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Abstract The paper analyzes the effects of varying climate impacts on the social cost
of carbon and economic growth. We use polynomial damage functions in a model of an
endogenously growing two-sector economy. The framework includes nonrenewable natural
resources which cause greenhouse gas emissions; pollution stock harms capital and reduces
economic growth. We find a big effect of the selected damage function on the social cost
of carbon and a significant impact on the growth rate. In our calibration a quartic damage
function raises the social cost of carbon by more than a factor of ten compared to the linear
function. In the social optimum the growth rate remains positive even when the damage func-
tion is highly convex.We test the robustness of the results by adding pollution decay, lowering
the elasticity of intertemporal substitution, and addressing uncertainty, which does not alter
our results. We find that high marginal climate damages require stringent climate policies
but do not preclude positive economic growth despite convexity, provided that policies are
designed in an efficient manner.

Keywords Climate damages · Social cost of carbon · Endogenous growth · Polynomial
functions

JEL Classification Q43 · O47 · Q56 · O41

1 Introduction

1.1 Climate Impacts

There is broad agreement that climate change has widespread effects on the economy and
the natural environment. It causes economic damages which worsen with increasing temper-
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6 L. Bretschger, A. Pattakou

atures.1 For a thorough assessment of the consequences and the formulation of appropriate
climate policies the determination and the use of an appropriate damage function is indis-
pensable: it lies “at the heart” of the economic analysis of climate change (Farmer et al. 2015,
p. 332). Such a function specifies how economic damages change as a function of greenhouse
gas concentration in the atmosphere. The present paper thoroughly explores the impact of
damage modeling in a theoretical setup of an economy with climate change and endogenous
growth.

The economic impacts from climate change are difficult to be estimated on a global
level (IPCC 2014b). So far, there is no agreement on the form and the parametrization of a
general climate damage function. Nordhaus and Boyer (2000, p. 23) state that “estimating the
damages from greenhouse warming has proven extremely elusive.” According to Weitzman
the literature offers “little guidance onwhy one specification or another” of a damage function
has been selected (Weitzman 2010a). It is thus admitted that a strong empirical basis for the
damage functions used in the best-known models is lacking. What is more, climate damages
have implausibly small effects on economic growth in most integrated assessment models
even under extreme temperature scenarios (Stern 2013; Revesz et al. 2014).

The big challenge for formulating a comprehensive climate damage function is to prop-
erly aggregate various highly heterogeneous effects. Climate impacts on different regions
and ecosystems are provided in IPCC (2014b) and Roson and Sartori (2016).2 Yet, for a
global analysis of climate damages, the available data are not sufficiently complete. Bottom-
up studies may be used to inspire a general formula, but by their nature they are limited
in scope. It thus remains unclear which functional form for the damage function is suitable
(Moore and Diaz 2015) and where the limitations are to capture “everything by a simple
function” (Farmer et al. 2015, p. 332). Damage functions are one of various elements of
integrated assessment models which have recently been criticized. Farmer et al. (2015, p.
329) conclude that also the issues of risks, heterogeneity, and technical change are “inad-
equately addressed” by climate modelers. In all these areas, model specifications strongly
affect the results and associated policy recommendations (Revesz et al. 2014). While recent
contributions have addressed the additional issues under critique,3 the functional form of
the climate damage function has received little attention,4 although its potential impact on
optimal policies is substantial and the critique has been especially sharp.5 The present paper
shows how important the specifications of the damage functions are in climate economics.
We use higher-order polynomial functions up to a cubic and quartic form to assess the impact
of climate damages on welfare and growth. In our model, damages affect the capital stock,

1 The effects range from sea level rise, drop in crop yields, and human health to energy demand; in 2017,
strong hurricanes have caused immense damage: according to the Economist “Hurricane Harvey already set
records as America’s most severe deluge.. The UN reckons that, in the 20 years to 2015, storms and floods
caused $1.7trn of destruction; the World Health Organisation estimates that, in real terms, the global cost of
hurricane damage is rising by 6% a year. Flood losses in Europe are predicted to increase fivefold by 2050.”
Economist (2017, 2 Sept).
2 These authors present estimations of damage functions parameters for 140 countries and regions and for
six climate impacts: sea level rise, variation in crop yields, heat effects on labor productivity, human health,
tourism and household energy demand showing the heterogeneity of the different damages.
3 Technological change is addressed in Acemoglu et al. (2012), the impact of risk in Bretschger and Vino-
gradova (2016), the spatial distribution in Brock and Xepapadeas (2017), the time distrubution in Gerlagh and
Liski (2017) and Bretschger and Karydas (2017) and the North–South aspects in Bretschger and Suphaphiphat
(2014).
4 Notable exceptions are Moore and Diaz (2015) and Van den Bijgaart et al. (2016).
5 In a well-known contribution, Pindyck (2013, p. 860) writes: “the models’ descriptions of the impact of
climate change are completely ad hoc, with no theoretical or empirical foundation.”
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As Bad as it Gets: How Climate Damage Functions… 7

reducing both current income and economic growth; for a long-run ecological phenomenon
economic dynamics become crucial.

The agreed temperature targets of international climate policy suggest that marginal cli-
mate damages become very large or even infinite once the temperature ceiling is reached.
Conversely, most economic models use constant or quadratic functions for climate damages
so that a specific threshold temperature does not emerge and optimum warming can exceed
the ceiling, depending on the benefits of climate policy. We want to keep the assumption of
a continuous damage function but aim at including high marginal damages by considering
highly convex damage functions. This brings the economic view of optimal pollution closer
to the view of climate physics and policymakers favoring temperature targets.6

We find a big effect of the damage function on the social cost of carbon and a signifi-
cant impact on the economic growth rate. Using a theoretical framework, this paper shows
that the negative impact of climate damages on economic growth grows with the degree of
convexity of the assumed damage function. Moreover, contrary to the prevalent opinion in
public discourse, optimally designed climate policies do not prevent the world economy from
experiencing positive growth rates despite the convexity of damage functions. However, if
climate policies aiming to correct the pollution externality are sub-optimally chosen, dam-
ages to capital become higher and the economic growth rate may become negative in the
long run.7 Calibrating our model, we confirm that in the social optimum economic growth
rates are still positive in the long run even for highly convex damage functions and assuming
non logarithmic utility, i.e. for a quartic damage function and a low intertemporal elasticity
of consumption substitution. Specifically, a quartic damage function raises the social cost of
carbon by more than a factor of ten compared to the linear function, already after 14 years.8

1.2 Contribution to the Literature

Modeling externalities in the form of greenhouse gas emissions includes two components:
climate sensitivity, i.e. the increase in long-term temperature caused bygrowing concentration
of carbon dioxide in the atmosphere, and climate damage functions, capturing the relationship
between temperature rise and induced losses in the economy. Regarding the former, the
broadly used RICE/DICE model (Nordhaus and Boyer 2000) uses a small structural model
to describe the relationship between pollution stock, radiative forcing, and climate change,
suggesting that temperature is a concave function of pollution stock. This crucial assumption
is used in most of the climate economics literature, e.g. in Golosov et al. (2014) and van
den Bijgaart et al. (2016, p. 78) where it is said that the relation “between atmospheric CO2

concentrations and equilibrium temperatures can be described through a logarithmic curve..”.
However, the IPCC has recently summarized all the relevant research and explains: “Multiple
lines of evidence indicate a strong, consistent, almost linear relationship between cumulative
CO2 emissions and projected global temperature change to the year 2100 ..” IPCC (2014a,
p. 9). This suggests the IAM tradition should be abandoned and climate sensitivity should
be modelled using a linear rather than a concave function, as we will apply below.

With respect to the second component —climate damage functions—, RICE/DICE
assumes that climate change affects current output negatively. Specifically, climate damages
D(·) are a quadratic function of temperature while a “damage coefficient”� = 1/ [1 + D(·)]
is used to multiply final output to reflect the impact of climate change (0 < � < 1). The

6 Temperature targets (2 ◦C resp. 1.5 ◦C warming) are an important part of the Paris Climate Agreement.
7 In this paper, we focus on analysing the social planner solution, so this result does not arise.
8 The quartic damage function has a parallel in physics, such as in the Stefan–Boltzmann law.
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8 L. Bretschger, A. Pattakou

higher the damage, the lower the coefficient and thus output and income.9 The functional
form of the damage function and its parametrization has been inspired by numerical estima-
tions of predicted climate damages. Nordhaus (2007) estimates that damages are 1.7 percent
of output at 2.5 ◦C warming, which provides a parameter value for the quadratic term; Hane-
mann (2008) presents estimates for the same temperature which are 2.4 times as much, so a
different value appears warranted.10 To deal with higher temperatures one could use extrapo-
lations of these models. However, Ackerman and Stanton (2012) find that this procedure lets
damages grow very slowly with temperature. Only half of world output would be lost when
temperatures increase by 19 ◦C in the Nordhaus case or 12 ◦C for the Hanemann specification
neither of which is very plausible. Weitzman (2010b) argues that scientific evidence implies
much greater losses, especially at higher temperatures. He modifies the RICE/DICE setup
by adding a term to the damage function where temperature is raised to the power of 6.76.
As a result, damages turn out to be 50 percent of output at 6 ◦C warming and 99 percent
at 12 ◦C, which is closer to what natural science predicts. Evidently, adding a quadratic
or a higher order term to a linear specification of the D-function increases output loss for
any given temperature. But the use of the damage coefficient � for multiplication with out-
put implies that, with rising temperature, a total collapse of the economy is only reached
asymptotically, i.e. only a temperature of infinity would entail a total income loss, which is
an extreme assumption. Put differently, the relationship between temperature and damages
(measured as a share of output 1 − �) becomes concave for high temperatures (Ackerman
and Stanton 2012, p. 11), which contradicts general expectations. We will use polynomial
damage functions including terms of higher order to reach a significant degree of convexity
but use the D-function for damages instead of coefficient � so that damage concavity is
removed. We will thoroughly analyze the impact of variations of the damage functions in
a climate economy model with endogenous growth where emissions occur endogenously
through exhaustible resource use.11

While the DICE model considers damages of climate change on current productivity,
Weitzman (2010a) analyzes climate effects on individual utility.12 We highlight that damages
affect not only the output level but also the growth rate of an economy, which is an impor-
tant aspect of climate change (Moore and Diaz 2015; Bretschger and Vinogradova 2016;
Bretschger and Karydas 2017). Moore and Diaz (2015) add induced capital depreciation to
the DICE model and find that this entails more stringent climate policies in the optimum
and slows down growth, especially in poor countries. We continue this line of research by
including the dynamic effects of climate change in a full-fledged macroeconomic growth
model with focus on highly convex climate damage functions. We close the gap between the
moderately convex cost functions and the strict temperature targets of international climate
policy implying that marginal damages become very high when the temperature target is
exceeded. An alternative approach is to include a ceiling constraint for pollution stock as

9 Golosov et al. (2014) adopt a slightly different functional form for D by assuming exponential damages
but this approximates the other function well.
10 Even the higher estimate of Hanemann (2008) is not compatible with the 2 ◦C target of international
climate policy which implicitly assumes that damages of temperature rise exceeding 2 ◦C are very high.
11 Optimal resource depletion is characterized in the seminal contributions of Dasgupta and Heal (1974) and
Stiglitz (1974); endogenous growth with pollution builds on Bovenberg and Smulders (1995), Barbier (1999),
Smulders (1999), and Xepapadeas (2005); optimal carbon taxes in a growing economy have been analyzed
by Golosov et al. (2014) and Van der Ploeg and Withagen (2014). As a consequence of optimal resource
extraction the use of resources decreases over time so that pollution stock accumulates as a concave function
of time which affects the optimal solutions in our model.
12 An early contribution on the effects of stock pollution on utility in an endogenous growth model is Michel
and Rotillon (1995).
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As Bad as it Gets: How Climate Damage Functions… 9

presented in Amigues and Moreaux (2013). In the optimum, carbon concentration increases
up to the cap where the economy is constrained as long as natural resources are still abundant
and natural decay tooweak. Conversely, in ourmodel, damages already occur at a level which
is lower than the cap and increase in a continuous way so that discontinuities in consumption
do not arise. Acemoglu et al. (2012) also assume that the deterioration of environmental
quality may induce an environmental disaster in finite time. Such a state would cause infinite
damage but in their model it is never formally reached because policy is able to avoid it.

The literature agrees that damages are a convex function of temperature but the degree
of the convexity is an open issue, inevitably subject to uncertainty, see for instance Dietz
and Stern (2015). The previous idea of IAMs (e.g. Golosov et al. 2014) that the mapping
from the atmospheric carbon dioxide concentration to economic damages would amount to a
composition of a convex and a concave function and could potentially become almost linear
has to be discarded however; the concave relation between carbon emissions and global
temperature is not existent. The economic impact of climate change crucially depends on the
degree of the convexity of the damage function, which we explore in this contribution.

The structure of the paper is the following: In Sect. 2 the baseline model’s setup, assump-
tions, and solution are described. In Sect. 3, the long-run steady state of the economy is
analysed. Section 4 describes the transition phase of the economy. Section 5 introduces
the extensions to the baseline model, namely pollution decay, non-logarithmic utility and
uncertainty. Section 6 concludes.

2 Baseline Model

2.1 The Setup

The model includes two sectors, one for final goods production and one for capital accu-
mulation; it assumes that nonrenewable resource use causes emissions which accumulate
aggregate pollution stock. Pollution negatively affects the existing capital stock; capital loss
is a highly convex function of pollution stock. Emissions, the social cost of carbon and eco-
nomic growth are endogenously determined from the model in closed-form solutions. To
reduce emissions, the economy needs to decrease resource use and will use and accumulate
more capital by reallocating inputs between the sectors.

Specifically, we assume that a fraction 0 < εt < 1 of total capital Kt is used for the
production of final goods Yt where it is combined with nonrenewable natural resources Rt ,
think of oil or gas, so that

Yt = F(εt Kt , Rt ) (1)

where F denotes a function and t the time index. The remaining fraction 1−εt of capital Kt is
used for the accumulation of new capital which is harmed by climate damages. Specifically,
we denote by K̇t the time derivative of capital and by D(Pt ) a polynomial function expressing
the damages of the pollution stock Pt on capital, with the depreciation rate ηD(Pt ) ≤ 1 for
any Pt , so that

K̇t = B(1 − εt )Kt − ηD(Pt )Kt (2)

where B > 0 is capital productivity in the investment sector.13 That climate change enters the
capital accumulation equation rather than the utility function follows a prominent request by

13 Capital has constant returns in this sector like in the seminal contribution on endogenous growth of Rebelo
(1991). By excluding natural resources from the accumulative sector in the economy we follow Grimaud and
Rouge (2003).
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10 L. Bretschger, A. Pattakou

Stern (2013). The stock of greenhouse gases in the atmosphere is accumulated with resource
use according to

Ṗt = φRt − θ(Pt − P̄) (3)

with φ > 0. When pollution decay is neglected, θ is set equal 0, whereas when pollution
decay is present, θ is positive. P̄ denotes the preindustrial level of pollution, which is assumed
to be the lower bound of pollution. The stock of nonrenewable natural resource, is depleted
according to

Ṡt = −Rt (4)

with S0 the initial stock of the resource being exogenously given. As we follow the IPCC
(2014a) in assuming a linear relationship between pollution stock and temperature, we do
not need to introduce temperature as a separate variable. The utility function of households
Ut = U (Ct ) closes the model.

2.2 Assumptions

1. Production
For the production of final goods of Eq. (1) we assume the Cobb–Douglas specification

Yt = A(εt Kt )
αR1−α

t (5)

with A > 0. Both inputs are essential so that resources are always needed to obtain
positive output.

2. Utility
When σ denotes the coefficient of relative risk aversion, the utility function takes the
form

U (Ct ) = C1−σ
t − 1

1 − σ
(6)

for σ �= 1 and
U (Ct ) = lnCt (7)

for σ = 1. For the sake of clarity we assume σ = 1 in the main part of the paper and
provide a separate discussion for the case σ �= 1 in a separate section below.

3. Pollution decay
It has been found that a small fraction of greenhouse gases in the atmosphere decays
rapidly in the short run and a substantial fraction remains in the atmosphere for a very
long time period (more than a thousand years). To highlight the second part of the process
we abstract in the baseline model from pollution decay, i.e. set θ = 0 but will extend the
model in a separate section by adopting a positive decay rate (θ > 0).

2.3 Solving the Model

The social planner problem is characterized by the maximization of Eq. (7) under the restric-
tions Eqs. (2)–(5) and the fact that output is entirely consumed at each t , that is Yt = Ct . The
associated Hamiltonian reads

H = ln Yt + μY t

[
A(εt Kt )

αR1−α
t − Yt

]
+ μKt [B(1 − εt )Kt − ηD(Pt )Kt ]− μSt Rt + μPtφRt

(8)
The first-order and transversality conditions of this problem as well as the necessary proofs
are given in the Appendix. In particular we show that the share of capital used in the final
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As Bad as it Gets: How Climate Damage Functions… 11

goods sector instantaneously jumps to its steady state value ε = ρ/B. We next derive
optimal resource extraction and pollution growth. The growth rates of output and capital
are found by using the production function, Yt = A(εt Kt )

αR1−α
t , the capital accumulation

constraint, K̇t = B(1 − εt )Kt − ηD(Pt )Kt , and the steady state value of ε. Hence, we get
Ŷt = α K̂t + (1 − α)R̂t and K̂t = B − ρ − ηD(Pt ).

Using (34), (39), and (31), from the appendix, yields the growth of the pollution costate

variable as μ̂Pt = ρ + ηD′(Pt )
α

ρ

1

μPt
. Invoking (32) we write for resource growth −R̂t =

μSt

μSt − φμPt
μ̂St − φμPt

μSt − φμPt
μ̂Pt . By defining the relative shadow price of the resource

stock according toψt ≡ μSt

μSt − φμPt
, where 0 < ψt < 1, using Eqs. (34) and (35) we have

ψ̂t = −(1 − ψt )
αηD′(Pt )

ρμPt
(9)

as well as

R̂t = −ρ − (1 − ψt )
αηD′(Pt )

ρμPt
. (10)

FollowingEq. (10) the growth rate of resource use R̂t is negative; it becomesmore negative
with an increasing discount rate and risingmarginal damage of climate change D′(Pt ). Higher
convexity brings forward the resource use due to more severe consequences of pollution in
the future.

The social cost of carbon (SCC) reflects total damages from releasing greenhouse gas
emissions to the atmosphere at every point in time. This essential guideline for optimal
climate policies has been the subject of many recent contributions (e.g. Van den Bijgaart
et al. 2016; Ackerman and Stanton 2012). In our model we label SCC by χt , which is equal

to the marginal damage due to pollution, that is χt ≡ −μPt

μY t
, whereas the social cost of

carbon per unit of output, which under general conditions equals the optimal carbon tax in

decentralized equilibrium, is χ̃t ≡ χt

Yt
= − μPt

μY tYt
= −μPt so that ˆ̃χt = μ̂Pt .

By defining the resource depletion rate as ut = Rt

St
, Eqs. (3) and (4) can be modified to

P̂t = φut
St
Pt

and Ŝt = −ut . We can then represent the model dynamics by a system of five

variables according to

ût = −ρ + (1 − ψt )
αηD′(Pt )

ρχ̃t
+ ut (11)

ψ̂t = (1 − ψt )
αηD′(Pt )

ρχ̃t
(12)

ˆ̃χt = ρ − αηD′(Pt )
ρχ̃t

(13)

P̂t = φut
St
Pt

(14)

Ŝt = − ut . (15)
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12 L. Bretschger, A. Pattakou

Using Eqs. (14) and (15) as well as the fact that pollution and resource stock at t = 0 are
known, we can solve for pollution stock Pt following

Ṗt = −φ Ṡt ⇒ Pt = P0 + φ(S0 − St ). (16)

To better understand the dynamic characteristics of the system and the long-run equi-

librium it is useful to state that the growth rate of the resource depletion rate ut = Rt

St
is

asymptotically constant and equal to zero; the formal proof is given in the Appendix. We
next present the main model solutions for the long-run equilibrium before we will turn to the
characteristics of the transition phase.

3 Long-run Steady State

We first analyse the long-run value of the social cost of carbon (SCC) and then turn to

economic growth. Starting from Eq. (34) and denoting that μKt Kt = α

ρ
, we find the value

of χ̃t at any time t according to

μ̇Pνe
−ρ(ν−t) − ρe−ρ(ν−t)μPν = αη

ρ
D′(Pν)e

−ρ(ν−t) ⇔

μPt = −αη

ρ

∞∫

t

D′(Pν)e
−ρ(ν−t)dν ⇔

χ̃t = αη

ρ

∞∫

t

D′(Pν)e
−ρ(ν−t)dν.

For the long-run value of SCC per unit of output we then obtain

lim
t→∞ χ̃t = αηD′(P∞)

ρ2 . (17)

Equation (17) shows that in our model the social cost of carbon per unit of output is the
discounted stream of all the future marginal damages due to pollution and depends on a few
variables only. Importantly, steady-state SCC per unit of output grows with the marginal
climate damage. We thus confirm that the algebraic form and the parametrization of the
damage function directly affect a society’s valuation of the externality. Long run SCC per unit
of output increases with the capital share α—because climate change affects the capital input
and therefore the cost climate change has on society—and with the damage impact parameter
η measuring pollution intensity caused by resource use. SCC per unit of output is reduced
by the discount rate which appears in the quadratic form in the denominator, representing
both the impatience in capital buildup and resource depletion. In the next section we will
use specific parameter values to directly determine SCC for different specifications of the
damage function.

We also want to explore whether the economy is still growing in the optimumwith climate
change. Setting the system of Eqs. (11) to (15) equal to zero, we can obtain the asymptotic
steady state values of the variables, namely

u∞ = ρ

ψ∞ = 1
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As Bad as it Gets: How Climate Damage Functions… 13

χ̃∞ = αηD′(P∞)

ρ2

P∞ = P0 + φS0

S∞ = 0.

The dynamic system of (11) to (15) can be solved by using the linearization method.14

The Jacobianmatrix evaluated at the steady state gives us the eigenvalues, {0,−ρ,−ρ, ρ, ρ},
and the corresponding eigenvectors that specify the solution. At this point it is interesting
to note that the linearized dynamic system is subject to a zero eigenvalue. This would mean
that the dynamic system shows hysteresis. However in our case this does not happen because
the corresponding coefficient of this eigenvector has to be set equal to zero, given our initial
conditions.Moreover, in order to avoid solutions that result in diverging values of the variables
in infinity, we set the coefficients that correspond to positive eigenvalues equal to zero and
use appropriate initial values for u0 and χ0, while taking as exogenous the initial values ψ0,
P0 and S0.15

Returning now to the initial variables, the growth rates of capital and output in infinite
time are given by

K̂∞ = B − ρ − ηD(P∞)

Ŷ∞ = α(B − ηD(P∞)) − ρ. (18)

According to Eq. (18) the long-run growth rate of output is positive provided that capital
productivity B is high enough (B > ηD(P∞)) and the discount rate is sufficiently low
(ρ < α(B − ηD(P∞))). The range of possible ρ that result in positive growth becomes
wider with a higher capital share α.16 Thus, in order to have Ŷ∞ > 0 ⇔ B−ρ/α

η
> D(P∞),

there is an upper bound to damage size. For the choice of parameters and further conclusions
we proceed to the analysis of transitional dynamics.

4 Transition Phase

We now determine how the form of the damage function has an impact not only on long-run
equilibrium but also on the time paths of the variables. Specifically, the time path of the social

cost of carbon (SCC) per output, given by χ̃t = αη

ρ

∞∫
t
D′(Pν)e−ρ(ν−t)dν and approximated

by χ̃t = αηD′(P∞)

ρ2 − αηφD′′(P∞)S0e−ρt

2ρ2 close to the steady state, is increasing and

concave in time. Its concavity depends on the second derivative of the damage function
evaluated at infinite time. Hence, the higher the degree of the polynomial damage function,
the more concave the time path of χ̃t . The connection between the convexity of the damage
function and the concavity of the SCC per output can be better understood if we consider
the fact that with higher convexity of D(Pt ), marginal damages increase more steeply when
pollution increases. In the social planner context, this leads to a higher value on every unit of

14 By construction of the method the precision of the values is high when we are close to the steady state.
15 The linearized solution of the dynamic system can be found in the Appendix.
16 For a CIES function (with σ for the relative risk aversion) and damages given by Dt = η

S0−St
Pt (P0 = 0)

Bretschger and Karydas (2017) calculates growth as Ŷ = [α(B − ηφ) − ρ] /σ which is very similar to the
result here.
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14 L. Bretschger, A. Pattakou

Fig. 1 SCC per output for different damage functions with t0 = 2010, ρ = 0.015, σ = 1, α = 0.9, φ =
1,B = 0.04, θ = 0, ψ0 = 0.65,P0 = 830GtC, S0 = 6000GtC,Y0 = 49.8 trillion US$

pollution added to the stock, and a higher SCCper output at every level of pollution. Therefore,
and given that pollution increases over time in the absence of decay, a more convex damage
function results in a more concave time path for the SCC per output. At the special linear
case, χ̃t is constant throughout time. Moreover, as can be seen from the expressions for χ̃t as
well as in Fig. 1, the social cost of carbon per output converges asymptotically to a constant
level given in Eq. (17), which was discussed in the previous section. For capital and output
growth we get the two following equations for the transition phase

K̂t = B − ρ − ηD(Pt ) (19)

Ŷt = α(B − ρ − ηD(Pt )) + (1 − α)

[
−ρ + (1 − ψt )

αηD′(Pt )
ρχ̃t

]
(20)

To further specify the transition paths we calibrate the model, using standard parameter
values of literature. Specifically, we use for the discount rate ρ = 0.015, the output elasticity
of capital α = 0.9, and capital productivity B = 0.04 as well as the initial values P0 =
830GtC , S0 = 6000GtC , and Y0 = 49.8 trillion US$ which applies to the year 2010. The
following figures show the SCC and economic growth as a function of time for different
damage functions. In the graphs, the solid thin line corresponds to a linear damage function,
i.e. D(Pt ) = κ1Pt , the largely dashed to a quadratic of the form D(Pt ) = κ1Pt + κ2P2

t , the
solid thick to a cubic, i.e. D(Pt ) = κ1Pt + κ2P2

t + κ3P3
t , and finally the thinly dashed to a

quartic one, D(Pt ) = κ1Pt + κ2P2
t + κ3P3

t + κ4P4
t .

Figure 1 depicts the social cost of carbon (SCC) per output corresponding to the different
damage functions, when there is no decay in pollution and the utility is of logarithmic form.
The calibration of the coefficients κ1, κ2, κ3 and κ4 is based on the literature where SCC
in 2010 lies within the range of 20 US$/tC to 120 US$/tC (Van den Bijgaart et al. 2016)
and global output is 49.8 trillion US$. To reflect that initial SCC depends positively on the
convexity of the damage function we use as a first calibration the following assumptions for
expositional convenience: With a linear damage function χ0 is set to be 20 US$/tC , with a
quadratic it is 50 US$/tC , with a cubic it is 80 US$/tC , and with a quartic it is 120 US$/tC ;
an alternative calibration approach is provided below.

It can be seen from the figures that a linear damage function results in a constant SCC
per output, while higher degree polynomial damage functions cause a higher level of SCC
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As Bad as it Gets: How Climate Damage Functions… 15

Fig. 2 Growth rate of output for different damage functionswith t0 = 2010, ρ = 0.015, σ = 1, α = 0.9, φ =
1,B = 0.04, θ = 0, ψ0 = 0.65,P0 = 830GtC, S0 = 6000GtC,Y0 = 49.8 trillion US$

per output that is reached in infinite time. While the increase is not very pronounced for the
quadratic case it is highly visible for the cubic and quartic damage functions. It is striking
that already after 14 years, the SCC per output differs by more than a factor of ten when the
quartic instead of the linear damage function is used.

In Fig. 2 the growth rate of output can be seen. According to the figure, growth is decreased
by climate damages and the growth rate becomes lower with higher convexity of the damage
function. Put differently, for all the damage functions the optimal growth rate of output
declines over the next centuries and more convex damage functions require lower growth
rates of output, as a result of the negative impact of pollution on the accumulation of capital.
The difference in the resulting growth rates of output between the various damages functions
is significant albeit not of the same size as in the case of the SCC. Annual output growth Ŷt
stays almost constant in the case of a linear damage function only moving from 2.1 to 2.04%,
while in the quadratic, cubic and quartic case it falls to 1.95, 1.70 and 1.38%, respectively.
Provided the economy is in the social optimum, the economy can still have positive growth
with climate change. For the decentralized equilibrium it says positive growth is feasible
provided that efficient climate policies replicating the social optimum are implemented.

The first calibration nicely exposes the analytical results using initial values of SCC per
output which are based on the range given in the IAM literature. Let us now assume, as an
alternative, that all the damage functions start from an equal SCC per output in the beginning
of global climate policy, which we set at the year 2000. For the sake of clarity we restrict the
analysis to the linear, quadratic, and quartic damage functions and present again the results
for the SCC per output and the growth rate (Figs. 3,4).

With the new initial SCC per output we find a significant distinction between two different
scenarios. The first is to assume a linear or a quadratic function, where it turns out that the
time paths for χ̃t as well as Ŷt are almost identical. This result illustrates that a second-degree
polynomial damage function, despite being convex, does not affect the variables as much
as one would probably expect. Conversely, in the second scenario, when we use a quartic
damage function we can show that this introduces high-enough convexity to have significant
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16 L. Bretschger, A. Pattakou

Fig. 3 SCC per output for different damage functions with t0 = 2010, ρ = 0.015, σ = 1, α = 0.9, φ =
1,B = 0.04, θ = 0, ψ0 = 0.65,P0 = 830GtC, S0 = 6000GtC,Y0 = 49.8 trillion US$, alternative damage
functions

effects on both model variables; the same applies for the cubic function to a somewhat lower
degree.17

5 Model Extensions

5.1 Pollution Decay

In the following we modify the setup to allow for positive pollution decay. It is assumed that
pollution cannot be lower than the preindustrial level, noted by P̄ . Hence, the change in the
stock of pollution needs an additional term and now reads

Ṗt = φRt − θ(Pt − P̄) (21)

where 0 < θ < 1 and Pt ≥ P̄ . With the new assumptions, the dynamic system is given by

ût = −ρ + (1 − ψt )

[
αηD′(Pt )

ρχ̃t
− θ

]
+ ut

ψ̂t = (1 − ψt )

[
αηD′(Pt )

ρχ̃t
− θ

]

ˆ̃χt = ρ −
[

αηD′(Pt )
ρχ̃t

− θ

]

P̂t = φut
St
Pt

− θ
Pt − P̄

Pt

Ŝt = − ut

17 To complete the analysis, the time paths for the model variables ut (depletion rate), ψt (ratio of shadow
prices), as well as for pollution stock Pt and resource stock St are shown in figures that are available from the
authors upon request.
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As Bad as it Gets: How Climate Damage Functions… 17

Fig. 4 Growth rate of output for different damage functionswith t0 = 2010, ρ = 0.015, σ = 1, α = 0.9, φ =
1,B = 0.04, θ = 0, ψ0 = 0.65,P0 = 830GtC, S0 = 6000GtC,Y0 = 49.8 trillion US$, alternative damage
functions

Fig. 5 Pollution stock for different damage functions with t0 = 2010, ρ = 0.015, σ = 1, α = 0.9, φ =
1,B = 0.04, θ = 0.0038, ψ0 = 0.65,P0 = 830GtC,S0 = 6000GtC,Y0 = 49.8 trillion US$

Due to the pollution decay, the stock of pollution does not evolve monotonically but has a
peak, which is seen in Fig. 5.

The four different damage functions are again calibrated so that the SCC in 2010 corre-
sponds to values often reported in the literature, namely 20$/tC , 50$/tC , 80$/tC , 120$/tC ,
in the linear, quadratic, cubic and quartic case, respectively (Figs. 6, 7).

Wederive the decay rate from the representation of the carbon cycle inNordhaus andBoyer
(2000) where the atmosphere, upper ocean layers and deep oceans are the three main carbon
reservoirs. The calibrated transfer rates from the atmosphere to the upper ocean layer and
from the upper oceans to the deep oceans imply an indirect transfer rate from the atmosphere
to deep oceans of approximately 0.0038 per year, see Bretschger and Vinogradova (2016),
which we use as the value of θ in our model.

In this case, pollution stock does not reach the maximum, as in the previous case of θ = 0,
but eventually reaches the preindustrial level P̄ . Since the social cost of carbon per output
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18 L. Bretschger, A. Pattakou

Fig. 6 SCC per output for different damage functions with t0 = 2010, ρ = 0.015, σ = 1, α = 0.9, φ =
1,B = 0.04, θ = 0.0038, ψ0 = 0.65,P0 = 830GtC,S0 = 6000GtC,Y0 = 49.8 trillion US$

Fig. 7 Growth rate of output for different damage functionswith t0 = 2010, ρ = 0.015, σ = 1, α = 0.9, φ =
1,B = 0.04, θ = 0.0038, ψ0 = 0.65,P0 = 830GtC,S0 = 6000GtC,Y0 = 49.8 trillion US$

is directly affected by the time path of pollution stock, its time path for different damage
functions now can be seen on Fig. 6.

From these graphs, it can be seen that the maximum level of pollution stock is reached
after the maximum level of the SCC per output is attained. This is due to the fact that future
damages are being discounted in the present.

Finally, the growth rate of output is declining to lower levels compared to the no decay
case, before it starts increasing again and return almost to its initial level in the very long run.
More precisely, the lowest growth rates of output for the four cases are 2.05% for the linear
damage function, 1.99% for the quadratic, 1.83% for the cubic and 0.94% for the quartic.
The reason for this behavior is that in addition perfect foresight, there is also pollution decay
in this extension of the model. Hence, Ŷt first reacts sharply to the increasing pollution and
eventually returns to a higher level, after pollution has been absorbed by the environment.
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5.2 Non-logarithmic Utility

We now turn to the case where the intertemporal elasticity of consumption substitution
is unequal unity by assuming that utility be given by Eq. (6) where σ �= 1. Apart
from that, the optimization problem is identical to Eq. (8); the first-order conditions of
this problem are given in the Appendix. In the non-logarithmic case, the share of capi-
tal does not jump to its steady state value but asymptotically approaches a steady-state
value. In order to prove that there is such a steady-state value of εt , we start from the
transversality condition limt→∞ μKt Kte−ρt = 0 and Eq. (41), from which we can see that
μ̂Kt + K̂t − ρ < 0 ⇔ εt > 0. However, from the equation of capital accumulation and in
order for the growth rate of capital to be constant in the long run, we need limt→∞ ε̂t ≤ 0.
Hence, we can conclude that limt→∞ ε̂t = 0.

Using the same auxiliary variables as in the logarithmic case, we can convert the system
of equations into

ût = −Bεt + ε̂t + (1 − ψt )
αηD′(Pt )
Bεt χ̃t

+ ut (22)

ε̂t = −ρ + Bεt − (σ − 1)Ŷt (23)

Ŷt = α
(
ε̂t + B(1 − εt ) − ηD(Pt )

) + (1 − α)(ût − ut ) (24)

ψ̂t = (1 − ψt )
αηD′(Pt )
Bεt χ̃t

(25)

ˆ̃χt = Bεt − ε̂t − αηD′(Pt )
Bεt χ̃t

(26)

P̂t = φut
St
Pt

(27)

Ŝt = − ut (28)

The long-run steady state values of these variables are, respectively

u∞ = Bε∞

ε∞ = ρ + α(σ − 1)(B − ηD(P∞))

Bσ

ψ∞ = 1

χ̃∞ = αηD′(P∞)

(Bε∞)2

P∞ = P0 + φS0

S∞ = 0

The eigenvalues of the Jacobianmatrix at the steady states are {0, − ρ+α(σ−1)(B−ηD(P∞))
σ

, −
ρ+α(σ−1)(B−ηD(P∞))

σ
, ρ+α(σ−1)(B−ηD(P∞))

σ
, ρ+α(σ−1)(B−ηD(P∞))

σ
, ρ+α(σ−1)(B−ηD(P∞))

σ
}. For

realistic values of the parameters, we have that α(σ − 1)(B − ηD(P∞)) > 0. Therefore,
the last three eigenvalues are positive and the respective coefficients are set equal to zero in
order to eliminate non-convergent solutions.

The long-run growth rate of output is given by

Ŷ∞ = α(B − ηD(P∞)) − ρ

σ
(29)
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Fig. 8 Share of capital to final output production for different damage functions with t0 = 2010, ρ =
0.015, σ = 2, α = 0.9, φ = 1,B = 0.04, θ = 0, ψ0 = 0.65,P0 = 830GtC, S0 = 6000GtC, Y0 = 49.8
trillion US$

which is very similar to the previous result given in Eq. (18) but more general as now we do
not impose σ = 1.We now turn to the characterization of transitional dynamics with the help
of calibrations and plotting of different time paths. As before, the solid thin line corresponds
to a linear damage function, the largely dashed to a quadratic, the solid thick to a cubic, and
finally the thinly dashed to a quartic one (Figs. 8, 9, 10).

For the characterization of the transition path we first look at sectoral capital allocation.
In the previous case with σ = 1, the share of capital in the final output sector immediately
jumped to its steady state value (ε = ρ/B). Now, with a lower intertemporal elasticity of
substitution (σ > 1), present consumption becomes more preferable compared to future
consumption, which in turn results in lower savings. Consequently, a higher share of capital,
εt , is used in the final output production in order to satisfy the higher current consumption.18

The share converges to a steady state, which is higher than ρ/B for all damage functions, as
can be seen from Fig. 8.

It is also worth noting that as convexity increases, ε∞ reaches a lower value. That is
because in the long run capital has to be shifted towards the capital producing sector, as
damages become more severe and a higher portion of the capital stock gets destroyed.

For non-logarithmic utility, the social cost of carbon per output for given parameters is
presented in Fig. 9. By comparing it to Fig. 1 we can see that when σ > 1, χ̃t is reduced in
terms of levels but grows more rapidly, approximating its long-run value sooner.

Regarding growth rates of output with non-logarithmic utility, they are lower compared
to the baseline case at every point in time, which is due to the lower input allocation to the
capital sector. Higher polynomial-degree damage functions result in an interesting time path
for the growth rate Ŷt , see Fig. 10.19 We find a peak after several decades (at 35 and 40 years
for cubic and quartic damage functions, respectively) before the growth rate starts decreasing
again. This is because the initially increased use of the polluting resource causes the economy
to grow in a first phase, without inducing sufficient capital accumulation as a compensation
for pollution losses in the second phase. As expected from Eq. (29), the long-run growth rate

18 Additionally, due to lower IES, the polluting resource extraction is shifted towards the present.
19 For ease of comparison, the same damage functions as in the initial baseline case are being used in this
extension.
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Fig. 9 SCC per output for different damage functions with t0 = 2010, ρ = 0.015, σ = 2, α = 0.9, φ =
1,B = 0.04, θ = 0, ψ0 = 0.65,P0 = 830GtC, S0 = 6000GtC,Y0 = 49.8 trillion US$

Fig. 10 Growth rate of output for different damage functions with t0 = 2010, ρ = 0.015, σ = 2, α =
0.9, φ = 1,B = 0.04, θ = 0, ψ0 = 0.65,P0 = 830GtC, S0 = 6000GtC,Y0 = 49.8 trillion US$

of output for the calibarated value σ = 2 is half the respective value of the baseline case
where σ = 1.

5.3 Uncertainty

In our framework, we can also assess the impact uncertainty has on the social cost of carbon
per output and on the growth rate of output. Assuming that there is uncertainty as to whether
the damage function is of linear or quartic form, let π ∈ [0, 1] note the positive probability
that the damage function is quartic. Therefore, D̄t , which is the expected damage function,
is given by E[Dt ] = π(κ1Pt + κ2P2

t + κ3P3
t + κ4P4

t ) + (1− π)κ1Pt . The time paths are of
the usual form, as derived in section 4. However, now these time paths depend on the value
of the probability π (Figs 11, 12).

The graphs above illustrate the implications of π . More specifically, we can see that
uncertainty on the form of the climate damage function may lead to miscalculating the SCC,
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Fig. 11 SCC per output depending on π at two different times with ρ = 0.015, σ = 1, α = 0.9, φ = 1, B =
0.04, θ = 0, ψ0 = 0.65,P0 = 830GtC, S0 = 6000GtC,Y0 = 49.8 trillion US$

Fig. 12 Growth rate of output depending on π at two different times with ρ = 0.015, σ = 1, α = 0.9, φ =
1,B = 0.04, θ = 0, ψ0 = 0.65,P0 = 830GtC, S0 = 6000GtC, Y0 = 49.8 trillion US$

which in turn results in a poorly designed climate policy. Additionally, uncertainty creates
a range within which the growth rate of output lies. In other words, policy makers cannot
correctly estimate the time path of a critical variable.

6 Conclusions

The paper shows that the choice of a specific climate damage function has a big impact
on optimal climate policy and economic growth. We derive the effects of different damage
functions on the social cost of carbon and the growth rate of the economy for various model
specifications. In our baselinemodel, increasing convexity of the function raises the social cost
of carbon sharply, suggesting more stringent climate policy is needed with growing pollution
stock. The theory presented in this paper does not provide a criterion for the selection of
the most realistic function but derives the economic consequences when high convexity of
climate damage functions is significant. This is strongly suggested by empirical findings
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and implicitly assumed in the fixed temperature targets of international climate policy. In
our calibrated model we find that the long-run growth rate is still positive for highly convex
functions provided that we are in a social optimum which in reality is achievable by efficient
climate policies.

Assuming a natural decay for pollution stock entails a peak in the social cost of carbon
and a U-shaped pattern for optimal growth. Over time, the pollution stock grows less rapidly
because of fading resource use as before but is now also reduced by natural forces. Note
that the turning point of pollution stock is only reached after a very long time delay so that
a long first phase of development is very similar to the baseline case without decay. When
we posit that the intertemporal elasticity of consumption substitution is below unity we find
that the growth rate of the economy becomes lower, resource use is brought forward, and
the social cost of carbon grows less rapidly with damage convexity compared to the baseline
case. Uncertainty, on the other hand, affects optimal policy, since the SCC per output and
the growth rate of the economy now depend on the probability of a higher order damage
function.

Our approach can be extended both in the direction of the assumed growth mechanics and
the considered climate impact. It would also be rewarding to extend our analysis on risk and
uncertainty. A broader use of the damage functions of this paper in integrated assessment
models would potentially give rise to novel policy conclusions. This is left for future research.
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Appendix

Appendix 1: Baseline Model

The first-order conditions of the maximization problem given in Sect. 2.3 read

Yt : 1

Yt
= μY t ⇔ μY tYt = 1 (30)

εt : αμY tYt
εt

= BμKt Kt ⇔ α

μKt Kt
= Bεt (31)

Rt : (1 − α)
μY tYt
Rt

= μSt − φμPt ⇔ 1 − α

Rt
= μSt − φμPt (32)

Kt : αμY tYt
Kt

+ μKt [B(1 − εt ) − ηD(Pt )] = ρμKt − μ̇Kt ⇔

μ̂Kt = ρ − α

μKt Kt
− K̂t (33)

Pt : −ηD′(Pt )μKt Kt = ρμPt − μ̇Pt ⇔ μ̂Pt = ρ + ηD′(Pt )μKt Kt

μPt
(34)

St : 0 = ρμSt − μ̇St ⇔ μ̂St = ρ (35)

123

http://creativecommons.org/licenses/by/4.0/


24 L. Bretschger, A. Pattakou

and the transversality conditions are

lim
t→∞ μKt Kte

−ρt = 0 (36)

lim
t→∞ μPt Pt e

−ρt = 0 (37)

lim
t→∞ μSt St e

−ρt = 0. (38)

Appendix 2: Capital Share

To derive optimal capital allocation we use (33) and (31) to write − ε̂t = ρ − Bεt ⇔ ε̇t =
Bε2t − ρεt . This differential equation is of the Riccati form, hence its solution is given by

εt = ρC1e−ρt

BC1e−ρt + BρC2
. Using the transversality condition (36) results in

limt→∞ αe−ρt

Bεt
= 0

limt→∞ α
ρC1

(C1e−ρt + ρC2) = 0

C2 = 0

and therefore
εt = ρ

B
≡ ε (39)

which says that the share of capital used in the final goods sector instantaneously jumps
to its steady state value. Put differently, capital allocation to the two sectors is determined
optimally in the beginning and does not change over time.20 From (31) and (39) we also

obtain μKt Kt = α

ρ
≡ μK K which says that capital stock multiplied with its shadow price

is a constant.

Appendix 3: Depletion Rate

Starting from the transversality condition (38) and given that for product μSt St e−ρt is non-
negative and declining over time, using (35) we have μ̂St + Ŝt − ρ < 0 ⇒ Ŝt < 0 ⇒
− ut < 0 ⇒ limt→∞ ut > 0. Due to the Cobb–Douglas form of the production function
and logarithmic utility resource extraction never ends, i.e. it only stops at infinite time, i.e.
limt→∞ St = 0 where Ŝ∞ is a negative constant. In order for consumption to be asymptoti-
cally constant in infinite time, we need limt→∞ ût ≤ 0 and since ut cannot be negative, we
conclude that limt→∞ ût = 0. As a consequence, the growth rate of resource use in infinite
time, R̂∞, needs to be constant and non-positive.

Appendix 4: Solution of the Linearized System

Following the standard linearization procedure, the solution of the dynamic system of
Eqs. (11)–(15) can be approximated close to the long-run steady state by

ut = ρ − (1 − ψ0)ρe−ρt

2
ψt = 1 − (1 − ψ0)e

−ρt

χ̃t = αηD′(P∞)

ρ2 − αηφD′′(P∞)S0e−ρt

2ρ2

20 This result is modified below when we discuss the model extensions.
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Pt = P0 + φ(S0 − St )

St = S0e
−ρt

Appendix 5: Pollution Decay Model

The long-run values of the variables with θ > 0 are

u∞ = ρ

ψ∞ = 1

χ̃∞ = αηD′(P∞)

ρ(ρ + θ)

P∞ = P̄

S∞ = 0

Appendix 6: Non-logarithmic Utility

The first order conditions of the maximization problem given in Sect. 5.2 read

Yt : Y−σ
t = μY t ⇔ μY tY

σ
t = 1 (40)

εt : αμY tYt
εt

= BμKt Kt ⇔ α

μKt Kt
= Bεt (41)

Rt : (1 − α)
μY tYt
Rt

= μSt − φμPt ⇔ 1 − α

Rt
= μSt − φμPt (42)

Kt : αμY tYt
Kt

+ μKt [B(1 − εt ) − ηD(Pt )] = ρμKt − μ̇Kt ⇔

μ̂Kt = ρ − α

μKt Kt
− K̂t (43)

Pt : −ηD′(Pt )μKt Kt = ρμPt − μ̇Pt ⇔ μ̂Pt = ρ + ηD′(Pt )μKt Kt

μPt
(44)

St : 0 = ρμSt − μ̇St ⇔ μ̂St = ρ (45)
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