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Floquet dynamics in driven Fermi-Hubbard systems

Michael Messer,1 Kilian Sandholzer,1 Frederik Görg,1 Joaqúın Minguzzi,1 Rémi Desbuquois,1 and Tilman Esslinger1

1Institute for Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
(Dated: Friday 14th June, 2019)

We study the dynamics and timescales of a periodically driven Fermi-Hubbard model in a three-
dimensional hexagonal lattice. The evolution of the Floquet many-body state is analyzed by com-
paring it to an equivalent implementation in undriven systems. The dynamics of double occupancies
for the near- and off-resonant driving regime indicate that the effective Hamiltonian picture is valid
for several orders of magnitude in modulation time. Furthermore, we show that driving a hexagonal
lattice compared to a simple cubic lattice allows to modulate the system up to 1 s, corresponding
to hundreds of tunneling times, with only minor atom loss. Here, driving at a frequency close to
the interaction energy does not introduce resonant features to the atom loss.

Floquet engineering is a versatile method to imple-
ment novel, effectively static Hamiltonians by applying
a periodic drive to a quantum system [1–3]. For long
timescales, a limitation for this method to create interest-
ing many-body states is eventually the heating to an infi-
nite temperature, caused by the presence of integrability
breaking terms such as interactions [4, 5]. For very short
time scales, an obvious limit is set by the duration of a
single cycle, which cannot be captured by a static Hamil-
tonian. In general, the launch of the drive causes complex
dynamics on different timescales in a many-body system
[6–8]. Theoretical considerations suggest that an effective
Hamiltonian picture can still remain valid for some inter-
mediate timescale required to create many-body phases
[7, 9–17]. Developing an experimental approach to iden-
tify relevant timescales in a periodically driven quantum
system with interactions is thus a timely challenge.

In this Letter, we investigate the Floquet dynamics
of a periodically driven Fermi-Hubbard model, which is
realized with interacting fermions in a three-dimensional
optical lattice. Our approach allows us to experimentally
compare the evolution of an observable in a driven sys-
tem with the equivalent dynamics in an undriven Hamil-
tonian. The evolution of the entire many-body state is
complex (see Fig. 1a) - while local processes, like the
tunneling, play a role on short timescales, the trapping
potential sets a timescale for global thermalization. In
addition, deviations to the expected behavior in the ef-
fective Hamiltonian might arise for very long modula-
tion times. In the comparison, we analyze this evolution
of the many-body state due to a change of (effective)
Hubbard parameters and disentangle it from heating in
driven systems which cannot be captured by an effec-
tive static model. The latter can be understood as un-
wanted absorption processes, which in the presence of
interactions may be resonant at any driving frequency,
since the energy spectrum becomes continuous [18–21].
Although resonant processes can be desired to realize a
specific Floquet Hamiltonian [22–35], a general under-
standing of the dynamics of strongly correlated driven
quantum states over several orders of magnitude in evo-
lution time remains challenging [17, 36–40].
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FIG. 1. Periodically driven Fermi-Hubbard model. (a) Al-
tering the effective Hamiltonian (Heff) affects the underlying
many-body state and results in a change of the measured
observable within different timescales of the system. A full
time evolution of the observable is depicted in blue, while the
time evolution under Heff is plotted in red. Deviations to the
expected behavior in the effective Hamiltonian can arise for
long modulation times when heating processes dominate. (b)
Three-dimensional hexagonal structure to realize the driven
Fermi-Hubbard model. (c) Schematics of the tight-binding
model of the effective Hamiltonian. For off-resonant driving
(~ω � U, t) the interactions U are unaffected while the tun-
neling t is renormalized. In contrast, for near-resonant driving
(~ω ≈ U � t) the system exhibits a reduced effective interac-
tion and a density assisted hopping process which is different
from the single particle hopping.

For our measurements we prepare a degenerate
fermionic cloud with N = 38(4) × 103 interacting, ul-
tracold 40K atoms equally populating two magnetic sub-
levels of the F = 9/2 hyperfine manifold at a temperature
of 10(1) % of the Fermi temperature. The atoms are then
loaded into the lowest band of a three-dimensional optical
lattice with hexagonal geometry [41]. The hexagonal lat-
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tice in the xz-plane is a bipartite lattice with sublattices
A and B and is stacked along the y-direction (see Fig. 1b
and [42]). The position of the retro-reflecting lattice mir-
ror along the x-direction is then periodically modulated
using a piezo-electric actuator at frequency ω/(2π) and
an independently calibrated amplitude A. To compare
the evolution of the many-body state under the driven
and undriven Hamiltonian we measure the fraction of
doubly occupied sites D for different times, by perform-
ing an interaction dependent rf-spectroscopy [42]. Since
D is directly influenced by the interplay of the interac-
tions and tunneling (U/t) it serves as a direct probe of the
many-body state. For example, at equal filling a Mott
insulating state (U � t) is depicted by a negligible D
while it is increased for metallic states [43, 44].

For an off-resonant modulation, where the driving fre-
quency is the dominant energy scale (~ω � U, t) our
system is described by the effective Hamiltonian [33, 45–
47]:

Ĥeff
off-res = −txJ0(K0)

∑

〈i,j〉x,σ

ĉ†iσ ĉjσ − ty,z
∑

〈i,j〉y,z,σ

ĉ†iσ ĉjσ

+ U
∑

i

n̂i↓n̂i↑ +
∑

i

Vin̂i , (1)

where ĉ†iσ (ĉiσ) are the creation (annihilation) operators
of one fermion with spin σ =↑, ↓ at lattice site i and
n̂iσ = ĉ†iσ ĉiσ. The tunneling rates tx,y,z connect nearest
neighbors 〈i,j〉 along x, y, z and U is the on-site interac-
tion energy. The last term represents the harmonic con-
finement of the trap, characterized by the mean trapping
frequency ω [42]. In the off-resonant regime the tunneling
energy along the driving direction (x) is renormalized by
the zeroth-order Bessel function J0 with the dimension-
less driving amplitude K0 = mAωdx/~ in the argument,
where m is the mass and dx the lattice spacing [48].

When we modulate near-resonantly to the interaction
energy (~ω ≈ U � t) the effective Hamiltonian is to
lowest order in 1/ω given by [25, 33, 49, 50]:

Ĥeff
res = −

∑

〈i,j〉x,σ

(
teff,0
x ĝijσ + teff,D

x

[
ĥ†ijσ + h.c.

])
ĉ†iσ ĉjσ − ty,z

∑

〈i,j〉y,z,σ

ĝijσ ĉ
†
iσ ĉjσ + (U − ~ω)

∑

i

n̂i↓n̂i↑ +
∑

i

Vin̂i . (2)

Here, the interaction is effectively modified to a
value U eff = U − ~ω. This can be understood as
exchange of photons with the drive. In addition,
we have to differentiate between tunneling events
which keep the number of double occupancies constant[
teff,0
x with ĝijσ = (1− n̂iσ)(1− n̂jσ) + n̂iσn̂jσ and ↑ =↓

]

and those which increase or decrease it by one unit
[teff,D
x with ĥ†ijσ = ±n̂iσ(1− n̂jσ), where the positive sign

is valid for i < j and vice versa]. The tunneling of a
particle to an empty neighboring site is unaffected by the
interaction resonance and we obtain teff,0

x = txJ0(K0),
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FIG. 2. Off-resonantly modulated Fermi-Hubbard model.
(a) Starting from a tx,y,z/h = (200(30), 40(3), 40(3)) Hz
hexagonal lattice we either increase the driving amplitude
to K0 = 1.69(2) or perform a lattice ramp (undriven lat-
tice) to imitate the same final tx/h = teff

x /h = 80(10) Hz.
The evolution of double occupancy fraction D on a local
timescale for the driven (red diamonds) and undriven lat-
tice (blue squares) as a function of the ramp-up time τramp

at U/h = 500(30) Hz. Evolution of D when loading directly
into the starting (final) lattice is shown in black (orange) cir-
cles. (b) For the global timescales we start with a tx,y,z/h =
(510(100), 100(6), 100(10)) Hz lattice and ramp up the drive
within 5 ms or directly decrease tx to teff

x /h = 210(40) Hz.
Measured D at U/h = 700(20) Hz as a function of the modu-
lation time τhold at constant K0 = 1.69(3) (red diamonds) and
its counterpart in the undriven case (blue squares). Arrows
indicating the reference values in the starting (final) lattice
are shown in black (orange). The inset shows the correspond-
ing number of atoms N as a function of τhold. Data points
in a (b) are the mean and standard error of 5 (10) individ-
ual measurements at different times within one driving period
(see [42]).

as in the off-resonant case. In contrast, if a double
occupancy is involved in the tunneling process we get
teff,D
x = txJ1(K0), thereby realizing density assisted tun-

neling processes [24, 27–31, 33, 51, 52]. Fig. 1c presents
a schematic overview of the microscopic processes for
the off- and near-resonant drive.

In a first set of measurements we compare the evo-
lution of the fraction of doubly occupied sites (D =
2/N

∑
i〈n̂i↓n̂i↑〉) under a change of the Hamiltonian for

off-resonant modulation and an equivalent ramp in the
undriven system. We load a honeycomb lattice with
tx,y,z/h = (200(30), 40(3), 40(3)) Hz at U/h = 500(30) Hz
and linearly ramp up the amplitude K0 = 1.69(2) at a
modulation frequency ω/(2π) = 7.25 kHz within a vari-
able ramp time τramp (see Fig. 2a). After the modula-
tion ramp is completed, the tunneling in x is reduced
to teff

x = txJ0(K0) ≈ 0.4tx. We achieve the same final
tx by linearly ramping the lattice depth of an undriven
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system. Interestingly, the measured D in the driven sys-
tem follows the results of the undriven lattice for all
timescales. Both data sets can be compared to the evolu-
tion of the initial (black) and final lattice (orange), which
is reached within 1 ms. We can explain this effect with
a local change of the population of double occupancies
and single particles due to an increased U/teff

x . A similar
behavior has been observed with nearest-neighbor spin-
correlations in a driven honeycomb lattice for a fixed
ramp time [33]. Already a single driving cycle reduces
the level of D, indicating the effective Hamiltonian pic-
ture can be valid on such short timescales [53].

To focus on the global timescales we use
a lattice with faster tunneling (tx,y,z/h =
(510(100), 100(6), 100(10)) Hz) and first ramp up
the driving within 5 ms, which we have observed is
adiabatic with respect to local timescales [42]. At
maximal amplitude of K0 = 1.69(3), U/h = 700(20) Hz,
and driving frequency of 4.25 kHz we vary the modu-
lation time τhold and compare the resulting change of
D with a ramp in the undriven lattice (see Fig. 2b).
We observe a slowly increasing D, as expected from the
density redistribution caused by an increased µ/t. Both
measurements follow each other up to τhold = 50 ms,
which corresponds to more than 200 driving cycles. As a
result, even at timescales where the trap redistribution
plays a role (ω/2π = 85.2(8) Hz), the off-resonantly
modulated Fermi-Hubbard model is captured by the
effective Hamiltonian in Eq. 1. For τhold > 0.1s we
observe a decrease of D, even in the undriven case, which
we attribute to technical heating for a trapped system
at intermediate interactions [43]. In both cases, this
heating prevents a full redistribution of density in the
trap as the adiabatic reference value is not fully reached
(orange arrow). On a similar timescale, the driven
lattice exhibits a loss of atoms (see inset of Fig. 2b)
which will be analyzed in more detail in Fig. 4.

In a second set of measurements we probe the validity
of the effective Hamiltonian for a near-resonant modula-
tion (~ω ≈ U � t). In contrast to the measurements so
far, we prepare our initial system in a Mott insulating
state (Uinit/h > 4.6(1) kHz) with negligible D and follow
two different driving protocols at fixed ω/(2π) = 3.5 kHz
(see Fig. 3a). We choose K0 = 1.43(2) such that tun-
neling is independent of the density (J0(K0) = J1(K0),
see Eq. 2) which allows us to compare the system to
an undriven parameter ramp. We either switch on K0

to its maximal value within a variable time τramp at
the final interaction Ufinal (red diamonds) or we fol-
low a more intricate protocol. For this, we first ramp
up K0 in 2 ms at Uload detuned from resonance and
then adjust Uload → Ufinal (via a Feshbach resonance)
while modulating [42]. For both modulation protocols
the effective interaction is renormalized accordingly (e.g.
U eff

final = Ufinal − ~ω).

For comparison, in an undriven lattice we need to
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FIG. 3. Near-resonantly modulated Fermi-Hubbard model.
(a) In the undriven lattice (blue squares) we change U stat in
2 ms using a Landau-Zener (LZ) transfer to a different spin
state and also lower tx. For near-resonant driving we either
increaseK0 to 1.43(2) on a fixed timescale (2 ms) at Uload/h =
4.63(10) kHz and then tune the interactions in the driven sys-
tem within a variable time τramp (green circles) or we first
prepare the system at the final interaction Ufinal and then
vary τramp of the K0 ramp (red diamonds). (b-d) Dynam-
ics of D for different τramp and three values of the final effec-
tive interaction Ueff

final/h = [0.69(8),−0.02(6),−0.72(5)] kHz or
the corresponding static counterpart U stat. Arrows indicate
the reference values when adiabatically loading the atoms in
the starting lattice tx,y,z/h = (200(30), 100(10), 100(10)) Hz
(black) or the final lattice with reduced tunneling teff

x /h =
110(20) Hz and Ueff (orange). Data points are the mean and
standard error of 5 individual measurements at different times
within one driving period [42].

ramp tx to mimic the renormalized tunneling and ad-
ditionally ramp the interactions U stat (see Fig. 3a). The
latter is achieved by using the Feshbach resonances of
two different spin mixtures, which have different values
of U stat at fixed magnetic field. Hence, we perform a
Landau-Zener transfer between two internal spin states,
thereby reducing the initial strong repulsive interactions
to weakly repulsive values within 2 ms [42]. In a final
step, we ramp the magnetic field on a variable time to
mimic U stat = U eff .

The dynamics of D as a function of τramp are shown in
Fig. 3. We choose three different detunings Ufinal − ~ω
which result in a weakly repulsive, non-interacting for
a modulation on resonance, and weakly attractive ef-
fective interaction. In all measurements D initially in-
creases since the Mott insulating regime is altered by the
reduced effective interactions, but does not reach the ref-
erence value when adiabatically loading a weakly inter-
acting cloud. Both the weakly repulsive, as well as the
non-interacting case, do not show a difference in D for
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the two modulation protocols and follow the expectation
of the undriven system.

However, for effective attractive interactions we ob-
serve a strong deviation. Here, the system is sensitive
to the ramping protocol although all schemes reach the
same final Hubbard parameters. For near-resonant driv-
ing, measurements on isolated double wells have shown
that states form avoided crossings when coupled reso-
nantly, resulting in a ramp-dependent population of Flo-
quet states [31]. By ramping up K0 away from reso-
nance and then tuning Uload → Ufinal in the driven sys-
tem (green circles), D gets closer to the undriven values
(blue squares). This driving protocol is thus suitable
to realize a many-body state with effective attractive
interactions. In contrast for the other driving scheme
(red diamonds), the level of D is equivalent for repul-
sive and attractive effective interactions. Similar to the
off-resonant case, we observe a decrease in D for long
timescales (τramp > 0.1 s), even in the undriven lattice.
Since all three schemes show a similar loss of D, heat-
ing seems to be unrelated to the drive. In addition, for
1 s modulation time we observe atom loss in the driven
system.

We have seen that deviations from the undriven system
arise when the modulation leads to additional atom loss.
In our measurements these losses have been minimized by
a smart choice of geometry, namely a hexagonal lattice
with tunable bandgaps. In general, for a non-interacting
system, atom loss can be caused by resonant coupling
to energetically higher bands in single or multiphoton
processes [54–59]. As a result, larger bandgaps and less
dispersive higher bands broaden the frequency window
suitable for a Floquet system and reduce the atom loss
[58]. By using an anisotropic lattice along the modulation
direction (tx 6= tw) we tune the bandgap and dispersion
of higher bands, while the bandwidth of the lowest band
is kept on a similar level (see Fig. 4a,b). Fig. 4c shows the
remaining number of atoms after modulating for 1 s at
various frequencies with K0 = 1.43(2). We compare the
loss for the hexagonal lattice used in the measurements of
the evolution of D with a dimerized and simple cubic lat-
tice in the weakly repulsive regime (U/h = 0.71(2) kHz).
While the atom loss in the simple cubic lattice is quite
severe, a dimerization significantly improves the situa-
tion and a minimal loss rate is reached for the hexagonal
lattice [60].

To further investigate the role of interactions in the
hexagonal lattice we measure the atom loss at differ-
ent U when modulating for 1 s (K0 = 1.43(2)) (see
Fig. 4(d)). We compare this data with measurements
where the atoms are held in a static lattice for 1 s. In
general, atom loss is increased for stronger U , both in
the static and driven hexagonal lattice. However, in-
teractions do not introduce new resonant features even
though the fraction of double occupancies D shows the
expected reduction (increase) when driving resonantly to
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FIG. 4. Minimizing atom loss in driven 3D optical lattices.
(a) Schematics of the first Brillouin zone (1st BZ) of the sim-
ple cubic (SC, blue) and hexagonal (HC, red) lattice and
their real space geometry including an intermediate dimer-
ized (D, green) lattice. All three lattice configurations have
tx/h ≈ 200 Hz but a different tw/h (SC: 200(10) Hz, D:
36(2) Hz and HC: < 1 Hz). (b) Calculated band structure
(qz = 0) for the SC (HC) lattice plotted in blue dashed
(red). The HC lattice allows to tune the bandgap and dis-
persion of higher band while the bandwidth of the lowest
band remains similar compared to the SC lattice (see inset).
(c) Remaining fraction of atoms N/Nstatic when driving for
1 s at fixed K0 = 1.43(2) for different frequencies ω/(2π) at
U/h = 710(20) Hz, where Nstatic is the remaining atom num-
ber after holding the system for 1 s in the undriven lattice.
The two vertical dashed lines indicate the driving frequencies
used in d,e. (d) Normalized atom number N/Nstatic(U = 0)
in the HC lattice after a modulation of 1 s at K0 = 1.43(2)
for two different frequencies ω/(2π) = 4.25 kHz (orange) and
ω/(2π) = 2.5 kHz (cyan) and without drive (black) as a func-
tion of U . (e) D corresponding to the measurements in (d)
but for a modulation time of 5 ms. Dashed vertical lines in
d,e correspond to the resonance condition U = ±~ω. Data
points in c (d,e) are the mean and standard error of 3 (5)
individual measurements at different times within one driv-
ing period. Error bars in U result from the uncertainty of the
interaction calibration.

the attractive (repulsive) interactions (see Fig. 4(e)).

In conclusion, we have demonstrated the validity of
the effective Hamiltonian over several orders of magni-
tude in evolution time for near- and off-resonant mod-
ulation. Furthermore, our results show that the driven
Fermi-Hubbard model can be implemented on realistic
experimental timescales, since atom loss and technical
heating dominate only after relatively long modulation
times. In future work, a direct comparison to theo-
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retical simulations can provide further understanding of
driven interacting systems and allows us to investigate
Floquet prethermal states [7, 10, 11, 14, 17, 20]. More-
over, a successful implementation and benchmarking of
driven many-body states opens the possibility to investi-
gate the t−J model [61] and correlated hopping systems
[24, 28, 33, 62]. In addition, we can extend our tech-
nique to complex density dependent tunneling to real-
ize exotic interacting topological systems and dynamical
gauge fields [25, 63–65].
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Supplemental material

General preparation

The experiment starts with a gas of 40K fermionic
atoms in the two magnetic sublevels mF = −9/2,−7/2
of the F = 9/2 manifold, which is trapped in a har-
monic optical dipole trap. The atoms are evapora-
tively cooled down to quantum degeneracy at a scatter-
ing length a = 116(1) a0 (a0 is the Bohr radius) and
we prepare a spin-balanced cloud of 38(4) × 103 atoms
at a temperature T = 0.10(1)/TF (TF is the Fermi tem-
perature). For attractive and weakly repulsive interac-
tions we use a −9/2,−7/2 mixture and for strongly re-
pulsive a −9/2,−5/2 one. The interactions are tuned
with Feshbach resonances around 202.1 G and 224.2 G
for −9/2,−7/2 and −9/2,−5/2 mixtures, respectively.
The latter is prepared with a Landau-Zener transfer that
flips the −7/2 spin component into the −5/2 one.

The three-dimensional optical lattice is made out
of four retro-reflected laser beams of wavelength λ =
1064 nm. The lattice potential seen by the atoms is

V (x, y, z) = −VX cos2(kx+ θ/2)− VX cos2(kx)

−VỸ cos2(ky)− VZ cos2(kz)

−2α
√
VXVZ cos(kx) cos(kz) cosϕ, (S1)

with k = 2π/λ and x, y, z are the three experimental
axes. The lattice depths VX,X,Ỹ ,Z are measured in units

of the recoil energy ER = h2/2mλ2 (h is the Planck
constant and m the mass of the atoms) and each of
them is individually calibrated using amplitude modula-
tion on a 87Rb Bose-Einstein condensate. The visibility
α = 0.99(1) is also calibrated using amplitude modula-
tion on a 87Rb Bose-Einstein condensate, but in an in-
terfering lattice configuration. The phases θ that fixes
the geometry of the lattice is stabilized to θ = 1.000(2)π.
The Hubbard parameters t and U are numerically calcu-
lated from the Wannier functions of the lattice potential,
which we obtain from band-projected position operators
[44]. The bandwidth W of the single band tight-binding
model is defined asW = 2

∑
i ti, where i sums all nearest-

neighbor tunneling rates ti of the lattice geometry.

Periodic driving

The periodic driving is implemented with a piezo-
electric actuator that modulates the position of the retro-
mirror for theX andX lattice beams at a frequency ω/2π
and displacement amplitude A. This shifts the phase of
the retro-reflected X and X lattice beams with respect
to the incoming ones such that the time-modulated (τ)
lattice potential is V (x, y, z, τ) = V (x− A cos(ωτ), y, z).
The amplitude A is related to the normalized amplitude

by K0 = mAωdx/~, where dx is the distance between two
sites along the x-direction (~ = h/2π). The distance dx
changes for different lattice configurations, and any devi-
ations from λ/2 are included when we estimate K0. The
exact value of dx is numerically computed as the distance
between the location of the Wannier function on the left
and right side of the corresponding lattice bond. The
values for each lattice configuration are shown in Tables
I to III. Since the hexagonal geometry is not an ideal
brick configuration the driving also slightly modifies the
bonds along the z-direction. Again, the strength is given
by K0 = mAωdvert

x /~ with dvert
x as the projected length

of the z-bonds along the driving direction which can be
rewritten as dvert

x = λ/2 − dx. The modulation ampli-
tude is therefore drastically reduced along the z bonds
and only minor renormalization to the tunneling along z
occur.

Furthermore, the phase ϕ = 0.0(1)π is stabilized by pe-
riodically modulating the phase of the incoming X and
Z lattice beams at the same frequency as the drive us-
ing acousto-optical modulators to keep the lattice geom-
etry fixed. As the compensation is not perfect, the piezo
modulation leads to a residual periodic reduction in the
amplitude of the two interfering X and Z beams by at
most 2%. As a result, the tunneling energy tx is modu-
lated at twice the driving frequency with an amplitude
of δt = 0.025tx and its mean is reduced by roughly 2.5%.
The effect of this additional amplitude modulation is neg-
ligible since the effective driving strength is proportional
to δt/(~ω). In addition, we use the amplitude of the
phase modulation without compensation to calibrate the
phase and amplitude of the mirror displacement caused
by the piezo-electric actuator.

Detection methods

The detection of double occupancies starts with freez-
ing the dynamics by ramping up the lattice depths to
VX,X,Ỹ ,Z = [30, 0, 40, 30] ER within 100 µs. Depending
on the exact driving frequency this freeze is partly aver-
aging over the micromotion until the evolution of the sys-
tem is completely stopped. To be insensitive on the mi-
cromotion in our experiments we perform individual mea-
surements at different times within one driving period by
subsequently freezing the lattice at slightly different mod-
ulation times. In the deep VX,X,Ỹ ,Z = [30, 0, 40, 30] ER
lattice we linearly ramp off the periodic driving within
10 ms. Then, we use an interaction-dependent radio-
frequency transfer that selectively flips the mF = −7/2
atoms on doubly occupied sites to the initially unpopu-
lated mF = −5/2 spin state (and vice versa, depending
on whether we start with a −9/2,−7/2 or −9/2,−5/2
mixture). After this, we perform a Stern-Gerlach type
scheme by switching off the optical lattice and dipole
trap and switching on a magnetic field gradient within
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20 ms. After 10 ms of ballistic expansion each of the
−9/2,−7/2,−5/2 spin components are spatially resolved
with an absorption image. For each spin component its
spatial density profile is fitted with a Gaussian distribu-
tion to estimate the number of atoms on each spin state
determining the fraction of double occupancies D.

Off-resonant modulation

The experimental parameters vary slightly between
the local and global timescale measurements in the
off-resonantly modulated system. In the following we
present the general preparation scheme, while the actual
values for the experimental parameters are given in Ta-
ble I. In both cases, we perform multiple steps in order
to prepare a many-body state in the hexagonal lattice.

Local timescales

We first ramp up all lattice beams within 200 ms to a
dimerized lattice configuration with a remaining tunnel-
ing link tw across the hexagonal unit cell (see column in-
termediate lattice). During an additional 10 ms we then
ramp to a hexagonal lattice configuration with negligi-
ble tunneling tw. This lattice is used as a starting point
for the measurement protocol and is referred to as the
starting lattice. The system is prepared at an on-site in-
teraction U/h = 500(30) Hz (U/W = 0.7(1)) which cor-
responds to a regime in the crossover from a metal to a
Mott insulator.

We then compare the evolution of D under a change of
Hubbard parameters resulting from the drive or an anal-
ogous ramp in the undriven case (see Fig. S1). We either
ramp up the amplitude of the drive to K0 = 1.69(2) on
a varying time τramp = [50µs, ..., 10 ms] or directly per-
form a third lattice ramp in the undriven system. The
increase of K0 leads to a renormalization of the tunnel-
ing which reaches its minimal values at the end of the
ramp. The corresponding calculated effective tunneling
rates teff

x,z are given in the final lattice column of Table
I. The same change of tunneling is achieved by chang-
ing the intensity of the interfering lattice beams VX and
VZ in the undriven case (see parameters of the undriven
system in Table I). To keep U on a similar level in the in-
termediate as well as final lattice configuration we ramp
the scattering length a to compensate the change of Wan-
nier functions as the lattice parameters are changed (see
Fig. S1). Additionally, we measure a reference value of
D in a static configuration. For this, we directly load
the starting (final) lattice (see VX,X,Ỹ ,Z of the starting

(final) lattice in the undriven case) within 10 ms via the
intermediate lattice configuration and measure D for a
variable hold time τhold.

Due to the additional harmonic confinement of the
lattice beams the mean trap frequency increases from
ωODT/(2π) = 54.7(6) Hz in the bare optical dipole trap
(ODT) to ω/(2π) = 85.0(5) Hz in the intermediate lat-
tice. The mean trap frequency is further increased to
ωODT/(2π) = 93.3(8) Hz when loading into the starting
lattice configuration as the lattice depths are increased.
This change of trapping frequency might be the reason
why the static reference values of D change as a function
of the hold time.

Global timescales

The preparation of the many-body state for the global
timescales follows a similar scheme (see Fig. S1). How-
ever, we use a lattice configuration with larger tunnel-
ing to allow for a faster dynamics (see tunneling rates
in Table I). In contrast to the preparation for the lo-
cal timescales, we remove the additional tunneling link
tw while all other tunnelings remain on a similar level
(tx,y,z/h = (500(90), 100(10), 100(10))Hz) when ramp-
ing from the intermediate to the starting lattice. Here,
the distance dx is different from the one used to study
local timescales, as the lattice potentials are different.
As a result, we have to change the amplitude A of the
piezo movement in order to reach the same dimension-
less driving strength K0. At the starting lattice we either
ramp up the driving amplitude to K0 = 1.69(3) or per-
form an equivalent lattice ramp within 5 ms. With this,
the effective tunnelings are matched in both protocols.
Subsequently, we vary the hold time τhold from 1 ms to
1 s in this final lattice configuration for many orders of
magnitude and detect D. The system is prepared at an
interaction of U/h = 710(20) Hz (U/W = 0.38(6)), which
remains on a similar level from the intermediate to final
lattice by ramping down the scattering length.

In contrast to the scheme for the local timescales, we
decrease the intensity of the ODT VODT when ramp-
ing from the intermediate to the starting lattice, to keep
ω/(2π) = 85.2(8) Hz fixed during the full evolution. We
also perform two sets of reference measurements in a
static lattice. For this, we load during 200 ms an in-
termediate lattice configuration with the same tunneling
tx,y,z as the starting or final lattice configuration but an
additional tunneling link tw/h = 38(2) Hz. Within an-
other 10 ms we remove this tunneling tw/h < 1 Hz and
load either the starting lattice configuration tx,y,z/h =
510(90), 100(6), 102(9), Hz or the final lattice configura-
tion tx,y,z/h = 200(30), 100(6), 94(7), Hz. After a hold
time of 5 ms we detect D which we plot as the two refer-
ence values in Fig. 2b. For the reference measurements,
we use the same U and ω as for the driven and undriven
comparison.
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FIG. S1. Ramp protocols of the experimental and Hubbard parameters for the off-resonantly driven Fermi-Hubbard model
used to study the local (a) or global (b) timescales. The driving amplitude K0, the lattice depth Vx(z), the scattering length
a, and the depth of the optical dipole trap (VODT) are shown on the left panel. The Hubbard parameters (tunneling along
the shaking direction tx, the on-site interaction U and the mean trap frequency ω) are shown on the right panel. A two step
protocol via the intermediate lattice allows for a controlled preparation of the many-body state in the deep hexagonal lattice
(starting lattice). We either ramp up K0 in the starting lattice of the driven system, or in contrast, we ramp the lattice depths
for the undriven lattice to match the same tight binding parameters at the final lattice configuration.

Near-resonant modulation

In the near-resonantly driven case we start with a Mott
insulator by preparing a balanced -9/2, -5/2 spin mixture
with strongly repulsive interactions. Again, we first load
an intermediate lattice configuration (see Fig. S3 and Ta-
ble II) in 200 ms with tw/h = 37(2) Hz. During a second
lattice ramp (10 ms) we load the starting lattice which
has equivalent tunneling but tw/h < 1 Hz. We also ramp
down VODT to keep ω constant.

For the driven case we use ω/(2π) = 3.5 kHz and

choose K0 = 1.43(2) such that the renormalized single
particle tunneling txJ0(K0) is equivalent to the density
assisted tunneling txJ1(K0). Depending on the effective
interaction U eff = U − ~ω we can realize a system with
effective attractive or repulsive interactions. When driv-
ing exactly on resonance we can mimic an effective non-
interacting interaction (see Table II). To calibrate the res-
onance peak we measure the response in D as a function
of the interactions U . At every value of U we ramp up the
drive to K0 = 1.43(2) within 10 ms and detect the result-
ing D (see Fig. S2). By fitting a Gaussian distribution
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LOCAL TIMESCALE

parameter intermediate lattice starting lattice final lattice

DRIVEN SYSTEM

VX,X,Ỹ ,Z (ER) 8.1(2),0.23(1),9.3(3),8.5(2) 24.1(7),2.7(1),13.4(4),11.1(3)

tx,w,y,z/h (Hz) 510(40),32(1),100(6),103(6) 200(30),0.3(03),40(3),40(3) -

teff
x,w,y,z/h (Hz) - - 80(10),0.3(03),40(3),38(3)

U/h (Hz) 1140(20) 500(30)

dx/(λ/2) 0.81(1)

UNDRIVEN SYSTEM

VX,X,Ỹ ,Z (ER) 8.1(2),0.23(1),9.3(3),8.5(2) 24.0(7),2.7(1),13.4(4),11.1(3) 24.1(7),1.40(4),13.4(4),12.3(3)

tx,w,y,z/h (Hz) 510(40),32(1),100(6),103(6) 200(30),0.3(03),40(3),40(3) 80(10),0.6(1),40(3),39(3)

U/h (Hz) 1140(20) 500(30)

GLOBAL TIMESCALE

DRIVEN SYSTEM

VX,X,Ỹ ,Z (ER) 8.0(2),0.19(1),9.3(3),8.5(2) 23.9(7),6.1(2),9.3(3),6.0(2)

tx,w,y,z/h (Hz) 470(30),38(2),100(6),106(6) 510(90),0.5(05),100(6),102(9) -

teff
x,w,y,z/h (Hz) - - 210(40),0.5(05),100(6),94(8)

U/h (Hz) 710(20)

dx/(λ/2) 0.75(2)

UNDRIVEN SYSTEM

VX,X,Ỹ ,Z (ER) 8.0(2),0.19(1),9.3(3),8.5(2) 23.9(7),6.1(2),9.3(3),6.0(2) 23.9(7),3.6(1),9.3(3),7.5(2)

tx,w,y,z/h (Hz) 470(30),38(2),100(6),106(6) 510(90),0.5(05),100(6),102(9) 200(30),0.5(1),100(6),94(7)

U/h (Hz) 700(20)

TABLE I. Parameters for the off-resonant modulation in the intermediate, starting and final lattice configuration. For both
the local and the global timescale we show the values of the lattice depth VX,X,Ỹ ,Z in the driven and undriven system. Errors
in the lattice depths account for an uncertainty of the lattice calibration and an additional statistical error due to fluctuations
of the lattice depth, which amounts to a total error on the lattice depth of 2.8%. The value and error on the tunneling rates
tx,w,y,z result from the uncertainty of the lattice depth. teff

x,w,y,z is calculated with the effective terms of the Hamiltonian given in
Eq.1. The error in the on-site interaction U additionally includes the uncertainty of the magnetic field and Feshbach resonance
calibrations. The correction factor dx which is relevant for driving amplitude K0 deviates from λ/2 for a non-cubic lattice and
is given for the two lattice configurations we use in the driven case.

to the data we find the peak at Upeak/h = 3.47(1) kHz
which is close to the expected value. This experimentally
measured value is then used when we calculate the effec-
tive interactions in the driven system (U eff = U −Upeak).

We follow two different ramp protocols which allow to
prepare different Floquet states [31]. Therefore, we define
the loading value of Uload as the interactions of the system
when we start the drive. The protocols are differentiated
by ramping the interactions from Uload to U during the
drive or keeping it at a fixed value. For one ramp protocol
we first ramp the drive amplitude K0 from 0 to 1.43(2)
within 2 ms at Uload/h = 4.65(9) kHz detuned from the
resonance. This realizes a system with effective interac-
tions of ≈ 1.15 kHz. At the end of this ramp the density
assisted tunneling and the single particle tunneling are
both renormalized to teff

x /h = 110(20) Hz. Subsequently,

we tune the interactions on a variable time τramp in the
driven system, by changing the magnetic field, at con-
stant K0 (Uload → Ufinal). To achieve a varying effective
interaction we ramp to three different values of Ufinal al-
ways using the same value of Uload (see Table II). For
example, ending the ramp at Ufinal/h = 4.18(8) kHz the
drive with frequency ω/(2π) = 3.5 kHz leads to an effec-
tive interaction of U eff

final/h = 0.69(8) kHz.

The other ramp protocol follows a different approach.
Here, starting from Uload = 4.63(10) kHz we first ramp
the interactions to the final value Ufinal to match the de-
sired effective interaction within 2 ms. Then, we ramp
up the driving amplitude to K0 = 1.43(2) within a vari-
able time τramp. While driving, the static interaction
Ufinal is constant, however we enter the regime of effec-
tive interactions and get Ufinal−~ω. To vary the effective
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FIG. S2. Response of the D when modulating near-resonantly
at K0 = 1.43(2) and ω/(2π) = 3.5 kHz. The solid line repre-
sents a Gaussian fit to the data to extract the peak position
of the resonance. The gray data points correspond to the
measured value of D in the undriven system. Data points are
the mean and standard error of 3 individual measurements
at different times within one driving period. Error bars in U
result from the uncertainty of the calibration.

interactions we start the drive at three different values of
Ufinal (see Table II).

To mimic the changes in an undriven system we have to
change both the interactions U stat as well as the tunnel-
ing tx. Here, we use the fact that for the same magnetic
field the Feshbach resonance of the −9/2,−7/2 spin mix-

ture leads to a different scattering length a as the one
of the −9/2,−5/2. Starting from a strongly repulsive
system in the −9/2,−5/2 mixture we perform a Landau-
Zener transfer of the -5/2 to the -7/2 state, thereby real-
izing weakly repulsive interactions. During this transfer
of 2 ms we simultaneously ramp the lattice parameters
to ramp down tx to the values of the final lattice (see
Fig. S3 and Table II). In a final step, we ramp U stat

on a variable time by changing the scattering length to
reach the final value of the interactions corresponding to
U stat = U eff . The final tunneling rates and interactions
are equivalent in all three protocols which allows us to
compare the evolution of D.

Furthermore, we perform two set of measurements to
obtain reference values of D in the starting and final lat-
tice configurations. While the starting lattice is in the
deep Mott insulating regime and shows negligible frac-
tion of double occupancies the final lattice configuration
is prepared at Ufinal that is weakly attractive, repulsive
or zero. For weak interactions we load the −9/2,−7/2
spin mixture in the final lattice configuration. For these
reference measurements we first load the system within
200 ms into an intermediate lattice with equivalent tun-
neling rates in tx,y,z as the desired lattice but tw 6= 0.
During a second ramp, lasting 10 ms, we then load the
final lattice by suppressing tw to a value < 1 Hz.
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FIG. S3. Ramp protocol for the near-resonantly driven Fermi-Hubbard model. The driving amplitude K0, the duration of the
radio-frequency pulse (RF) for the change of the interactions in the undriven case, the depth of the optical lattice Vx(z) along
the x(z)-direction, the scattering length a, and the depth of the optical dipole trap (VODT) are shown on the left. In the driven
case we use two different ramp protocols depending on the exact level of the interactions when the modulation is ramped up.
On the right we show the calculated parameters of the system. In the end of our protocol, the renormalized single particle
tunneling txJ0(K0), the density assisted tunneling txJ1(K0) and tunneling in the undriven case all reach the same level. A
similar protocol allows to reach the same final interaction U although the path in parameter space is different for the protocols.
We adjust VODT such that the mean trapping frequency is kept constant for all lattice configurations.

NEAR RESONANT MODULATION

parameter intermediate lattice starting lattice final lattice

DRIVEN SYSTEM

VX,X,Ỹ ,Z (ER) 10.0(3),0.10(1),9.4(3),9.0(3) 24.0(7),3.7(1),9.4(3),7.3(2)

tx,w,y,z/h (Hz) 210(20),37(2),98(6),101(6) 200(30),0.5(05),98(6),98(7) -

teff
x,w,y,z/h (Hz) - - 110(20),0.5(05),98(6),96(7)

U/h (Hz) 4630(100) [2740(50),3460(60),4180(80)] -

Ueff/h (Hz) - - [-720(50), 20(60), 690(80)]

dx/(λ/2) 0.82(1)

UNDRIVEN SYSTEM

VX,X,Ỹ ,Z (ER) 10.0(3),0.10(03),9.3(3),9.0(3) 24.0(7),3.7(1),9.3(3),7.3(2) 24.0(7),2.5(1),9.3(3),8.0(2)

tx,w,y,z/h (Hz) 200(20),38(2),99(6),101(6) 200(30),0.5(1),99(6),98(7) 110(20),0.6(1),99(6),97(6)

U/h (Hz) 4800(100) 1190(20) [-770(50),-20(30),710(20)]

TABLE II. Parameters for the near-resonant modulation in the intermediate, starting and final lattice configuration in the
driven and undriven system. Errors and numerical calculations as in Table I. The effective interactions Ueff and the effective
tunneling rates teff

x,w,y,z are calculated with the effective terms of the Hamiltonian given in Eq.2. For Ueff we first take a
resonance curve and detect the peak of the resonance to get an experimental value for the shaking response. This leads to a
small deviation from the expected value when using directly the shaking frequency but is within the uncertainty of U .
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TUNABLE BANDGAP

parameter intermediate lattice starting lattice final lattice

SIMPLE CUBIC LATTICE

VX,X,Ỹ ,Z (ER) 6.5(2),0,9.3(3),9.3(3) 6.5(2),0,9.3(3),9.3(3)

tx,w,y,z/h (Hz) 200(10),200(10),100(6),100(6) 200(10),200(10),100(6),100(6)

U/h (Hz) 710(10)

DIMERIZED LATTICE

VX,X,Ỹ ,Z (ER) 10.0(3),0.11(03),9.3(3),9.0(3) 10.0(3),0.11(03),9.3(3),9.0(3)

tx,w,y,z/h (Hz) 210(20),36(2),100(6),101(6) 210(20),36(2),100(6),101(6)

U/h (Hz) 710(20)

HEXAGONAL LATTICE

VX,X,Ỹ ,Z (ER) 9.9(3),0.10(03),9.3(3),9.0(3)) 24.2(7),3.7(1),9.3(3),7.2(2)

tx,w,y,z/h (Hz) 210(20),38(2),100(6),102(6) 180(30),0.5(05),100(6),104(7)

U/h (Hz) 710(20)

TABLE III. Parameters for the three lattice configurations used to tune the bandgap and measure the atom loss as a function
of the shaking frequency in Fig. 4. Errors and calculations as in Table I.


