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ABSTRACT

Shear zones and competent layers and boudins represent viscosity heterogeneities within the rock

mass. Differences in viscosity impel differences in strain rates between the background material and the

heterogeneities. In this work, we represent the viscosity heterogeneities as elliptical inclusions. We use

the  Kolosov-Muskhelishvili  equations  for  the  incompressible  viscous  flow problem in  and  around

elliptical inclusions. Systematic investigation of the stress equilibrium at the matrix-inclusion interface

shows  that  the  mean  stress,  equivalent  to  the  total  pressure,  is  not  continuous  across  viscosity

boundaries. The results predict that pressure and stress perturbations depend strongly on the orientation

of the elliptical heterogeneity with respect to the far-field stresses. A viscosity ratio of 10 between the

inclusion and the surrounding material is sufficient to produce pressure discontinuities approximately

equal to the magnitude of the effective shear stress of the strongest rock under the considered physical

conditions. Comparison of the analytical solutions with thermo-mechanical models confirms pressure

incongruity and suggests  that  dynamic parameters such as pressure and effective shear  stress vary

spatially and temporally within deforming, two-viscosity rock systems. As a corollary, the dependence

of metamorphic phase equilibria on thermodynamic pressure implies that shear zones, taken as weak

inclusions,  and  boudins,  taken  as  hard  inclusions,  may  record  non-lithostatic  pressure  during

deformation.



INTRODUCTION

The advent of geothermobarometry from metamorphic phase equilibria (e.g. Perchuk, 1991) has led

to the quantitative determination of pressure and temperature (P-T) histories of metamorphic rocks. As

a  first  approximation  the depth-of-burial  of  metamorphic  rocks  is  estimated  from the Archimede’s

formula. This formula is derived from the stress balance of static fluids under the influence of gravity

and relates pressure with depth via:

P lith=ρgh (1)

where Plith is the lithostatic pressure, ρ is the density of the considered material, g is the acceleration of

gravity  and  h is  the  height  of  the  hydrostatic  (lithostatic  for  rocks)  column (depth).  Stresses  that

develop during deformation can affect the value of pressure. In that case, pressure deviates from the

lithostatic pressure state in a positive (over-pressure) or negative (under-pressure) manner. 

Several studies have already argued that the pressure recorded by the metamorphic minerals could

significantly  differ  from  the  lithostatic  pressure  (e.g.  Clark,  1961;  Jamieson  1963;  Petrini  and

Podladchikov, 2000; Mancktelow, 2008). This pressure deviation is directly related to the mechanical

state of the deforming rocks. This long-existing concept has been repeatedly disputed. Considering the

mechanical properties of rocks, several studies have suggested that the magnitude of pressure deviation

from the lithostatic value is small,  almost insignificant because rocks are weak and the differential

stress that controls natural deformation is low (Brace et al., 1970; Burov et al., 2001; Jolivet et al.,

2003). Actually, Brace et al. (1970) reported GPa-level differential stresses ranging from 0.2 to ca 1.1

GPa from the Franciscan rocks; yet, they rejected their experimental result on the assumption that,

under  geological  conditions,  the presence of fluids,  the low strain rates and the high temperatures

reduce  the  strength  of  rocks.  There  are  reasons  to  believe  that  this  may  not  be  the  case.  Recent

experiments suggest that GPa-level of stresses can be supported by the weakest high-pressure phase

(omphacitic  pyroxene)  when  extrapolated  to  geological  conditions  (Moghadam  et  al.,  2010).  In

addition recent  numerical  models (Schmalholz and Podladchikov,  2013) suggest  that  low viscosity

zones may develop significant over/under pressure despite their low effective shear stress.

Finite strain recorded in viscously deformed rocks does not suffice to provide information regarding

the magnitude and orientation of stress which occurred during deformation. Without this information,



estimates of dynamic variables, such as pressure and effective shear stress, cannot be made. In order to

investigate the correlation between effective shear stress and mean stress during viscous deformation,

we  employ  the  Kolosov-Muskhelishvili  analytical  solution  for  slow,  incompressible  viscous  flow

(Kolosov, 1909; Muskhelishvili, 1953). We used the analytical solution of Schmid and Podladchikov,

(2003) and applied this solution to viscous heterogeneities under various geometrical configurations.

Viscous heterogeneities are treated as elliptical inclusions. Results are compared with those of thermo-

mechanical  models  with  more  complex  temperature-dependent  rheologies  (Schmalholz  and

Podladchikov, 2013). The comparison allows verifying that the classical analytical solution is relevant

to geological applications and shows that pronounced pressure departures from lithostatic can develop

due to viscosity heterogeneities. This work indicates that (1) the viscosity contrast and aspect ratio

control the magnitude of the pressure difference and (2) the inclination of the inclusion with respect to

the  bulk compression  direction controls  the spatial  distribution  of  pressure.  Both weak and strong

inclusions can develop large pressure variations depending on geometrical and rheological factors.

These analytical results applied to geological cases such as low-viscosity shear zones and highly

viscous  boudins  suggest  that  the  viscosity  heterogeneities  they  represent  in  nature  cause  pressure

deviations from the lithostatic value. The pressure differences can reach the order of GPa when the

strength of the rocks is taken into account. Hence, it is concluded that the pressure recorded by syn-

deformation metamorphic parageneses may be misleading for depth estimates.

TERMINOLOGY: EFFECTIVE SHEAR STRESS, MEAN STRESS, 
PRESSURE AND THERMODYNAMIC PRESSURE

In this work we estimate dynamic parameters such as the effective shear stress and pressure. The

effective or maximum shear stress (τ) is (Nadai, 1950, p. 95):

τ=√( (σ xx )tot− (σ yy )tot
2 )

2

+(σ xy )tot
2 (2)

where (σij)tot are components of the total stress tensor; stress components (σ ij)tot are taken as positive in

extension to follow classical convention in continuum mechanics, knowing that a sign inversion does

not affect the essence of results. The differential stress (σd) is the difference between the largest and

smallest principal stresses (σ1 and σ3 where σ1 > σ2 > σ3) and the relation between σd and τ is (e.g.



Nadai, 1950, p. 95):

σd=2 τ (3)

Mean stress is synonymous to pressure. Considering viscous flow in two dimensions the total pressure

equals (Timoshenko and Goodier, 1951):

P tot=
− (σ xx )tot+(σ yy )tot

2
(4)

The total pressure is positive in compression. When deforming geomaterials are considered, the total

pressure can be decomposed into a lithostatic (from the influence of gravity) and a dynamic (tectonic

over/under pressure) component.

Different views have been expressed on which pressure is actually recorded by metamorphic phase

equilibria (i.e. the thermodynamic pressure). Fluid pressure, mean stress and local normal stresses at

the surface of minerals have been suggested to be the controlling factors of thermodynamic equilibrium

(e.g. Paterson, 1973; Dahlen, 1992; Llana-Fúnez et al., 2012). These three values are not expected to

deviate significantly from the lithostatic pressure where differential stress is low. On the other hand, if

the differential stress is large, then fluid pressure, mean stress, and local normal stress may range so

widely  that  they  can  affect  the  thermodynamic  phase  relations  (e.g.  Hirth  and  Tullis,  1994).

Quantifying the potential variations in pressure can therefore test the validity of the pressure to depth

translation which is important for geodynamic reconstructions. 

METHODS

Muskhelishivili’s method (Muskhelishvili, 1953) utilizes complex variables to solve the bi-harmonic

equations  for  plane-strain  or  plane-stress  elasticity  problems.  In  geology  plane  strain  is  usually

considered as a reasonable approximation to problems where most of the displacements occur in a

single plane. Mathematically, the all-viscous solution is identical to the all-elastic solution (Goodier,

1936). The main difference between the two solutions is that the elastic shear modulus is replaced by

viscosity  and elastic  strain  is  replaced by strain  rate.  For  the  all-viscous deformation,  we use  the

Kolosov-Muskhelishvili  equations  as  implemented  by  Schmid  and  Podladchikov  (2003).  We  vary

geometrical  parameters  such as  the  inclination  (α)  and  the  aspect  ratio  (κ)  of  a  viscous  elliptical

4



inclusion embedded in a viscous matrix. We consider different viscosity ratios between the inclusion

and the matrix (μi/μm). The angle between the principle axis of the ellipse and direction of compression

is denoted via α (Fig. 1). All the previous parameters are sufficient to calculate the mean stress (P), the

effective shear stress (τ) and the local orientation of the maximum compressive stress (ω) of the viscous

problem. The angle ω is the inclination of this stress with respect to the far-field maximum compressive

stress (which is horizontal; Fig.1). θ is the variable angle between the normal to the inclusion-matrix

interface and the horizontal. This angle is required to parametrize the matrix effective shear stress and

pressure at the interface on the matrix side. Superscripts i and m are used to discriminate between

inclusion and matrix, respectively. The subscript ffs will denote far-field conditions (e.g. Pffs stands for

far-field mean stress).

Fig. 1. Sketch illustrating the angle convention used in this study. Angles are measured counter-clockwise from

the horizontal far-field-compressive stress (arrows).

ANALYTICAL SOLUTION AND COMPARISON WITH NUMERICAL 
RESULTS

Reducing the number of controlling parameters

The analytical solution gives mathematical expressions for homogenous stress and pressure fields in

a  viscous  medium without  inclusion  and  for  stress  and pressure  perturbations  due  to  an  elliptical

inclusion in its viscous matrix. The two stress states are additive and the analytical solutions for the



perturbations are insensitive to the mechanism responsible for the background homogeneous state (e.g.

lithostatic load). Perturbation of the pressure for matrix or inclusion is formally equal to:

P=Ptot −P ffs (5)

Similarly, stress components are:

σ xx=(σ xx )tot−P ffs (6)

σ y y=(σ yy )tot −P ffs

but

σ xy=(σ xy )tot

The far-field boundary condition is a homogeneous stress state with zero mean stress. The choice of

the principal stress directions as coordinate system eliminates the shear stress components and leaves

τffs as the only parameter needed to identify the stress field. The far-field stress tensor is: 

σ ffs=(− τ ffs 0
0 τ ffs

) (7)

The pressure and stress perturbations are linearly proportional to the magnitude of τ ffs. Therefore, we

normalize the solutions to τffs. The total pressure can be recovered as:

P tot=
P
τ ffs

τ ffs+P ffs (8)

The solution for a completely arbitrary stress state can be obtained by adding a value of the far field

mean stress to the analytical solution for the stress perturbation and by rotating the coordinate system.

Analytical solution and Mohr circle representation

The calculations were performed for a weak (less viscous; Fig. 2) and a strong (more viscous; Fig. 3)

inclusion, each at four orientations. Results are displayed as color maps of the pressure field (Figs. 2

and 3). Stress Mohr circles document the pressure (P: center of the Mohr circle) and the effective shear
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stress (τ: radius of the Mohr circle) supported by the inclusion and the surrounding matrix. The far-field

effective shear stress to which all calculations are normalized (τffs) becomes in this representation a

circle  with  unit  radius  centered  on  the  origin.  The  convention  followed  for  the  Mohr-circle

representation is that compressive stress is positive (e.g. Means, 1976). 

The usage of Mohr circles illustrates how and why pressure differentials develop. Mohr circles of

each  material  have  different  radius  because  materials  have  different  viscosity,  therefore  different

effective  shear  stress  (τ).  The  intersection  of  the  related  Mohr  circles  defines  the  plane  of  stress

equilibrium between the two considered materials. In that case, the centers of the Mohr circles do not

coincide (e.g. Fig. 3b), which pictures the difference in mean stress (and therefore pressure, P) in each

material.



Fig. 2. Stress distribution in and around a weak viscous inclusion in a viscous matrix. Left panes show pressure

of solutions with orientations (α) at 0° (a), at 30° (b), at 60° (c) and at 90° (d) from the compressive far-field

stress (converging arrows). Parameters are: κ=3, and μi/μm = 0.1. Mohr circles computed using the stress defined

at the location of the solid dot identified on the interface between the inclusion and the matrix. The horizontal

axis in the Mohr diagrams represents the normalized normal stress (σN) and the vertical  axis represents the

normalized shear stress (σs) that can develop on any arbitrary plane passing from the considered material points.
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Fig. 3. Same as Fig. 2 but for a strong viscous inclusion (μi/μm = 10).

Main results

Taking the inclusion orientation (α) as an independent parameter, the distinction between pure or



simple shear is redundant. It can be expressed through a mere rotation by 45º of the coordinate system

(c.f.  Schmid  and  Podladchikov,  2003).  The  results  show that  the  dynamic  variables  (P,  τ,  ω)  are

constant within the viscous inclusion but vary in the matrix (Figs. 2 and 3). The pressure P inside a

weak (less viscous) inclusion is positive for 45º<α<90º and becomes negative for 0º <α<45º (Fig. 2).

Pressure P has the opposite behavior if a strong viscous inclusion is considered (Fig. 3). 

Consistency test

We compare the analytical results with results from the numerical simulations of Schmalholz and

Podladchikov,  (2013).  This  comparison  tests  the  relevance  of  our  results  for  more  complex,

temperature-dependent nonlinear rheology and for weak zones that are imperfect elliptical inclusions

(Figs. 4, 5). Schmalholz and Podladchikov, (2013) obtained a self-localizing, finite shear zone inclined

at 60º (α=120° based on the convention followed here) from the bulk shortening and propagating from

a small viscous, circular seed. They calculated similar dynamic parameters as in this work: tectonic

overpressure, effective shear stress and maximum-compressive-stress orientation at any point of their

model.

10



Fig. 4. Second stress invariant (a) and deviation from lithostatic pressure (c) during lithospheric shortening after

Schmalholz and Podladchikov (2013). X/hc and Y/hc represent the width and the height of the model normalized

to the initial thickness of the crust (hc). Comparison of similar dynamic parameters from our analytical solutions

(b, d). Note that in two dimensions the second stress invariant (τ ΙΙ) and the effective shear stress (τ) are equal.

Parameters in b and d are κ=3, α=120°, μi/μm = 0.1. 



Fig. 5. Detail framed in Fig. 4.a, b, c, d same as in Fig. 4. e) Maximum-compressive-stress orientation (ω) from

the numerical results of Schmalholz and Podladchikov (2013). f) Maximum-compressive-stress orientation (ω)

from the analytical solution (κ=3, α=120°, μi/μm = 0.1).
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Schmalholz  and  Podladchikov  (2013)  calculated  the  second  stress  invariant  τII.  Our  analytical

solution  calculates  the  effective  shear  stress  (τ,  Eq.  2).  In  two  dimensions,  these  two values  and

formulation are mathematically identical. Schmalholz and Podladchikov (2013) used Po to describe the

deviation from the lithostatic pressure. 

Po=Ptot −Plith (9)

This formulation has the caveat that the far-field mean stress Pffs, which we use (Eq.5), may not be

equal to the lithostatic pressure Plith. Moreover, Schmalholz and Podladchikov normalized all pressure

and stresses to the pressure at the Moho,  σc, whereas we normalized to  τffs. Owing to these different

scaling factors, we focus on similarities between P and Po patterns but not on the magnitudes of these

pressures. This focus is also valid for our calculated τ and the τII of  Schmalholz and Podladchikov,

(2013). Comparing a shear zone to a weak, elongated inclusion,  our analytical solution reproduces

remarkably well  their  patterns of effective shear stress (τ,  Fig.  4 a and b) and tectonic over/under

pressure (Po and P, Fig. 4 c and d). 

Τhe angle ω (Fig. 5e and f) displays the same consistency. An aspect ratio of three (κ=3) was chosen

for our analytical solution. This value was estimated as a lower bound for the shear zone (low effective

shear stress zone Fig. 5a) of the numerical results. Higher aspect ratios would amplify the stress and

pressure magnitudes  but  would not significantly alter  their  distribution,  as  shown in the following

section.  This  application  demonstrates  the  applicability  of  our  results,  even  for  more  complex

rheological systems.

SYSTEMATIC INVESTIGATIONS

Inclusion behaviour 

A striking peculiarity of the analytical solution is the constant pressure (P) and effective shear stress

(τ) within the inclusion. Accordingly, the inclusion behaviour can be described by a single value for

effective shear stress (τi), pressure (Pi) and maximum-compressive-stress orientation (ωi). 

The pressure inside the viscous inclusion is given by the formula:



Pi

τ ffs

=
( μi

μm −1) (κ2−1)

2( μ i

μm )κ+κ2+1

cos ( 2α ) (10)

that shows the dependence of the sign of the pressure perturbation on the orientation of the viscous

elliptical inclusion. 

We carried  out  systematic  calculations  in  order  to  investigate  how Pi,  τi and  ωi depend  on the

inclusion inclination and viscosity contrast (Fig. 6). P and τ within the inclusion follow a periodic

variation in accordance with the inclusion orientation. Pressure and effective shear stress have different

periodicities so that their magnitude minima and maxima do not coincide. The maximum angle ω is <

10º, which suggests small stress refraction into the inclusion.
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Fig. 6. a) Variation of pressure (Pi/τffs), b) maximum shear stress (τi/τffs)  and c) maximum-compressive-stress

orientation (ωi) within the inclusion (κ=3) as a function of orientation (α) and viscosity ratio (μ i/μm). The red

circle indicates the parameters of the inclusion shown in Figs. 5b, d (κ=3, α=120°, μi/μm = 0.1).

The  p-q  diagram  (Lambe  and  Whitman,  1968)  allows  representing  the  states  of  stress  of  the

inclusion. This diagram plots the pressure (mean stress; center of the Mohr circle) P versus the effective

shear stress (radius of Mohr circle) q (equal to τ). The advantage of the p-q diagram is that all the stress

states are described for all α. The p-q diagram was calculated for six orders of magnitude in viscosity

ratios. The resulting effective shear stress can vary by several orders of magnitude. For convenience,

we  modified  the  p-q  diagram by  normalizing  the  local  effective  shear  stress  (τ i)  to  the  maximal

effective shear stress (τi
max) of each case (Fig. 7). The plot shows that pressure P in a strong inclusion is

proportional to the effective shear stress τ. Conversely, pressure in a weak inclusion is inversely related



to the effective shear stress τ. 

Fig. 7. Modified p-q diagram describing stress states in viscous inclusions (κ=3) for different viscosity ratios

(μi/μm). 

Although Fig. 6 shows that Pi, τi and ωi vary periodically as a function of the inclusion orientation

(α), the absolute magnitude of the periodic variations is controlled by the aspect ratio of the inclusion

(κ)  and  the  viscosity  ratio  between  the  inclusion  and  the  matrix  (μi/μm).  Therefore,  for  different

inclusion inclinations (α) the amplitude (Pi
max/τffs, τi

max/τffs, ωi
max) of the sinusoidal variations (e.g. Fig. 6)

was calculated (Fig. 8). Generally, higher viscosity ratios and higher aspect ratios both amplify Pi
max,

τi
max and ωi

max.
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Fig. 8. Maximal magnitudes for all (α) (Fig. 6) of a) normalized Pressure (P i/τffs), b) normalized-effective shear-

stress (τi/τffs) and c) maximum-compressive stress orientation (ωi) within the inclusion as a function of aspect

ratio (κ) and viscosity ratio (μi/μm). The red circle indicates the inclusion of Fig. 4b, d.

Matrix behaviour

We use the direction of the vector normal to the interface (θ, Fig. 1) to describe how pressure (Pm),

effective  shear  stress  (τm)  and local-compressive-stress  orientation  (ωm)  vary  around the  inclusion-

matrix interface. The three dynamic parameters show again a periodic behavior for any given θ, (Fig.

9). Although ωm is in general a periodic function, we see that for this inclusion orientation (α=120º) and

for the specific aspect ratio (κ=3), ωm becomes asymmetric. The asymmetric shape of the ωm curve is

due to the stress distribution induced by the aspect ratio (κ). Any deviation in shape from a circular

inclusion  (κ≠1)  will  cause  sharp  changes  in  the  dynamic  parameters  (Pm,  τm and  ωm)  due  to  the



asymmetry that develops.

Fig. 9. a) Variation of  matrix pressure (Pm/τffs), b) effective shear stress (τm/τffs) and c) maximum-compressive-

stress orientation (ωm) around the inclusion shown in Figs. 4b,d  as a function of the normal orientation (θ) and

viscosity ratio (μi/μm). (κ=3, α=120°).

We plotted the data from these sinusoidal variations in function of any inclusion orientation (α) for

the six orders of magnitude variations of viscosity ratios considered in Figs. 7 and 8. The resulting

diagram (Fig.  10) integrates several  variables.  For example,  for α=120° (black bar  in Fig.  10),  all

possible stress-pressure pairs delineate a vertical bar that has a background colour for the effective

shear stress (right-side ordinate in Fig. 10), and a pressure value (left ordinate of Fig. 10). In order to
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deduce the general trends of pressure Pm and effective shear stress (τm), we use the inclusion pressure

(Pi) as a reference and we normalize it using the maximum values of Pm
max and τm

max in the matrix, the

normalized pressure difference between inclusion and matrix is given by:

δP=
Pm−Pi

Pmax
m −Pi   (11)

In this equation, the dependence of P and τ on the magnitude of the viscosity ratio is eliminated

because the pressure values in the matrix are compared to the pressure values of the inclusion for each

case. Therefore any difference between inclusion and matrix pressure caused by the viscosity contrast

becomes insignificant. 

Fig. 10. Values of normalized effective shear stress (τm/τffs) and normalized pressure (Pm/τffs) around the inclusion

for different inclusion orientations (α). a) weak inclusion with κ=3, μ i/μm =10-3 b) strong inclusion with κ=3,

μi/μm =103. The bar in (a) corresponds to the stress-states τ (colour scale) around the inclusion of Figs. 5b, d



(κ=3, α=120°, μi/μm =10-1). 

All results concerning the matrix are collapsed into two linear relationships (Fig. 11). For a matrix

stronger than the inclusion, the pressure difference is proportional to the matrix effective shear stress

whereas a matrix weaker than the inclusion follows the equation of a circle (Fig. 11):

δP=√1−( τm

τmax
m )

2

 (12) 

In other words and in agreement with the previous results, a weak matrix will develop the highest

pressure difference from the inclusion when its effective shear stress is the lowest. The magnitudes of

pressure and effective shear stress perturbations depend on the aspect ratio of the viscous inclusion and

its viscosity contrast with its matrix. 

Fig. 11. Normalized difference between pressure in inclusion and pressure in the matrix (δP, Eq. 11) versus the

effective shear stress τm (normalized over its maximal value τmmax) around an elliptical inclusion. Data from

Fig. 10.
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In a similar way to the inclusion behavior (Fig. 6), P, τ and ω for the matrix, vary periodically as a

function of the inclusion inclination (α). The absolute magnitude of the periodic variations Pm
max/τffs,

τm
max/τffs, and ωm

max depends on the viscosity ratio between the inclusion and the matrix and on the

aspect ratio (κ). Consequently, for different inclusion orientations (α), the amplitude (Pm
max/τffs, τm

max/τffs,

and ωm
max) of the periodic variations (e.g. Fig. 9) was calculated (Fig. 12). The results suggest that the

aspect ratio of the inclusion (κ) and the viscosity ratio between the inclusion and the matrix (μ i/μm) both

amplify Pm
max/τffs, τm

max/τffs, and ωm
max.

Fig. 12. Maximal magnitudes for all α (Fig. 10) of a) normalized pressure (Pm
max/τffs,), b) normalized-effective

shear stress (τm
max/τffs,) and c) maximum-compressive stress orientation (ωmax) around the inclusion as a function

of aspect ratio (κ) and viscosity ratio (μi/μm). 



APPLICATIONS TO SHEAR ZONES AND BOUDINS

The analytical solution developed in this  work has implications for any geological heterogeneity

where there is a contrast in viscosity. We consider the applications of our findings to shear zones, which

we regard as weak inclusions with high aspect ratio, and boudins, which we regard as strong inclusions.

Shear zones 

The systematic study of localized deformation started in the beginning of the 20th century when Inglis

(1913)  demonstrated  that  stress  drastically  concentrates  around  edges  and  sharp  corners.  The

quantification of stresses around cracks and holes (Inglis  1913; Griffith,  1921; Irwin,  1957) led to

conceptual models in which cracks and discontinuities are treated as elliptic voids of various aspect

ratios. In geology, concepts of fracture mechanics have been used to describe fracture propagation,

stress nucleation and fault growth (e.g. Pollard and Fletcher, 2005). The underlying assumption is that

elliptical inclusions are treated as voids with negligible strength and that a deforming fault zone has

near-zero thickness (e.g. Cowie and Scholz, 1992). 

Natural, shear zones are long, planar features of localized ductile deformation for which plane strain

is a first-order satisfactory assumption (Fig. 13). As mentioned earlier, the elastic solutions of fracture

mechanics can be mathematically identical to the analytical solutions for viscous deformation (Goodier,

1936). Therefore, the methods developed in fracture mechanics may be extended to viscous shear zones

if a finite width is assumed for the shear zone.

22



Fig. 13. Unscaled sketch diagram of a natural shear zone and reference frameworks. Small heterogeneities and

foliation planes are used as strain markers. Note that in a natural shear zone, no conclusion can be drawn for the

exact orientation of the far-field-stress relative to the finite-strain framework. Modified after (Burg, 1999).

Deformation localization involves several types of rheological softening (e.g. Poirier, 1980) so that a

shear zone can be treated as elliptical heterogeneity of lower viscosity than the less deformed wall rock.

For a weak zone that is one order of magnitude weaker than the surrounding rocks (e.g. Fig. 2), the

pressure within the weak zone can reach the order of the far-field stress for 45º<α<90º. The values of

the far-field stress in the lithosphere during shortening are at average 0.1GPa (Schmalholz et al., 2014)

and  can  be  locally  0.5-1GPa  (e.g.  Andersen  et  al.,  2008;  Burg  and  Schmalholz,  2008;  Hartz  and

Podladchikov, 2008). Similar values have actually been measured in experiments simulating the brittle-

ductile regime (Hirth and Tullis, 1994). This implies that the overpressure recorded in weak zones at a

high angle to compression may be in the order of 1 GPa. In addition, the strong matrix around weak

inclusions may undergo pressure perturbations twice as big as the far field shear stress against  the

inclusion/matrix interface (θ between 50 and 120 in Fig. 5d).

Competent boudins

Viscous  heterogeneities  are  commonly  inherited  from  lithological  changes  like  in  the  case  of

competent boudins embedded in a low viscosity matrix (Fig. 14). The effective viscosity for crustal



lithologies during deformation can vary several orders of magnitude, from ca 1019 to 1025 Pa·s (e.g.

Homburg et  al.,  2010;  Sizova et  al.,  2012).  Applying the  results  displayed in  Fig.  3,  an  effective

viscosity contrast of 10 between a strong boudin and a weaker rock will create pressure variations as

large as the magnitude of the maximum shear stress.  The maximum shear  stress is  limited by the

strength of rocks.  Considering the strength of eclogites at  temperatures < 1000 ºC (ca.  1GPa;  e.g.

Moghadam et al., 2010), the pressure in strong inclusions can be up to 1GPa higher than the lithostatic

if the inclusion is parallel to the shortening direction. This may explain common geological record of

metamorphic pressure higher in mafic/ultramafic boudins than within their surrounding gneiss matrix

(e.g. Godard, 2001). 

Fig. 14. Boudinage in blueschists, Île de Groix. Location: N 47º37’15.5’’, W 03º25’27.0’’. 

DISCUSSION

Elliptical viscous inclusions were used to analyze the pressure and stress fields caused by elongated

bodies or shear zones in the lithosphere. Pressure in a weak inclusion is given by equation 10, which

can be further simplified, assuming low viscosity ratios, to:

Pi

τ ffs

≅−
(κ2−1)

κ2
+1

cos (2α ) (13)

Pressure in a competent (more viscous) inclusion is  approximated with another simplification of
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equation 10:

Pi

τ ffs

≅
( μ i

μm )κ
2 ( μi

μm )+κ

cos (2α ) (14)

The lithostatic  load  and the far-field tectonic  stress  have to  be  taken into account  to  assess  the

magnitude  of  the  total  pressure  within  the  inclusion.  Introducing  equation  10  in  equation  8,  and

considering that the far-field mean stress includes also a non-lithostatic component (c.f.  Petrini and

Podladchikov, 2000) the actual pressure (in Pa) in the inclusion is:

P tot
i
=ρ gh+τ ffs+τ ffs

( μ i

μm
−1) (κ2 −1 )

2( μi

μm )κ+κ2+1

cos ( 2α )  (15)

The first term in the right hand side of equation 15 is the pressure contribution from the lithostatic

load. The second term is the effect that the far-field tectonic stress has on the mean stress of the matrix.

The last term is the pressure caused by the viscosity heterogeneity. If the elliptical heterogeneity is

close to the brittle-ductile condition, then the magnitude of τffs is about the lithostatic load ( ρgh ;

Petrini and Podladchikov, 2000). Then, the mean stress experienced by the elliptical heterogeneity is:

P tot
i ≅2 ρgh+

( μi

μm −1) (κ2−1 )

2( μi

μm )κ+κ2
+1

cos (2 α ) ρ gh≅ {
2 ρ gh−

(κ2−1 )

κ2
+1

cos (2 α ) ρ gh,
μi

μm
≪1

2 ρ gh+
( μi

μm )κ
2( μi

μm )+κ

cos ( 2α ) ρ gh, μi

μm
≫1

(16)

which  can  be  illustrated  with  a  Mohr  construction  where  each  contributing  pressure  is  separately

visualized (Fig. 15). 



The Muskhelishvili's method employs the effective-viscosity contrast at the time of the deformation.

Therefore, the competence contrast is sufficient to create perturbations in the effective shear stress (τ)

and pressure  (P)  and this  does  not  depend on the  specific  rheological  model  as  long as  viscosity

variations exist. This means that variations in pressure are a first-order physical phenomenon related to

stress  heterogeneities,  whatever  the  rheological  model.  The  spatial  pattern  of  tectonic  stress  and

pressure fields in and out of deforming elliptical inclusions depends in two factors, one being purely

geometrical  (aspect  ratio,  inclusion  orientation  to  the  far-field  stress)  and  the  other  being  the

competence contrast (viscosity ratio).

Geometrical factor

The  application  of  the  Kolosov-Muskhelishvili’s  equations  for  elliptical  viscous  heterogeneities

under viscous flow predicts that variations in the pressure/stress fields during deformation are functions

of viscosity heterogeneities and geometrical factors such as the orientation of the inclusion relative to

the far-field stress. The perturbation magnitude amplifies with higher aspect ratios of the inclusion. In

this work we used a finite-width inclusion. Natural, elongated inclusions have aspect ratios spanning up

to 4 orders of magnitude. 

Rheological factor

Pressure variations are proportional to the viscosity ratio between the inclusion and the matrix. The

pressure difference ΔP (Pi-Pm) predicted for strong inclusions (the length of abscissa between centers of

corresponding Mohr circles, Fig. 3b) increases with the effective shear stress τ (the radius of the Mohr
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Fig. 15. Mohr diagram showing a hypothetical scenario

where a weak inclusion and a strong matrix are close to

the  brittle-ductile  transition.  The  far-field  compressive

stress of the matrix is indicated by τffs. Pffs is the far-field

mean  stress  during  deformation.  σ3 is  commonly

assumed to  be  equal  to  Plith (Eq.  1)  in  compressional

settings. If the angle of internal friction (φ) is taken to be

30º, then Pffs may reach 2ρgh (Petrini and Podladchikov,

2000)  and  a  weak  inclusion  may  have  a  mean  stress

larger than 2ρgh.



circle) of this inclusion (for example compare Figs. 3a and b). An apparent paradox is that the pressure

difference in weak inclusions is inversely related to the applied effective shear stress τ (see size and

location of red inclusion circle in Fig. 2). Pressure variations within weak zones may reach but not

overcome the same magnitude as the far-field tectonic stress (black circle in Fig. 2). These variations

will thus be limited by the effective shear stress (blue circle radius) that develops in the adjacent strong

lithologies. 

Time factor

The results presented here concern the instantaneous case. However, both geometrical configuration

and viscosity contrast may evolve with time. Bulk strain may reorient any sort of particle with respect

to shortening direction (e.g. Ramberg and Ghosh, 1977), thus impelling changes in the effective shear

stress  and  pressure.  Such  changes  can  be  considerable,  yet  independent  of  lithostatic  pressure.

Consequently, the time evolution of effective shear stress and pressure is important and the question

that rises is whether the pressure variations calculated in this work may last sufficiently long to be

recorded by the metamorphic phase equilibria.  If yes, the fast  decompression rates experienced by

some metamorphic rocks do not necessarily correspond to changes in depth. In the case of lithospheric

shortening,  viscous  heterogeneities  are  submitted  to  the  far-field  stress  for  as  long  as  shortening

persists. Therefore, crustal regions like the Alpine-Himalayan Belt, which has been under compression

for millions of years (e.g. Dewey and Şengör, 1979; Burg, 2012) have sufficient time to record transient

pressure variations, especially at lower crustal conditions where the high temperature enhances mineral

reactions.  Finally,  metamorphic  reactions  may  modify  the  actual  physical  properties  of  deforming

rocks.  For  instance,  processes  such  as  dehydration,  melting  or  eclogitization  significantly  change

viscosity.  Therefore,  a  small  viscosity  ratio  may  amplify  with  metamorphic  reactions,  leading  to

amplification of effective shear stress and pressure variations as well.

CONCLUSIONS

Analytical solutions derived from the Muskhelishvili's  method show that the aspect ratio and the

orientation of elliptical inclusions are important factors for sharp disturbances in effective shear stress

and pressure fields inside and outside viscous inclusions. The analytical solution also suggests that the

magnitude of the pressure variations can reach the magnitude of the far-field tectonic stress, which is in

the order of 1 GPa for crustal conditions. This result is consequential in the geodynamic interpretation



of metamorphic rocks, in particular as to whether ultra-high and high metamorphic pressures of mafic

layers/boudins/nappes are applicable to their entire gneissic matrix. If viscous heterogeneities produce

pressure  differences,  then  rapid  decompression/exhumation  rates  that  arise  from  converting

metamorphic pressure to depth are disputable. 
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