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Gut bacteria can affect key aspects of host fitness, such as develop-
ment, fecundity, and lifespan, while the host, in turn, shapes the gut
microbiome. However, it is unclear to what extent individual species
versus community interactions within the microbiome are linked to
host fitness. Here, we combinatorially dissect the natural microbiome
of Drosophila melanogaster and reveal that interactions between bac-
teria shape host fitness through life history tradeoffs. Empirically, we
made germ-free flies colonized with each possible combination of the
five core species of fly gut bacteria. We measured the resulting bacte-
rial community abundances and fly fitness traits, including develop-
ment, reproduction, and lifespan. The fly gut promoted bacterial
diversity, which, in turn, accelerated development, reproduction, and
aging: Flies that reproduced more died sooner. From these measure-
ments, we calculated the impact of bacterial interactions on fly fitness
by adapting the mathematics of genetic epistasis to the microbiome.
Development and fecundity converged with higher diversity, suggest-
ing minimal dependence on interactions. However, host lifespan and
microbiome abundances were highly dependent on interactions be-
tween bacterial species. Higher-order interactions (involving three,
four, and five species) occurred in 13–44% of possible cases depending
on the trait, with the same interactions affecting multiple traits, a re-
flection of the life history tradeoff. Overall, we found these interactions
were frequently context-dependent and often had the same magni-
tude as individual species themselves, indicating that the interactions
can be as important as the individual species in gut microbiomes.

microbiome | higher-order interactions | fitness landscape | Drosophila |
life history tradeoffs

In 1927, Steinfeld (1) reported that germ-free flies live longer
than their microbially colonized counterparts, suggesting that

bacteria hinder host fitness. This observation, that the microbiome
can impact aging, has been replicated in flies and vertebrates (2, 3).
However, a decrease in lifespan does not necessarily indicate a
negative impact on the host. Organisms in their environment are
selected for their fitness, which is a function of lifespan, fecundity,
and development time (4). Life history tradeoffs allow local adap-
tation. For instance, by increasing fecundity at the expense of life-
span (5–7), an organism can use either short or long generation
times to achieve equal fitness. These observations set up two major
questions: What is the role of an individual bacterial species versus
interactions between them in determining host lifespan, and how is
the microbiome effect on lifespan related to overall host fitness?
Identifying the host effects of specific bacteria has been dif-

ficult, in part, due to high gut diversity but also because inter-
actions between bacteria can depend on context (8). Nonadditive
effects of more than two variables are called higher-order in-
teractions, and they indicate that interactions depend on context.
For example, a bacterium may produce a specific B-vitamin in
response to its neighbors (9, 10). This response may impact the
host, and host feedbacks can mitigate or exacerbate changes in
the microbial community (11). However, specific examples may
be misleading, as the true complexity of a gut microbiome has
never been exhaustively quantified. Thus, it remains an out-
standing challenge to reverse-engineer the interaction networks

that characterize microbiome/host effects relative to host inter-
actions with individual bacterial species. Doing so would allow us
to address the role of microbial community complexity in shap-
ing host fitness. However, quantifying the set of all possible in-
teractions of n species is a combinatorial problem involving 2n
distinct bacterial communities. As n approaches the diversity of
the mammalian gut with hundreds of species, this challenge
becomes experimentally unfeasible.
The gut microbiome of the fruit fly Drosophila melanogaster is

an effective combinatorial model because as few as five species
of bacteria consistently inhabit the gut of wild and laboratory
flies (12–14), yielding 25 possible combinations of species. Be-
cause early work on the fruit fly microbiome suggested that it is a
transient community consisting only of recently ingested bacteria
(15), we set up our experiments to maintain bacterial coloniza-
tion through frequent ingestion. However, newer studies dem-
onstrate that a modified fly diet as well as specific bacterial
strains make for a persistent gut microbiome (16, 17), suggesting
similarities with higher organisms. Here, we isolated the five core
laboratory fly gut bacteria species in culture: Lactobacillus plan-
tarum (Lp), Lactobacillus brevis (Lb), Acetobacter pasteurianus
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(Ap), Acetobacter tropicalis (At), and Acetobacter orientalis (Ao).
These fermentative lactic acid bacteria and acetic acid bacteria
commonly occur in the wild fly gut (14, 18, 19), where they can
maintain a stable association (16, 17). We constructed germ-free
flies by surface-sterilizing the embryos and reinoculated the newly
emerged adult flies via continuous association with defined flora using
established protocols (17, 20). We made the 32 possible combinations
of the five bacterial species and then quantified the microbiome
composition and resultant host phenotypes of (i) development time,
(ii) reproduction, and (iii) lifespan to determine the relationship be-
tween gut microbe interactions and host fitness. We tested to what
extent the presence and abundance of individual bacterial species ac-
count for the fly physiology phenotypes we measured.
Finally, we introduce a mathematical framework to deconstruct

microbiome/host complexity by making a conceptual analogy be-
tween the bacterial species interactions and genetic epistasis (21,
22). This approach revealed significant context-dependent inter-
actions between two, three, four, and five species that have large
impacts on host physiology, contributing to differential life history
strategies.

Results
Microbiome Diversity Confers a Life History Tradeoff. We hypothe-
sized that microbiome-induced lifespan changes might be due to
changes in life history strategy, such as a tradeoff with fecundity.
We therefore set up an experiment to measure how defined
species compositions change each of the host fitness traits of
lifespan, fecundity, and development time, which have been
found to covary in life history tradeoffs (5, 6). We measured
these traits concomitantly in the same experiment so that we
could sum them together to calculate overall fly fitness (Fig. 1A).
Equal fly fitness despite different lifespan and fecundity would
indicate a life history tradeoff.
We first isolated each of the five species of bacteria found in

our laboratory flies: Lp, Lb, Ap, At, and Ao, consistent with
culture-independent sequencing (14, 18, 23). To test whether
groups of bacteria have additive effects, we made each of the
32 possible combinations of the five species (including germ-free;
Fig. 1A). We then made germ-free flies and inoculated them with
defined bacteria compositions at 5–7 d posteclosure to reduce
variation in development and gut maturation (24).
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Fig. 1. Microbiome induces a life history tradeoff between lifespan and reproduction. (A) Experimental design. Themulticolor pies indicate which species are present
in a given combination, along with the corresponding binary code. Each species abbreviation (Lp, Lb, Ap, At, and Ao) is indicated above its corresponding locus in the
binary string. Both notations, colored pies and binary codes, are used consistently throughout the paper. The color code is included redundantly in the figures to aid
the reader. (B) Single bacterial associations decrease the fly lifespan. (B, Inset) Microbiome diversity decreases the fly lifespan. Error bars show SEM. (C) In agreement
with prior reports, higher total fecundity is associated with a shorter lifespan. This tradeoff is apparent for average daily fecundity, as well as for total fecundity per
female. SEMs are provided in SI Appendix, Table S1. (D) Fitness calculations using a Leslie matrix reveal roughly constant fitness across differentmicrobiomes. Error bars
are SE of the estimate. (E) Lifespan/fecundity tradeoff can be broken by putting flies on antibiotics after their peak reproduction (red circles represent gnotobiotic flies
treated with antibiotics; Materials and Methods) after 21 d, which encompasses the natural peak fecundity (SI Appendix, Fig. S5). Note the shifts in lifespan between
the regular treatment, the antibiotic treatment, and the late-life bacterial inoculation treatment. The lifespan was significantly extended, whereas total fecundity
stayed high. Shifting germ-free (GF) flies to gnotobiotic treatment after 21 d posteclosion decreased the lifespan without increasing reproduction (blue circles rep-
resent GF flies made gnotobiotic 21 d posteclosion) (n = 100 flies per treatment for the standard and antibiotic-treated experiments and n = 60 flies per treatment for
the GF switched to gnotobiotic experiment). Error bars show SEM.
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We performed five technical replicates of each experiment
with 10 males and 10 females together in the same vial. The five
replicates were performed over two separate biological replicates
for a total of 100 adult flies per each of the 32 treatments. We
transferred the flies every 3 d to fresh food that was inoculated
with fresh bacteria to reduce the effects of bacterial growth on
the food. To measure lifespan, we recorded the number of live
flies daily. To measure fecundity, we kept the old vials that flies
were transferred from and counted the number of emerged live
adults. To measure development time in the population experi-
ments where egg laying took place for 3 d, we counted the
number of days for the first adult to emerge from a pupal case.
We first asked the role of individual bacterial species on fly

lifespan. Consistent with previous studies, our germ-free flies
survived the longest (Fig. 1B and SI Appendix, Table S1). How-
ever, only Lp, At, and Ao had a shortened lifespan, while flies
aged with Lb and Ap had equivalent survival to germ-free flies.
We next asked the effect of microbial diversity on fly lifespan.
Germ-free flies survived ∼20% longer than flies colonized by all
five bacteria (mean lifespan ± SEM: 53.5 ± 1.5 germ-free vs.
43.5 ± 1.1 for the gnotobiotics of the five species). Overall, we
found a decrease in survival over many bacterial associations as
we increased gut diversity (Fig. 1B, Inset and SI Appendix, Figs.
S1 and S2; r = −0.54, P = 0.002, n = 32 associations, Spearman
correlation), consistent with the gut microbiome having a path-
ogenic effect on the host. No consistent differential effect on
lifespan was observed between males and females (SI Appendix,
Fig. S3; t = −0.60, P = 0.55, n = 158 vials).
We next asked whether the reduction in lifespan was offset by a

life history tradeoff in fecundity. Decreased lifespan corresponded
to an increase in fecundity for female flies (Fig. 1C and SI Ap-
pendix, Table S1; total daily fecundity vs. lifespan: r = −0.50, P =
0.003, n = 32, Spearman correlation) and is not explained by
differences in fly activity (SI Appendix, Fig. S4). Such life history
tradeoffs are well documented in the literature and are believed to
constitute a differential allocation of resources between long-term
body maintenance and reproduction (4, 25).
A true tradeoff is one that allows an individual organism to

adapt its life history strategy with equal overall fitness. Fitness is
a function of fecundity, development, and lifespan, which gives
an estimate of the maximum rate of population growth. We
wondered whether the observed differences in lifespan were
balanced by differential rates of fecundity and development or
whether these differences in fly physiology actually made flies
with distinct microbiome compositions more and less fit. To
address this question, we combined our data for development,
fecundity, and lifespan (SI Appendix, Table S1) in a Leslie matrix
(26), a classic model of discrete population growth, to calculate
organismal fitness under each bacterial association. Overall, fit-
ness was constant across many distinct bacterial associations
(Fig. 1D). Thus, the changes in lifespan we observed are con-
sistent with a differential allocation of resources to reproduction,
a true life history tradeoff, meaning that microbiome composi-
tion sets a fly’s life history strategy to maximize either re-
production or longevity. Walters et al. (27) show evidence that
such microbiome-based fitness tradeoffs also occur in wild flies.

Reproduction Cannot Be Increased by Midlife Microbiome Addition.
The life history tradeoff suggests that a fly born into stark con-
ditions in the wild could maximize its fitness by first acquiring a
longevity-promoting microbiome and then converting to a
fecundity-promoting one when environmental conditions im-
prove. Female flies are primarily reproductive in the first part of
their life, with a gradual decay in fecundity approaching middle
age (SI Appendix, Fig. S5). To test whether individual flies can
switch life history strategy to match their microbiome, we aged
germ-free flies for 21 d (roughly middle age) and then associated
these flies with fecundity-promoting bacteria. There was no sig-
nificant increase in total fecundity for these flies and a significant
decrease in lifespan compared with germ-free flies (Fig. 1E; P =
0.054 for fecundity, n = 275 flies pooled across four bacterial

combinations, two-sample one-sided t test; P > 0.05 for all
pairwise combinations after Tukey’s multiple comparison cor-
rection; P = 2 × 10−7 for lifespan, n = 400 flies pooled across four
bacterial combinations, two-sample one-sided t test; P <
0.001 for 4/4 combinations after Tukey’s correction, n =
100 flies per combination, two-sample one-sided t tests). These
results are consistent with the simple hypothesis that a fly’s re-
productive window cannot be extended by late-life improvement
in nutrition.

Microbiome Interactions Can Change Host Physiology. We hypoth-
esized that the microbiome may shorten lifespan through a
process independent of reproduction. To examine this hypoth-
esis, we used antibiotics to remove the microbiome of high-
fecundity female flies and measured the resulting change in
lifespan. We first allowed female flies with high-fecundity
microbiomes to reproduce for 21 d (to a level greater than the
total lifetime fecundity of germ-free flies; SI Appendix, Fig. S5),
and we subsequently eliminated the microbiome using an antibi-
otic mixture (ampicillin, tetracycline, rifamycin, and streptomy-
cin). In general, the midlife elimination of gut flora lengthened the
female fly lifespan by roughly 15% compared with flies continu-
ously fed live bacteria (Fig. 1E; P = 9 × 10−7, n = 560 flies pooled
across bacterial combinations; P < 0.05 for four of seven com-
binations after Tukey’s correction for multiple pairwise com-
parisons, n = 80 flies per combination, two-sample one-sided
t test). Total fecundity decreased slightly (Fig. 1E; P = 0.01,
n = 560 flies pooled across bacterial combinations; P > 0.05 for
all seven combinations after Tukey’s correction for multiple
pairwise comparisons, n = 80 flies per combination, two-sample
one-sided t test). This result demonstrates that the life history
tradeoff is not necessarily fixed and suggests that the fly lifespan
is shortened by some aspect of the bacteria rather than by re-
production. However, two specific bacterial combinations yield-
ed no increase in lifespan when removed from their host by
antibiotics: Ao and Lp+Lb+Ao, suggesting a memory in host
physiology induced by these two combinations. Interestingly,
neither the intermediate microbiome composition, Lp+Ao, nor
the similar composition, Lp+At+Ao, (Fig. 1E; with antibiotic
elimination of the microbiota-extending lifespan) showed this
memory, suggesting specificity of the microbiome composition in
this metabolic memory. These experiments demonstrate that
interactions between bacteria can significantly impact the host’s
ability to adjust its physiology.

Both Lower and Higher-Order Microbiome Interactions Change Host
Physiology. We next calculated to what extent microbiome in-
teractions change fly physiology. We applied a multivariate lin-
ear regression model, a common statistical test for interactions
between experimental variables (28, 29). Here, our variables are
the five bacterial species. We detected evidence of widespread
pairwise interactions in the data (SI Appendix, Tables S2–S5).
Higher-order interactions are nonadditive effects of more than
two variables, which would complicate efforts to predict the
physiology of hosts with high-diversity microbiomes. We checked
for three-way, four-way, and five-way interactions using the same
statistical approach. Higher-order interactions for lifespan, fecun-
dity, development, and bacterial composition were evident at each
level of diversity (SI Appendix, Tables S2–S5), indicating that species
interactions, rather than just their direct effects, change host phe-
notypes. Many of these interactions have equivalent magnitude to
the impacts of individual species. For instance, the average lifespan
of germ-free flies is 53 d (Fig. 1B, Inset). Individually, Ao can
shorten lifespan by 10 d. Pairwise interactions can change mean
lifespan by 8 d (SI Appendix, Table S4). Likewise, flies colonized by
all five species of bacteria survive an average of 43 d. Microbiome
interactions account for a 13-d (28%) increase in lifespan over the
additive prediction (SI Appendix, Table S4). Overall, these findings
demonstrate that microbiome interactions can have major impacts
on host physiology.
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To confirm these interactions, we next asked whether the
physiology of flies with more than one bacterial species could be
predicted by simply averaging the phenotypes of flies with the
corresponding single-species associations [Fig. 2 (e.g., for com-
bination Lp-Lb-Ap, phenotypes of flies living with Lp, Lb, or Ap
were averaged) and SI Appendix, Math Supplement, section 9].
This model showed minor predictive power for development
time (27% total correct: three of 10 two-way, three of 10 three-
way, zero of five four-way, and one of one five-way interactions
predicted), better prediction of lifespan (65% total correct: nine
of 10 two-way, six of 10 three-way, two of five four-way, and zero
of one five-way phenotypes predicted), and reasonably accurate
prediction of average daily fecundity (81% total correct: seven of
10 two-way, nine of 10 three-way, four of five four-way, and one
of one five-way phenotypes predicted). We also measured total
bacterial abundances in the flies (SI Appendix, Table S1), which
had little predictive power in the simple averaging model (20%
total correct: four of 10 two-way, one of 10 three-way, zero of
four four-way, and zero of one five-way phenotypes predicted).
We next asked whether averaging data from the corresponding
species pairs could predict phenotypes of three-, four- and five-
way combinations [Fig. 2 (e.g., for combination Lp-Lb-Ap, phe-

notypes of flies living with either Lp-Lb, Lp-Ap, or Lb-Ap were
averaged) and SI Appendix, Math Supplement, section 9]. This
model overall correctly predicted 78% of the fly traits (Fig. 2;
15 of 16 for development; nine of 16 for lifespan, 15 of 16 for
fecundity, and 11 of 16 for bacterial load), indicating that pairwise
interactions account for a majority of host variation. However, in
the remaining cases (up to 44% unpredicted for lifespan), failure
of this simple model indicates higher-order interactions within
the gut microbiome. Taking these analyses together with the
life history tradeoff, microbiome/host interactions (including
those of higher-order) can significantly impact fly fitness traits.
In a later section, we analyze these interactions comprehensively
to show how the context of bystander species influences these
interactions.

Bacterial Presence/Absence, More than Abundance, Impacts Fly
Physiology. The differences in host physiology we observed result-
ing from different microbiome compositions could be due not only
to which species are present but also to their abundances. We
reasoned that if a particular bacterial species drives a host physio-
logical trait, then its abundance should be correlated with that trait.
We therefore measured the abundances of individual bacterial
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Fig. 2. Microbiome interactions impact host lifespan
and bacterial load. Mean fecundity per female per
day was measured concomitantly with development
time and adult survival over the flies’ lifespans. (A)
Variation in fecundity decreases as gut diversity in-
creases. Median (n = 65) vials measured per bacterial
treatment. (B) As described in SI Appendix, Math
Supplement, section 9, daily fecundity in multispecies
bacterial combinations can be predicted by averag-
ing either the corresponding phenotypes of
the single-species associations or the corresponding
phenotypes of the pairwise species associations.
Error in the predictions (averaging prediction minus
measured trait value) is displayed. Single-species av-
eraging predictions are shown in gray, and species
pair averaging predictions are shown in black. Error
bars are 95% confidence intervals (SI Appendix,
Math Supplement, section 9). (C) Number of days to
adulthood was measured as the first pupa to emerge
from an individual fly vial during the lifespan ex-
periment. Median (n = 24) per bacterial treatment (SI
Appendix, Fig. S2). (D) Averaging models as in B ap-
plied to development data. (E) Lifespan decreases as
gut diversity increases. Median (n = 100) flies per
bacterial treatment. (F) Averaging models as in B
applied to lifespan data. (G) Mean bacterial load
averaged over 48 replicates per combination. (H)
Averaging models as in B applied to bacterial load.
Error bars for all plots are 95% confidence intervals.
Colored pies on the x axis of B, D, F, and H indicate
bacteria combinations and are consistently ordered
with A, C, E, and G.
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species in the flies to determine the relationship to different fly
physiologies. We first prepared gnotobiotic flies as before by in-
oculating 5- to 7-d-old mated germ-free flies with defined bacterial
compositions. Flies were transferred to fresh food inoculated with
fresh bacteria every third day for a total duration of 10 d before they
were washed in 70% ethanol, crushed, plated, and colony-forming
units (CFUs) were enumerated (Fig. 3A). The experiments were
performed in two biological replicates for a total of 12 female and
12 male flies that were analyzed for each of the 32 bacterial com-
binations (Fig. 3B). The total bacterial load was higher when more
species were present (r = 0.63, P = 0.0001, n = 31 bacterial com-
binations, Pearson correlation). However, on a species-by-species
basis, abundance stayed constant or decreased as species diversity
increased (Fig. 3C; Lp: r = −0.07, P = 0.8; Lb: r = −0.37, P = 0.2;
Ap: r = −0.50, P = 0.06; At: r = −0.59, P = 0.02; Ao: r = −0.55, P =
0.03; Spearman correlations), suggesting competition plays a role in

the interactions. To quantify the robustness of bacterial association
in our experiments, we prepared a parallel experiment with the only
difference being that after the initial 10 d of inoculation, flies were
transferred daily to fresh, germ-free food for five subsequent days
before enumeration of CFUs as before. Only very minor differences
occurred between the two experiments (SI Appendix, Fig. S6), with
the flies transferred daily to germ-free food for 5 d surprisingly
having slightly higher CFU counts than flies plated directly after day
10 of inoculation (Wilcoxon rank sum test, median CFUs for flies
transferred to germ-free food: 105.65 CFUs vs. flies directly plated
after day 10 of inoculation: 105.59 CFUs, P = 0.01, n = 1,536 indi-
vidual flies). Because only minor differences were observed, we
merged the two experiments to increase statistical power. Median
total bacterial load ranged from 49,000 CFUs per fly for Ap alone
to 737,000 CFUs per fly for Lb+At+Ao, with an overall median
of 425,000 CFUs per fly (Fig. 3B). The robust colonization
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observed despite daily transfer to germ-free food indicates the gut
microbiome is persistent under these conditions, which is in contrast
to some previous reports (15, 23). Two variables that could account
for this difference are different bacterial strains (16, 17) and our use
of a fly food with minimal microbial growth inhibitors (30).
To test whether bacterial abundances drive fly physiology, we

next compared the individual species abundances and total
bacterial abundances in adult flies with the fly physiology phe-
notypes (Fig. 2 A, C, E, and G and SI Appendix, Fig. S2). We first
calculated the correlation between individual species abundances
and each host physiology trait (SI Appendix, Fig. S7). Of
20 possible correlations, two significant correlations were found:
(i) between Lp abundance and total female fecundity (Fig. 3D;
r = 0.52, P = 0.04, n = 16) and (ii) between Ao abundance and
decreased lifespan (Fig. 3E; r = −0.53, P = 0.03, n = 16), in-
dicating that these two individual species can explain 27% and
28% of the variation in fecundity and lifespan, respectively. We did
not detect other significant relationships between bacterial load and
host physiology, leaving the remaining variation (73% of fecundity
and 72% of lifespan) unexplained by individual species abundances.
However, as we show in Fig. 1E, the interaction between Ao and Lp
can dramatically alter the fly’s ability to adjust its physiology when
treated with antibiotics, with a 21% change in lifespan (Fig. 1E).
Thus, individual bacterial species loads are not necessarily expected
to determine impacts on the host.
As a secondary test that bacterial abundance drives fly pheno-

types, we examined both load and phenotype variation. If the load of
individual bacterial species drives host physiology traits, we would
expect that higher variation in bacterial load would correspond to
higher variation in host traits, yielding a positive correlation. When
we calculated the relationship between bacterial load variation and
host trait variation, we found no statistical evidence for an associa-
tion (SI Appendix, Fig. S8). Taken together, these results suggest
that the long-term presence of bacterial species is more indicative of
their effect on host physiology than their abundances.

Live Bacteria Speed Up Fly Development. We did find one notable
exception to the presence/absence rule: Ao abundance in the food
sped up larval development time significantly (Fig. 2C and SI
Appendix, Fig. S9; r = −0.95, P = 0.003, n = 7 bacterial combina-
tions with Ao, Spearman correlation). However, consistent with the
adult results, there was no correlation with fly physiology for the
four other species. We next tested whether there was a maternal
effect on development time by removing the maternal bacterial
association. We prepared the vials for this development experiment
by first setting up a replicate fitness experiment (as in Fig. 1A).
After the first transfer to fresh vials, we took the used vials, allowed
all larvae to form pupae, and then removed the pupae. Eggs from
germ-free mothers developing in these vials had an equal rate of
development to the fitness experiment (Fig. 3F; paired sample t test,
P > 0.18, n = 500), indicating no maternal effect. We then tested
whether live bacteria aid the flies under these conditions. We per-
formed a duplicate experiment but heat-killed the vials in a hu-
midified (to prevent drying) 60 °C chamber for 1 h (and tested for
sterility). All of the sterile vials were inoculated with ∼30 germ-free
embryos each. Flies in heat-killed vials developed ∼8 h more slowly
(Fig. 3F; paired sample t test, P < 0.005, n = 16), suggesting that
active bacterial metabolism (31) speeds up fly development (Fig. 3F
and SI Appendix, Fig. S10). Finally, we asked whether bacteria de-
grade the fly food. We harvested eggs from germ-free flies, asso-
ciated them with all 32 bacterial combinations on fresh food, and
measured development times. This experiment uncovered a signif-
icant acceleration in development time compared with the fitness
experiment (SI Appendix, Fig. S10). These experiments demonstrate
context dependence in terms of timing in microbiome associations.

Mathematics of Genetic Epistasis Allow Quantification of Context
Dependence in Microbiome Interactions. Our results indicate that
microbiome interactions play a significant role in fly physiology.
However, interactions between species often depend upon the
context of which other species are present. There is not a universally

accepted mathematical framework to calculate the strength of
context-dependent interactions in the microbiome; however, genetic
epistasis provides a template. We make the explicit analogy between
genes in a genome and microbial species in a microbiome, using
presence/absence of microbial species (Fig. 3).
Here, we apply the combinatorial approach (Box 1) developed by

Beerenwinkel, Pachter, and Sturmfels (BPS) (21) to calculate epi-
static interactions between microbiome bacteria in n dimensions,
where n is the number of bacterial species considered. To apply these
methods, we identify the 32 bacterial combinations encoded as in
Fig. 1A with the vertices of a 5D cube (an illustration of this asso-
ciation is provided in Fig. 4A). In this association, we think of
presence and absence of microbial species as treatment conditions.
The method determines interactions directly, rather than as a re-
gression (Box 1 and SI Appendix,Math Supplement, sections 5 and 6).
We compared this framework with the outcome of the multiple

linear regression model and found that the results correlated well
with the regression coefficients (32) (SI Appendix,Math Supplement,
section 4; Figs. S11 and S12; and Tables S2–S5). We call these BPS
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interactions “standard tests.” The results of these tests and the
species involved in each one of them are presented in SI Appendix,
Fig. S12. The BPS method tests many more interactions, such as
conditional and marginal epistasis, which we refer to as “contextual
tests.” These tests revealed significant effects of species interactions
on host physiology and total bacterial load (Fig. 4 B–E), with many
pairwise and higher-order interactions. These conditional and
marginal tests are interesting because they signify that a particular
interaction depends on the presence/absence of additional species.
Interestingly, bacterial load interactions tended to be negative

(Fig. 4E), suggesting that interactions speed up development and
reduce total bacterial load. Negative epistasis in genetics suggests
that two loci are in the same pathway (i.e., they are redundant). By
analogy, negative microbiome epistasis suggests that redundant
mechanisms, such as nutrition (33), might moderate these inter-
actions. In contrast, lifespan interactions tended to be positive (Fig.
4D). By analogy with genetics, this suggests that synergistic bacterial
interactions modulate multiple pathways that affect lifespan. Fe-
cundity interactions suggest both synergy and redundancy (Fig. 4B).
The magnitudes of the interactions, when normalized to the

number of bacterial species present, were often as large as the
effects of individual species introductions (SI Appendix, Math
Supplement, section 7.1), indicating that species interactions are
equally as important as the individual species themselves.

Host/Microbiome Interactions Are Conditional. An example of con-
text dependence is a conditional interaction, which is when two
species interact differently depending on the presence of a third
species (or more). To test for conditional interactions, we cal-
culated pairwise interactions for each pair of species with each
other possible combination of the remaining three species (Fig.
5A and SI Appendix, Fig. S13 A–C). For instance, the standard
pairwise “interaction coordinate” is the equation

u10001 =w00000 +w10001 −w00001 −w10000,

which calculates the interaction between Lp and Ao alone, where
u10001 signifies the interaction between the first and fifth loci (Box

1). The term w00000 is the mean phenotype measured for flies with
no bacteria, w10001 is for flies with both Lp and Ao, w10000 is for
flies with Lp only, and w00001 is for flies with Ao only (Fig. 1A,
binary code notation; Box 1; and SI Appendix, Math Supplement,
sections 5 and 6). Similarly, the interaction coordinate

u10101 =w00100 +w10101 −w00101 −w10100

calculates the interaction between Lp and Lb when Ap is present.
We refer to u10001 as a standard test because it calculates the
interaction between all species present in the formula. We refer
to u10101 as a contextual test because it evaluates the Lp and Lb
interaction in the context of the bystander, Ap. By comparing the
standard and contextual tests, we found that all pairwise interac-
tions depend on context for at least one set of bystanders (Fig. 5A
and SI Appendix, Fig. S13 A–C), which is analogous to conditional
epistasis in genetics (21). This context is visualized in Fig. 5 and SI
Appendix, Fig. S12 by the cases where the different colored points,
which represent different sets of bystander species, do not coin-
cide for a given test. In some cases, a bystander increases the
magnitude of an interaction; in other cases, a bystander dimin-
ishes or annihilates the interaction. Thus, the interactions mea-
sured by the test change depending on the different bystander
species. We next extended this analysis to ask if three-way in-
teractions are also context-dependent. Similar to the pairwise
case, three-way interactions almost always [231 of 240 (96%)]
can change depending on the bystander species (Fig. 5B and SI
Appendix, Fig. S13 D–F).

Some Higher-Order Interactions Can Be Explained by Lower-Order
Interactions. In comparing the standard and contextual tests, we
observed some specific cases where a standard test indicated a
nonadditive interaction, while certain related contextual tests for
the same species composition indicated an additive interaction
(Fig. 5 and SI Appendix, Fig. S13; compare the different tests in
Box 1, F2). For instance, consider the standard test for lifespan
interactions (black diamonds in Fig. 5B) between Lp, Lb, and
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Ao (red, yellow, and green pie symbols in Fig. 5B). It indicates a
significant interaction between these three species shortening
lifespan. However, the contextual test (i = w000 − w010 − w101 +
w111; black circles in Fig. 5B and SI Appendix, Math Supplement,
section 6) indicates no interaction because its value is not sig-
nificantly different from zero. This signifies that by considering
Lp and Ao together as a single bacterial species, the Lp+Lb+Ao
lifespan is predictable as the sum of the lifespans of Lb-colonized
flies and Ap+Ao-colonized flies relative to germ-free flies. There-
fore, our methods suggest that interactions between specific
species groups account for some higher-order interactions (Fig. 5
and SI Appendix, Fig. S13 and Math Supplement, Fig. 1). While we
discovered no consistent patterns enabling the inference of these
groups a priori (Fig. 5 and SI Appendix, Fig. S13), the presence of
these groups as well as the averaging approach (Fig. 2) together
suggest a path to predictability. These results emphasize that bac-
terial species interactions significantly change the impacts of other
individual species in the microbiome. A major challenge for the
future will be to discover the rules and mechanisms by which these
low-dimensional interactions scale under increasing diversity.

Microbial Abundance Interactions Correlate with Host Physiology
Interactions. Are interactions between bacteria linked with host
physiology? We first tested whether microbial interactions de-

tected through CFU counts were correlated with interactions
detected through development, fecundity, and lifespan (SI Appen-
dix, Fig. S14). Focusing on the statistically significant interactions,
there is a strong correlation between the interaction strengths
across these distinct phenotypes (SI Appendix, Fig. S14D), in-
dicating that the same microbiome abundance interactions also
are associated with fly physiology interactions and the life history
tradeoff. Thus, interactions calculated from bacterial species
abundances may be predictive of fly traits. This relationship is
notably in contrast to the relationship between the individual
bacterial species abundances and fly physiology phenotypes,
where only two weak correlations were established (Fig. 3 D and
E and SI Appendix, Figs. S7 and S8).
We next asked how the pairwise interactions between indi-

vidual bacteria species change under increasing numbers of
species present (Figs. 4 and 5). We used the abundance data for
individual species (Fig. 3 and SI Appendix, Fig. S6) to calculate
the pairwise interaction strengths between the five species.
We first calculated the pairwise correlations in species abun-

dances as a function of the total number of species present in the
gut (Fig. 6A). Correlations became more negative for individual
species pairs as diversity increased (SI Appendix, Math Supple-
ment, sections 10.3 and 10.4; P = 0.03, n = 10 species pairs,
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stander species. Interactions between sets of three
species [equations: g = square, i = circle, k = triangle,
m = ex (x), n = *, u111 = diamond; SI Appendix, Math
Supplement, sections 5 and 6] are compared to de-
termine (i) whether the context of other species
changes interactions and (ii) whether additive con-
textual tests can describe cases of nonadditive stan-
dard tests. Each of the 10 combinations of three
species (denoted in panel titles as k, l, and m) is
compared, along with the four variants of bystander
species (denoted in the panel titles as * and shown by
the different colored symbols). The differences be-
tween the colors for a given interaction test indicate
that bystanders change interactions. Error bars in-
dicate propagated SEM.
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Kendall’s tau and Wilcoxon signed rank), consistent with stron-
ger competition at higher diversity.
We then calculated the directional interactions (i.e., A→ B vs.

B → A) using Paine’s classic approach (34), where interaction
strength is based on the change in abundance of one species when a
second species is removed (Fig. 6 B and C and SI Appendix, Math
Supplement, section 10.1 and Fig. S15 A and B). Comparing the
pairwise interaction maps at high and low diversity, we found that
interactions are generally positive when only two species are present,
consistent with interactions between two species in vitro (SI Appendix,
Fig. S15C). However, interactions become more negative at higher
diversity, consistent with increasing competition. An alternate ap-
proach to calculate the interactions, by fitting the classic generalized
Lotka–Volterra model (SI Appendix, Math Supplement, section 10.2),
gave qualitatively similar results (SI Appendix, Fig. S15 D and E).
However, parametrizing the model on low-diversity data did a poor
job of estimating the bacterial abundances at higher diversity, with n≥
3 species (SI Appendix, Math Supplement, section 10.3; P = 0.8, bi-
nomial test, n = 16), in agreement with the changing interaction
landscape at higher diversity (Fig. 6 and SI Appendix, Fig. S15).
Lastly, we asked if the interaction networks we calculated are

consistent with the maintenance of diversity we observe. We cal-
culated the asymmetry in the interaction network using the ap-
proach of Bascompte et al. (35), where asymmetry of interactions is
indexed from 0 (perfectly symmetrical) to 2 (exactly opposite). For
the low-diversity case, the mean asymmetry is 1.04 (SD = 0.13), and
for the high-diversity case, the mean asymmetry is 0.77 (SD = 0.08)
(SI Appendix, Math Supplement, section 10.1), indicating significant
asymmetry. Furthermore, analysis of the variation in total bacterial
load between individual flies showed a decreased coefficient of

variation for high diversity (SI Appendix, Math Supplement, section
9.5 and Figs. S16 and S17; P = 0.02, Wald test). Together with the
strength of interactions (Fig. 6), these calculations are consistent
with community stability at higher diversity (36).

Discussion
Bacterial Abundance Interactions May Damage the Host. The bi-
ological interactions determining the bacterial community in the
fly gut involve more than just pairs of species (37) (Figs. 4–6 and
SI Appendix, Figs. S13 and S15). These interactions generally
become weaker and more negative as diversity increases, which is
consistent with community stability through competition. With-
out some sort of stabilizing interactions, some species should
simply go extinct by chance. We do not observe evidence for
these extinctions. We also acknowledge that this five-species gut
community may have been selected for its stability in the fly vial
environment. Time series perturbation experiments could be a
better way to directly evaluate community stability (38). The
negative interactions we detect in the microbiome are associated
with shorter lifespans in the host flies, suggesting that negative
bacterial interactions may damage the host. Consistent with this
finding, microbiome removal by antibiotic treatment typically
extended lifespan (Fig. 1E). We speculate that molecular mech-
anisms for microbial damage to the host could include nutrient
depletion (SI Appendix, Fig. S10), toxic secondary metabolite
production, trigger of host immunity (11), and physical injury
through bacterial secretion systems, which have been shown to
kill flies during Vibrio/Acetobacter interactions (39).

How Much Do Higher-Order Interactions Matter? While we found
that higher-order interactions occur and are responsible for
significant changes in fly physiology, we also found that lower-
order interactions between bacterial pairs can account for more
than half of the phenotypes in three-, four-, and five-way bac-
terial combinations (Figs. 2 and 5). Thus, to harness predictive
power from low-diversity microbiomes, we must identify the reasons
why simple predictions work and when they do not. However, the
lack of convergence in traits such as lifespan and bacterial abun-
dances suggests different rules may apply to different phenotypes,
and it is unclear what rules will apply to more diverse host/micro-
biome systems. Furthermore, different conditions, such as diet
composition, could drastically change the microbiome interactions.
Decomposing interactions in increasingly diverse systems remains
an important goal for future studies.

Microbiome Interactions Mediate a Life History Tradeoff Between
Lifespan and Fecundity. Overall, we found that interactions in
the fruit fly gut microbiome structure both the fitness of the fly and
the composition of the microbiome (Figs. 2 and 4–6 and SI Ap-
pendix, Figs. S13 and S15). The magnitudes of these interactions
are often equivalent to the effects of individual species. Thus,
microbiome interactions (and not just individual species) can be a
major driver of host physiology. Many studies have documented
changes in fly lifespan as a function of various factors, including
diet, host genetics, and microbiome composition (2, 33, 40, 41).
Our study suggests that microbiome composition and the timing of
the association can have major impacts on lifespan as well as life
history tradeoffs (25). Walters et al. (27) show the consequences of
this tradeoff for ecology and evolution of wild flies.

The Drosophila Gut Microbiome Serves as an Effective Model of
Microbiome Complexity. A pervasive challenge in host/microbiome
science is the complexity of most host-associated microbiomes.
D. melanogaster has a naturally low-diversity microbiome, which
facilitates the study of this complexity. Regarding the suitability
of this model, a major question is whether such a simple system
with just five species can recapitulate the complex phenotypes
associated with higher-diversity microbiomes, such as humans
and plants. The fact that we observe emergent properties in this
simple and tractable five-species community makes it an attractive
model. Based on our empirical results, we argue that interacting

A

B C

Fig. 6. Microbiome interactions stabilize diversity in the fly gut. (A) Pairwise
correlations in abundance for the five species of bacteria in fly guts with
totals of two, three, four, and five species present. More positive correlations
are apparent at low diversity, whereas more negative correlations occur as
diversity increases (P = 0.03; SI Appendix, Math Supplement, section 10.4).
Direct calculation of interaction strength (34) at low (B, one to two species)
and high (C, four to five species) diversity based on CFU abundance data (Fig.
3B and SI Appendix, Fig. S6) revealed asymmetrical interactions that de-
crease in strength at higher diversity (SI Appendix, Math Supplement, sec-
tion 10.1 and Fig. S15). Consistent with the correlations in A, more negative
interactions occur in more diverse guts.
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groups, rather than just individual species, may be fundamental
building blocks of these microbiome/host relationships.

Materials and Methods
Additional details are provided in SI Appendix.

Fly Stock Maintenance. Fly stocks were maintained at 25 °C and 60% humidity
on a standard Bloomington diet, with 12:12 h light/dark cycles, and con-
firmed to be free of known RNA viruses by RT-PCR (17). Germ-free fly stocks
were kept in sterile conditions over multiple generations to reduce het-
erogeneity due to parental nutrition from microbiome variability.

Gnotobiotic Fly Preparation. We identified five unique species in our labo-
ratory flies (Lp, Lb, Ap, At, and Ao) (17), which we then isolated in culture. To
prepare the inoculum for flies, bacteria were grown overnight in De Man,
Rogosa, and Sharpe (MRS) medium in a 30 °C Innova 4000 shaker (New
Brunswick) at 200 rpm. The bacteria were resuspended at 108 cells per mil-
liliter in sterile PBS for fly gnotobiotic preparations (20). A total of 5 × 106

CFUs (50 μL of 108 bacteria per milliliter in 1× PBS) were inoculated per fly
vial. The 32 combinations of the five bacterial strains were mixed using a
Beckman Coulter Biomek NXP workstation to standardize the inoculum.
Germ-free mated flies 5–7 d posteclosion were sorted into these vials.

Check for Contamination and Correct Colonization. All fly work, including
media preparation and transfers to fresh food, was performed in a tissue
culture hood using sterile technique. Correct association and contamination
were assessed by plating and 16S PCR followed by Sanger sequencing to
confirm species identities.

Bacterial Load Counts from Individual Flies. Flies were washed in 70% ethanol
and thenbead-beaten in 96-well plates using a custom-built attachment. Lysates
were pinned with a 96-pin replicator (Boekel) onto selective media, visually
scored, and then enumerated using a standard curve (SI Appendix, Fig. S18).

Fitness Calculations.We estimated fitness for each bacterial treatment using a
Leslie matrix (1,000 replicates randomly sampled per treatment).

Statistical Analyses. All statistics were calculated using R (v.3.3.3) (28) unless
otherwise noted. Pearson correlations were for normally-distributed data
versus Spearman correlations when the data were not distributed normally.

Data and Software Availability. Data and software presented in this study are
available online in the Dryad Digital Repository (doi:10.5061/dryad.2sr6316)
and on the Nextjournal platform (https://nextjournal.com/csi/microbiome-
interactions-shape-host-fitness/).
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