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Semi-permeable coatings fabricated from
comb-polymers efficiently protect proteins in vivo
Mi Liu1, Pål Johansen2, Franziska Zabel2, Jean-Christophe Leroux1 & Marc A. Gauthier1,3

In comparison to neutral linear polymers, functional and architecturally complex (that is,

non-linear) polymers offer distinct opportunities for enhancing the properties and perfor-

mance of therapeutic proteins. However, understanding how to harness these parameters is

challenging, and studies that capitalize on them in vivo are scarce. Here we present an in vivo

demonstration that modification of a protein with a polymer of appropriate architecture can

impart low immunogenicity, with a commensurably low loss of therapeutic activity. These

combined properties are inaccessible by conventional strategies using linear polymers. For

the model protein L-asparaginase, a comb-polymer bio-conjugate significantly outperformed

the linear polymer control in terms of lower immune response and more sustained bioactivity.

The semi-permeability characteristics of the coatings are consistent with the phase diagram

of the polymer, which will facilitate the application of this strategy to other proteins and with

other therapeutic models.
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M
any advances in biotechnology can be linked to the
development of robust methods for producing
well-defined functional polymers. For instance, anionic

polymerization has yielded one of the first well-defined linear
polymers, a-methoxy-poly(ethylene glycol) (mPEG), variants of
which have profoundly marked the pharmaceutical sector as
protective coatings for protein drugs1–3. Controlled radical
polymerization has also permitted the design of numerous
macromolecular drugs, polymer–drug and polymer–protein
conjugates4. The state-of-the-art of tailored polymer synthesis is
currently evolving, the controlled polymerization of functional
monomers has become commonplace5 and new tools for
preparing polymers with defined sequences and topologies
continue to emerge6,7. In comparison to neutral linear
polymers, functional and architecturally complex, that is,
nonlinear, polymers offer numerous additional opportunities
for enhancing the potential of therapeutic proteins, but have only
recently drawn attention in therapeutics. Maynard and co-
workers have shown that basic fibroblast growth factor could be
stabilized by covalent conjugation with a heparin-mimicking
polymer containing styrene sulfonate and oligo(ethylene glycol)
monomethyl ether methacrylate (OEGMA) units8. The conjugate
was stable to a variety of environmentally and therapeutically
relevant stressors such as heat, acid, storage and proteases. Keefe
and Jiang showed how a poly(zwitterionic) polymer grafted to
a-chymotrypsin strongly stabilized the latter, even towards strong
denaturants, via non-covalent interactions between the polymer
and the protein9. Unfortunately, in vivo studies are scarce. Leroux
and co-workers recently demonstrated that the functionality of
different polymers grafted to proline-specific endopeptidases
could be manipulated to stabilize and alter the dwell time of orally
administered enzymes at different locations in the gastrointestinal
tract10. Such studies are crucial because trends and observations
made in vitro often do not correlate with in vivo observations11.
This is in part due to the complex and potentially unpredictable
nature of the interactions between the conjugate and components
of the body.

Our group has recently discovered that comb-shaped
poly-OEGMA (pOEGMA) chains with well-defined aspect ratios
could generate a molecular sieving effect in vitro when grafted to
the surface of a protein12. Within a certain regime of polymer
characteristics, small molecules could easily diffuse through
the coating towards the catalytic site of an enzyme (that is,
maintaining high activity), whereas macromolecules were
simultaneously blocked. This selective permeability
phenomenon, which cannot be emulated with linear mPEG,
could be of exceptional value for reducing the immunogenicity of
recombinant, non-human-derived therapeutic enzymes without
hindering catalytic processing of small molecules. One protein
that falls into this category is L-asparaginase (ASNase), an enzyme
that is used for treating acute lymphoblastic leukaemia. This
protein was one of the first to be modified with mPEG because
of its propensity to cause severe hypersensitivity reactions (up to
20–30% of patients)13 or suffer from ‘silent inactivation’ by
the neutralizing or opsonizing antibodies14,15. Modification of
ASNase with mPEG in part overcomes these problems16,
however, a key problem is that antibody responses against
mPEG–ASNase continue to occur in B18% of patients17–19.

In this study, a molecular sieving pOEGMA coating is
optimized for ASNase. In a head-to-head comparison with
mPEG–ASNase, pOEGMA–ASNase is B100-fold less recognized
by anti-ASNase antibodies than mPEG–ASNase and 3,000-fold
less than the native protein, with a commensurably low loss of
activity. In addition, pOEGMA extends the circulation time of
ASNase even in mice previously sensitized to ASNase. The semi-
permeability characteristics of the coatings are consistent with the

phase diagram of protein-bound pOEGMA, which demonstrates
that one can design optimal pOEGMA coatings for proteins with
little trial-and-error. Polymer architecture, via the comb-shaped
nature of pOEGMA, is a potent parameter for optimizing the
bioactivity of therapeutic proteins.

Results
Molecular sieving pOEGMA–ASNase bio-conjugates. ASNase,
Fig. 1a, is a tetrameric protein that possesses four identical cat-
alytic sites that transform L-asparagine (Asn) into L-aspartic acid
(Asp). As seen in Fig. 1, the solvent-exposed amino groups (lysine
and N-termini in red) are uniformly distributed on the surface of
the protein and were converted into initiators for atom transfer
radical polymerization. Three ASNase macro-initiators bearing
on average x¼ 24, 32 and 36 initiators per protein tetramer
were obtained. The degree of modification was assessed by
matrix-assisted laser desorption/ionization–time of flight mass
spectrometry, which showed symmetric distributions near
B35 kDa (ASNase disassembles into its monomeric form in this
experiment; Fig. 1b). The centre of these distributions was taken
as the average degree of modification and correlated well with the
feed ratios of reactants (Supplementary Fig. 1). Assuming ASNase
to be a sphere with a 3.4-nm radius20, these values of x were
targeted based on the expectation that a polymer density of at
least one pOEGMA chain per B4 nm2 of protein surface is
required to observe the sieving effect12. The polymerization of an
OEGMA monomer with eight to ten oxyethylene units was
initiated from these sites. Growing polymers directly from
proteins is a powerful approach for generating complex bio-
conjugates21–25 and offers the advantage of producing a series of
comparable bio-conjugates differing uniquely in the length of the
polymer backbone (n). The length of the polymer backbone was
varied by allowing the polymerizations to proceed for different
times between 30 min and 4 h. The 19 unique bio-conjugates
obtained showed monomodal size-exclusion chromatograms
(Fig. 1c). The molecular weight characteristics of the pOEGMA
chains were determined by three complementary methods and
can be found in Supplementary Table 1. One ASNase conjugate
bearing ca 42 chains of mPEG (5 kDa), determined by 1H NMR
spectroscopy (Supplementary Fig. 2), was produced for
comparison. This grafting ratio is in the range expected of
commercially available mPEG–ASNase conjugates (Sigma-
Aldrich).

To characterize the molecular sieving characteristics of the
conjugates, the conformation of pOEGMA was analysed by 1H
NMR spectroscopy (Fig. 2a,b) and correlated to the catalytic
activity of the conjugates (aspartyl transferase assay; Fig. 2c) and
their anti-ASNase-binding affinity (sandwich ELISA; Fig. 2d). As
a comb-shaped polymer, pOEGMA can adopt either an
ellipsoidal or a cylindrical shape as a function of increasing
backbone length n (ref. 26). These two states result from the
backbone being either in an collapsed or in an extended
conformation, a parameter that can be probed by 1H NMR
spectroscopy via peaks ‘A’ and ‘B’ (Figs 1a and 2a). As ‘A’ is in
close proximity to the polymer backbone (Fig. 1a), its integrated
value, which becomes less than expected in a rigid un-solvated
environment, can be used to estimate its mobility. For this, a
reference mobile and solvent-exposed group whose integral is
expected to be least affected by de-solvation of the main-chain,
such as ‘B’, is required (Fig. 2a). Indeed, Roth et al. have shown
that ‘B’ retained 492% of its integrated value during pOEGMA’s
soluble-to-insoluble transition in alcohol, whereas peak ‘A’ was
strongly affected27. Herein, peak ‘B’ remained sharp over a wide
range of n (12–48; Supplementary Fig. 3). Figure 2b plots the
dimensionless flexibility factor F, calculated from A and B
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(F¼ 3A�2B), which varies between 1 when the backbone is fully
solvated and flexible to 0 when it is un-solvated and rigid. The
abrupt decrease of F followed by an increase as a function of n is
characteristic of protein-bound pOEGMA undergoing an
ellipsoid-to-cylinder transition. The increase at high n is
observed because F reflects the average flexibility of the entire
polymer chain, which increases as it extends away from the
protein. The transition, identified by arrows in Fig. 2b, is then
projected as a dashed line in Fig. 2c,d, which plot catalytic activity
and anti-ASNase-binding affinity, respectively, as a function of x
and n. Optimal molecular sieving characteristics were previously
observed at n just below the transition between these two
conformations12. Compared with the first values measured at low
n, no statistically significant difference in the catalytic activity of
the bio-conjugates was observed in the ellipsoidal regime. A
decrease was then observed beyond the transition (Fig. 2c; full
analysis of variance (ANOVA) table in Supplementary Table 2;
fitted parameters in Supplementary Table 3). Shielding of
epitopes, assayed via the ability of anti-ASNase antibodies to
bind the conjugates, followed a single exponential decay with n
(Fig. 2d; fitted parameters in Supplementary Fig. 4). Increasing
the complexity of the fit to a double exponential did not improve
the quality of the fit. The rate of decay was more pronounced at

higher x, although no obvious manifestation of the change of
conformation of pOEGMA was evident in these curves. In
comparison to native ASNase, mPEG–ASNase was 1.5 times less
catalytically active and 25-fold less recognized by anti-ASNase
antibodies. A pOEGMA–ASNase conjugate with optimal semi-
permeability characteristics (x¼ 32, n¼ 17) was only three times
less active than the native protein, but was 3,000-fold less
recognized by anti-ASNase. Thus, in relation to the small
decrease of activity observed between the mPEG and pOEGMA
bio-conjugates, the gain in epitope shielding in vitro, and
potential for lower immunogenicity in vivo (vide infra), is
enormous. This pOEGMA–ASNase conjugate (x¼ 32, n¼ 17)
was selected for in vivo analysis because it offered the best
compromise between loss of catalytic activity and efficient epitope
shielding (Fig. 2c,d).

Circulation time and bioactivity of ASNase in vivo. Having
demonstrated that grafting of pOEGMA did not eliminate cata-
lytic activity, pharmacokinetic experiments were performed. Here
800 IU kg� 1 of ASNase, mPEG–ASNase or pOEGMA–ASNase
(x¼ 32, n¼ 17) were administered in saline by intra-peritoneal
injection to groups of three BALB/c mice. Blood was withdrawn
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Figure 1 | Preparation of well-defined pOEGMA–ASNase conjugates. (a) Tetrameric ASNase possesses 92 amino groups (lysine residues and N-termini

in red) that are evenly distributed on the solvent-exposed surface of the protein. Nineteen unique pOEGMA–ASNase conjugates were prepared by

activation of a certain number (x) of these amino groups with 2-bromoisobutyryl bromide, followed in situ growth of different length (n) pOEGMA chains by

atom transfer radical polymerization. (b) Analysis of the molecular weight of ASNase macro-initiators by matrix-assisted laser desorption/ionization–time

of flight mass spectrometry to determine the average number of initiating groups per protein. (c) Representative size-exclusion chromatograms of

pOEGMA–ASNase conjugates, mPEG–ASNase and native ASNase. All conjugates tested displayed monomodal molecular-weight distributions.
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at regular intervals from the tail vein for analysis of residual
ASNase catalytic activity and for analysis of the concentration of
Asn and Asp. Native ASNase was rapidly cleared from the body,
as evidenced by the complete loss of activity within 1–2 days
(Fig. 3a). Both mPEG–ASNase and pOEGMA–ASNase displayed

sustained activity and depletion of blood Asn below the limit of
detection (250 nM) for ca 14 days. At day 21, mPEG–ASNase was
the only sample not to have reached its initial Asn concentration.
The longer circulation time of mPEG–ASNase is consistent with
its slightly larger hydrodynamic diameter (30±5 and 25±5 nm
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for mPEG–ASNase and pOEGMA–ASNase, respectively) mea-
sured by dynamic light scattering. Thus, despite the expected
compact conformation of the pOEGMA backbone in its
ellipsoidal state, the hydrodynamic volume of the conjugate is
sufficient for extended circulation. A transient increase of blood
Asp was observed, consistent with the observations of others28,
indicating that depletion of Asn is occurring according to the
expected catalytic mechanism. The observed difference between
blood activity and Asn concentration could reflect distribution of
the conjugate outside the blood compartment. A lower dose
group, receiving 80 IU kg� 1, was also investigated and yielded
comparable conclusions (Fig. 3b).

Epitope shielding in vivo. To assess the efficiency with which
the polymers shielded epitopes on ASNase, BALB/c mice were
immunized with either ASNase or ASNase bio-conjugates using
aluminum hydroxide as adjuvant. Groups of five mice received
20 mg (protein content) of native ASNase, mPEG–ASNase or
pOEGMA–ASNase (same conjugates as above) by subcutaneous
injections. Analytes were administered on an equal weight
(protein) basis to more easily compare their relative ability to
generate immune responses. Different results might be expected if
the analytes were administered on an equal activity basis, as a
lower amount of more active analytes would be administered. For
instance, as mPEG–ASNase is twice as active as the selected
pOEGMA–ASNase, half as much of it would have been admi-
nistered. It should also be noted that sensitization was promoted
by an adjuvant to test immunogenicity in an accelerated way and
that a much lower immune response is to be expected in its
absence. Four injections were done with 2-week intervals. Blood
was withdrawn on days 28, 42 and 71, and IgG titres towards
either ASNase or the bio-conjugate itself were measured.
In comparison to the native protein, immunization with mPEG–
ASNase and pOEGMA–ASNase conjugates stimulated sig-
nificantly lower anti-ASNase IgG (Fig. 4a,b; orange bars). The
results also revealed that immunization with pOEGMA stimu-
lated B20-fold lower anti-ASNase IgG titres than immunization
with mPEG–ASNase, and B1,000-fold lower than with the native
protein. To compare the relative levels of antibodies raised against
the conjugates themselves, ELISA plates were coated with mPEG–
ASNase or pOEGMA–ASNase (Fig. 4a,b; blue bars). The amounts
of absorbed native ASNase and ASNase conjugates were verified
in order to guarantee that the same amount of protein content
was coated into each well, which permits comparisons to be
made. On day 28, that is, 2 weeks after the second immunization,

low titres of anti-mPEG–ASNase-specific IgG were determined,
whereas no pOEGMA–ASNase-specific IgG was detected
(Fig. 4a). On day 71, 1 month after four immunizations, low
conjugate-specific IgG titres were detected for both formulations,
but the titre was approximately 20 times lower in serum from
mice immunized with pOEGMA–ASNase. Similar results were
observed in serum taken on day 42 (Supplementary Fig. 5). These
results demonstrate the effectiveness of the comb-shaped polymer
in shielding epitopes of ASNase in the adaptive environment
of the body. This result is also interesting in light of reports
that antibodies can be raised against the polymer component
(for example, mPEG) of bio-conjugates and mPEG–ASNase
itself29,30. For robustness, the sensitization experiment was
repeated by administrating a higher dose of analyte (200 mg
protein per injection) into ASNase-naı̈ve mice according to the
same schedule as above. The tenfold increase in ASNase dose
resulted in a general three- fourfold increase of IgG titres in all
samples analysed, but again with pOEGMA–ASNase producing
much lower titres than mPEG–ASNase and native ASNase
(Supplementary Fig. 6).

Bioactivity of ASNase in ASNase-sensitized mice. Long-term
treatment with ASNase can produce unwanted antibody
responses against the enzyme. This may compromise the biolo-
gical activity of the therapeutic enzyme. To assess the biological
activity of ASNase in such a sensitization model, mice having
received the multiple doses of ASNase, mPEG–ASNase or
pOEGMA–ASNase according to the schedule above, then
received an intra-peritoneal injection of 800 IU kg� 1 of the cor-
responding ASNase formulation 4 weeks after the last of four
immunizations. Before injection, Asn concentrations in blood
were normal and the sensitizing ASNase preparations had no
residual enzymatic activity. As seen in Fig. 4c, neither native
ASNase nor mPEG–ASNase were able to maintain full depletion
of blood Asn beyond the first 3 h after injection, whereas full
depletion was still observed for pOEGMA–ASNase at day 3.
Normal Asn levels were observed by day 7 for both native ASNase
and mPEG–ASNase and by day 14 for pOEGMA–ASNase.
Although the half-lives of both polymer–ASNase conjugates were
significantly shorter than those observed in the non-sensitized
animals, the longer circulation time of pOEGMA–ASNase vs
mPEG–ASNase appears to reflect the lower immune response
raised for this conjugate during sensitization and suggests that
pOEGMA conveys better stealth-like characteristics to ASNase
than does mPEG, even after repeated dosing.
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Discussion
The desire to effectively shield enzymes with polymers, without
compromising activity, has driven multiple systematic studies in
which the influence of grafting density, polymer molecular
weight, polymer type (that is, synthetic, natural), coupling
chemistry and so on, have been examined31,32. However,
studies that directly compare linear polymers to (related)
branched ones are rare. In two important studies, Veronese and
co-workers compared the activity, pH and temperature stability,
and proteolytic digestion of ASNase (from Erwinia Carotivora)
and three other enzymes modified with either linear mPEG or
double-branched mPEG (mPEG2)33,34. Although, for the most
part, catalytic activity was similar for the mPEG and mPEG2 bio-
conjugates, all of the enzymes modified with mPEG2 were more
resistant to proteolysis. This is consistent with the more facile
diffusion of small vs large molecules through the polymer coating,
as observed herein. Furthermore, the antigenicity of the mPEG2–
ASNase conjugate was lower than for the mPEG analogue,
although the difference was smaller than that observed herein.
The present study expands upon these observations and
emphasizes how controlling the molecular dimensions of the
architecturally complex polymer pOEGMA beneficially reduces
the immunogenicity of a subclass of biomolecules with diffusible
small molecules as their substrates.

Dense pOEGMA coatings are well-known to efficiently repel
the adsorption of proteins to solid surfaces, such as gold35,36.
However, the application of this strategy to protect proteins
themselves has met little attention. The dissuading dogma is the
expected strong negative effect multiple polymer conjugation will
have on the protein’s bioactivity because of obstructed interaction
with its binding partners, substrates and so on31. To our
knowledge, Magnusson et al.37 have presented the only in vivo
study of the shielding efficacy of multiple pOEGMA chains on a
protein, recombinant human growth hormone. The beneficial
properties observed, however, were attributed to enhanced
stability and prolonged pharmacokinetic profile, which counter-
balanced the expected loss of activity, rather than to an intrinsic
characteristic of nonlinear polymers or pOEGMA itself. Of
course, the mechanism of action of recombinant human growth
hormone involves receptor binding rather than enzymatic
activity, which is probably why the relevance of the architecture
of pOEGMA was not discussed. Other in vivo studies have
focused on extending the circulation half-life of proteins with
single pOEGMA chains38–40. Thus, the most significant
contribution herein is the demonstration of the particularity of
pOEGMA, which can be conveniently and rationally manipulated
to address the dogma of loss of activity, even in the complex
environment in vivo. This is an important finding because many
non-human-derived proteins, including ASNase, possess
numerous epitopes or enzyme-sensitive segments that can be
responsible for treatment failure if they are not adequately
shielded41,42. In fact, as ASNase is a homo-tetrameric protein, all
epitopes are present in four identical copies. Thus, this type of
protein absolutely requires multiple polymer conjugation because
of the inability of a single (or a few) polymer chains to adequately
shield these problematic parts of the protein43,44. Finally, it is
worth considering that pOEGMA is attached to the protein via an
amide bond and is unlikely to be released from the conjugates
within the timeframe of the experiments performed. Ultimately,
however, one would expect degradation of ASNase, which would
release single pOEGMA chains connected to short peptide
segments. Considering the molecular weight of the pOEGMA
used (that is, n¼ 17 is B8 kDa), it should ultimately be
eliminated by, for example, renal filtration.

In summary, this study is the first in vivo demonstration of
how polymer architecture, via the comb-shaped nature of

pOEGMA, provides a unique design parameter for optimizing
therapeutic proteins. The combined properties of effective epitope
shielding with proportionately low loss of activity are inaccessible
by conventional ‘PEGylation’ using linear polymers. Using
ASNase as a model therapeutic protein, the designed pOEGMA
bio-conjugate outperformed the mPEG–ASNase control (of
similar catalytic activity) by being less immunogenic and
providing a more sustained activity in sensitized animals. This
shows promise for long-term therapies involving pOEGMA-
modified proteins. Importantly, observations were consistent with
predictions made from the phase diagram of protein-bound
pOEGMA12. This guided the design of optimal semi-permeable
coatings alongside convenient spectroscopic analysis of polymer
conformation. This implies that one can easily design optimal
pOEGMA coatings for proteins with little trial-and-error. One
caveat is the limitation to therapeutic proteins that target soluble
substrates small enough to penetrate through the pOEGMA
coating. This makes the findings above most applicable to
enzymes such as asparaginase, methioninase, arginine deiminase,
arginase, uricase and so on32. Nevertheless, the presented strategy
could also be used to protect and alter the circulation lifetime of
emerging classes of therapeutics, such as small-molecule-binding
proteins that could be used as drug scavengers45, and create non-
fouling coatings for biosensors that are specific towards small
analytes.

Methods
ASNase pOEGMA–ASNase and mPEG–ASNase. E. coli ASNase was purchased
from Afine Chemicals Ltd and de-salted before use. The synthesis, purification and
characterization of ASNase bio-conjugates follow a robust procedure adapted from
the original work of Lele et al.22 and is described in detail in the Supplementary
Methods.

In vitro catalytic activity. ASNase and ASNase bio-conjugate catalytic activities
were assayed by the formation of aspartate hydroxamate from Asn and hydro-
xylamine (aspartyl transferase activity). 20 ml of a 50 mg ml� 1 (protein) aqueous
enzyme solution were added to 1 ml Tris-HCl buffer (100 mM, pH 7.4) containing
20 mM Asn and 400 mM hydroxylamine. The mixture was incubated at 37 �C for
30 min, after which 700 ml of ferric chloride agent (5% ferric chloride, 1 M HCl, 4%
trichloroacetic acid) were added. Aspartate hydroxamate forms a coloured complex
with ferric chloride that can be quantified at 500 nm (ref. 46).

In vitro recognition by anti-ASNase antibodies. Streptavidin-coated 96-well
microplates (Pierce) were rinsed with 3� 200 ml wash buffer (25 mM Tris, 150 mM
NaCl, 0.25% bovine serum albumin, 0.05% Tween-20, pH 7.2) after which 100 ml of
biotinylated anti-asparaginase antibody (10mg ml� 1) wash buffer was added and
incubated for 2 h room temperature. The wells were rinsed with 3� 200 ml wash
buffer after which 100ml of serial dilutions of native ASNase (1 mg ml� 1 to
1 pg ml� 1) were incubated for 30 min at room temperature to obtain a response
curve. Thereafter, 100ml of either mPEG–ASNase or pOEGMA–ASNase
(1 mg ml� 1) were analysed in the same manner and the value compared with this
response curve. The wells were rinsed with 3� 200 ml wash buffer, and 100 ml
horseradish peroxidase-labelled anti-asparaginase antibody (4 mg ml� 1 in wash
buffer) was added and incubated for 30 min. After a final rinse with 6� 200ml wash
buffer, 100 ml 1-Step Slow TMB-ELISA Substrate Solution was added. After exactly
10 min, 50ml 2 N HCl was added and absorbance of each well was measured at
450 nm.

Pharmacokinetics in naı̈ve mice. All animal protocols were approved and
conducted according to the guidelines of the Cantonal Veterinary Office Zurich.
Groups of three female BALB/c mice (25 g) were administered either 80 or
800 IU kg� 1 of ASNase, pOEGMA–ASNase (x¼ 32, n¼ 17) or mPEG–ASNase
(x¼ 42) in 100 ml sterile saline by intra-peritoneal injection. One international unit
(IU) of activity is defined herein as the amount of enzyme that catalyses the
formation of 1.0 mmol of Asp per min at 25 �C. Approximately 50ml blood was
sampled from the tail vein repeatedly over 28 days, and was immediately cen-
trifuged for collection of serum that was stored frozen (� 80 �C) until analysed.

Sensitization and enzymatic activity in sensitized mice. Groups of five female
BALB/c mice were immunized on days 0, 15, 29 and 43 by subcutaneous injections
of 100ml of a sterile saline solution containing either 20 or 200 mg protein content
in ASNase, pOEGMA–ASNase (x¼ 32, n¼ 17) or mPEG–ASNase (x¼ 42). All
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vaccine preparations also contained 0.6 wt% Alhydrogel (Brenntag Biosector).
Blood was collected on days 28, 42 and 71 as described above. On day 72, all mice
from the low-dose groups were administered 800 IU kg� 1 of the corresponding
ASNase or ASNase bio-conjugate in 100 ml sterile saline by intra-peritoneal
injection, and blood was sampled for measurement of Asn metabolism as
described above.

Blood analysis. Bioactivity of native ASNase and polymer-modified ASNase was
measured with an Asparaginase Activity Assay Kit (MAK007, Sigma-Aldrich)
according to the manufacturer’s recommended protocol. The concentrations of
Asn and Asp in mice serum were analysed using pre-column derivatization
high-performance liquid chromatography (Supplementary Figs 7 and 8) according
to a method modified from Bidlingmeyer and described in the Supplementary
Methods47. Blood antibody titres were measured by sandwich ELISA as described
in the Supplementary Methods.

Statistics. Means from activity tests were compared by one-way ANOVA followed
by a Tukey post-hoc test. Means from pharmacokinetics data were compared
by one-way repeated-measures ANOVA followed by a Tukey post-hoc test.
Differences were considered significant at Po0.05.
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