of
sources within a cluster, given the source separations estimated from CWI, and show that it can be applied
even in the case of having only a single transducer. Following this, we test the sensitivity of CWI as well
as conventional methods to increasing contamination of noise. In all cases CWI is shown to outperform
conventional methods.

Accompanying this manuscript, we provide a well-commented set of MATLAB functions for implementing
the CWI method to estimate velocity changes, and for the joint estimation of velocity change and source sep-
aration. These codes use a form of CWI that estimates changes relative to a moving-reference seismogram,
which is particularly important for longer deformation experiments in which scattering paths may change
significantly, a situation that contravenes the assumptions of standard CWI theory and requires the refer-
ence seismogram to be updated periodically. Together with the suite of CWI codes made publicly available
by Zhao and Curtis (2019), this allows all techniques used in this paper to be implemented and reproduced.

2. Coda Wave Interferometry
CWI is a method that allows small changes in velocity, the displacement of source or receiver locations,
or movement of scatterers to be monitored (Sens-Schönfelder & Wegler, 2006; Snieder, 2006; Snieder et al.,
2002). These different perturbations and their effect on recorded signals are illustrated in Figure 1. First
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Figure 1. Illustrations of different perturbation types and their effects on coda waves. The cartoons (left) represent a
scattering medium, with a source (star), receiver (triangle), and point scatterers (circles). Raypaths between the source
and receiver, including multiple reverberations, are represented as black arrows. A velocity perturbation (a) is
represented as a yellow ellipse, which has a velocity different to the background medium. New raypaths that are
introduced due to changes in source location (b) and scatterer locations (c) are represented as blue arrows. Example
recorded signals (right) at a range of time windows (i–iv) are shown before and after each perturbation takes place
(blue and red, respectively). Differences in travel times of arriving energy for (b) and (c) are highlighted by vertical
arrows.

consider the effect of a velocity perturbation (ΔV in Figure 1a). The direct arriving wave between a source
and receiver would only sample the perturbation once (or not at all), whereas the multiply reflected wave-
field samples the perturbation many times. Therefore the change in arrival times for later arriving waves
(time window iv) is larger than for the first arrival (time window i). The second perturbation type is a dis-
placement of the source or receiver location (Figure 1b shows a source displacement). In this case, the
difference in raypaths before and after the perturbation is the path between the source and the first scatter-
ing point (blue arrows in Figure 1b). Different paths are shortened or lengthened depending on the location
of the first scatterer; this is reflected by the advancement and retardation of peaks highlighted by red and
blue arrows. Providing the source displacement is small, the extent to which these travel times are perturbed
(specifically, the variance of the perturbation) is directly proportional to the displacement. The third pertur-
bation type is the displacement of all scattering points (yellow circles in Figure 1c): In this case, all paths
between scattering points are perturbed (both shortened and lengthened), and similarly to the previous case
the variance of travel time perturbations is proportional to the displacement of scattering points. All three
perturbation types can be monitored by using a cross-correlation of the unperturbed (uunp) and perturbed
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(uper) waveforms—the waveforms from the source recorded by the receiver before and after the change or
displacement takes place.

One method to estimate the change in velocity is known as trace stretching (Sens-Schönfelder & Wegler,
2006), where the perturbed waveform is assumed to be a time-stretched version of a reference waveform; this
follows if one assumes that a velocity perturbation is uniform across the entire medium, so all arriving energy
is perturbed at the same temporal rate. This method also assumes no changes in the intrinsic attenuation
of the medium. We stretch the time axis of the perturbed signal by a range of stretching factors (𝜖) and
compute the correlation coefficient R between uunp(t) and the stretched version of the perturbed waveform
uper(t[1 + 𝜖]) over a given time window (t1, t2):

R(t1 ,t2)(𝜖) =
∫ t2

t1
uunp(t)uper(t[1 + 𝜖])dt√∫ t2

t1
u2

unp(t)dt ∫ t2
t1

u2
per(t[1 + 𝜖])dt′

. (1)

The optimum stretching factor 𝜖max that maximizes the correlation coefficient (for which R = Rmax) is related
to the ratio of the change in velocity ΔV to the original velocity V by

𝜖max = −ΔV
V

(2)

(Sens-Schönfelder & Wegler, 2006). This method requires that velocity changes are small to avoid cycle
skipping in the calculation of R in equation (1). In cases where the medium changes significantly, such
as during material deformation where new scattering paths are introduced due to fracturing, it may not
be appropriate to use a constant reference trace (uunp) for all recorded waveforms during deformation. We
therefore propose the use of a moving-reference trace, where the optimum stretching factor from the initial
reference trace (u0) to any other recorded waveform during deformation (un) can be calculated as

𝜖u0un
= 𝜖u0us

+ 𝜖usun
, (3)

where 𝜖uiu𝑗
is the stretching factor of trace uj relative to ui, s = k⌊n∕k⌋, n is the trace number, k is the

user-selected step size of the moving-reference trace, and ⌊… ⌋ denotes a floor function, which outputs the
greatest integer less than or equal to the argument. Accompanying this manuscript is a suite of MATLAB
functions for implementing the moving-reference stretching CWI method. Snieder (2002) derived the rela-
tionship between the inferred medium velocity change from CWI and changes in P and S wave velocities in
an isotropic case:

ΔV
V

= 𝛽3

2𝛼3 + 𝛽3
Δ𝛼
𝛼

+ 2𝛼3

2𝛼3 + 𝛽3
Δ𝛽
𝛽

, (4)

where 𝛼 and 𝛽 are the velocities of P and S waves, respectively. In an initial Poisson medium where 𝛼 =
√

3𝛽,
if either or both of the P or S wave velocity changes, then the relation simplifies to

ΔV
V

= 0.09Δ𝛼
𝛼

+ 0.91Δ𝛽
𝛽

, (5)

and if 𝛼 and 𝛽 change such that the Poisson medium is preserved, then

ΔV
V

= Δ𝛼
𝛼

= Δ𝛽
𝛽

. (6)

The strengths of the CWI technique lie in the ability to resolve very small changes in velocity compared to
standard methods. If we take the sampling interval of a recorded signal to be dt, the duration of the signal
to be tmax, and make the conservative assumption that one sample interval is the smallest resolvable time
difference between waveforms in the two recordings, then the maximum resolution of CWI (the smallest
resolvable change in velocity that can be measured) is[ΔV

V

]CWI

min
= dt

tmax
. (7)

The maximum resolution for measuring ΔV∕V from the standard first-break method would be[ΔV
V

]FB

min
= dt

(t0 + dt)
, (8)
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where t0 is the first-break arrival time. Both equations (7) and (8) assume no background noise and hence
no uncertainty in the recorded waveforms, nor ambiguity in defining a first break, which can be highly
uncertain in many cases. Inserting typical values for laboratory core-scale measurements, such as those used
in the experiments in the following section (sampling interval dt = 0.04μs, signal duration tmax = 640μs, and
arrival time t0 = 65μs), the smallest perturbations that theoretically can be detected are 0.00625% for CWI
and 0.062% for the standard first break method. Hence, CWI offers an order of magnitude improvement in
precision in the absence of noise. The CWI method also computes the cross-correlation function using many
more data points, which should make it less susceptible to the effects of noise than a single point measure
of say the first peak for the first break estimate. We test the hypothesis that CWI provides a more accurate
measure of relative velocity changes in the experiments outlined in section 3.3.

Another advantage of using CWI is that it allows a joint estimate of both a velocity perturbation and the
separation r between two source/receiver locations to be made from a single receiver. This is because velocity
perturbation information is retrieved from the consistent phase information along the waveforms, whereas
the source or receiver separation is related to the variance of inconsistent phase perturbations and hence
to the maximum value of the cross-correlation value (Rmax) in equation (1), and these two attributes may
be observed independently. Figure 1b illustrates how the perturbations of travel times (advancement and
retardation of individual peaks) relates to the displacement of the source or receiver. Snieder (2006) derives
the relationship between the maximum cross-correlation and the variance of the travel time perturbations
(𝜎2

𝜏
) as

Rmax = 1 − 1
2
𝜔̄2𝜎2

𝜏
, (9)

where 𝜔̄2 is the dominant mean square angular frequency in the recorded waveform, which can be computed
as

𝜔̄2 =
∫ t2

t1

.u2(t′)dt′

∫ t2
t1

u2(t′)dt′
, (10)

where .u is the temporal derivative of the waveform u. When a source/receiver is displaced relative to another
source/receiver by distance r, one can estimate separation r from the variance of the travel time perturbations
in a range of scenarios. For isotropic sources in a two-dimensional acoustic medium,

𝜎2
𝜏
= 1

2𝛼2 r2. (11)

For isotropic sources in a three-dimensional acoustic medium,

𝜎2
𝜏
= 1

3𝛼2 r2. (12)

For double couple sources on the same fault plane, with the same source mechanism and in elastic media,

𝜎2
𝜏
=

( 6
𝛼8 + 7

𝛽8 )

7( 2
𝛼6 + 3

𝛽6 )
r2, (13)

where 𝛼 and 𝛽 are estimates of the P and S wave velocities of the medium (Snieder & Vrijlandt, 2005). These
estimates of velocity represent an average for all scattering paths, assuming coda waves are evenly distributed
in an isotropic medium. The type of spatial averaging that is implicit in the CWI estimate is analyzed in
section 5.

To summarize, the main advantages of using CWI over conventional first-break method in an experimen-
tal setting (at least in theory) are that (1) CWI is more representative of changes in the bulk properties of
a medium because coda waves sample the entire medium. (2) Coda waves sample the same area multiple
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Figure 2. Set of X-ray μCT slices (left images) and equivalent models of segmented phases (right images) for three rock
cores with varying heterogeneity and rock type: (a and b) Tivoli Travertine, (c and d) Westerly Granite, and (e and f)
Copp-Crag Sandstone. Model sizes are 900 × 2,400, 1,000 × 3,000, and 900 × 900 pixels for Tivoli Travertine, Westerly
Granite, and Copp-Crag, respectively. Approximate wavelength 𝜆 for each sample is labeled with a white bar, where the
source signals contain a peak frequency of 30 MHz for Tivoli Travertine and Copp-Crag Sandstone and 200 MHz for
the smaller Westerly Granite model. The properties assigned to each material phase for wavefield simulation can be
found in Table 1.

times, so CWI is capable of resolving smaller changes in the medium giving a theoretical order of magnitude
increase in precision for typical laboratory experiments. (3) CWI is generally less susceptible to the presence
of noise, as it uses many more data points, providing more robust estimates. (4) CWI allows for the separa-
tion between nearby sources to be estimated from a single receiver, even in cases where medium velocity
changes occur simultaneously, as the two estimates utilize different measurements made from the corre-
lation function in equation (1). The source-separation data are then sufficient to estimate the 3-D relative
locations of clusters of sources using CWI with a single receiver. We now test how CWI works in practice,
using numerical simulations and laboratory experiments.

3. Results
3.1. Estimating Velocity and Source Locations: Synthetic Examples
Rock cores typically used for geomechanics and rock physics experiments are on the scale of 3 to 100 mm
in diameter, and seismic wave frequencies studied are on the order of kilohertz to megahertz. At these fre-
quencies, wavelengths are similar to the scale of the key heterogeneities such as pores and grains; therefore,
many rock samples act as strongly scattering media. Most recorded waves take very complex, long paths
and experience multiple reflections, diffractions, and reflections (Sato et al., 2012). Therefore, there are
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Table 1
Parameters Used for Finite Difference Wavefield Simulation Through the Samples
Shown in Figure 2

Phase Density (kg/m3) Velocity (m/s)
Pore fluid 1,000 1,500
Calcite 2,710 6,500
Plagioclase 2,620 6,500
Quartz 2,650 5,800
Potassium feldspar 2,560 6,300
Biotite 3,090 5,260
Muscovite 2,790 6,460

Note. Values are Voigt-Reuss-Hill averages taken from Bass (1995) and Mavko et
al. (2009).

strong frequency dependent effects on properties derived from ultrasonic recordings at these scales (Mason
& McSkimin, 1947). The complex nature of wave propagation through highly scattering media, such as the
samples shown in Figure 2, can be studied using methods of digital rock physics (Madonna et al., 2012).
First a reconstructed microtomography (μCT) cross-section is segmented into appropriate mineral and pore
phases and converted into velocity and density models (wave physics parameters used for different phases
are shown in Table 1). Using finite difference methods (Moczo et al., 2007), wave propagation through the
medium can be simulated so that full waveforms can be generated, as though they have been recorded at any
point within the medium. These methods are increasingly used for estimating the acoustic or elastic proper-
ties of rocks based on μCT images (Saenger et al., 2014; Saxena & Mavko, 2016). These methods are limited
by the resolution of μCT images, which fail to resolve submicron scale structures such as any microcracks
that may exist.

Our aim is to understand and address problems facing core-scale experimental rock physics, especially
where strong scattering occurs. To emulate these physical experiments, we simulate wave propagation using
a two-dimensional, acoustic, rotated staggered-grid finite difference solver, through three different digital
rock samples: Tivoli Travertine (TT), Westerly Granite (WG), and Copp-Crag Sandstone (CS). These rock
types have been selected to represent a range of types of heterogeneity, where TT has high porosity with
complex pore shapes and pore size distribution, CS is a relatively homogeneous sandstone with more uni-
form pore shapes and pore size distribution, and WG is the most homogeneous and exhibits little porosity.
The μCT slices and corresponding models of segmented phases for each rock type are shown in Figure 2 and
are converted to wave physics models using the parameters stated in Table 1 (assuming isotropic mineral-
ogy). The simulations do not include any effects caused by attenuation or dispersion. Each pixel is mapped
to a regular grid of cells used for the finite difference method, with cell sizes of 37.5, 42, and 2.9 μm for the
TT, CS, and WG, respectively. The model includes reflecting boundaries to account for side wall reflections.

The source input pulses used are Ricker wavelets with peak frequencies of 30 MHz for the TT and CS models
and 200 MHz for the smaller WG model. These frequencies are significantly higher than those convention-
ally used in laboratory experiments, which typically use peak frequencies around 1 MHz for 38-mm core
diameter experiments. For comparison with conventional methods, we also use a Ricker wavelet with peak
frequency of 1 MHz for the TT model. The simulations here are well within the high-frequency regime
(approximate wavelengths for each sample are labeled as 𝜆 in Figure 2). We assume a point source and point
receivers, much smaller than the apertures of conventional transducers used in laboratory experiments. We
also assume perfect transducer coupling, which in a laboratory setting is unknown and may be sensitive
to external conditions. Accordingly, our results explore a best-case scenario at this stage of the modeling.
High-contrast discontinuities such as those between pores and mineral phases may cause instability prob-
lems on a staggered grid. To avoid these difficulties, we implement the rotated staggered-grid technique
(Saenger & Bohlen, 2004).

First, we simulate a single point source located at the top of each sample and a row of point receivers along
the bottom (e.g., Figure 3e). Velocity is estimated at each receiver by manually picking the arrival time of the
first peak (as well as the signal onset for the TT model) and assuming straight raypaths between the known
source and receiver locations (shown in Figures 3a–3d). For the three samples, the estimated velocities at
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Figure 3. (a–d) Estimated seismic velocity as a function of receiver position, obtained from simulated waveforms
through a μCT digital rock sample in a model shown (e) for the Tivoli Travertine. The source (star) is fixed at the top,
and receivers (triangles) are distributed along the bottom. The blue curve shows velocity estimates made using
first-break arrival times and straight-line source-to-receiver distances. The dashed green line represents the
conventional estimate of velocity using a single receiver at the center of the core. The dashed black line represents the
fastest measured velocity. Results are for (a) Tivoli Travertine picking the travel time of the first maximum and using
30-MHz (blue) and 1-MHz (red) sources, b) Tivoli Travertine picking the travel time of the signal onset and using
30-MHz (blue) and 1-MHz (red) sources, (c) Westerly Granite (200-MHz source), and (d) Copp-Crag Sandstone
(30-MHz source). The results in panels (c) and (d) are from picking the first maximum.

each receiver show considerable variation depending on where the receiver is located. For the TT model, we
compare varying the source frequency (1 and 30 MHz) as well as the method used for picking the first arrival
(picking the first maximum in Figure 3a and the signal onset in Figure 3b). The strong variation in velocity
depending on receiver position is present for both frequencies and both picking methods. This response is
concerning as in many cases a single receiver and hence a simple, nonrepresentative velocity may be used
to characterize an entire sample—from a receiver at the center of the core in conventional experimental
configurations (shown as dashed black lines in Figure 3). Sometimes a plate-like receiver is used, which
spans the entire base of the sample; in that case the signal recorded would be approximately equal to the
superposition of all the distributed transducers (Li et al., 2018), and the velocity estimated using this method
is shown as a dashed green line.

To further explore the variation of measured velocity, a similar numerical experiment was carried out on
the three velocity models in which eikonal ray tracing was implemented using the methods outlined by
Margrave (2007). This gives an estimated arrival time (t[x]) for every point x in the model for a fixed source
location (in this case the source is located at the center top of each sample). Using these arrival times, we
can imagine a receiver placed at every point within and on the boundary of a model, and an estimate of the
velocity for that source-to-receiver path can be calculated using the standard travel time method assuming
straight rays. Figure 4 shows the calculated velocity v[x] for all model points x in each sample, again showing
that measured velocity may be strongly dependent on source and/or receiver locations. For Tivoli Travetine
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Figure 4. The estimated velocity as if a receiver was placed at every position in the model x, using a fixed source
location (center of the top of the sample). To emulate estimates from the first break method, an eikonal ray tracing
method (Margrave, 2007) was used to calculate travel times t[x], while a straight source-to-receiver raypath was used to
calculate velocity v[x]. Results are for (a) Tivoli Travertine, (b) Westerly Granite, and (c) Copp-Crag Sandstone.

(Figure 4a) the variation in velocity estimates are greater than for CS (Figure 4c), and WG (Figure 4b) has
the smoothest image, reflecting the smallest variation in estimated velocity v[x]. In all cases the longer the
source-to-receiver distance, the more stable the result.

There are therefore several concerning implications of characterizing a medium with velocities calculated
from standard methods: (1) A measured cross-core velocity is not sensitive to the bulk properties of a
medium, but rather to the velocities along a specific raypath between the point source and point receiver, as
demonstrated by the variation of estimated velocity with receiver position in Figures 3 and 4. Therefore, (2)
the effects of small perturbations in a medium that are not located on the specific source-to-receiver path
will not be detectable using these methods. In addition, although the results stabilize for a more distant
source and receiver pair, they are still expected to stabilize at a velocity that is biased relative to the average
across the sample since first-arrival travel times are measured along shortest travel time raypaths.

The assumption that a medium is represented by a single constant “bulk” velocity also introduces errors into
subsequent calculations, such as in the estimation of source locations. This effect can be examined using a
further numerical experiment. We simulate a series of regularly spaced sources placed on a rectilinear grid
throughout each of the three media, representing acoustic emissions occurring throughout the sample. We
measure the arrival times for each source (S) at a set of receivers (i) as ti

S using the first-break method and use
a single measured velocity through each sample (Vmed), which is assumed to be representative of the entire
medium. In our implementation the exact value of this velocity does not affect source locations—It only
affects the estimates of the source origin time (t0). In this case it is therefore not inaccuracy in the velocity
estimate that will effect locations, but rather the assumption that there is a single representative medium
velocity. We estimate source locations (Sest) using multilateration, by implementing a grid-search through
all model positions (x) for each receiver location (xi) and through a range of source origin times (t0), to find
values of x and t0 that minimize the objective function

𝜑(x, t0) =
Ni∑
i=1

[Vmed × (ti
S − t0) − |xi − x|]. (14)

The estimated source location Sest is the location x that minimizes 𝜑. Figure 5 displays the systematic error
in estimated source locations Sest (arrowheads) compared to true locations (arrow tails) for each of the three
samples. For the majority of sources in TT (Figure 5a) and CS (Figure 5c), the resulting systematic error in
source location is significant in both amplitude and direction. In WG (Figure 5b), such errors have much
smaller amplitudes. It is therefore clear that in more heterogeneous media, a single velocity is not appropri-
ate and estimated source locations in many areas are highly inaccurate when estimated using conventional
methods of multilateration assuming a single bulk velocity.
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Figure 5. The resulting systematic errors in source location, represented as black arrows, using standard phase picking
methods that assume a single representative velocity for each sample, for (a) Tivoli Travertine, (b) Westerly Granite,
and (c) Copp-Crag Sandstone. The base of each arrow is located at the true source positions (Sj), and estimated
locations (Sest) are displayed at arrow tips. The red points represent the source cluster used for the source location
experiment with results shown in Figure 7.

3.2. CWI and Conventional Estimates of Changes in Velocity and Source Location: Synthetic
Tests
We now test CWI against conventional methods for measuring a change in the velocity of a medium, using
finite difference numerical wavefield simulations through the three μCT slices in Figure 2. Two slightly dif-
ferent velocity models for each sample are generated: One is the unperturbed medium and the other has
perturbed velocities of both mineral and fluid phases equal to a −1% (ΔV∕V = −0.01). The simulated sig-
nals are obtained from an array of receiver positions along the bottom of the sample as used in Figure 3.
The change in velocity (ΔV∕V) between each pair of models is estimated from these signals by CWI (using
equations (1) and 2), and using the conventional method of manual phase picking of first-break arrivals (time
of first peak) assuming straight rays. Figure 6 compares these estimates for each sample. For all samples, CWI
gives more accurate (closer to the true perturbation of the model) and more precise (lower standard devi-
ation) estimates of ΔV∕V and is more robust (shows significantly less variation between different receiver
locations) when compared to the first-break method. This effect is clearly dependent on the complexity of
the medium: The first-break estimates for TT (Figure 6a) show much stronger variation than those for WG
(Figure 6b). The CWI estimates for ΔV∕V, however, do not vary between samples of differing complexity.
Coda waves sample the entire medium rather than a specific (fastest) raypath; therefore, CWI is more robust
to changes in receiver location. This consistency of estimates shows that CWI is less dependent on sample
complexity, and on receiver location, and confirms the hypothesis that the multiply reflected waves used
in CWI effectively sample the entire medium, providing more representative measures of velocity changes
from any source and receiver pair.

We also test CWI and conventional methods for estimating changes in source locations. For this test, wave-
forms were simulated for a cluster of sources along a fracture plane in the middle of each of the three
samples, and with receivers located at the bottom and at either side of the model (experimental configura-
tion and source cluster locations shown in Figure 5). The standard method of multilateration (minimizing
equation (14)) is used to locate source positions for each source in the cluster, assuming a constant bulk
velocity that is measured with a single source and receiver placed at the top center and bottom center of
the sample, respectively. CWI provides the separation between pairs of sources (it does not provide source
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Figure 6. The estimation of a relative velocity change ΔV/V for a true change in velocity of −1%, that is, ΔV/V =
−0.01. Results for (a) Tivoli Travertine, (b) Westerly Granite, and (c) Copp-Crag Sandstone. ΔV/V is estimated using
the standard phase-picking method and coda wave interferometry (CWI) using each of 100 receiver locations along the
base of each sample and a single source location at the center top of each sample.

locations in an absolute frame of reference), so Figure 7 compares separations between the estimated source
locations from multilateration with source separations estimated from CWI. The latter estimates are from
equations (9) and (13), and an estimate of the bulk velocity of the medium (the same measured velocity
used in multilateration) for each sample, and separations were obtained using only the top receiver (mul-
tilateration estimates require the use of all four receivers). For all three media, the multilateration-method
estimates are relatively scattered, particularly for TT and CS. CWI estimates of the relative source locations
are more precise and are more accurate up to approximately 0.2–0.4𝜆, where 𝜆 is the dominant wavelength.
At larger separations cycle skipping in the cross-correlation is likely to interfere with the signals that we seek
in the maximum of the correlation function, causing estimates to tend to a constant value at larger source
separations. We demonstrate in section 3.5 below how relative locations of sources can be obtained using
separation data from even only a single receiver and how the working-range of source separations can be
increased beyond 0.4𝜆.

3.3. Experimental Examples
In experimental rock physics, trends in velocity are often measured to model the response of seismic velocity
to changes in external conditions (e.g., temperature, effective and differential stresses, and fluid properties),
conferring particular importance to the interpretation of dynamic changes. This is important for a range of
geophysical scenarios on a larger scale, such as monitoring subsurface fluid reservoirs or changes in rock
properties using time-lapse (4-D) seismic methods. Here we show results of two laboratory experiments that
impose changes in the external conditions of temperature and stress. In the first experiment illustrated in
Figure 8a, a 10 cm3 block of Halldale Sandstone was heated from room temperature to an external temper-
ature of 54 ◦ C over 1 hr and then left to relax to room temperature. In this experiment we do not aim for
thermal equilibrium, because the CWI method does not require a constant medium velocity. The experiment
varies temperature simply to induce a nonuniform change in velocity within the medium for comparison of
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Figure 7. A comparison of estimated intersource separation as a function of true intersource separation (scaled by the
wavelength 𝜆 at peak frequency) for the conventional multilateration method (using arrival times obtained from phase
picking of first arrivals) and coda wave interferometry (CWI). The true source cluster locations are represented as red
dots in Figures 5a–5c. (a) Tivoli Travertine, (b) Westerly Granite, and (c) Copp-Crag Sandstone. The dashed line
indicates the graph locations corresponding to perfect estimates.

CWI and conventional methods. A thermocouple was attached to an external face for continuous temper-
ature monitoring, and two piezoelectric transducers (PZT) were attached on opposite faces of the sample
for continuous ultrasonic surveys, which were undertaken during the cooling phase back down to room
temperature. As the maximum temperature variation is relatively small (Δ 8 ◦ C), we assume that the PZT
response to temperature variation is negligible.

To measure P wave velocity, we use Glaser-type conical piezoelectric sensors sensitive to displacement
normal to the sensor face (McLaskey & Glaser, 2012). These laboratory-standard, wide-band sensors are
calibrated against theoretical displacement time history and have an almost flat displacement response spec-
trum in the 20-kHz to 1-MHz frequency band. This means that, in this frequency band, they are essentially
displacement sensors and their voltage output is linearly proportional to the surface normal displacement.
Aperture effects are reduced due to the relatively small 0.5-mm sensor contact area (which is even higher
than the resolution used in Figure 3). We used an Itasca Image pulser-amplifier system with operating fre-
quency range of 100 kHz to 1 MHz and pre-amp gain of 40 dB, which switches between all transducers in an
ultrasonic array, allowing each to act as both a transmitter and a receiver. The amplitude of the pulse spike
is 500 V with approximate signal rise time of 0.3 μs and total duration of 2.8 μs, the sampling period is 40 ns.
The output recorded waveform at each receiver is a stack of received waveforms from 25 source pulses with a
pulse repetition frequency of 20 kHz (as the pulse repetition is high, we assume no loss in phase resolution).

The change in velocity (ΔV∕V) for each temperature change (ΔT) were estimated using both the first-break
method (manually picking the first extremum) and the CWI stretching technique (plotted in Figure 9). There
is a large amount of scatter in the ΔV∕V estimates for the first break method, where there is no clear trend
that can be resolved above the noise. In contrast, the ΔV∕V estimates using CWI form a clear and coherent
response to changes in temperature—a linear, negative correlation due to thermal contraction. This high-
lights the sensitivity of standard methods to noise and CWI's ability to resolve small changes in spite of the
presence of noise.

A second experiment was carried out, illustrated in Figure 8b, where a 38-mm diameter, 75-mm length core
of a fine-grained laminated carbonate was held at 45-MPa effective pressure, and a differential stress was
applied with a strain rate of 10−5 s−1, until a peak stress of 235 MPa. The stress loading history is plotted in
Figure 11a, where pauses in loading are periods during which the permeability of the sample was measured.
P wave velocity is estimated using the Glaser-type sensors described above. We measure S wave velocity
using sensors with PZT sensitive to displacement tangential to the sensor face, with a central frequency of
700 kHz and a contact area of 20 mm2. Example waveforms for this experiment are shown in Figure 10. The
variation of velocity during the experiment is estimated using the standard first-break method for estimating
P and S wave velocities, and the CWI moving-reference trace method (from equations (1)–(3)) using the
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Figure 8. Schematic diagrams for the two experimental examples used for inducing a velocity change in the medium.
(a) Experiment I uses a variation in temperature of a cubic block of Halldale Sandstone. (b) Experiment II uses varying
differential stress on a finely laminated carbonate within a triaxial Hoek cell. Values for porosity (𝜙), density (𝜌), and
other properties of each sample are shown for each case.

time window labeled in Figure 10a (t1 = 0.35 ms, t2 = 0.65 ms). In Figure 11a we see CWI provides a
far clearer and more consistent response to external stress changes compared against the change in P wave
velocity estimated using first breaks, accurately mirroring the stepped stress program with far less scatter in
the estimated ΔV∕V values, most strikingly for the earlier stress steps. First-break S wave velocities exhibit
a smoother response (less scatter) but also fail to mirror the stepped stress program. ΔV∕V estimates from
CWI approximately mark the average between changes in P and S wave velocities—We discuss the way in
which CWI averages changes in P and S wave velocities in section 4. The higher ΔVP∕VP in estimates from
the conventional method may also reflect the bias toward higher velocities, as the first-arriving waves follow
only the fastest raypath. As deformation occurs, compaction is localized to specific regions of the sample;
if the fastest travel path samples such regions, the estimated change in velocity (ΔVP∕VP) would be larger
using first breaks than estimates using CWI, which is more representative of the changing bulk properties
of the sample.

As CWI uses a cross-correlation function, the method breaks down if there are very large changes in the
medium due to wave paths being significantly altered and (if the medium fractures) new scattering points
being introduced. This means that a single reference trace is not appropriate for CWI in such deforma-
tion experiments where the rock structure is significantly deformed. This effect can be seen in Figure 11b,
where different CWI algorithms are compared. The “double wavelet” method (Snieder et al., 2002) mea-
sures delay times (𝛿𝜏) for multiple time windows down the coda: These relate to the velocity perturbation
by ΔV∕V = −𝛿𝜏∕t. It is clear that at later stages in the experiment (after 1 hr), the estimates of ΔV∕V using
the double wavelet method with a fixed reference trace (dashed purple line) are heavily distorted due to
the deformation occurring within the sample. The large amount of scatter exhibited by this method high-
lights the problem of large changes occurring in the medium. The stretching method, without implementing
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Figure 9. Estimated values of percentage velocity change (ΔV∕V) as a function of the change in temperature (ΔT) in a
10 cm3 sample of Halldale Sandstone, (a) for the standard method of picking arrival times, and (b) for coda wave
interferometry (CWI). Solid lines are best fit linear regressions. The zero point on the x axis (ΔT = 0) is arbitrary.

a moving-reference trace (dashed red line), provides more consistent estimates of ΔV∕V than the double
wavelet method, estimating a consistent increase in velocity. At later stages in the experiment, these esti-
mates of ΔV∕V become more scattered and the mirroring of the stepped stress program becomes less clear.
For both methods, implementing the moving-reference trace method (equation (3)) limits estimates to small
changes in velocity, for which CWI remains accurate, to obtain an overall estimate in ΔV∕V that shows
a much clearer stepped response. This suggests that the moving (or periodically updated) reference trace
method can account for the more extreme changes that occur in the medium. There is no prescribed value
for how frequently the reference trace should be updated (k in equation (3)), as it depends on the rate of

Figure 10. Example waveforms to illustrate the picking procedure for the first break method. (a) Full recorded signal
using Glaser-type sensors sensitive to displacement normal to the sensor face. (b) First-arriving waves: The first
maximum is manually picked as the arrival time. (c) Full recorded signal using S wave transducers for the source and
receiver, sensitive to displacement tangential to the sensor face. (d) Manually picked first-arriving S wave maximum.
The time window used for coda wave interferometry (CWI) is labeled in panel (a).
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Figure 11. (a) Velocity change of a finely laminated carbonate rock during experimental deformation by increasing
differential stress (red), with corresponding stress values labeled on the right axis. The response of velocity (ΔV∕V),
labeled on the left axis, is estimated by the first-break method for P and S wave velocities (dashed lines) and by a coda
wave interferometry (CWI) moving-reference trace method (black). (b) A comparison of CWI algorithms, showing the
effect of implementing a moving-reference trace (equation (3)) for both the stretching and double wavelet methods.

deformation and the surveying frequency, except that it should be introduced before any changes produce a
half-wavelength change in the waveform in the latest time window. However, the strengths of CWI lie in the
ability to resolve small changes in velocity; therefore, the step size k should remain small (k = 5 for results
shown in Figure 11b, where surveys are taken every minute).

3.4. Joint Estimation of Source Separation and Velocity Change
Since CWI estimates of the bulk velocity change (ΔV∕V) and source separation (r) are derived from dif-
ferent information (the phase and the maximum value of correlation as shown in equations (2) and (9),
respectively), estimates of each can be made independently when both effects occur simultaneously. This
has significant experimental advantages, as fixed source and receiver locations might no longer be neces-
sary for continuous velocity measurements, and in deformation experiments when acoustic emissions might
accompany bulk velocity changes these two effects could be analyzed independently—all using a single
receiver.

We test the accuracy of these estimates using a series of finite-difference simulations taking a central source
location and changing the location by up to 1.2𝜆 and simultaneous velocity perturbations of up to 1%.
Figure 12a shows estimates of source separation (r) where no velocity perturbation occurs and Figure 12b
shows changes in velocity when the source remains stationary. These represent the best possible estimates
from CWI, as only one perturbation type occurs at a time. The additional errors associated with simultane-
ous perturbations of r and V are shown in Figures 12c and 12d. We see that estimates of source perturbation
are barely affected by the presence of a velocity perturbation: The stretching method of CWI removes the
effect of any velocity perturbation. However, estimates of velocity perturbation are far more sensitive to
source location perturbations, giving errors of 0.5% for a source displacement of around one wavelength (a
relatively large error given the accuracy otherwise expected from CWI). The additional error appears to stem
from the effect of cycle skipping in the cross-correlation function when changes result in the alteration of
travel times to on the order of half a wavelength.
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Figure 12. Assessing the ability of coda wave interferometry to estimate velocity changes ΔV∕V and intersource
separation r simultaneously in the presence of both velocity and source location perturbations. (a) Estimated r when
velocity is not perturbed. (b) Estimated ΔV∕V when the source location is not perturbed. (c) Estimates of r with
simultaneous velocity perturbations. (d) Estimates of ΔV∕V with simultaneous perturbations of source location.

These results also show that in the case of simultaneous perturbations of source location and velocity, source
separation can be estimated much more accurately than estimates of the change in velocity. Therefore, we
would expect that the 3-D network of relative locations of acoustic emissions that occur during deformation
can be estimated robustly using laboratory data sets even if velocity changes occur in the medium (Zhao &
Curtis, 2019; Zhao et al., 2017). This is demonstrated in the following section.

3.5. Relocating Relative Source Locations From Intersource Distance
Using the intersource distances or separations between many pairs of sources, it is possible to find the rel-
ative locations of a cluster of sources, provided that intersource distances are within the working range of
CWI . However, as we see in Figure 7, CWI provides a slightly biased estimate of these separations. The
relocation method solves for the relative location of a cluster of sources in a probabilistic framework within
which it is possible to correct this bias to a significant extent (Robinson et al., 2013; Zhao & Curtis, 2019;
Zhao et al., 2017). For one pair of events, according to Bayes' theorem,

P(𝛿t|𝛿CWI) ∝ P(𝛿CWI|𝛿t) × P(𝛿t), (15)

where the posterior probability P(𝛿t|𝛿CWI) is the probability of the true separation having value 𝛿t given
that the estimated separation from CWI is 𝛿CWI . This is proportional to the likelihood P(𝛿CWI|𝛿t) of hav-
ing observed 𝛿CWI in the case that the true separation is 𝛿t, multiplied by the prior probability P(𝛿t), which
describes any available information about event locations known prior to the location process. The likeli-
hood function P(𝛿CWI|𝛿t) describes the bias in separations estimated by CWI and can be approximated by a
Gaussian probability density function whose mean and standard deviation are described by empirical func-
tions proposed by Robinson et al. (2011). The tilde over parameters indicates that the separation quantities
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Figure 13. (a) True locations of a cluster of acoustic emissions simulated in the Tivoli Travertine μCT slice in
Figure 2b. (b) Estimated cluster locations using the conventional method of first-break arrival times and
multilateration using the receiver geometry in Figure 5a. (c) Estimated relative locations found by implementing the
coda wave interferometry (CWI)-based optimization algorithm described in Zhao et al. (2017), using the intersource
separations estimated from CWI using the same receiver geometry (note these locations have been rotated in plane to
best fit the locations in panel (b) for fair for comparison, as the optimization provides only relative locations).

are used in normalized form—they are the true values divided by the wavelength of the dominant frequency
recorded in the seismogram coda.

For multiple events, equation (15) holds for each event pair. The separation estimated from CWI for a cluster
of events can be incorporated into a joint posterior function by multiplying the formulae for all available
event pairs, assuming that they are independent of one another (Robinson et al., 2013):

P(e1, … , en|𝛿CWI) = c
n∏

i=1
P(ei) ×

n−1∏
i=1

n∏
𝑗=i+1

P(𝛿CWI,i𝑗 |ei, e𝑗), (16)

where c is a constant, n is the number of events, and ei = (xi, yi, zi) is the location of event i. Within the
last term we use the locations of the ith and jth events (ei and ej) from which we can calculate their separa-
tion 𝛿t,ij = ||ei − ej||2 (subscript 2 denotes the L-2 norm), and thus, we implicitly include equation (15). The
most probable set of the event locations can be found where the joint posterior function attains its maxi-
mum. Therefore, the event locations can be estimated by solving an optimization problem. The optimization
problem is converted to a minimization problem by taking the negative logarithm of equation (16):

−ln[P(e1, … , en|𝛿CWI)] = −ln[c] −
n∑

i=1
ln[P(ei)] −

n−1∑
i=1

n∑
𝑗=i+1

ln[P(𝛿CWI,i𝑗 |ei, e𝑗)]. (17)

A uniform prior P(ei) is considered in this work, so the terms containing ln[P(ei)] are constant, and the term
ln[c] can be ignored in the minimization problem. Thus, the objective function becomes

L(e1, … , en) = −
n−1∑
i=1

n∑
𝑗=i+1

ln[P(𝛿)CWI,i𝑗 |ei, e𝑗)]. (18)

This function can be minimized using a conjugate gradient algorithm (Press et al., 1986).

We test this location method using the TT model shown in Figure 2b, and source locations shown in
Figure 13a, simulating a cluster of 80 acoustic emissions around a fracture plane. We divided the events
into multiple subclusters with 20 overlapping event locations, where the maximum separations in each sub-
cluster remained roughly within or just outside of the working range of CWI (approximately 0.5𝜆). The
separation into subclusters can be achieved using only the pairwise separation estimates from CWI, by sort-
ing pairs of events by estimated proximity, an optimal configuration of subclusters can be found so that all
separation values are within 0.5𝜆. We therefore do not require knowledge of the true source locations for
this step in the method.

For each subcluster, we solved for the relative event locations by minimizing equation (18) using the pub-
licly available CWI-relocation code package of Zhao and Curtis (2019), taking the CWI separation estimates
as inputs. We conducted the location process five times with different randomly distributed initial event
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Figure 14. Source separation values from the estimated location clusters shown in Figures 13b and 13c, as a function
of true source separation. The dashed line shows where true separation estimates would lie. CWI = coda wave
interferometry.

locations to ensure convergence to the global minimum of the objective function (equation (17)). The opti-
mizations all converge to the same minimum to within trivial numerical differences. Receiver locations
follow the same configuration as shown in Figure 5a. Since absolute event locations remain unknown in this
method, we then rotate and translate the resulting subclusters to match locations of the overlapping sources.
For comparison, we also performed the conventional method for locating sources, using manual phase
picking of first-break (first extremum) arrivals for multiple receivers, and multilateration (equation (14)) to
estimate locations of sources. The results of multilateration and CWI relocations are shown in Figures 13b
and 13c, respectively, in order to cluster events.

We note immediately that the cluster of events from multilateration in Figure 13b is rotated by 45◦ relative to
the true locations due to velocity heterogeneity in the sample. Since CWI only provides relative locations, the
cluster of CWI location in panel (c) has been rotated to best match the results in panel (b) for fair comparison.
The spatial area of events in panel (c) appears to be more rectangular (like the true shape of the area in
panel (a)) than the area in panel (b). Nevertheless, it is difficult to decide which of Figures 13b and 13c
is better from these plots alone so Figure 14 shows the source separation values of these two clusters as a
function of true source separation normalized by wavelength 𝜆. This highlights the improvement of accuracy
and precision offered by the CWI source relocation procedure. It is also important to note from Figure 14
that using the subcluster matching methods, the overall source network size can extend well beyond the
usual working range of CWI and the source-separation bias can be largely corrected, providing there are
overlapping sources between subclusters.

3.6. Sensitivity to Noise
In order to test the ability of CWI to estimate changes in velocity and in source or receiver location when
using noise-contaminated data, we generate a synthetic record of noise, which is superimposed onto the
numerically simulated signals used above. We generate realistic noise as follows: (1) Measure a long noise
record in the Edinburgh rock physics laboratory, and process it to create a record of demeaned and detrended
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Figure 15. (a) Residuals between true and estimated velocity change (ΔV∕V) as a function of signal-to-noise ratio. (b)
Residuals between true and estimated source displacement r∕𝜆 as a function of signal-to-noise ratio. CWI = coda wave
interferometry.

seismic noise. (2) Take the Fourier transform of the noise recording, and smooth the record in the Fourier
domain to ensure there are no spectral gaps (frequency bands without noise). (3) Convolve the resulting
spectrum with a sample of random Gaussian white noise so that generated noise is uncorrelated and trans-
form back into the time domain. The resulting signal is therefore a randomly generated recording of realistic
noise, which can be superimposed on the effectively noiseless waveforms generated from synthetic finite
difference simulations. The signal-to-noise ratio (SNR) is calculated as SNR = Psignal∕Pnoise, where P is the
average power. We add the noise at different SNR values to a range of numerically simulated signals where
the velocity has been perturbed from 0% to 10% and where the source location is perturbed by 0.01𝜆. Esti-
mates of the range of velocity perturbations are calculated using CWI, as well as by using conventional
phase-picking methods for each level of noise contamination. For the phase picking of first arrivals, we use
automatic methods (STA/LTA method described by Earle & Shearer, 1994) as well as manually picking the
time of the first extremum. These estimates are shown for low noise contamination (SNR = 8) and high
noise contamination (SNR = 0.43) in Figure 15. The total error at each SNR value, calculated as the sum of
residuals of each estimate to the true ΔV∕V value, is shown in Figure 16a. We find that at high SNR values,
all estimates for ΔV∕V show a clear response to the increasing velocity perturbation, though CWI estimates
are over an order of magnitude more accurate. At low SNR values, conventional methods based on phase
picking show much more scatter in the estimates of ΔV∕V, whereas CWI is much more precise and is mostly
unaffected by the increased contamination of noise. The first-break arrivals are of lower amplitude and are

Figure 16. Residuals of estimated ΔV∕V from coda wave interferometry (CWI), and from travel times obtained by
autopicking and manual picks, estimated at (a) signal-to-noise ration (SNR) = 8 and (b) SNR = 0.43 and plotted as a
function of the true velocity change.

SINGH ET AL. 5647



Journal of Geophysical Research: Solid Earth 10.1029/2019JB017577

therefore more susceptible to contamination by noise, whereas CWI uses the entire signal, including many
more data points, and is therefore more robust in the presence of noise.

For estimation of source separation in the presence of noise (see Figure 16b), the absolute locations of
sources within a small cluster were estimated by multilateration by assuming a constant, isotropic P wave
velocity. However, because CWI does not provide absolute source locations but instead gives the separation
between two sources, r, we estimate the separation r between pairs of absolute locations from multilatera-
tion for comparison. We compare this to the r estimate from CWI for each pair of sources and plot the sum
of individual residuals for all source pairs and for each method in Figure 16. We find that at all SNR values
CWI outperforms multilateration, particularly at high levels of noise. These results show that CWI is a more
robust way to characterize changes in a medium's velocity or in relative source locations in the presence of
noise. Since no phase picking is necessary for CWI, this also means that less preprocessing of data is required
before analysis. CWI requires the computation of many cross-correlation functions, therefore can be com-
putationally expensive compared to conventional methods; however, we have demonstrated this method to
offer significant improvements in both accuracy and precision.

4. Estimating Individual P and S Wave Contributions to CWI Observations
The results from CWI only provide a measure of the change in velocity and not the absolute velocity itself.
In itself this is not of particular concern since in many real-world problems, such as those relating to the
interpretation of 4-D seismic data, we seek to characterize the dynamic dependence of velocity on changes
in external properties (Landrø & Stammeijer, 2004). However, ΔV/V estimates from CWI are more difficult
to interpret than separate estimates of VP and VS that are obtainable from conventional methods. Given
an estimate of density, estimates of VP and VS allow bulk and shear moduli to be estimated, and these are
parameters that appear in the majority of rock physics models. CWI estimates ofΔV∕V reflect a combination
of P wave and S wave velocity information due to the multiple phase conversions that occur during wave
propagation.

To aid the interpretation of CWIΔV∕V estimates, consider the scattering model presented by Snieder (2002),
which assumes isotropic point scatterers inside a constant velocity medium. This model represents P and S
wave states as many packets of energy traveling with velocities VP and VS. A packet can only be in one state
at a given time. When a packet of P energy travels distance a (the average distance between scatterers), it has
a probability pPS of converting to an S state; likewise, a packet of S energy has a probability pSP of converting
to the P state. Over a time interval dt, a packet in the P state encounters VPdt∕a scatterers, meaning that in
a system with NP and NS packets in the P and S states, the reduction in P packets due to P-to-S conversions
is given by −2pPSNPVPdt∕a and the increase due to S-to-P conversions is given by pSPNSVSdt∕a. Following
from this, Snieder (2002) derives the following system of differential equations:

.
NP = 1

a
(pSPVSNS − 2pPSVPNP), (19)

.
NS = 1

a
(2pPSVPNP − pSPVSNS), (20)

where the dot over NP and NS on the left side indicates a rate of change over time. Now consider a receiver
not colocated with the source, at which the time of first-arriving energy in the signal is comprised of only P
state energy. After this time the proportions of P and S wave energy can be calculated using equations (19)
and (20), and therefore so can the proportions of changes in P wave velocity (ΔVP∕VP) and S wave velocity
(ΔVS∕VS). The way in which these proportions of ΔV∕V vary as a function of time is shown in Figure 17. For
time values to be independent of the scattering properties of the medium, time is normalized by the travel
time of one mean free path (𝜏P = lP∕VP), where the mean free path lP is defined as lP = a∕(2PPS). In practice,
the mean free path of a scattering medium can be estimated from the apparent attenuation of energy in
recorded signals (Anugonda et al., 2001; Obermann et al., 2013). Figure 17 shows how the proportions of
ΔVP∕VP and ΔVS∕VS change depend on the VP∕VS ratio. At equilibrium, the proportion of ΔVS∕VS is higher
than ΔVP∕VP, even at very low VP∕VS ratios (Figure 17a), explained by S having two states (S1 and S2, which
represent the two polarizations of S waves) where P only has one state. As VP∕VS increases, so does the
proportion of ΔVS∕VS at equilibrium, as energy in S waves is traveling more slowly than P waves and so
spend more time in that state before encountering scatterers.
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Figure 17. Relative proportions of the changes in P wave velocity (ΔVP∕VP) and S wave velocity (ΔVS∕VS), which
contribute to the change in velocity estimated from coda wave interferometry (ΔV∕V) as a function of time along the
coda, using equations (19) and (20) taken from Snieder (2002). Multiple relations are shown for media of varying
VP∕VS ratios: (a) VP∕VS = 1, (b) VP∕VS =

√
3, and (c) VP∕VS = 3. Time is normalized by dividing time t by the transit

time of one mean free path (𝜏P = lP∕VP).

We can use this model to estimate the independent changes of P and S wave velocity. Define q(t, 𝛾) to be the
relative contribution of ΔVS∕VS (the red curves in Figure 17), where 𝛾 = VP∕VS. The function q depends
on time t and on the VP∕VS ratio 𝛾 , and the relative contribution of ΔVP∕VP (blue curves in Figure 17) is
1 − q(t, 𝛾). If P and S wave velocities change by different amounts, the measured change in velocity from
CWI [ΔV∕V]CWI therefore varies as a function of time along the coda by[ΔV

V

]
CWI

(t) = [1 − q(t, 𝛾)]
[
ΔVP

VP

]
+ q(t, 𝛾)

[ΔVS

VS

]
. (21)

For a single time window, this equation has two unknown parameters, ΔVP∕VP and ΔVS∕VS; the value of
[ΔV∕V]CWI can be measured and q(t, 𝛾) is known (from Figure 17). Measuring [ΔV∕V]CWI in multiple time
windows along the coda therefore gives multiple equations, the same number as there are time windows.
Quantities ΔVP∕VP and ΔVS∕VS can be estimated using an ordinary least squares inversion approach to
solve the system: d = Am, where d is a matrix of measured values of [ΔV∕V]CWI for each time window and A
is matrix of (1−q) and q values expected at each time window for a given VP∕VS ratio 𝛾 . The resulting vector
m contains estimates of ΔVP∕VP and ΔVS∕VS for a given VP∕VS ratio, and we denote these estimates by
[ ̂ΔVP∕VP]𝛾 and [ ̂ΔVS∕VS]𝛾 , respectively. Clearly, in order to estimate the changes of VP and VS independently,
we need to be able to estimate 𝛾 = VP∕VS.

One way to estimate 𝛾 would be to use the conventional experimental method to estimate VP and VS, but as
we have shown herein, those methods are less accurate than CWI for subtle changes in the medium, so it is
desirable to find alternative methods. As Figure 17 shows, values for q(t) can vary significantly depending on
the VP∕VS ratio. We can therefore refine estimates of ΔVP∕VP and ΔVS∕VS within a probabilistic framework,
using a statistical distribution of VP∕VS ratios rather than a single value. We illustrate this by compiling a
database of 296 measured VP∕VS ratios for dry carbonates combining data from Bakhorji (2010), Fournier
et al. (2011), and Verwer et al. (2008). These data are selected purely as a demonstration of how such a
distribution could be used; in practice, such a distribution should be refined as the database contains samples
with a large range porosities, pore structures, and measurements at different confining pressures, only some

SINGH ET AL. 5649



Journal of Geophysical Research: Solid Earth 10.1029/2019JB017577

Figure 18. (a) Prior distribution of VP∕VS ratios from measured dry carbonate data compiled from Bakhorji (2010),
Fournier et al. (2011), and Verwer et al. (2008). The curve shows the best fitting normal distribution function of the
histogram. (b) Synthetic [ΔV∕V]CWI data generated using equation (21), where ΔVP∕VP = 1%, ΔVS∕VS = 0.5%, and
𝛾 =

√
3). (c) Estimated [ ̂ΔVP∕VP]𝛾 and [ ̂ΔVS∕VS]𝛾 from an ordinary least squares inversion of the forward modeled

[ΔV∕V]CWI data in panel (b), as a function of the VP∕VS ratio used in the inversion. (d) and (e) show the probability
density functions (solid blue lines) for estimates of ΔVP∕VP and ΔVS∕VS, where the dashed red lines represent the true
changes in velocity (ΔVP∕VP = 1%, ΔVS∕VS = 0.5%), using samples from prior distribution in panel (a) and equations
(22) and (23).

of which would be relevant for our rock type or volume of interest. From the carbonate database, we create
a prior distribution of VP∕VS ratios 𝛾 for carbonate rocks Pcarb(𝛾), shown in Figure 18a. In order to test the
method, we also calculate synthetic [ΔV∕V]CWI data using equation (21) with a change in P wave velocity
of 1%, a change in S wave velocity of 0.5%, and a VP∕VS ratio equal to

√
3 (ΔVP∕VP = 1%, ΔVS∕VS = 0.5%,

𝛾 =
√

3), which gives [ΔV∕V]CWI as a function of time (Figure 18b). The method then proceeds as follows:
Using the generated [ΔV∕V]CWI data and the known values for q(t, 𝛾), we invert for [ ̂ΔVP∕VP]𝛾 and [ ̂ΔVS∕VS]𝛾
for a range of values of VP∕VS ratios (𝛾), shown in Figure 18c. However, given the knowledge that the sample
is a carbonate, not all of these values are equally likely. We should therefore weight this set of solutions by
the probability P that each VP∕VS ratio is the one in our sample—represented by the probability distribution
in Figure 18a. Thus, we can generate probability density functions for estimates of ΔVP∕VP and ΔVS∕VS
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with the following equations:

P
(
ΔVP

VP

)
= ∫

𝛾∈R𝛾

𝛿

(
ΔVP

VP
−

[
̂ΔVP

VP

]
𝛾

)
· Pcarb(𝛾)d𝛾, (22)

P
(ΔVS

VS

)
= ∫

𝛾∈R𝛾

𝛿

(
ΔVS

VS
−

[
̂ΔVS

VS

]
𝛾

)
· Pcarb(𝛾)d𝛾, (23)

where R𝛾 is the prior range of VP∕VS ratios 𝛾 . In the case where ΔVP∕VP = 1% and ΔVS∕VS = 0.5%, the
resulting probability distributions for changes in P and S wave velocities are shown in Figures 18d and
18e. For both changes in P and S wave velocity, the method accurately estimates the velocity change. The
probability distribution change in P wave velocity ΔVP∕VP is relatively precise, with almost all estimates
within ±0.01% of the true value for velocity change. The distribution of change in S wave velocity has a
wider spread, though still significant precision when compared to standard methods, with the majority of
estimates within ±0.03% of the true velocity change. From this we can see that it is possible to estimate
independent changes in P and S wave velocity using CWI given the statistical distribution of VP∕VS ratios
for a rock type, and with the assumption of isotropic scattering.

5. Discussion
We have demonstrated that under the conditions examined here, using CWI for experimental applications
can provide significant improvements over conventional methods, particularly in the accuracy and precision
of estimates of changes in velocity and source location.

An important aid in the interpretation of CWI estimates is an understanding of the type of spatial average of
material parameters that is implicit in CWI estimates. To examine this, a numerical experiment is conducted
using the μCT derived velocity and density models of the TT (Figure 2a). The fluid velocity (initially 1,500
m/s) is perturbed by a range of values (up to a +10% perturbation), and CWI is used to estimate the velocity
perturbation of the bulk medium. As the exact amount of calcite and pore fluid phases is known, as well as
their properties, the change in the average properties of the medium can be calculated with various averaging
methods. Here we use the Voigt upper bound MV (Voigt, 1928):

MV =
N∑

i=1
𝑓iMi, (24)

and the Reuss lower bound MR (Reuss, 1929):

1
MR

=
N∑

i=1

𝑓i

Mi
, (25)

where fi is the volume fraction of the ith phase and Mi is the elastic modulus of the ith phase; M can represent
the bulk modulus K or the shear modulus 𝜇. We also use the Voigt-Reuss-Hill average (Hill, 1952) [MV +
MR]∕2, and the Hashin-Shtrikman bounds (Hashin & Shtrikman, 1963):

KHS± = K1 +
𝑓2

(K2 − K1)−1 + 𝑓1(K1 +
4
3
𝜇1)−1

, (26)

𝜇HS± = 𝜇1 +
𝑓2

(𝜇2 − 𝜇1)−1 + 2𝑓1(K1 + 2𝜇1)∕[5𝜇1(K1 +
4
3
𝜇1)])

, (27)

where the subscripts 1 and 2 refer to the two phases in the medium and the upper and lower bounds are
computed by interchanging, which phase is termed 1 and 2 (Mavko et al., 2009). The Reuss lower bound
is equal to the Hashin-Shtrikman lower bound when one of the constituents is a liquid with zero shear
modulus. We calculate the various averages taking the bulk and shear moduli to be Kcalcite = 129.53 GPa,
𝜇calcite=35 GPa, Kfluid = 2.25 GPa, and 𝜇fluid = 0. A comparison of how these different measures spatially
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Figure 19. (a) Calculated average velocity for the Tivoli Travertine digital rock sample following multiple perturbation
of fluid velocity. The medium velocity is calculated using a range of bounding methods including the Voigt upper
bound, Reuss lower bound, the Voigt-Reuss-Hill average, and the Hashin-Shtrikman upper bound (HS+); see Mavko et
al. (2009). The velocity is also estimated using the first break method on a central receiver (black). (b) The change in
bulk velocity (ΔV∕V) as a function of fluid velocity perturbation, calculated with the multiple averages. The dotted
black line is the estimate of velocity change (ΔV∕V) attained using CWI.

average the medium is shown in Figure 19. Of the different methods used, the Reuss lower bound shows
the closest estimate to the measured first break velocity in Figure 19a, and of the CWI estimates for velocity
change in Figure 19b.

The use of CWI estimates in current rock physics protocols is therefore possible because the appropriate
information required for many rock physics models is available: the relative proportions of P and S wave
velocity changes (Figure 18) are obtainable given prior knowledge of VP∕VS ratios of the medium (based
for instance on rock type as in the example above), and we can infer how CWI averages the bulk velocity
change properties of a medium spatially (Figure 19).

The method of CWI used here (equation (1)) is known as trace stretching and has some underlying assump-
tions and limitations. Namely, it assumes that the velocity perturbation is uniform across the entire medium
so that all arriving energy is perturbed at the same temporal rate, and therefore, the trace is stretched linearly
in time along the seismogram. Mikesell et al. (2015) provide a comparison of different methods to estimate
changes in velocity for CWI and suggest a dynamic time warping method as a solution for inhomogeneous
velocity perturbations.

As we have shown, CWI is able to resolve both changes in velocity and changes in source and/or receiver
locations, allowing for the estimation of relative source locations. However, CWI is also able to resolve
another type of perturbation on which we have not focused: the average displacement of all scatterers, 𝛿,
illustrated in Figure 1c (Snieder et al., 2002). This value is related to the variance of travel time perturbations
by

𝜎2
𝜏
= 2𝛿2t

vl⋆
, (28)

where l⋆ is the transport mean free path. It would be interesting to monitor how this parameter varies dur-
ing experimental rock physics and geomechanics experiments. For example, it may be possible to monitor
changes in the average distance between scattering points, which could act as a proxy measure for interpore
distance, itself a strong control on the time of failure (Vasseur et al., 2017). During the confining or vary-
ing of fluid pressure in an isotropic sample, scattering points would be displaced in all directions, and this
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displacement might be measured by CWI. Similar effects occur at reservoir scale where fluid injection or
extraction can lead to seismically observable volumetric expansion of the reservoir. We leave this for future
research.

Most of the numerical experiments presented here assume a high-frequency regime as well as point sources
and receivers. In one experiment where we lowered the frequency of by more than an order of magnitude,
we did not observe any significant differences in the method. Nevertheless, another area for the development
of the CWI method is to investigate the dependence of CWI results over a broad range of frequencies, and
using much larger aperture transducers such as those modeled by Li et al. (2018). We leave this for future
research.

6. Conclusion
Conventional first-break methods based on manual phase-picking provide an estimate of seismic velocity
that is not representative of the bulk medium in a high-frequency regime with point sources and point
receivers. Such estimates of seismic velocity, changes in velocity, and source location are highly variable
even for a single sample and depend on the specific source/receiver path of the first-arriving wave. They are
therefore inadequate for characterizing the bulk properties of a rock sample, particularly those with compli-
cated pore structures approximately similar size to the wavelength of the interrogating waves. By contrast,
CWI is an effective method for countering these problems because coda waves sample the entire medium,
and sample the same regions multiple times. CWI is shown to provide an increase in precision by an order
of magnitude in the absence of noise and to be a robust and accurate method for estimating both bulk veloc-
ity changes and perturbations of the source or receiver locations when compared with standard methods in
both synthetic digital rock physics and laboratory experimental data. When noise is present, CWI remains
far more accurate than conventional methods, even at very low signal-to-noise ratios. Additionally, when
velocity and source/receiver location perturbations occur simultaneously, CWI can still estimate velocity
and source separation under some conditions: Source separation estimates are mostly unaffected by the
velocity perturbation, but velocity change estimates are much more sensitive and become inaccurate in the
presence of larger source perturbations, possibly due to cycle skipping. Using source separation estimates,
relative locations of a cluster of sources can be estimated using a single receiver and show higher precision
and accuracy compared to conventional methods. CWI estimates a combination of changes in both P and S
wave velocities, and we demonstrate a model for the equilibration of the contributions from P and S waves
as a function of time and show how the independent changes in P and S wave velocity can be measured,
given probabilistic a priori information about the VP∕VS ratio. Overall, these results show significant poten-
tial for the use of CWI to characterize changes in porous media undergoing changes in effective stress and
strain, and in temperature.
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