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SUMMARY

Respiratory syncytial virus (RSV) is a worldwide
public health concern for which no vaccine is
available. Elucidation of the prefusion structure of
the RSV F glycoprotein and its identification as
the main target of neutralizing antibodies have
provided new opportunities for development of an
effective vaccine. Here, we describe the structure-
based design of a self-assembling protein nano-
particle presenting a prefusion-stabilized variant
of the F glycoprotein trimer (DS-Cav1) in a repeti-
tive array on the nanoparticle exterior. The two-
component nature of the nanoparticle scaffold
enabled the production of highly ordered, mono-
disperse immunogens that display DS-Cav1 at
controllable density. In mice and nonhuman pri-
mates, the full-valency nanoparticle immunogen
displaying 20 DS-Cav1 trimers induced neutralizing
antibody responses �10-fold higher than trimeric
DS-Cav1. These results motivate continued devel-
opment of this promising nanoparticle RSV vaccine
candidate and establish computationally designed
two-component nanoparticles as a robust and
customizable platform for structure-based vaccine
design.
1420 Cell 177, 1420–1431, March 7, 2019 ª 2019 The Author(s). Pub
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INTRODUCTION

Respiratory syncytial virus (RSV) is an enveloped RNA virus in

the recently defined Pneumoviridae family (Afonso et al., 2016;

Collins et al., 2013). RSV infection is extremely common, occur-

ring in nearly all humans by the age of three and recurring

throughout life (Glezen et al., 1986). Infection of healthy adults

typically results in mild respiratory symptoms, but can be more

serious in infants and older adults: RSV infection is second

only to malaria as a cause of infant mortality worldwide (Lozano

et al., 2012) and accounts for a substantial hospitalization burden

in both age groups in developed countries (Hall et al., 2009;

Widmer et al., 2012). Despite substantial effort, including a

wide variety of vaccine candidates currently in preclinical or

clinical development, a safe and effective vaccine for RSV has

not yet been developed.

Of the three RSV surface proteins (F, G, and SH), F-specific

antibodies account for the majority of neutralizing activity in the

sera of infected humans (Magro et al., 2012; Ngwuta et al.,

2015), and F is therefore the focus of many vaccine efforts. F is

a trimeric type I fusion glycoprotein responsible for merging

the viral membrane with cellular membranes, and, like many

other viral fusion glycoproteins, it undergoes major structural re-

arrangements as it transitions from the prefusion to the postfu-

sion state (Harrison, 2015). Due to the relative instability of the

prefusion conformation, subunit vaccine candidates were until

recently limited to themore stable postfusion structure (McLellan

et al., 2011; Smith et al., 2012; Swanson et al., 2011). In clinical
lished by Elsevier Inc.
commons.org/licenses/by/4.0/).
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trials, these candidates have induced only modest increases

in neutralizing antibodies (August et al., 2017; Langley et al.,

2017), high levels of which correlate with a lower risk of infection

(Falsey andWalsh, 1998; Glezen et al., 1986; Piedra et al., 2003).

Crystal structures of both the prefusion and postfusion forms

of RSV F have provided key insights into antigenicity (McLellan

et al., 2011, 2013a; Swanson et al., 2011) and spurred the devel-

opment of next-generation vaccine candidates based on prefu-

sion F. The identification of a number of potent neutralizing anti-

bodies that target epitopes specific to the prefusion structure

(Beaumont et al., 2013; Corti et al., 2013; Gilman et al., 2016;

Kwakkenbos et al., 2010; McLellan et al., 2013a; Wen et al.,

2017), together with the observation that most neutralizing

activity in human sera is prefusion-specific (Magro et al., 2012),

predicted that F protein variants stabilized in the prefusion

conformation would yield improved vaccine candidates. This

prediction has been borne out in multiple studies of DS-Cav1,

a prefusion-stabilized F antigen that has elicited significantly

higher neutralizing antibody titers than postfusion F in naive

mice and nonhuman primates (McLellan et al., 2013b) and

bovine RSV-primed cattle (Steff et al., 2017) and is now in

Phase I clinical trials (NCT03049488). Additional engineered pre-

fusion RSV F antigens have shown similar improvements in elic-

iting neutralizing antibody responses and in some cases, exhibit

improved physical and antigenic stability relative to DS-Cav1

(Joyce et al., 2016; Krarup et al., 2015; Palomo et al., 2016).

While thedevelopment of prefusion F antigens is amajor break-

through that has revitalized RSV vaccine development, the re-

quirements for an effective vaccine remain unknown. Combining

these antigens with orthogonal technologies to further increase

the induction of neutralizing antibodies could improve the likeli-

hood of protective efficacy in humans. It has long been known

that presenting multiple copies of an antigen in a repetitive array

can drivemore robust humoral immune responses than ‘‘soluble’’

antigen. This effect is thought to derivemainly fromstrongerB cell

activation through antigen-driven cross-linking of B cell receptors

(BCRs) (Bachmann and Jennings, 2010), although potential

effects on antigen trafficking and localization may also play a

role (Irvine et al., 2013). Among several technologies explored in

this context (reviewed in Gause et al., 2017; Irvine et al., 2015),

self-assembling proteins are a powerful platform for multivalent

antigen presentation (López-Sagaseta et al., 2015). They can

form highly ordered, monodisperse structures that can be scal-

ably manufactured, are naturally non-toxic, and offer seamless

integration of protein antigens via genetic fusion. Recently,

several self-assembling proteins such as ferritin, lumazine syn-

thase, and encapsulin have been successfully used as scaffolds

to present complex glycoprotein antigens derived from influenza

hemagglutinin (Kanekiyo et al., 2013;Yassine et al., 2015), HIV en-

velope (Abbott et al., 2018; He et al., 2016; Jardine et al., 2015;

McGuire et al., 2016; Sliepen et al., 2015), and Epstein-Barr virus

(Kanekiyo et al., 2015). In all cases, immunogenicity of the antigen

was increasedbymultivalent presentation, and in somecases, an

epitope-focusingeffectwasobserved inwhichpotent neutralizing

epitopeswere preferentially targeted (Duan et al., 2018; Kanekiyo

et al., 2015; Yassine et al., 2015).

However, structure-based design of nanoparticle immuno-

gens has to date been limited by the small number of naturally
occurring scaffolds available and the fact that their fundamental

structural properties are fixed. Moreover, all of the widely used

self-assembling scaffolds spontaneously self-assemble upon

expression in a recombinant host cell. These constraints prevent

the exploration of new structural and functional space in nano-

particle immunogen design. We recently described the develop-

ment of general computational methods for designing novel

self-assembling proteins with atomic-level accuracy (Bale

et al., 2016; Hsia et al., 2016; King et al., 2012, 2014). The ability

to create self-assembling proteins with customized structures

offers new opportunities in structure-based vaccine design.

Here, we combine the recent breakthroughs in prefusion F anti-

gen design and custom protein nanomaterial design to produce

a nanoparticle immunogen that induces ten-fold more potent

neutralizing antibody responses than trimeric DS-Cav1, a lead-

ing clinical-stage RSV vaccine candidate.

RESULTS

Design and Screening of DS-Cav1-Bearing Nanoparticle
Components
Our recently reported designed protein nanomaterials provided

a library of potential scaffolds for multivalent presentation of

DS-Cav1. We computationally docked crystal structures of

DS-Cav1 with and without the C-terminal foldon domain (PDB:

4MMV, 4MMU) against the subset of trimeric building blocks

from these materials that have N termini projecting outward.

The 3-fold symmetry axes of each pair of trimers were aligned,

and the distance between the C terminus of DS-Cav1 and the

N terminus of the nanoparticle subunit was minimized while dis-

allowing atomic clashes (Figure 1A). This procedure identified a

subset of building blocks from nanoparticles of various sizes,

symmetries, and numbers of subunits as promising candidates

for genetic fusion to DS-Cav1 (Figures S1A and S1B). Trimeric

building blocks from two two-component tetrahedral com-

plexes, one one-component icosahedral complex, and two

two-component icosahedral complexes were selected for

experimental characterization. The tetrahedral assemblies

would present 4 copies of the DS-Cav1 trimer (12 subunits) per

particle, whereas the icosahedral assemblies would present

20 copies of the trimer (60 subunits), one along each pole of

the 10 icosahedral 3-fold symmetry axes (Figures 1B and S1C).

WetransfectedplasmidsencodingeachDS-Cav1 fusionprotein

(see Table S1 for amino acid sequences) into HEK293F cells and

estimated protein yield in the culture media 5 days later by ELISA

using the prefusion-specificmonoclonal antibody (mAb) D25 (Fig-

ure S2A). With these data, we selected DS-Cav1-foldon fused to

the trimeric component of I53-50 (‘‘DS-Cav1-I53-50A’’) for further

characterization to maximize the antigen density that would result

upon assembly of the icosahedral nanoparticle (Figure 1B) and to

provide a close comparison to the foldon-containing trimeric

DS-Cav1. I53-50 is a computationally designed two-component

protein complex comprising 20 trimeric ‘‘A’’ components and

12 pentameric ‘‘B’’ components for a total of 120 subunits (Bale

et al., 2016). A model of the DS-Cav1-I53-50 nanoparticle illus-

trates how the 20 DS-Cav1 trimers project outward �13 nm from

the nanoparticle surface, with epitopes on neighboring DS-Cav1

trimers spaced �15 nm apart (Figure 1B).
Cell 177, 1420–1431, March 7, 2019 1421



Figure 1. Design, In Vitro Assembly, and Structural Characterization of DS-Cav1-I53-50

(A) Schematic representation of the computational docking protocol used to identify nanoparticle components suitable for fusion to DS-Cav1. The C termini of the

foldon and N termini of the nanoparticle trimer are shown as red and blue spheres, respectively, and the exterior and interior surfaces of the nanoparticle are

depicted.

(B) Structural model of DS-Cav1-I53-50 and schematic of the in vitro assembly process. Each nanoparticle comprises 20 trimeric and 12 pentameric building

blocks for a total of 60 copies of each subunit.

(C) Chromatograms of unassembled components and assembled nanoparticles on a Sephacryl S-500 HR 16/60 SEC column.

(D) Dynamic light scattering of I53-50 and DS-Cav1-I53-50 nanoparticles. The hydrodynamic radius (Rh) and polydispersity (Pd) of each nanoparticle are

indicated.

(E) Negative stain EM of I53-50 and DS-Cav1-I53-50 nanoparticles. The two images on the right are averages of negatively stained particles.

(F) Single-particle cryo-electron microscopy reconstruction of DS-Cav1-I53-50, determined at a resolution of 6.3 Å. The density is colored according to subunits

as in (B).

(G) Alignment of the icosahedral asymmetric unit of the I53-50 computational design model (Bale et al., 2016) to the cryo-EM reconstruction. The N and C termini

of each subunit are indicated, and subunits are colored as in (B).

See also Figures S1–S3 and Tables S1 and S2.
In VitroAssembly and Structural Characterization of DS-
Cav1-I53-50
We independently purified trimeric DS-Cav1-I53-50A from

HEK293F supernatants and the pentameric component, I53-

50B.4PT1, from E. coli cells by immobilized metal affinity chro-

matography and size exclusion chromatography (SEC). When

analyzed by SEC on a Sephacryl S-500 column, each compo-

nent eluted as a single peak near the elution volume expected

for its oligomeric state (Figure 1C). In contrast, a mixture of the

two purified components at a 1:1 molar ratio yielded a predom-

inant peak at an early elution volume, suggesting efficient in vitro

assembly to the target icosahedral structure. SDS-PAGE

confirmed the presence of both components in the SEC peak,

and a small amount of residual, unassembled trimeric compo-

nent could also be detected after in vitro assembly (Figure S2B).

The I53-50B.4PT1 pentamer mixed with unmodified I53-50A (the

trimeric component lacking DS-Cav1) eluted slightly later,

consistent with the smaller hydrodynamic radius expected in
1422 Cell 177, 1420–1431, March 7, 2019
the absence of the displayed antigen. Dynamic light scattering

(DLS) and negative stain electron microscopy (EM) of the

SEC-purified DS-Cav1-bearing nanoparticles revealed a mono-

disperse population with a diameter of�44 nm, roughly in agree-

ment with the design model and again larger than unmodified

I53-50 (Figures 1D, 1E, and S3A).

The antigenic integrity of the DS-Cav1-I53-50 nanoparticles

was evaluated by surface plasmon resonance (SPR) using the

prefusion-specific mAbs D25, MPE8, and AM14 (Corti et al.,

2013; Kwakkenbos et al., 2010). All three mAbs bind with similar

kinetics to trimeric DS-Cav1 and trimeric DS-Cav1-I53-50A (Fig-

ure S2C), yielding similar calculated equilibrium dissociation

constants (KD; Table S2). While the mAbs do not dissociate

from DS-Cav1-I53-50 nanoparticles, likely due to increased

avidity, the on-rates (kon) of the mAbs to the nanoparticle immu-

nogen and the trimeric molecules are also similar (Table S2),

supporting that assembly of the trimeric component into the

nanoparticle does not affect antigenicity.



Figure 2. Physical Stabilization of DS-Cav1 by Fusion to I53-50A

(A) Retention of D25 binding after thermal stress, measured by SPR. The y axis represents the amplitude of the SPR signal obtained from antigen incubated at the

indicated temperature for 1 h relative to the signal after incubation at 20�C. Data from a representative experiment that was performed multiple times are shown.

(B) Reactivity to AM14 mAb of trimeric DS-Cav1-I53-50A incubated for 1 or 2 weeks at �80�C or 37�C, measured by bio-layer interferometry. The amplitude of

each signal after binding was complete is normalized to the week 1,�80�C sample. Data from a representative experiment that was performed twice are shown.

(C) SEC chromatograms of trimeric DS-Cav1-I53-50A after incubation for 2 weeks at�80�C or 37�C. Data from a representative experiment that was performed

twice are shown.

(D) Guanidine denaturation of trimeric DS-Cav1, trimeric DS-Cav1-I53-50A, and DS-Cav1-I53-50 nanoparticles. Two related measures of intrinsic fluorescence

are plotted: barycentric mean (left) and the position of the emission peak (right). The native state of the DS-Cav1-I53-50 nanoparticles is red-shifted relative to

DS-Cav1 and trimeric DS-Cav1-I53-50 due to the presence of a solvent-exposed tryptophan in I53-50B.4PT1. Circles represent the arithmetic mean and error

bars the standard deviation of measurements from three independently prepared samples.

(E) Summary of HDX-MS comparison of trimeric DS-Cav1 and DS-Cav1-I53-50 nanoparticles. Each observed peptide was classified as more (green) or less

(orange) stable in DS-Cav1-I53-50 (or unchanged; yellow). Portions of the structure for which peptides were not observed in both datasets are gray.

See also Figures S4–S6 and Table S1.
Although the displayed DS-Cav1 antigen was clearly visible

upon imaging negatively stained DS-Cav1-I53-50 (Figures 1E

and S3A), it was poorly resolved upon subsequent particle

image averaging during data processing (Figures S3A and

S3B), suggesting that the connection between DS-Cav1

and I53-50 is flexible, as expected given the extended

linker connecting them. We vitrified DS-Cav1-I53-50 and

determined a single particle cryo-electron microscopy

reconstruction at a resolution of 6.3 Å in which only the

I53-50 nanoparticle was resolved (Figures 1F, 1G, S3C, and

S3D). Fitting the computationally designed model of I53-50

into the density supported the accuracy of the design and

demonstrated that genetic fusion of DS-Cav1 to I53-50 did

not affect the architecture of the two-component nanoparticle

(Figure 1G).

Together, these data establish that two-component protein

nanoparticles can display complex glycoprotein antigens and

assemble in vitro to generate monodisperse immunogens with

high efficiency.
Physical Stabilization of DS-Cav1 by Fusion to I53-50A
Given the key antigenic properties of prefusion F, we used three

orthogonal approaches to measure the physical stability of

DS-Cav1 when fused to I53-50A and when further assembled

into the icosahedral nanoparticle. The first assay measured the

retention of prefusion-specific mAb binding after thermal stress

(Joyce et al., 2016; Krarup et al., 2015; McLellan et al., 2013b).

We found that trimeric DS-Cav1, trimeric DS-Cav1-I53-50A,

and DS-Cav1-I53-50 nanoparticles all bound D25 equivalently

after incubation for 1 h at 20�C and 50�C, but lost most of their

reactivity after 1 h at 80�C (Figure 2A). Interestingly, while D25

was also unable to bind trimeric DS-Cav1 incubated at 70�C
for 1 h, trimeric DS-Cav1-I53-50A and the DS-Cav1-I53-50

nanoparticles retained 50% and 80% of their respective binding

signals (Figures 2A and S4A). While the multivalent nature of the

DS-Cav1-I53-50 nanoparticles complicates direct quantitative

comparisons to trimeric DS-Cav1, these results indicate that

genetic fusion to the I53-50A trimer further stabilizes the prefu-

sion conformation of DS-Cav1 and suggest that this increased
Cell 177, 1420–1431, March 7, 2019 1423



stability is maintained in the context of the assembled nanopar-

ticle immunogen. AM14 binding measured by bio-layer interfer-

ometry and SEC further showed that samples of DS-Cav1-

I53-50A stored for 1 and 2weeks at 37�C revealed no discernible

loss in antigenicity relative to samples stored at �80�C and ex-

hibited no signs of protein degradation or aggregation (Figures

2B and 2C).

We used chemical denaturation in guanidine hydrochloride

(GdnHCl) monitored by intrinsic fluorescence as a second, anti-

body-independent technique to evaluate physical stability.

Analyzing fluorescence emission from DS-Cav1 incubated in

0–6.5 M GdnHCl revealed that the protein undergoes two subtly

distinct transitions, one between 0.25 and 2.25 M GdnHCl and

another between 2.25 and 5.75 M (Figures 2D and S4B).

In contrast, only a single transition between 2.25 and 6.25 M

GdnHCl is apparent for trimeric DS-Cav1-I53-50A, further sup-

porting that the native conformation of DS-Cav1 is stabilized

by genetic fusion to trimeric I53-50A. Comparing the data for

the DS-Cav1-I53-50 nanoparticle and unmodified I53-50 (lack-

ing fused DS-Cav1) indicated that the stabilization is maintained

upon assembly to the icosahedral nanoparticle (Figures 2D and

S4B). The source of this effect is likely the extreme stability of

the I53-50A trimer, which only began to exhibit small changes

in fluorescence at very high (R5.75 M) GdnHCl concentrations

(Figure S4B).

Finally, we used hydrogen-deuterium exchange mass spec-

trometry (HDX-MS) to probe the local structural stability of

DS-Cav1 as a soluble trimer and in the context of the assembled

DS-Cav1-I53-50 nanoparticle. HDX-MS revealed an overall in-

crease in local stability in the context of the DS-Cav1-I53-50

nanoparticle, including in key antigenic sites for neutralizing

antibodies such as site Ø and site II (Figures 2E, S5, and S6).

Several epitopes of interest, including site Ø and site II, displayed

bimodal HDX profiles with DS-Cav1 generally exhibiting a sub-

stantial bias toward the more ordered conformational states

when presented on the I53-50 nanoparticle (Figure S6). Antigenic

site V was an exception to the stabilizing trend, as this site

displayed a bias toward a more dynamic conformation in

DS-Cav1-I53-50 compared to trimeric DS-Cav1.

Preparation and Formulation of Nanoparticle
Immunogens
For immunogenicity studies, we exploited the two-component

nature of the I53-50 scaffold to produce a series of nanoparticle

immunogens displaying DS-Cav1 at various densities. Immuno-

gens bearing DS-Cav1 in only 33% or 67% of the 20 available

locations were prepared by simply mixing DS-Cav1-bearing

and unmodified trimeric I53-50A at 1:2 or 2:1 molar ratios,

respectively, prior to addition of the pentameric component to

drive nanoparticle assembly (Figure 3A). Assembly to the same

icosahedral architecture as 100% valency DS-Cav1-I53-50

was confirmed by DLS and EM after SEC-based purification,

while SDS-PAGE enabled visualization of the ratio of DS-Cav1-

bearing to unmodified trimeric I53-50A in the SEC-purified nano-

particle immunogens (Figures 3B–3E). Negative stain electron

micrographs of 100% valency DS-Cav1-I53-50 nanoparticles

formulated in AddaVax, a squalene-based oil-in-water emulsion,

showed fields of monodisperse particles with visible displayed
1424 Cell 177, 1420–1431, March 7, 2019
antigen as well as pale lipid droplets (Figure 3F), indicating that

the adjuvant had no discernible adverse effects on the structure

of the nanoparticle immunogen.

Multivalent Presentation on I53-50 Enhances DS-Cav1
Immunogenicity in Mice
We next compared the immunogenicity of trimeric DS-Cav1 to

the I53-50 nanoparticles displaying DS-Cav1 at various densities

in BALB/c mice. All immunogens were formulated in AddaVax

and each injection comprised 5 mg of DS-Cav1 antigen (or 5 mg

unmodified I53-50). As expected, immunization with unmodified

I53-50 nanoparticles induced no detectable response against

DS-Cav1, while sera from animals immunized with trimeric

DS-Cav1 contained antigen-specific antibodies and neutralized

virus (Figures 4A and 4B). All three of the nanoparticle immuno-

gens induced more robust humoral responses than trimeric DS-

Cav1 and revealed a correlation between antigen density on the

nanoparticle exterior and the magnitude of the response. At

100% valency, DS-Cav1-I53-50 induced 3-fold higher antigen-

specific antibody titers than trimeric DS-Cav1 and 9-fold higher

neutralizing antibody titers (calculated using the geometric mean

of each group). The decreased ratio of binding to neutralizing

antibodies elicited by DS-Cav1-I53-50 compared to trimeric

DS-Cav1 (1.2:1 versus 3.1:1) suggests that the quality of the anti-

body response is improved by displaying DS-Cav1 on the I53-50

scaffold (Figure 4C). One potential explanation for this improve-

ment is that potent neutralizing epitopes, such as site Ø, are

more exposed on the nanoparticle and are therefore more

accessible to BCRs than less neutralizing or non-physiological

epitopes like the foldon. Immunization of mice with trimeric

DS-Cav1 or DS-Cav1-I53-50 in the absence of adjuvant led

to similar results. We observed low binding and neutralizing

titers for unadjuvanted trimeric DS-Cav1, while unadjuvanted

DS-Cav1-I53-50 elicited binding and neutralization titers similar

to AddaVax-formulated trimeric DS-Cav1 (Figures 4D and 4E).

These data indicate that the designed nanoparticle immunogens

are substantially more immunogenic than trimeric DS-Cav1 and

support the hypothesis that the increased immunogenicity de-

rives, at least in part, from efficient BCR cross-linking by the

dense array of antigen on the nanoparticle surface.

To better understand the basis for the enhanced immuno-

genicity of DS-Cav1-I53-50, we compared the antibody

response induced by trimeric DS-Cav1 to a mixture of trimeric

DS-Cav1-I53-50A and 2obx-wt, a variant of the I53-50B pen-

tamer lacking the computationally designed protein-protein

interface that drives nanoparticle assembly. We observed

no significant difference in the levels of DS-Cav1-specific

antibodies or neutralizing antibodies (Figures 4F and 4G),

demonstrating that the enhanced immunogenicity of the DS-

Cav1-I53-50 nanoparticle does not derive from the physical

stabilization afforded by genetic fusion to I53-50A or from

T cell epitopes within the I53-50A subunit. Instead, the data

directly link enhanced immunogenicity to formation of the

icosahedral nanoparticle.

Antibody Response to the I53-50 Nanoparticle Scaffold
In addition to evaluating the anti-DS-Cav1 response, we

measured the induction of I53-50-specific antibodies. A robust



Figure 3. Preparation and Formulation of Nanoparticle Immunogens

(A) Schematic representation of in vitro assembly of partial valency nanoparticle immunogens. Although a single structural model is shown for clarity, the

geometric distribution of antigen on the nanoparticle exteriors is expected to be random due to the icosahedral symmetry of I53-50.

(B) SEC chromatograms of 33% and 67% DS-Cav1-I53-50 nanoparticles, showing efficient assembly to the icosahedral state (60–80 mL) with small amounts of

residual components (85–105 mL).

(C) Dynamic light scattering of 33% and 67% DS-Cav1-I53-50 nanoparticles. The hydrodynamic radius (Rh) and polydispersity (Pd) of each nanoparticle are

indicated.

(D) Reducing SDS-PAGE of SEC-purified components and nanoparticle immunogens. Molecular weight marker is indicated in kilodaltons.

(E) Negative stain electron micrographs of 33% and 67% valency DS-Cav1-I53-50 nanoparticle immunogens.

(F) Negative stain electron microscopy of 100% valency DS-Cav1-I53-50 nanoparticles formulated in AddaVax.

See also Table S1.
antibody response was elicited by unmodified I53-50 nanopar-

ticles, whereas the responses were lower when DS-Cav1 was

displayed on the nanoparticle exterior at any valency (Figure 5A).

To determine whether the lower anti-I53-50 responses were due

to physical shielding (Collins et al., 2017), we used sera from the

animals immunized with unmodified I53-50 to analyze antibody

binding to the nanoparticles displaying DS-Cav1. We observed

no difference between serum antibody binding to unmodified

I53-50 and DS-Cav1-I53-50 nanoparticles displaying the antigen

at any valency (Figure 5B). These data indicate that DS-Cav1

does not sterically prevent antibody access to the I53-50 nano-

particle surface even when genetically fused to the N terminus of

all 20 trimeric components, a result that is consistent with the

spacing of DS-Cav1 on the particle surface (Figure 1B) and the

long, flexible linker connecting them.

To further dissect the anti-scaffold response, we measured

antibody binding to each component of I53-50 before and after

immunodepleting sera using assembled, unmodified I53-50

nanoparticles. In this experiment, immunodepletion eliminates

antibodiesdirected against the nanoparticle exterior, and residual

antibody binding to the componentsmeasures responses against

epitopes on the interior surface of the nanoparticle or buried upon
nanoparticle assembly. As expected, prior to immunodepletion,

robust levels of antibodies specific to the assembled I53-50 nano-

particles, the I53-50A trimer, and the I53-50B.4PT1 pentamer

were observed in sera from animals immunized with unmodified

I53-50 (Figure 5C). Immunodepletion reduced antibody titers

against assembled I53-50 nanoparticles and the individual com-

ponents by 98%–99%. Near-total depletion of component-spe-

cific antibody by adsorption to assembled I53-50 nanoparticles

suggests that the nanoparticle immunogens do not present their

interior surfaces to B cells to an appreciable extent.

To determine whether pre-existing immunity against the

nanoparticle scaffold deleteriously affects the performance of

DS-Cav1-I53-50 as an immunogen, we pre-immunized mice

with unmodified I53-50 to induce anti-scaffold antibodies and

compared DS-Cav1-specific and neutralizing antibody titers to

a control group that did not receive the pre-immunizations.

Both the mean binding and neutralizing titers of the pre-immu-

nized group were slightly higher than the control group, although

the differences were not significant (Figures 5D and 5E). This

result demonstrates that the presence of anti-scaffold antibodies

does not adversely affect the potent antigen-specific response

induced by DS-Cav1-I53-50.
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Figure 4. Multivalent Presentation on I53-50

Enhances DS-Cav1 Immunogenicity in Mice

(A) DS-Cav1-specific binding antibody titers from

mice immunized with I53-50, trimeric DS-Cav1, or

DS-Cav1-I53-50 nanoparticle immunogens at the

indicated valency. Each symbol represents serum

from an individual animal, and the geometric mean

for each group is indicated by a horizontal line and

provided at the bottom of the plot. The dotted line

represents the lower limit of detection for the

assay.

(B) Serum neutralizing antibody titers induced by

each immunogen, plotted as in (A).

(C) Ratio of DS-Cav1-binding to neutralizing anti-

body titers, derived from the data in (A) and (B).

Each symbol represents the ratio of ED50:ID50 for

the sera from an individual animal; the bars repre-

sent the geometric mean for each group.

(D) DS-Cav1-specific binding antibody titers

from mice immunized with trimeric DS-Cav1 or

DS-Cav1-I53-50 nanoparticles without adjuvant,

plotted as in (A).

(E) Serum neutralizing antibody titers induced

by each immunogen without adjuvant, plotted

as in (B).

(F) DS-Cav1-specific binding antibody titers from

mice immunized with trimeric DS-Cav1 or a non-

assembling mixture of trimeric DS-Cav1-I53-50A

and 2obx-wt. ELISA data plotted as in (A).

(G) Serum neutralizing antibody titers induced

by DS-Cav1 or a non-assembling mixture of

trimeric DS-Cav1-I53-50A and 2obx-wt, plotted as

in (B).

The ELISA and neutralization data shown are

from representative experiments that were each

performed at least twice. Statistical significance was calculated using the two-tailed non-parametric Mann-Whitney U test for two groups’ comparison or

one-way ANOVA with multiple comparisons corrected by Tukey’s test when three or more groups were compared.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

See also Table S1.
Cellular Responses to I53-50, DS-Cav1, and DS-Cav1-
I53-50
To determine whether T follicular helper (Tfh) cells, essential reg-

ulators of B cell maturation in germinal centers (GCs) (Crotty,

2014), play a role in the enhanced immunogenicity of DS-

Cav1-I53-50, we compared the total numbers of Tfh and GC B

cells induced by each immunogen. We observed a 5.3-fold in-

crease in the number of total Tfh cells in mice immunized with

DS-Cav1-I53-50 versus trimeric DS-Cav1 (Figure 6A). The par-

ticulate nature of DS-Cav1-I53-50 appears to play a key role in

this increase, as unmodified I53-50 nanoparticles also induced

high numbers of Tfh cells. This trend was slightly more pro-

nounced in the numbers of total GC B cells induced by each

immunogen (Figure 6B). These data are consistent with previous

studies showing that particulate immunogens enhance GC for-

mation and Tfh expansion compared to soluble antigen (Moon

et al., 2012).

Immunogenicity of DS-Cav1-I53-50 in Nonhuman
Primates
To determine whether the enhanced immunogenicity we

observed in mice is also obtained in a species closer to humans,

we immunized Indian rhesusmacaques with trimeric DS-Cav1 or
1426 Cell 177, 1420–1431, March 7, 2019
DS-Cav1-I53-50 formulated in SWE, a squalene-based oil-in-

water emulsion (Ventura et al., 2013) (Figures 7A and S7). In

agreement with the data obtained in mice, DS-Cav1-I53-50

induced higher antigen-specific (Figure 7B) and neutralizing (Fig-

ure 7C) antibody titers than trimeric DS-Cav1, and the ratio of

binding to neutralizing antibodies was again lower for the nano-

particle immunogen (Figure 7D). Immunodepletion of the week 6

sera with trimeric DS-Cav1 followed by measurement of residual

antibody binding to postfusion F (Corti et al., 2013) showed that,

for both immunogens, roughly 90% of the F-specific antibodies

are directed at epitopes in prefusion F (Figure 7E). Together,

these data confirm in a primate immune system the enhanced

immunogenicity conferred by multivalent presentation of DS-

Cav1 on I53-50 and are consistent with the formulated nanopar-

ticle immunogen maintaining DS-Cav1 in the prefusion confor-

mation in vivo.

DISCUSSION

We have shown that computationally designed two-component

protein nanomaterials are capable of scaffolding and stabilizing

DS-Cav1, a complex viral glycoprotein antigen, and that I53-

50-based immunogens induce potent RSV-neutralizing antibody



Figure 5. Antibody Response to the I53-50

Nanoparticle Scaffold

(A) I53-50-specific binding antibody titers, plotted

as in Figure 4A. The sera from all groups were

analyzed for binding to unmodified I53-50 nano-

particles.

(B) Sera from mice immunized with unmodified

I53-50 nanoparticles were analyzed for binding

antibody titer against several antigens, plotted as

in Figure 4A. The first groups in (A) and (B) are

technical replicates.

(C) Sera from mice immunized with unmodified

I53-50 nanoparticles were analyzed for antibody

titer against I53-50 nanoparticles (same data

as the first group in B), trimeric I53-50A, and

pentameric I53-50B.4PT1 before or after im-

munodepletion with I53-50, plotted as in Figure 4A.

(D) DS-Cav1-specific binding antibody titers from

mice immunized three times with DS-Cav1-I53-50

with and without pre-immunization with unmodi-

fied I53-50, plotted as in Figure 4A.

(E) Serum neutralizing antibody titers corre-

sponding to the immunizations in (D), plotted as in

Figure 4B.

Statistical significance was calculated using the

two-tailed non-parametric Mann-Whitney U test

for two groups’ comparison or one-way ANOVA

with multiple comparisons corrected by Tukey’s

test when three or more groups were compared.

*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

See also Table S1.
responses. The ability to design new self-assembling protein

complexes with atomic-level accuracy enables the production

of materials with structural features tailored to specific applica-

tions (Bale et al., 2016; Hsia et al., 2016; King et al., 2012,

2014). In this work, we have exploited this capability at the level

of both the oligomeric building block as well as the assembled

nanomaterial. At the building block level, we genetically fused

trimeric DS-Cav1 to a variety of designed nanoparticle compo-

nents with matching 3-fold symmetry and exterior-facing

N termini. At the assembled nanomaterial level, we selected for

immunogenicity studies the self-assembling scaffold that maxi-

mized antigen density. These and other features can be further

explored and optimized in future efforts, and we anticipate

that by enabling precise and systematic variation of structural

parameters such as overall immunogen size or spacing between

antigens, computationally designed self-assembling immuno-

gens could enable better definition of the structural correlates

of immunogenicity.

The construction of two-component nanomaterials like I53-50

from multiple copies of two distinct protein subunits distin-

guishes them from homomeric self-assembling protein scaffolds

such as ferritin. In this work, we took advantage of the two-

component nature of I53-50 in several ways. First, analysis

of the isolated components enabled more detailed and facile

characterization of the stability of each protein in the system,
revealing that it is genetic fusion of

DS-Cav1 to the I53-50A component—

not nanoparticle assembly—that results
in stabilization of the prefusion conformation beyond that af-

forded by the DS-Cav1 mutations. Second, we exploited the

control afforded by in vitro assembly to tune the density of anti-

gen on the nanoparticle exterior by simply assembling mixtures

of trimeric components containing or lacking fused DS-Cav1 at

defined ratios. The correlation we observed between increased

antigen density and immunogenicity agrees with previous work

using other multivalent antigen presentation platforms (for re-

view, see Frietze et al., 2016; López-Sagaseta et al., 2015) and

supports the notion that efficient cross-linking of BCRs by

high-density antigen arrays is a key driver of immunogenicity

(Abbott et al., 2018; Bachmann and Jennings, 2010). Third, our

ability to easily prepare an immunogen nearly identical to

DS-Cav1-I53-50 in terms of protein content that nevertheless

is unable to assemble enabled the observation that the increase

in antigen-specific antibodies induced by DS-Cav1-I53-50 is

directly linked to formation of the nanoparticle structure. These

observations motivate the design of additional self-assembling

scaffolds that enable antigen display at still higher valency, as

well as systematic investigation of the roles of antigen flexibility,

antigen-antigen spacing, and linker design in the performance of

nanoparticle immunogens.

The recent generation of stabilized prefusion F antigens

has breathed new life into RSV vaccine development (Graham,

2016; Joyce et al., 2016; Krarup et al., 2015; McLellan et al.,
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Figure 6. Cellular Responses to I53-50, Trimeric DS-Cav1, and

DS-Cav1-I53-50

(A) Quantitation of total Tfh cells from draining lymph node cell suspensions.

Each symbol represents a measurement from an individual mouse and the

geometricmean for each group is indicated by a horizontal line and provided at

the bottom of the plot. The data shown are from a representative experiment

that was performed twice with groups of 6 to 7 mice.

(B) Quantitation of total GC B cells from draining lymph node cell suspensions,

plotted as in (A).

Statistical significance was calculated using one-way ANOVA with multiple

comparisons corrected by Tukey’s test. *p < 0.05; **p < 0.01; ***p < 0.001;

****p < 0.0001.

See also Table S1.
2013b). Although there is no formal correlate of protection from

infection, several lines of evidence indicate that high levels of

neutralizing antibodies protect against severe RSV disease

(Falsey and Walsh, 1998; Glezen et al., 1986; Piedra et al.,

2003). We found that in RSV-naive mice and nonhuman primates

DS-Cav1-I53-50 induces roughly 10-fold higher levels of neutral-
1428 Cell 177, 1420–1431, March 7, 2019
izing antibodies than trimeric DS-Cav1, a leading clinical-stage

RSV vaccine candidate. It is possible that second-generation

prefusion RSV F antigens with improved stability and immunoge-

nicity (Joyce et al., 2016) would yield even more potent re-

sponses when presented in multivalent form on I53-50 or other

nanoparticles. We note that one limitation of RSV-naive animal

models is that prior RSV infection is universal among adult hu-

mans, and a vaccine will presumably work in part by boosting

pre-existing immunity (Graham, 2016). RSV-primed animal

models (Blanco et al., 2018; Steff et al., 2017) could be useful

for simulating this scenario and evaluating DS-Cav1-I53-50 in a

more clinically relevant context.

Anti-scaffold antibody responses are typically observed when

heterologous antigens are presented on self-assembling protein

scaffolds, which raises three main questions. First, will the scaf-

fold generate cross-reactive responses against human (self) pro-

teins? The two subunits of I53-50 are both derived from bacterial

enzymes that have no detectable homology to any human pro-

teins, making the induction of cross-reactive antibodies unlikely,

although this would need to be closely monitored in any clinical-

stage program. Second, do anti-scaffold responses detract from

or compete with the antigen-specific response? Our data are in

accordance with previous studies (Aide et al., 2011; Kanekiyo

et al., 2013) in that presentation of DS-Cav1 on the I53-50 nano-

particle induced higher antigen-specific responses despite the

presence of an anti-scaffold response, including after multiple

boosts. Third, would anti-scaffold antibodies prevent use of

the same scaffold in prime-boost regimens or in multiple vac-

cines? We found that pre-existing immunity against the I53-50

scaffold did not deleteriously affect the antigen-specific

response, similar to observations in clinical studies of RTS,S,

a recombinant nanoparticle vaccine for malaria (Aide et al.,

2011). However, to fully understand the role of anti-scaffold re-

sponses, additional studies, ideally in humans, will be required.

In conclusion, we have described a versatile two-component

protein nanoparticle platform for multivalent presentation of

complex antigens. Given the rapidly expanding capabilities of
Figure 7. Immunogenicity of DS-Cav1-

I53-50 in Nonhuman Primates
(A) Study design.

(B) DS-Cav1-specific binding antibody titers,

plotted as in Figure 4A.

(C) Serum neutralizing antibody titers, plotted

as in (B).

(D) Ratio of DS-Cav1-binding to neutralizing anti-

body titers, plotted as in Figure 4C.

(E) Postfusion F-specific antibody titers after im-

munodepletion with trimeric DS-Cav1, plotted as

in Figure 4A.

Statistical significance was calculated using the

two-tailed non-parametric Mann-Whitney U test

for two groups’ comparison. *p < 0.05.

See also Figure S7 and Table S1.



computational protein design (Huang et al., 2016), continued

development of this structure-based approach to designing

self-assembling immunogens could be useful for improving the

potency, durability, and breadth of vaccines against a number

of important pathogens.
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Mouse CD19-PE-Cy7 (clone 1D3) BD Biosciences Cat #552854; RRID: AB_394495
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D25 (anti-RSV F) McLellan et al., 2013a N/A

MPE8 (anti-RSV F) Corti et al., 2013 N/A

Palivizumab (anti-RSV F) Corti et al., 2013 N/A

AM14 (anti-RSV F) Kwakkenbos et al., 2010 N/A

Bacterial and Virus Strains

Human Respiratory Syncytial Virus with Green Fluorescent

Protein. A2 strain

ViraTree https://www.viratree.com/product/rsv-gfp1/

Chemicals, Peptides, and Recombinant Proteins

DS-Cav1 McLellan et al., 2013a N/A

RSV F (post fusion) Corti et al., 2013 N/A

DS-Cav1–I53-50A This paper N/A

I53-50A Bale et al., 2016 N/A

I53-50B.4PT1 Bale et al., 2016 N/A

Recombinant human interleukin-2 BD Biosciences Cat #554603

D-desthiobiotin Millipore Sigma Cat #71610

Imidazole Millipore Sigma Cat #I5513

MEM, GlutaMAX Supplement Thermo Fisher Scientific Cat #41090028

Penicillin-Streptomycin Thermo Fisher Scientific Cat #10378016

Fetal Bovine Serum (FBS) Thermo Fisher Scientific Cat #10500064

Expi293 Expression Medium Thermo Fisher Scientific Cat #A1435101

Polyethylenimine (PEI) Polysciences Cat #24765

Deposited Data

Single-particle cryoEM reconstruction of DS-Cav1–I53-50 This paper EMDB: EMD-0350
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Experimental Models: Organisms/Strains

Mouse: BALB/c: (BALB/cOlaHsd) Envigo N/A

Experimental Models: Cell Lines

Expi293F cells ThermoFisher Cat #A14527

HEK293T cells ATCC CRL-3216

HEp-2 ATCC CCL-23

Mouse: primary T lymphocytes This paper N/A

Mouse: primary B lymphocytes This paper N/A

Recombinant DNA

DS-Cav1 McLellan et al., 2013a N/A

RSV F (post fusion) Corti et al., 2013 N/A

pcDNA3.1 expression vector Thermo Fisher Scientific Cat #V79020

Software and Algorithms

FlowJo v10 FlowJo, LLC https://www.flowjo.com/solutions/flowjo

BD AttoVision BD Biosciences https://www.bdbiosciences.com/us/home

GraphPad Prism 7 GraphPad https://www.graphpad.com/

Proteon Manager Biorad http://www.bio-rad.com/en-ch/product/

proteon-manager-software?ID=49291a09-

2c4c-4e56-a667-dba159e95684

Sic_axle This paper N/A

Other

Strep-Tactin Superflow Agarose Millipore Sigma Cat #71592

HiTrap Protein G HP GE Healthcare Cat #17040501

Superose 6 3.2/300 GE Healthcare Cat # 29036226

Zeba Spin Desalting Columns Thermo Fisher Scientific Cat #89882

Ni-NTA agarose QIAGEN Cat #30210

HiTrap MabSelect column GE Healthcare Cat #28408256

Superdex 200 16/600 gel filtration column GE Healthcare Cat #28989335

ProteOn GLC sensor chip Biorad Cat #1765011

Nunc-Immuno MicroWell 96 well solid plates Millipore Sigma Cat #M5785-1CS
CONTACTS FOR REAGENT AND RESOURCE SHARING

Further information and requests for reagents may be directed to the Lead Contact, Neil King (neilking@uw.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Lines
Expi293F cells, a female human embryonic kidney cell line adapted to grow in suspension, were obtained from Thermo Fisher Sci-

entific. HEK293T cells were obtained from ATCC (CRL-3216). HEp-2 cells were also obtained from ATCC (CCL-23).

Mice
Female BALB/c mice 6–9 weeks old were obtained from Envigo (Italy). Animal procedures were performed in accordance with the

guidelines of the Swiss Federal Veterinary Office and after obtaining ethical approval from the Ufficio Veterinario Cantonale, Bellin-

zona, Switzerland (approval number 332016).

Indian Rhesus Macaques
The study was approved by the Local Ethical Committee on Animal Experiments under the Swedish Board of Agriculture. The nine

male Indian rhesusmacaqueswere housed in the Astrid Fagraeus laboratory at Karolinska Institutet according to the guidelines of the
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Association for Assessment and Accreditation of Laboratory Animal Care, and all procedures were performed according to the

provisions and general guidelines of the Swedish Animal Welfare Agency.

METHODS DETAILS

Design of DS-Cav1–Bearing Nanoparticle Components
A custom docking protocol, sic_axle, was written in C++ to dock two proteins along a shared symmetry axis. The protocol was based

on the two-component docking protocol originally described in (King et al., 2014). The protocol minimizes the distance between the

two oligomeric proteins, and optionally the distance between user-specified termini (d in Figure 1A), while preventing clashes,

defined as interatomic distances below a user-defined distance threshold. The degrees of freedom searched during docking are

the displacement along the shared symmetry axis of one of the two proteins (r) and its rotation about the symmetry axis (u). Crystal

structures of DS-Cav1 (PDB: 4MMU) and DS-Cav1-foldon (PDB: 4MMV) (McLellan et al., 2013b) were docked against the compu-

tational design models of trimeric components from a set of designed self-assembling protein nanomaterials with exterior-facing

termini. Docking results were inspected manually, and flexible genetic linkers were designed for promising antigen-nanoparticle

component pairs. Images of design models were rendered using PyMOL 1.8.4.0 (Schrödinger, 2015).

Small-scale Expression and Screening
Genes encoding DS-Cav1 genetically fused to the N termini of nanoparticle components I3-01 (+/� foldon) and I53-50A (+ foldon)

were synthesized and cloned by GenScript into pcDNA3.1 (I3-01) or pcDNA3+ (I53-50A) vectors. The remaining DS-Cav1 N-terminal

fusions were cloned into pCMV (T33-15B ± foldon and T33-31A ± foldon; I32-28A 8GS or 12GS linker without foldon, I53-50Awithout

foldon) using the KpnI and XhoI restriction sites. Amino acid sequences for all proteins used in this study are provided in Table S1.

Plasmids were transformed into the NEB5a strain of E. coli (New England Biolabs) for subsequent DNA extraction from bacterial cul-

ture (NucleoBond� Xtra Midi kit) to obtain plasmid for transient transfection into Expi293F cells.

On day zero, Expi293F cells were seeded at a density 2.0 3 106 cells/mL in Expi293 expression medium with 0.1 U/mL penicillin/

streptomycin and incubated with 125 rpm oscillation at 37�C, 8%CO2, and 70% humidity. The following day, the culture density was

adjusted to 2.53 106 cells/mL, aliquoted into 12-well non-treated plates, and transfected using Life Technologies’ Expifectamine 293

Transfection kit in accordance with the manufacturer’s protocol. Enhancers were added on day 2, and cell suspensions were har-

vested on day 5 by centrifugation for 5 minutes at 4000 3 g. The supernatants filtered through 0.45 mm PVDF filters.

For screening the clarified cell supernatants by ELISA, a standard curve was prepared by diluting trimeric DS-Cav1 to 160 mg/mL in

Dulbecco’s phosphate buffered saline (dPBS) with 5% glycerol, making 43 serial dilutions to a final concentration of 0.01 mg/mL and

a total of 8 dilutions. All incubations were performed at room temperature with shaking for 1 h except where otherwise noted. 50 mL of

clarified cell supernatants, standard curve dilutions, and I53-50A trimer at 10 mg/mL (negative control) were plated onto Pierce

96-well clear nickel-coated microplates (Thermo Fisher Scientific) and incubated. Plates were washed by submersion in wash buffer

(25 mM Tris pH 8, 150 mM NaCl, 0.05% Tween 20) and forceful inversion six times. 200 mL of blocking buffer (wash buffer with 4%

nonfat milk [Bio Rad]) was added to each well and incubated. The wash step was repeated. 0.2 mg/mL D25 primary antibody (see

Expression and Purification of Monoclonal Antibodies) was added to each sample well and incubated. The wash step was repeated.

0.05 mg/mL of ab97160 horseradish peroxidase-conjugated anti-human secondary antibody (Abcam) was added to each well and

incubated. The wash step was repeated. 150 mL of room temperature 1-Step ABTS Substrate Solution (Thermo Fisher Scientific)

was added to each sample well. Plates were incubated for 15minutes at room temperature with shaking until developed, the reaction

was stopped with 100 mL of 1% SDS solution, and absorbance at 405 nm was measured in a SpectraMax M3 plate reader.

Protein Expression and Purification
The I53-50A trimer was expressed as described (Bale et al., 2016). Cells were lysed by sonication (2.5 minutes total sonicating time in

2 s pulses) in 50 mM Tris pH 8, 500 mM NaCl, 20 mM Imidazole, 0.75% 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfo-

nate (CHAPS), 0.1 mg/mL lysozyme, 0.05 mg/mL DNase, 0.05 mg/mL RNase, 5 mMMgCl2 and 1 mM phenylmethylsulfonyl fluoride

(PMSF). Lysate was clarified by centrifugation at 33,000 3 g for 20 minutes. Lysate supernatants were applied to HisTrap HP or FF

columns (GE Healthcare) for purification by immobilized metal affinity chromatography (IMAC) on an AKTA Pure FPLC system (GE

Healthcare). Protein of interest was eluted over a linear gradient of 20 mM to 500 mM imidazole in a background of 50 mM Tris

pH 8, 500 mM NaCl, and 0.75% CHAPS buffer after washing with �10 column volumes wash buffer (elution buffer with 20 mM

imidazole). Peak fractions were pooled, concentrated in 10K MWCO centrifugal filters, sterile filtered (0.22 mm) and applied to a

Superdex 200 Increase 10/300 GL SEC column (GE Healthcare) using 25 mM Tris pH 8, 500 mM NaCl, 0.75% CHAPS buffer,

1 mM DTT. I53-50A elutes at �15-17 mL. The I53-50B.4PT1 pentamer was expressed and purified as described (Bale et al., 2016).

DS-Cav1–I53-50A was produced by lentiviral transduction of HEK293F cells using the Daedalus system (Bandaranayake et al.,

2011). Lentivirus was produced by transient transfection of HEK293T cells (ATCC) using linear 25 kDa polyethyleneimine (PEI; Poly-

sciences). Briefly, 43 106 cells were plated onto 10 cm tissue culture plates. After 24 h, 3 mg of psPAX2, 1.5 mg of pMD2G (Addgene

plasmids #12260 and #12259, respectively), and 6 mg of lentiviral vector plasmid weremixed in 500 mL diluent (5mMHEPES, 150mM

NaCl, pH 7.5) and 42 mL of PEI (1 mg/mL) and incubated for 15 minutes. The DNA/PEI complex was then added to the plate drop-

wise. Lentivirus was harvested 48 h post-transfection and concentrated 1003 by centrifugation at 80003 g for 18 h. Transduction of
e3 Cell 177, 1420–1431.e1–e8, March 7, 2019



the target cell line was carried out in 125 mL shake flasks containing 103 106 cells in 10 mL of growth media. 100 uL of 1003 lenti-

virus was added to the flask and the cells were incubated with 225 rpm oscillation at 37�C in 8%CO2 for 4–6 hours, after which 20mL

of growthmedia was added to the shake flask. Transduced cells were expanded every other day to a density of 13 106 cells/mL until

a final culture size of 4 L was reached. The media was harvested after 17 days of total incubation after measuring final cell concen-

tration (�5 3 106 cells/mL) and viability (�90% viable). Culture supernatant was harvested by low-speed centrifugation to remove

cells from the supernatant. NaCl and NaN3 were added to final concentrations of 250 mM and 0.02%, respectively. The supernatant

was loaded over one 5mLHisTrap FFCrude column (GEHealthcare) at 5mL/min by an AKTAPure (GEHealthcare). The 5mLHisTrap

column was washed with 10 column volumes of wash buffer (23GIBCO 14200-075 PBS, 5 mM Imidazole, pH 7.5) followed by 6 col-

umn volumes of elution buffer (2 3 GIBCO 14200-075 PBS, 150 mM Imidazole, pH 7.5). The nickel elution was applied to a HiLoad

16/600 Superdex 200 pg column (GE Healthcare) and run in dPBS (GIBCO 14190-144) with 5% glycerol (Thermo BP229-1) to further

purify the target protein by SEC. The SEC-purified target protein was snap frozen in liquid nitrogen and stored at �80�C.
Postfusion RSV F and trimeric DS-Cav1 were produced as previously described (Corti et al., 2013; McLellan et al., 2013b).

Expi293F cells were transfected with plasmids encoding DS-Cav1 or postfusion RSV F using polyethylenimine (PEI). Briefly, 1 mg

plasmid/mL of cells (with cell density adjusted at 2.53 106) and 10 mg PEI/mL of cells were diluted separately in OPTI-MEM (Thermo

Fisher Scientific), mixed together, and incubated 15 minutes at room temperature (RT) before adding them to the cells. Transfected

cells were culturedmaintained for 7 days at 37�Cwith 8%CO2 and shaking at 135 rpm. Recombinant proteins were purified from cell

supernatants by IMAC followed by affinity chromatography on Strep-Tactin superflow high capacity resin (IBA GmbH, Göttingen,

Germany) using the C-terminal tandem Strep-tag. Proteins were eluted from the resin by competition with elution buffer (25 mM

HEPES, pH 7.5, 150mMNaCl) containing 5mMdesthiobiotin. The Strep-tag was cleaved by TEV protease (Thermo Fisher Scientific)

treatment. Uncleaved protein and TEV protease were removed by negative IMAC chromatography. Finally, proteins were subjected

to SEC on a Superdex 200 10/300 GL (GE Healthcare) equilibrated in PBS. The conformation of postfusion RSV F was confirmed by

ELISA with palivizumab and D25.

Expression and Purification of Monoclonal Antibodies
Antibody (D25, MPE8 and AM14) heavy and light chains were ordered from GenScript and cloned into pcDNA3.1. Antibodies were

expressed by transient co-transfection of both heavy and light chain plasmids in Expi293F cells using PEI (Polyscience). Cell super-

natants were harvested after 7 days and passed over a HiTrap MabSelect column (GE Healthcare). Bound antibodies were washed

with PBS and eluted with 100 mM glycine at pH 2.9 into 1/10th volume of 1 M Tris-HCl pH 8.0. Final purification of mAbs was per-

formed by SEC on a Superdex 200 10/300 GL (GE Healthcare) using PBS as the mobile phase.

In vitro Assembly of DS-Cav1–I53-50 and I53-50
Concentrations of purified individual nanoparticle components were determined bymeasuring absorbance at 280 nm using a UV-Vis

spectrophotometer (Agilent Cary 8454) and calculated extinction coefficients (Gasteiger et al., 2005). The following assembly steps

were performed on ice: DS-Cav1–I53-50A trimer (in dPBS, 5% glycerol) and/or I53-50A trimer (in 25 mM Tris pH 8, 500 mM NaCl,

0.75% CHAPS) was added first to an eppendorf tube to a final concentration of 50 mM in the in vitro assembly reaction. Assembly

buffer (25 mMTris pH 8, 250mMNaCl, 5% glycerol) was then added to a volume of 1 mLminus the total volumes of the components.

Finally, I53-50B.4PT1 pentamer (in 25mM Tris pH 8, 500mMNaCl, 0.75%CHAPS) was added to the tube for a final concentration of

50 mM. In order to produce partial valency DS-Cav1–I53-50 nanoparticles (33%and 67%DS-Cav1–I53-50), DS-Cav1–I53-50A trimer

was added to 16.7 mM (33% valency) or 33.3 mM (67% valency), and I53-50A trimer was added to 33.3 mM (33% valency) or 16.7 mM

(67%valency). Assemblies were incubated at room temperature (I53-50 bare nanoparticle) or 4�C (DS-Cav1–I53-50 or partial valency

nanoparticles) with gentle rocking for at least 1 hour before subsequent purification by SEC using a Superose 6 Increase 10/300 GL

column. Assembled particles elute in the void volume of this column. Assembled nanoparticles were centrifuged for 10 minutes at

21000 3 g and 4�C or sterile filtered (0.22 mm) immediately before column application.

Endotoxin Measurement and Removal
Endotoxin was removed from I53-50B.4PT1 during or after purification of the protein using a detergent wash during IMAC. The pro-

tein was immobilized on a 5 mL HisTrap HP column (GE Healthcare) equilibrated with buffer (25 mM Tris pH 8, 500 mM NaCl, 0.75%

CHAPS) and the column was washed with �10 CV of the equilibration buffer. I53-50B.4PT1 was eluted with a linear gradient of 0 to

500 mM imidazole in equilibration buffer. Fractions containing I53-50B.4PT1 were concentrated in a 10 kDa molecular weight cutoff

Vivaspin filter and dialyzed twice against equilibration buffer. Purified I53-50B.4PT1 pentamer was tested for endotoxin prior to

assembly using a Charles River EndoSafe� PTS system, and measured concentrations were routinely below 100 EU/mL. Before

formulation in SWE or AddaVax, protein preparations were again tested to be negative for endotoxin contamination by Chromogenic

Limulus Amebocyte Lysate (LAL) assay (Lonza).

Analytical Size Exclusion Chromatography
Samples were sterile filtered (0.22 mm) or centrifuged for 10 minutes at 210003 g and at 4�C immediately before column application.

�3mgof total protein was injected onto a Sephacryl S-500HR 16/60 SEC column (GEHealthcare) on FPLC (AKTA Pure) using 25mM
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Tris pH 8, 250 mM NaCl, 5% glycerol buffer as the mobile phase. I53-50 bare nanoparticle elutes �70-80 mL, DS-Cav1–I53-50 and

partial valencies 60-70 mL, I53-50A trimeric component 80-90 mL, and I53-50B.4PT1 pentameric component 90-100 mL.

Dynamic Light Scattering
Triplicate measurements of 20 acquisitions each at 5 s per acquisition were taken on a DynaPro Nanostar instrument at 25�C in a 1 mL

quartz cuvette (Wyatt Technology Corp.) and using auto-attenuation of the laser. Increased viscosity due to the inclusion of 5% glyc-

erol in the DS-Cav1–I53-50 nanoparticles was accounted for in the software.

Negative Stain Electron Microscopy
For the negative stain EMappearing in Figures 1E, 3E, and 3F, I53-50 bare nanoparticle andDS-Cav1–I53-50 nanoparticles (including

partial valency nanoparticles) were diluted to concentrations of 0.1mg/mL and 0.05mg/mL, respectively, in 25mMTris pH 8, 250mM

NaCl, 5%glycerol. We used carbon coated 300mesh copper grids (Ted Pella), glow discharged immediately before use. 6 mL of sam-

ple was applied to the grid for 1 minute, then briefly dipped in a droplet of water before blotting away excess liquid withWhatman No.

1 filter paper. Grids were stained with 6 mL of 0.75% (w/v) uranyl formate stain, immediately blotting away excess, then stained again

with another 6 mL for 30 s. Grids were imaged on aMorgagni transmission electron microscope with a Gatan camera. We used Gatan

Digital Micrograph software to take images.

For the negative stain EM appearing in Figure S3, stock solution of DS-Cav1–I53-50 was diluted to an estimated concentration of

0.05mg/mL in 25mMTris pH 8.0, 150mMNaCl.We used carbon-coated Ted Pella G400 copper grids, glow discharged immediately

before use. A volume of 3.5 mL of sample was deposited on the grid for 20-30 s before excess solution was blotted away usingWhat-

man No. 1 filter paper. This was immediately followed by two rounds of staining using 3.5 mL of 2% (w/v) uranyl formate. Data were

collected using an FEI Tecnai Spirit transmission electron microscope equipped with a Gatan US4000 CCD camera. Images were

acquired with the Leginon software (Suloway et al., 2005) at a nominal magnification of 52,000 3 at a defocus range comprised be-

tween�1 mm and�4 mm. CTF parameters were estimated using GCTF (Zhang, 2016). Particles were picked using DoG Picker (Voss

et al., 2009). Particle imageswere extracted using a box size of 288 pixels binned by a factor of 2 to an effective pixel size of 4.14 Å and

analyzed using RELION 2.1 (Kimanius et al., 2016). After 2 rounds of reference-free 2D classification, an initial model with icosahedral

symmetry was generated from 2D class averages using the e2initialmodel.py function in EMAN2 (Tang et al., 2007). The 4,300 par-

ticles from the corresponding classes were used for 3D refinement of the initial model. The refined map was used as a reference for

one additional round of 3D refinement to obtain the final map at an estimated resolution of 20 Å.

Cryo-electron Microscopy
Stock solution of DS-Cav1–I53-50 was applied directly on grids without further dilution. We used Protochips C-flat 1.2/1.3-4C-T car-

bon-coated copper grids, glow discharged immediately before use. A multiple blotting strategy was employed, as previously

described (Snijder et al., 2017). After one round of sample application and blotting on the lab bench usingWhatman No. 1 filter paper,

a second volume of sample was applied to the grids, which were then mounted in an FEI Mark I Vitrobot for a final round of blotting

and plunge-freezing in liquid ethane, using a 9 s blotting time with�3 mm offset at room temperature and 80%–90% relative humid-

ity. Data was collected using the Leginon software (Suloway et al., 2005) on an FEI TF20 electron microscope, equipped with a Gatan

K2 Summit direct electron detector. The dose rate was adjusted to 8 counts/pixel/s, and each movie was acquired in counting mode

fractionated in 45 frames of 200 ms. 200 micrographs were collected in a single session with a defocus range comprised between

�1.5 mm and �3.0 mm.

Movie frames were aligned with MotionCor2 (Zheng et al., 2017), with the use of dose weighting. CTF parameters were estimated

from the aligned micrographs without applied dose weighting, using GCTF (Zhang, 2016). Particles were picked from aligned dose-

weighted micrographs using DoG Picker (Voss et al., 2009). Particle images were extracted using a box size of 480 pixels binned by a

factor of 2 to an effective pixel size of 2.5 Å and analyzed with RELION 2.0 (Kimanius et al., 2016). After 2 rounds of reference-free 2D

classification, 1,600 particles were selected for 3D classification in 3 classes, starting with an initial model with icosahedral symmetry

that was generated from 2D class averages using the e2initialmodel.py function in EMAN2 (Tang et al., 2007). One predominant class

of 1,200 particles was selected to generate the final map, at 6.3 Å resolution, applying icosahedral symmetry, and using a solvent

mask and the solvent_correct_fcs flag in RELION 2.0. A B-factor of �400 Å2 was applied to sharpen the map. Reported resolutions

are based on the gold-standard FSC = 0.143 criterion (Rosenthal and Henderson, 2003) and Fourier shell correlation curves were

corrected for the effects of soft masking by high-resolution noise substitution (Chen et al., 2013). ChimeraX was used for rendering

(Goddard et al., 2018).

Surface Plasmon Resonance
For the retention of D25 binding after thermal stress, experiments were carried out at 20�Con a ProteON XPR-36 instrument (Bio-Rad

Laboratories) in PBS (GIBCO, Thermo Fisher Scientific) and 0.05% Tween-20 (Sigma). D25 antibody was immobilized at 100 nM on a

GLM sensor chip surface through amine coupling (EDC/NHS chemistry) and a blank surface with no antibody was created under

identical coupling conditions for use as a reference. Analyte proteins (soluble DS-Cav1, soluble DS-Cav1–I53-50A, and DS-Cav1–

I53-50 nanoparticle), heat stressed at various temperatures (20, 50, 70, and 80�C) for 1 h, were injected at a flow rate of 100 mL/minute
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at a concentration of 50 nM in the different sensor channels. Datawere processed using ProteonManager software and double-refer-

enced by subtraction of the blank surface and buffer-only injection before local fitting of the data.

For the antigenic characterization by SPR, experiments were carried out at 20�C in PBS (GIBCO, Thermo Fisher Scientific) and

0.05% Tween-20 (Sigma). Monoclonal antibodies (mAbs) were immobilized at 100 nM on a GLM sensor chip surface through amine

coupling (EDC/NHS chemistry) and a blank surface with no antibody was created under identical coupling conditions for use as a

reference. Analyte proteins (soluble DS-Cav1 and DS-Cav1–I53-50 nanoparticles at various valencies) were injected at a flow

rate of 100 mL/minute at several concentrations in the different sensor channels. Data were processed using Proteon Manager

software and double-referenced by subtraction of the blank surface and buffer-only injection. kon, koff, and KD were calculated by

Langmuir fitting.

Bio-layer Interferometry
Binding of AM14 mAb to trimeric DS-Cav1 and DS-Cav1–I53-50 nanoparticles was analyzed using bio-layer interferometry with an

Octet Red System (Pall FortéBio). Protein samples were diluted to 200 nM in kinetics buffer (HEPES-EP+ (FortéBio), with 0.05%

nonfat milk). Buffer and sample were then applied to a black 96-well Greiner Bio-one microplate at 200 mL per well. Protein A

biosensor tips (FortéBio) were first pre-wetted for 10 minutes in kinetics buffer, then the tips were dipped in mAb diluted to

10 mg/mL in kinetics buffer to load the biosensors, or buffer as a control. After 600 s, the tips weremoved into buffer to reach baseline

for another 120 s. The association step was performed by dipping the loaded tips into the protein samples for 500 s, then the

dissociation was measured by dipping the tips back into fresh buffer for 1000 s. Plotted values are taken from 500 s into the

dissociation step.

Guanidine Denaturation and Fluorescence
Trimeric DS-Cav1, DS-Cav1–I53-50A trimer, DS-Cav1–I53-50 nanoparticle, I53-50 bare nanoparticle, I53-50A trimer, or I53-50B

pentamer was diluted to a final concentration of 2.5 mM in 25 mM Tris pH 8, 250 mM NaCl, 5% glycerol with [GdnHCl] (except

I53-50B pentamer, which also included 0.75% CHAPS in the buffer) ranging from 0 M to 6.5 M, increasing in 0.25 M increments

and prepared in triplicate. Samples were incubated for 16 hours at ambient temperature. A Peltier was used in the cell holder to

maintain a temperature of 25�C throughout data collection. Using a Cary Eclipse Fluorescence Spectrophotometer and a 10 mm

cell (Agilent Cuvette, part #6610021600), fluorescence spectra were collected, exciting at 290 nm and scanning from 310 nm to

510 nm at a rate of 60 nm/minute in 1 nm intervals with a bandpass of 1 nm.

Hydrogen/Deuterium-Exchange Mass Spectrometry
For each time point, 66 pmol of DS-Cav1 and DS-Cav1–I53-50 were incubated in deuterated buffer (85% D20, pH* 8.0) for 7, 60,

1,800, or 72,000 s at room temperature and subsequently mixedwith an equal volume of ice-cold quench buffer (200mM tris(2-chlor-

ethyl) phosphate (TCEP), 0.2% formic acid) to a final pH of 2.5. Samples were immediately frozen in liquid nitrogen and stored

at �80�C until analysis. Zero time point and fully deuterated samples were prepared as previously described (Verkerke et al.,

2016). Online pepsin digestion was performed and analyzed by LC-MS-IMS utilizing a Waters Synapt G2-Si Q-TOF mass spectrom-

eter as previously described (Verkerke et al., 2016). Deuterium uptake analysis was performed with HX-Express 3v14.2 (Guttman

et al., 2013; Weis et al., 2006). The percent exchange was normalized to the zero time point and fully deuterated samples. Internal

exchange standards (Pro-Pro-Pro-Ile [PPPI] and Pro-Pro-Pro-Phe [PPPF]) were included in each reaction to control for variations in

ambient temperature during the labeling reactions.

Antigen Content Quantification
Before immunization of mice and NHPs, total protein concentration was measured using absorbance at 280 nm and calculated

extinction coefficients as well as bicinchoninic acid (BCA) assay (Thermo Scientific) using bovine serum albumin as a standard for

protein concentration determination.

Immunizations (Mice)
Female BALB/cmice 6–9 weeks old were obtained from Envigo (Italy). All proteins were formulated in PBS in a 1:1 ratio with AddaVax

adjuvant (InvivoGen) according to themanufacturer’s instructions. For unadjuvanted immunizations, proteinswere formulated in PBS

and directly used for injection. Mice were immunized subcutaneously (s.c.) with a total protein dose corresponding to 5 mg of the

DS-Cav1 antigen on day 0, 14, and 28. For the pre-immunization experiment presented in Figures 5D and 5E, the animals also

received two injections of 5 mg unmodified I53-50 formulated in AddaVax on days �28 and �14. Mice were bled on day 24 and

38. Recovered sera were further used to measure binding and neutralizing titers.

Enzyme-Linked Immunosorbent Assay
Enzyme-linked immunosorbent assay (ELISA) was used to determine binding of sera and mAbs to the different proteins. Maxisorp

(Nunc) ELISA plates were coated overnight at 4�C with 3 mg/mL of antigen. Plates were blocked with a 1% w/v solution of Bovine

Serum Albumin (BSA; Sigma) in PBS for 1 hour at room temperature. Serial dilutions of mAbs or sera were added to the plates

and, after washing, antibody binding was revealed using a goat anti-human IgG antibody coupled to alkaline phosphatase (Jackson
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Immunoresearch) for nonhuman primate sera and mAbs or with a goat anti-mouse IgG antibody coupled to alkaline phosphatase

(Jackson Immunoresearch) for murine sera. Plates were then washed, substrate (p-NPP, Sigma) was added and absorbance was

read at 405 nm.

Cells and Viruses
Expi293F cells were grown in Expi293 expression media, cultured at 37�C, 85% humidity, 8% CO2, with shaking at 135 rpm. HEp-2

cells (ATCC� CCL-23), a female cell line derived from HeLa, were grown in Minimum Essential Medium (MEM) + GlutaMAX (Thermo

Fisher Scientific) supplemented with 10%Fetal Bovine Serum (FBS) plus 100 IU/ml Penicillin/Streptomycin (Thermo Fisher Scientific)

and cultured at 37�C, 5% CO2. HEp-2 cells were authenticated by analysis of Short Tandem Repeat (STR) loci at ATCC. Human

respiratory syncytial virus with Green Fluorescent Protein, A2 strain, was obtained from ViraTree. All cell lines were confirmed to

be free of Mycoplasma.

Virus Neutralization
Neutralization of RSV infection bymouse or NHP sera wasmeasured using amicro-neutralization flow cytometry-based assay. Serial

dilutions of sera were pre-incubated with RSV for 1 hour at 37�C and added to 10,000 HEp-2 cells/well in 96-well flat-bottom plates

(MOI of 1). After 48 hours, cells were washed, detached and fixed with 2% formaldehyde. The percentage of GFP-positive cells

wasmeasured by high throughput FACSwith an Intellicyt instrument coupled to an automated platform. The Tissue Culture Inhibiting

Dilution neutralizing 50% of the infection (ID50) was calculated by nonlinear regression with Prism 7 (GraphPad Software).

Sera Immunodepletion
His-tagged depletion antigens (I53-50 or DS-Cav1) were immobilized on aHisTrap HP column (GEHealthcare) at 5mg protein permL

resin using PBS as the mobile phase. Mice or NHP sera (100 mL diluted to 1 mL in PBS) were injected into the column and incubated

for 30 minutes with immobilized antigen. Depleted sera were recovered by isocratic elution with PBS and further used for binding

assays. Immobilized antibodies were recovered by acidic elution to ensure immunodepletion was successful.

Mice and Murine Lymphocyte Phenotyping
Mice were immunized subcutaneously (s.c.) with a total protein dose corresponding to 5 mg of DS-Cav1 antigen on day 0. All proteins

were formulated in PBS in a 1:1 ratio with AddaVax adjuvant (InvivoGen). Six to seven mice per group were sacrificed at day 7 after

priming, and draining lymph nodes were collected and converted to cell suspensions. The total number of cells in each suspension

was counted by trypan blue exclusion with a hemocytometer. One-fifth of the cell suspension was used for FACS counting. The total

number of Tfh and GC B cells (plotted in Figure 6) was calculated by multiplying the percentage of detected Tfh or GC B cells by the

total number of cells in each suspension. The following antibodies were used to identify Tfh cells and GC B cells: CD4 (RM4-5), PD-1

(RMP1-30), B220 (RA3-6B2) (Thermo Fisher Scientific), CD3ε (17A2), CD45.1 (A20), ICOS (7E.17G9) (BioLegend), CXCR5 (2G8),

CD19 (1D3), FAS (Jo2) (BD Biosciences), and Peanut Agglutinin (PNA) (Vector Laboratories). Dead cells were excluded from counting

by staining with 7-aminoactinomycin D (7-AAD; BioLegend). Samples were acquired on a BD LSR Fortessa instrument and analyzed

using the FlowJo software program (TreeStar).

Vaccine Formulation for NHP Immunizations
Squalene-in-water emulsion adjuvant (SWE) was prepared by the Vaccine Formulation Institute (VFI) as previously described

(Ventura et al., 2013). 1 M Trizma hydrochloride, pH 8.0, 5 M sodium chloride, and glycerol were purchased from Sigma-Aldrich.

Adjuvanted SWE-antigen formulations were prepared in PBS, without calcium or magnesium. TBS and glycerol were added to

the formulation buffer used for DS-Cav1 soluble antigen formulation to mimic the composition of the buffer of DS-Cav1–I53-50 nano-

particles. Sodium chloride was added to all formulations to correct osmolarity. Average particle size (PS) was measured by DLS on a

Zetasizer Nano ZS (Malvern), by backscattering at 173�. 10 mL of sample were diluted with 90 mL of citrate buffer. 70 mLwere placed in

a cuvette for PS measurement. Polydispersity index (PdI) was calculated based on PS measurements. Zeta potential was measured

by electrophoretic light scattering on Zetasizer Nano ZS (Malvern, UK). 10 mL of sample were diluted with 990 mL of 1 mM NaCl in

water. 1 mL was placed in a cuvette for zeta potential measurement. pH was measured by voltammetry on a pH meter (Seven

Easy, Mettler Toledo) equipped with a microelectrode. The measurement was performed 3 times in a sample aliquot of 50 mL.

Room temperature was regulated at 22�C. Squalene concentration was determined by reverse phase HPLC-UV at 208 nm. TEM

analysis was performed on formulations containing DS-Cav1–I53-50 in SWE adjuvant after 2 weeks storage at 4�C. Formulations

were either analyzed before or after centrifugation for 4 hours at 21003 g to separate the aqueous phase from the oil phase. Samples

(15 mL) were loaded on CANEMCO-MARIVAC carbon-coated 400mesh copper grids treated by glow discharge. The grids were then

placed on a drop of water, then on a drop of stain (2% uranyl acetate in water) for 30 s and finally they were let to dry on the bench at

room temperature. The samples were imaged using a Tecnai 12 microscope and analyzed at 80 Kv.

NHP Immunizations and Sample Collection
Rhesus macaques were divided into two groups, age and weight matched, receiving either trimeric DS-Cav1 (n = 4) or DS-Cav1–

I53-50 (n = 5) formulated in a squalene-based oil-in-water emulsion adjuvant (SWE; Vaccine Formulation Institute). A dose of
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50 mg of DS-Cav1 antigen (96 mg total protein mass for DS-Cav1–I53-50) was administered intramuscularly in both groups at weeks 0

and 4. The animals were lightly sedated with ketamine at 10–15 mg/kg given intramuscularly (Ketaminol 100 mg/mL, Intervet,

Sweden) during the immunizations and blood draws.

QUANTIFICATION AND STATISTICAL ANALYSIS

No statistical methodswere used to predetermine sample size. Formice samples analysis, no blinding of the experimenter was done.

For NHP sera analysis, experimenters were blinded to the group appartenance of the animals analyzed. Statistical parameters

including the exact value of n, the definition of center, dispersion, and precision measures (geometric mean ± SEM) and statistical

significance are reported in the Figures and Figure Legends. Data were judged to be statistically significant when p < 0.05. In Figures,

asterisks denote statistical significance as calculated using the two-tailed non-parametric Mann-Whitney U test for two groups’

comparison or one-Way ANOVA with multiple comparison corrected by Tukey’s test when three or more groups were compared.

Analyses were performed in GraphPad PRISM 7.

DATA AND SOFTWARE AVAILABILITY

The EMDB Accession Number for the single-particle cryoEM reconstruction of the DS-Cav1–I53-50 nanoparticle by cryo-electron

microscopy is EMDB: EMD-0350. All software used in this study is listed in the Key Resources Table. A static executable of the

sic_axle program used to dock DS-Cav1 to trimeric nanoparticle components is available upon request (neilking@uw.edu).
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Supplemental Figures

Figure S1. Computational Docking of Antigens and Nanoparticle Subunits and Nanoparticle Immunogen DesignModels, Related to Figure 1

(A) Docking of DS-Cav1 (PDB ID 4mmu) to several trimeric nanoparticle components. The C termini of DS-Cav1 are indicated as red spheres, the N termini of the

nanoparticle subunits as blue spheres. The linear distance between the termini (d) is given. All images are oriented such that the nanoparticle exterior is up.

Because I3-01 and I53-50A were derived from the same trimeric building block, the docking was only performed once. Neighboring subunits of the dimeric

component of I32-28 (I32-28B) were included during docking due to their extension outward beyond the I32-28A trimer.

(B) Docking of DS-Cav1–foldon (PDB ID 4mmv) to several nanoparticle components. Images of the docking results are shown as in (A).

(C) Structural models of prefusion F nanoparticle immunogens. Nanoparticle components are colored gray and orange; DS-Cav1-foldon is blue. All models are

shown to scale; scale bar at right.



Figure S2. Screening, Biochemical, and Antigenic Characterization of DS-Cav1-Nanoparticle Subunit Fusions, Related to Figure 1

(A) ELISA-based screening of fusion proteins. Five trimeric nanoparticle components genetically fused to DS-Cav1 with or without the foldon (except I32-28A,

which excluded foldon but used two linker lengths), were transfected into HEK293F cells. Cell culture supernatants were screened for secretion of the fusion

proteins five days later by ELISA using D25 as the primary antibody.

(B) SDS-PAGE of peak fractions from SEC of the DS-Cav1–I53-50 nanoparticle in vitro assembly reaction presented in Figure 1C. The 65 mL peak contained

assembled nanoparticle and both components are visible by SDS-PAGE in the corresponding fractions. Residual DS-Cav1–I53-50A trimeric component is

observed in the 92 mL peak. F2, the mature F2 subunit of DS-Cav1. Molecular weight markers are indicated in kilodaltons.

(C) Antigenic characterization of DS-Cav1 and DS-Cav1–I53-50 nanoparticles by SPR. D25 (site Ø), MPE8 (site II/III), and AM14 (site V) mAbswere immobilized on

a GLM chip (100 nM) through amine coupling (EDC/NHS chemistry) and a blank surface with no antibody was created under identical coupling conditions for use

as a reference. Analyte proteins (trimeric DS-Cav1, trimeric DS-Cav1–I53-50A, and DS-Cav1–I53-50 nanoparticles), were injected at various concentrations (5 to

75 nM) in the different sensor channels. Data were processed using Proteon Manager software and double-referenced by subtraction of the blank surface and

buffer-only injection before local fitting of the data using Langmuir fitting.



Figure S3. Characterization of DS-Cav1-I53-50 by Negative Stain and Cryoelectron Microscopy, Related to Figure 1

(A) Negative stain electron micrograph of DS-Cav1–I53-50 with associated 2D class averages obtained from 4300 particles.

(B) Three-dimensional negative stain reconstruction of DS-Cav1–I53-50 at an estimated resolution of 20 Å. Two views are provided, with the electron density

modeled at a level of 0.4 (top) and 0.04 (bottom). At lower signal to noise, some weak density is observed at the base of the displayed antigen.

(C) Cryo-electron micrograph of DS-Cav1–I53-50 with associated 2D class averages obtained from 1600 particles.

(D) FSC curve for the single-particle reconstruction of DS-Cav1–I53-50 shown in Figures 1E and 1F. Resolution at FSC = 0.143 is 6.3 Å.



(legend on next page)



Figure S4. Characterization of Physical Stability by D25 Binding and Chemical Denaturation, Related to Figure 2

(A) Raw SPR data for the experiment presented in Figure 2A (retention of D25 binding after thermal stress). Representative data are shown from an experiment

that was performed twice.

(B) Guanidine denaturation of DS-Cav1, trimeric DS-Cav1–I53-50A, DS-Cav1–I53-50 nanoparticles, trimeric I53-50A, pentameric I53-50B.4PT1 and unmodified

I53-50 nanoparticles monitored by intrinsic fluorescence. The fluorescence ratio (350/330), barycentric mean, and peak position are plotted as in Figure 2D. Dots

represent the arithmetic mean and error bars the standard deviation of measurements from three independently prepared samples.



(legend on next page)



Figure S5. Individual HDX Plots for DS-Cav1 Peptides Derived from Trimeric DS-Cav1 and DS-Cav1–I53-50, Related to Figure 2

Percent exchange relative to a totally deuterated control is plotted for each peptide that was observed in both trimeric DS-Cav1 (purple) and DS-Cav1–I53-50

(blue). Each point represents the average from duplicate measurements. Only peptides that displayed unimodal exchange behavior are included here; those that

exhibited bimodal behavior are presented in Figure S6. Squares to the left of the peptide position indicate whether the peptide is more stable, less stable,

or unchanged in DS-Cav1–I53-50 compared to trimeric DS-Cav1 and matches the coloring of that peptide in the structure presented in Figure 2C. Certain

regions were covered by multiple peptides, one of which was used to determine whether that region was more stable, less stable, or unchanged. The color

squares for peptides that were not used include a black outline, and the corresponding peptides selected to indicate comparative behavior are as follows:

VSKGYL 40-45, VSKGYLSA 40-47; IQKEL 79-83, IKQELDKYKNAVTEL 79-93 (bimodal data in Figure S6); YVSNKGVD 441-448, YVSNKGVDTVSVGNTL 441-456

and YVSNKGVDTVSVGNTLY 441-457; YVNKQEGKSLYVKGEPIINF 458-477, VNKQEGKSL 459-467 and NKQEGKSLYV 460-469 (first half; more stable);

YVNKQEGKSLYVKGEPIINF 458-477, LYVKGEPIINF 467-477 and YVKGEPIINF 468-477 (second half; less stable).



Figure S6. Example of Bimodal Deconvolution of HDX-MS Spectra and HDX Plots for Peptides Displaying Bimodal Deuteration Profiles,

Related to Figure 2

(A) Raw spectra for certain peptides displayed spectral broadening andwere better fit by bimodal deconvolution (Guttman et al., 2013;Weis et al., 2006). Example

spectra corresponding to peptide 220-VIEFQQKNNRL-230 in trimeric DS-Cav1 are shown. Fit 1 appears to represent a slower-exchanging population of

molecules, whereas Fit 2 appears to represent a faster-exchanging population. The total incubation time in D2O is indicated next to each spectrum. TD, totally

deuterated control.

(B) Example of spectra from the same peptide in DS-Cav1–I53-50 that also showed bimodal exchange kinetics. In this example, a higher fraction of the population

of molecules is fit by Fit 1 for DS-Cav1–I53-50 relative to trimeric DS-Cav1, suggesting less dynamic behavior when presented on the nanoparticle.

(C) ‘‘Bubble plots’’ that represent deuteration of peptides that exhibited bimodal HDX kinetics. Purple dots represent DS-Cav1 trimer and blue dots represent

DS-Cav1–I53-50 nanoparticle. Filled and open circles are used for fits 1 (slower exchange) and 2 (faster exchange), respectively, and the area of each circle is

proportional to the population fraction accounted for by its corresponding fit. Each data point from duplicatemeasurements of each peptide is shown. For spectra

that could be adequately fit by a single distribution, a filled circle is used. Squares to the left of the peptide position indicate whether the peptide is more stable,

less stable, or unchanged in DS-Cav1–I53-50 compared to trimeric DS-Cav1 and matches the coloring of that peptide in the structure presented in Figure 2C.



Figure S7. Physicochemical Characterization of Formulations of DS-Cav1 and DS-Cav1-I53-50 with SWE Adjuvant, Related to Figure 7

(A) Trimeric DS-Cav1 and DS-Cav1–I53-50 were formulated with SWE adjuvant and characterized at day 0 and after incubation at 4�C for 1 day and 7 days.

DS-Cav1–I53-50 alone and SWE alone were included as controls. Graphs show particle size, polydispersity index, zeta potential, squalene content, and pH.

Physicochemical parameters of both the DS-Cav1 and DS-Cav1–I53-50 formulations were stable in the presence of SWE.

(B) Negative stain EM analysis of DS-Cav1–I53-50 in SWE adjuvant was performed after incubation at 4�C for 2 weeks. Pictures show nanoparticles and SWE

droplets at different magnifications before centrifugation (left and middle panel) and nanoparticles after ultracentrifugation (right panel). Intact nanoparticles are

clearly visible after the 2-week incubation with SWE.


