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Abstract
A timber volume regression model applicable to the state and communal forest area of the federal German state of Rhineland-
Palatinate is identified using a combination of airborne laser scanning (ALS)-derived metrics and information from a satellite-
based tree species classification map available on the federal state level. As is common in many forest inventory datasets, 
strong heterogeneity in the ALS data due to different acquisition dates and misclassifications in the tree species classification 
map had noticeable effects on the regression model’s performance. This article specifically addresses techniques that improve 
the performance of ordinary least square regression models under such restricting conditions. We introduce a calibration 
technique to neutralize the effect of misclassifications in the tree species variable that originally caused a residual inflation 
of 0.05 in adjusted R2 . Incorporating the calibrated tree species information improved the model accuracy by up to 0.07 in 
adjusted R2 and suggests the use of such information in forthcoming inventories. We also found that including ALS quality 
information as categorical variables within the regression model considerably mitigates issues with time lags between the 
ALS and terrestrial data acquisition and ALS quality variations (increase of 0.09 in adjusted R2 ). The model achieved an 
adjusted R2 of 0.48 and a cross-validated root-mean-square error (RMSE

cv
 ) of 46.7% under incorporation of the tree species 

and ALS quality information and was thus improved by 0.12 in adjusted R2 (5% in RMSE
cv

 ) compared to the simple model 
only containing ALS height metrics (adjusted R2

= 0.36 , RMSE
cv
= 51.7%).

Keywords  OLS regression · Standing timber volume · ALS canopy height model · Satellite-based tree species 
classification · Calibration · Forest inventory · Angle count sampling

Introduction

Forest inventory methods are the primary tools used to 
assess the current state and development of forests over 
time. They provide reliable evidence-based information that 
is used to define and identify management actions as well 
as to adapt forest management strategies to both national 
and international guidelines. Two methods that have become 
particularly attractive are so-called double-sampling (Man-
dallaz 2008, Ch. 5) and mapping (Brosofske et al. 2014) 
procedures. The core concept of these methods is to use 
predictions of the terrestrial target variable at additional 
sample locations where the terrestrial information has not 
been gathered. These predictions are produced by models 
that use explanatory variables derived from auxiliary data, 
commonly in the form of spatially exhaustive remote sens-
ing data in the inventory area. In particular, models to pre-
dict timber volume based on airborne laser scanning (ALS) 

Communicated by Arne Nothdurft.

Electronic supplementary material  The online version of this 
article (https​://doi.org/10.1007/s1034​2-018-1118-z) contains 
supplementary material, which is available to authorized users.

 *	 Andreas Hill 
	 andreas.hill@usys.ethz.ch

	 Henning Buddenbaum 
	 buddenbaum@uni‑trier.de

	 Daniel Mandallaz 
	 daniel.mandallaz@usys.ethz.ch

1	 Department of Environmental Systems Science, ETH 
Zurich, Universitaetstrasse 22, 8092 Zurich, Switzerland

2	 Environmental Remote Sensing and Geoinformatics 
Department, Trier University, 54286 Trier, Germany

http://orcid.org/0000-0002-6367-2256
http://orcid.org/0000-0002-0956-5628
http://crossmark.crossref.org/dialog/?doi=10.1007/s10342-018-1118-z&domain=pdf
https://doi.org/10.1007/s10342-018-1118-z


490	 European Journal of Forest Research (2018) 137:489–505

1 3

have been extensively investigated for a long time (Næsset 
1997). The specific scope of double-sampling is to enlarge 
the terrestrial sample size by a much larger sample of predic-
tions of the target variable in order to gain higher estima-
tion precision without performing additional expensive ter-
restrial measurements. Model-dependent and design-based 
regression estimators are used in a broad range of double-
sampling concepts and methods (Gregoire and Valentine 
2007; Köhl et al. 2006; Mandallaz 2013a, b; Saborowski 
et al. 2010; Schreuder et al. 1993) and have been applied 
to existing inventory systems (Breidenbach and Astrup 
2012; von Lüpke and Saborowski 2014; Mandallaz et al. 
2013; Magnussen et al. 2014; Massey et al. 2014). While 
double-sampling methods provide reliable estimates for a 
given spatial unit, e.g., a forest district, they do not provide 
information about the spatial distribution of the estimated 
quantity within this area. For this reason, the same modeling 
technique used in double-sampling procedures has also been 
intensively used to produce exhaustive prediction maps that 
provide pixelwise estimations of a target variable in high 
spatial resolution (Bohlin et al. 2017; Hill et al. 2014; Latifi 
et al. 2010; Nink et al. 2015; Tonolli et al. 2011).

To allow for an area-wide application of the prediction 
model, both double-sampling and mapping methods require 
that the remote sensing data are available over the entire 
inventory area. This is usually not a limiting factor in small-
scale applications. In the optimal case, the remote sensing 
data are in principle collected in accordance with the spe-
cific study objective. Quality standards that have often been 
addressed are that (a) the remote sensing data should be 
acquired close to or even at the time of the terrestrial inven-
tory in order to ensure best possible comparability between 
the target variable on the ground and the remote sensing-
derived variables (McRoberts et al. 2015); (b) the remote 
sensing technology and its spectral and spatial resolution 
should be chosen according to the modeling purpose (Köhl 
et al. 2006); and (c) the variation in quality of the remote 
sensing data over the inventory area should be minimized 
in order to avoid artificial noise in the data (Naesset 2014). 
Despite the increasing availability and decreasing costs of 
remote sensing data (White et al. 2016), these quality stand-
ards of the remote sensing data can often not be guaran-
teed for large-scale applications (Maack et al. 2016), and 
trade-offs must be accepted (Jakubowski et al. 2013). The 
prime objective is then to produce the best possible predic-
tion model given the restrictions imposed by the available 
remote sensing information. The exploration of scarcely 
used remote sensing products and the optimization of predic-
tion models under severe quality restrictions in the remote 
sensing data are thus one of the challenges in large-scale 
model-supported inventory applications.

Among the still rarely used remote sensing data in large-
scale applications, the integration of tree species information 

in prediction models—especially for timber volume estima-
tion—has been stated as some of the most promising but 
often missing information (Koch 2010; White et al. 2016). 
As timber volume estimations on the single-tree level in 
forest inventories are often based on species-specific bio-
mass and volume equations (Husmann et al. 2017; Zianis 
et al. 2005), the application of species-specific models is 
expected to be a key factor for improving estimation preci-
sion (White et al. 2016). This has been supported by studies 
from Breidenbach et al. (2008) who achieved a substantial 
improvement in accuracy of their timber volume prediction 
model when including a variable estimating the deciduous 
proportion derived from leaf-off ALS data. Similar gains 
in model performance were also reported by Straub et al. 
(2009) and Latifi et al. (2012) who used broadleaf and conif-
erous information based on color infrared orthophotographs 
as a categorical explanatory variable. However, studies that 
explore the use of more species-specific information (i.e., a 
further discrimination of tree species) as explanatory varia-
bles have been rare. Further investigations are thus necessary 
especially in countries whose forests are characterized by a 
larger variety of tree species that may also occur in mixed 
and uneven-aged stands (McRoberts et al. 2010). The area-
wide tree species information in most studies was obtained 
from satellite and airborne remote sensing sensors based on 
automatic classification methods. Whereas the presence of 
misclassifications has already been addressed (Latifi et al. 
2012), an issue that has so far been neglected is how misclas-
sifications actually affect the prediction model (Gustafson 
2003).

A frequently encountered problem in large-scale forest 
inventories is the lack of temporal synchronicity between 
the remote sensing acquisition and the terrestrial survey. 
As a result, the available remote sensing data often exhibit 
notable time lags with respect to the date of the terrestrial 
inventory. This has often been addressed as a major draw-
back, especially for the application of design-based change 
estimation (Massey and Mandallaz 2015).

Our study is embedded in the current implementation of 
design-based regression estimators (Mandallaz 2013a, b; 
Mandallaz et al. 2013) for estimating the standing timber 
volume within the state and communal forest management 
units over the entire state of Rhineland-Palatinate (RLP, 
Germany). With respect to this overall objective, the aim 
of this study was to derive an ordinary least square (OLS) 
regression model to generate predictions of the standing tim-
ber volume associated with a sample location of the Third 
German National Forest Inventory (BWI3) over the entire 
state and communal forest area (6155 km2). A merged ALS 
dataset from different acquisition years and a satellite-based 
tree species classification map for the five main tree spe-
cies in RLP was available for the entire inventory area and 
consequently used to derive predictor variables. The major 
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limiting factors for using these data in a regression analysis 
are (a) variation in the ALS data quality as well as time 
lags of up to 10 years between the ALS acquisitions and the 
terrestrial survey, (b) misclassifications in the tree species 
classification map and (c) the ambiguous choice of a suitable 
extraction area (support) for all remote sensing information 
under angle count sampling in the terrestrial survey (variable 
sample plot sizes). For this reason, we address the following 
specific research questions:

1.	 How can tree species map information be optimally used 
within a regression model that predicts timber volume? 
What effects do misclassifications have on the predic-
tions and how can these effects be minimized?

2.	 What are the effects of quality restrictions and substan-
tial time lags between the ALS and terrestrial data acqui-
sition on the regression model and how can these effects 
be mitigated?

3.	 Does support size influence model accuracy? What is 
the optimal support size and what are the determining 
factors?

Materials and methods

Study area

The German federal state Rhineland-Palatinate (RLP) is 
located in the western part of Germany and borders Lux-
embourg, France and Belgium (Fig. 1). With 42.3% (appr. 
8400 km2) of the entire state area (19,850 km2) covered by 
forest, RLP is one of the two states with the highest forest 
coverage among all federal states of Germany (von Thünen-
Institut 2014). The forest area of RLP is divided into three 
ownership classes, i.e., state forest (27%), communal forest 
(46%) and privately owned forest (27%). The most frequent 
tree species in RLP are European beech (Fagus sylvatica, 
21.8%), oak (Quercus petrea and Quercus robur, 20.2%), 
Norway spruce (Picea abies, 19.5%), Scots pine (Pinus syl-
vestris, 9.9%), Douglas fir (Pseudozuga menziesii, 6.4%), 
European larch (Larix decidua, 2.4%) and Silver fir (Abies 
alba, 0.7%). The share of broadleaf tree species is 58.7%. 
The forests of RLP further exhibit heterogeneous structures 
(von Thünen-Institut 2014): Around 82% of the forest area 
in RLP are mixed forest stands (i.e., at least two different 
tree species occur in the same stand) and 69% of the for-
est area exhibit a multilayered vertical structure. While the 
average tree age is around 80 years, most of the forest area 
(20%) is occupied by trees between 40 and 60 years of age, 
whereas 27% of the trees are older than 100 years. Spatially 
variable climate conditions have a strong influence on the 
local growth dynamics as well as tree species composition 
and create a large variety of forest structures, ranging from 

characteristic oak coppices (Moselle Valley), pure spruce, 
beech and Scots pine forests (e.g., Hunsrück and Palatinate 
forest) to mixed forests comprising variable proportions of 
oak, larch, spruce, Scots pine and beech. Accordingly, RLP 
has been divided into 16 bioclimatic growing regions that 
form homogeneous areas with respect to the afore mentioned 
characteristics (Gauer and Aldinger 2005).

Terrestrial inventory data

The German National Forest Inventory (NFI) is carried out 
over the entire forest area of Germany in reoccurring time 
periods of 10 years. The most recent inventory (BWI3) 
has been conducted in the years 2011 and 2012. In this 
framework, Rhineland-Palatinate is covered by a 2 × 2 km 
grid that defines the sample locations for the terrestrial 
survey. A sample unit consists of four sample locations 
(also referred to as sample plots) that are arranged in 
squares (so-called clusters) with a side length of 150 m 
(Fig. 1). The number of plots per cluster can, however, 
vary between 1 and 4 depending on forest/non-forest deci-
sions on the plot level (Bundesministerium and Ernährung 
2011). In the field survey of the BWI3, sample trees for 
timber volume estimations are selected according to the 
angle count sampling technique (Bitterlich 1984), using 
a basal area factor of 4 that is, respectively, adjusted for 
boundary effects at the forest border (Bundesministerium 
and Ernährung 2011). A further selection criterion for a 
tree to be recorded is a diameter at breast height (dbh) 
of at least 7 cm. This sampling technique was applied to 

Fig. 1   Spatial distribution of the BWI3 cluster samples over Rhine-
land-Palatinate



492	 European Journal of Forest Research (2018) 137:489–505

1 3

8092 sample plots (2810 clusters) in RLP, resulting in 
the collection of 56,561 sample trees for which the dbh, 
the tree diameter at 7 m (D7) and the tree species were 
recorded for all trees. Tree height measurements were 
taken only for a subset of all sample trees and used to 
predict the height for the remaining sample. During the 
last inventory, all plot center positions were remeasured 
with differential global positioning system (DGPS) tech-
nique. Knowledge about the exact plot positions was con-
sidered crucial to provide optimal comparability between 
the terrestrial observations and the information derived 
from the auxiliary data. A detailed analysis by Lamprecht 
et al. (2017) indicated that horizontal DGPS errors do not 
exceed 8 m for 80% of all plots in RLP. For 162 plots, 
the DGPS coordinates were replaced by their former tar-
get coordinates due to missing or implausible values. In 
order to derive a volume estimation for each sample tree, 
the BWI3 estimates a taper curve for each sample tree by 
calibrating the random effects term of linear mixed-effects 
taper models with the set of diameters and corresponding 
height measurements taken from the respective sample 
tree (Kublin et al. 2013). The integration of the derived 
taper curves consequently leads to a volume prediction for 
each sample tree. Since the overall objective of the study 
was to subsequently use the identified regression model 
for design-based timber volume estimations of state and 
communal forest management units, we already restricted 
the sample plots used for modeling the state and commu-
nal forest area (73% of the entire forest area of RLP). This 
provides the advantage that when the regression model is 
used as an internal model in design-based estimators, the 
model predictions hold the assumption on the residuals 
to be zero on average over the state and communal forest 
area by construction of OLS technique (Mandallaz 2013a, 
b; Mandallaz et al. 2013). The dataset of this study hence 
comprised 5791 plots (2055 clusters). For this sample, the 
timber volume density per hectare on plot level, Y(x), was 
calculated according to the formula of one-phase one-stage 
sampling (Mandallaz 2008, Ch. 4.2). The timber volume 
density per hectare on plot level was used as the response 
variable in the regression analysis (Table 1).

Auxiliary data

ALS canopy height model

Between 2002 and 2013, the topographic survey institution 
of RLP acquired airborne laser scanning (ALS) data over the 
entire state of RLP at leaf-off condition (Fig. 2). The objec-
tive of this campaign was to derive a countrywide digital 
terrain and surface model based on the acquired ALS point 
clouds. During the extended acquisition period, airborne 
laser scanning technology and data quality evolved signifi-
cantly. The tiles recorded in 2002 and 2003 have a rather 
poor quality with about only 0.04 points per m2, while more 
recently acquired datasets contained about 5 points per m2. 
The data were delivered as two separate datasets comprising 
the vegetation first pulse (VEF) and ground (GRD) points. 
All point clouds were stored as three-column (easting, north-
ing, and height above sea level) ASCII files in tiles of 1 km2. 
In order to create a surface model (DSM) in a given ras-
ter resolution, the highest point of the combined VEF and 
GRD dataset was identified in each raster cell and saved as a 
thinned surface point cloud. For the elevation model (DEM), 

Table 1   Descriptive statistics of the forest observed on NFI sample 
plots located within communal and state forest area ( n = 5791)

Variable Mean SD Maximum

Timber volume (m3/ha) 300.86 195.55 1375.31
Mean DBH (mm) 354.90 137.22 1123.20
Mean height (dm) 239.60 72.43 497.43
Mean stem density per hectare 101.00 114.01 1010.31

Fig. 2   Separate ALS acquisitions in Rhineland-Palatinate between 
2002 and 2013. The colors also indicate the quality of the data: light: 
low point densities (0.04/m2 ), dark: high point densities (> 4∕m2) . 
Blue semitransparent layer: state and communal forest area. (Color 
figure online)



493European Journal of Forest Research (2018) 137:489–505	

1 3

the mean of all GRD points in the cell was calculated, and 
the result was saved as a thinned ground point cloud. The 
thinned point clouds were then aggregated to larger tiles and 
interpolated to raster images using a Delaunay interpolation 
in the MATLAB software (Mathworks 2017). The resulting 
DSM and DEM raster sets were then subtracted from each 
other to calculate a canopy height model (CHM) in raster 
format, providing discrete information about the canopy 
surface height of the entire forest area of RLP in a spatial 
resolution of 5 m. The thinning process led to much smaller 
datasets that could be processed in larger tiles and consid-
erably lowered processing times compared to the original 
dense point clouds. Since the data were recorded in leaf-off 
condition, the original point clouds contained many returns 
from within the crowns of deciduous trees. The thinned data-
set provided the advantage that those measurements did not 
skew the vegetation height estimate in the final CHM.

As explanatory variables, the mean canopy height (mean-
height) and the standard deviation (stddev) were calculated 
as the mean and standard deviation of all raster values within 
a predefined circle (i.e., support of the explanatory variable, 
see “Choice of support under angle count sampling” section) 
around each sample plot center. In order to correct for edge 
effects at the forest border, each support area was previ-
ously intersected with the state and communal forest area, 
which was defined by a polygon mask provided by the forest 
service (Fig. 3). Restricting the support area and thus the 
evaluation of the auxiliary data to the forest area is a means 
to optimize the coherence between explanatory variables 
computed at the forest boundary and the corresponding ter-
restrial response variable (Mandallaz et al. 2013). The tree 
height is one prominent predictor variable in the taper func-
tions of the BWI3 that are used to calculate a timber volume 
value for each sample tree (Kublin 2003; Kublin et al. 2013). 
A visual inspection of the tree volumes of all sample trees 
collected in the BWI3 within RLP against their tree heights 
also revealed the characteristic shape of an allometric rela-
tionship between these variables (Online Resource 1). It was 
hypothesized that this relationship on single-tree level is also 
apparent on the aggregated level of a sample plot and cluster 
and can be used within the frame of regression modeling.

The strength of correlation between meanheight and 
timber volume on the plot level was expected to show high 
variation according to the mentioned time lag up to 10 years 
between ALS acquisition and terrestrial survey. The quality 
of the height information was also expected to vary accord-
ing to changing sensor technologies and different point den-
sities used over the years. For these reasons, the ALS acqui-
sition year (ALSyear) for each sample plot was considered 
as a potential categorical explanatory variable to explain 
the variation in the data introduced by these factors. For this 
purpose, the acquisition year 2008 was further divided into 
2008 and 2008_1. In the latter, the data quality turned out 

to be very poor due to sensor failures during the acquisition. 
Additionally, the years 2006 and 2007 as well as 2012 and 
2013 were pooled in order to increase the number of obser-
vations per factor level for modeling reasons. As a result, the 
ALSyear variable comprised nine categories (2002, 2003, 
2007, 2008, 2008_1, 2009, 2010, 2011 and 2012).

Tree Species Classification Map

A countrywide satellite-based classification map of the five 
main tree species (European beech, sessile and peduncu-
late oak, Norway spruce, Douglas fir, Scots pine) described 
in Stoffels et al. (2015) was used to derive tree species 

Fig. 3   Identification (a) and visualization (b) of potential supports 
used for calculating the predictor variables on plot level. a ECDF of 
maximum limiting distances of all BWI3 sample locations in RLP. b 
Circular supports used to extract explanatory variables around sample 
locations. Dash dot dot line: q100, dash dot line: q80, dot dot line: 
q50, dot line: q25, solid line: individual support, triangles: sample 
trees
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information on sample plot level. The classified tree species 
map has a grid size of 5 m and predicts five of the seven tree 
species that are used in the BWI3 taper functions (Kublin 
et al. 2013) to calculate the timber volume of a sample tree. 
Due to unavailable satellite data for the classification, the 
tree species map excluded one patch with an area of 415 km2 
in the southwest part of RLP, and two further patches with 
an area of 76 and 100 km2 in the northern part (Stoffels et al. 
2015). The tree species information was consequently miss-
ing for 411 (7%) of the 5791 sample locations.

Prediction of main plot tree species

A visual inspection of all BWI3 sample trees of RLP sug-
gested that a stratification of the relation between tree height 
and timber volume according to these seven tree species may 
provide a considerable reduction in variation within the tree 
species groups (Online Resource 1). This led to the hypoth-
esis that this tree species-specific signal might also be appar-
ent on sample plot and cluster level and can consequently be 
used to increase the accuracy of the prediction model. Based 
on the tree species classification map, the main tree species 
of each sample plot was calculated as an additional categori-
cal explanatory variable (treespecies) with six categories 
following a similar approach as Latifi et al. (2012): One 
of the five tree species was assigned as the main plot tree 
species if its proportion within the edge-corrected support 
around the sample location exceeded a predefined threshold. 
If this threshold was not exceeded by exactly one of the 
five tree species, the respective sample plot was assigned 
the category “Mixed”. We hypothesized that the choice of 
the threshold-value might have an influence on the resulting 
classification accuracy and the regression model accuracy 
(“Model building and evaluation” section). We thus inves-
tigated the application of five threshold settings, i.e., 0, 50, 
60, 80 and 100%.

Calibration

Our analyses revealed that the prediction of the main tree 
species for a sample plot can be subject to misclassifications 
(“Classification accuracies” section). Errors in the explana-
tory variables of linear regression models can, however, lead 
to a bias of the regression coefficients in the direction of 
zero due to an artificial introduction of noise (Carroll et al. 
2006, Ch. 3). This can cause an inflation of the residual 
variance and a consequent decrease in the model accu-
racy (Magnussen et al. 2010). In case of classification, the 
impacts of misclassifications on the model properties are 
even harder to predict (Gustafson 2003, Ch. 3). While errors 
in the explanatory variables do not affect the unbiasedness 
of the estimators in the design-based framework, a reduction 
or elimination of the classification errors could provide an 

improvement in the regression model accuracy and thereby 
potentially lead to smaller prediction and estimation errors. 
We therefore addressed the effect of misclassifications in the 
treespecies variable categories as well as means to correct 
these errors.

We transferred the concept of regression calibration as 
known from classical measurement error statistics (Car-
roll et al. 2006) to the problem of misclassifications in the 
treespecies variable. In regression calibration, one considers 
an error-prone explanatory variable W that can be measured 
in high quantity, whereas X constitutes the same but error-
free variable whose determination is, however, very expen-
sive. In order to yield a corrected or less error-prone version 
of W, one can define a calibration model fcalmod(X,W) that 
predicts X as a function of W. After calibration on a training 
set, fcalmod can then be applied to any observed W and yields 
the corrected, less error-prone variable Wcalib . Using Wcalib 
instead of W in the regression model then asymptotically 
provides an unbiased estimate of the regression coefficients 
and thus corrects for the attenuation to zero.

We transferred this concept by using a random forest 
algorithm (Breiman 2001) as calibration model. We con-
sidered the main tree species of the sample trees at each 
plot location x as the error-free variable treespeciesterr , that 
would also yield the highest model accuracies when used as 
predictor variable. The objective of the calibration model 
was thus to provide an improved classification accuracy of 
each predicted main plot tree species category with respect 
to treespeciesterr . The calibration model was considered to 
correct for potential systematic misclassifications and thus 
minimize the effect of misclassifications on the regression 
model when substituting the uncalibrated with the cali-
brated treespecies variable. The random forest algorithm is 
a machine learning algorithm that grows a large number of 
decorrelated classification trees by considering only a subset 
of all provided predictor variables for each split. In the case 
of classification, new data are thus predicted by aggregat-
ing the predictions of all trees using a majority vote. We 
calibrated the random forest algorithm ( f

RF
 ) with a set of p 

predictor variables that comprised the initial prediction of 
the main plot tree species (treespecies), the mean canopy 
height (meanheight) and standard deviation (stddev) derived 
from the CHM, the proportion of coniferous trees estimated 
from the tree species classification map (prop.conif) and 
the bioclimatic growing region (wgb) at the sample loca-
tion (Eq. 1). Using explanatory variables of the timber vol-
ume regression model in the calibration model provided the 
advantage of reduced data storage compared to computing 
alternative variables for calibration. The calibration model 
was implemented using the random forest algorithm (Liaw 
and Wiener 2002) in the statistical software R (R Core Team 
2016). The algorithm was grown with 2000 trees, consider-
ing 

√

p ≈ 3 of the predictors for each split.



495European Journal of Forest Research (2018) 137:489–505	

1 3

The calibration model was subsequently applied to the 
entire dataset. We then investigated the effect on the regres-
sion model performance (regression coefficients, model 
accuracy) when substituting the calibrated (less error-prone) 
for the uncalibrated (most error-prone) variable, and like-
wise for the actual (error-free) main plot tree species derived 
from the sampled trees of the respective sample plot under 
identical threshold settings.

Choice of support under angle count sampling

One characteristic of angle count sampling applied in the 
BWI3 is that a sample plot does not have a fixed radius in 
which trees are selected (fixed-radius plot), but each tree 
generates an individual radius from the plot center depend-
ing on its diameter at breast height (variable-radius plot). 
This tree-individual radius is known as the limiting distance 
from the plot center where the tree would still be included 
in the sample. A consequence of the absence of a fixed plot 
radius is the question about the optimal support (Hollaus 
et al. 2007), i.e., the spatial extent around the plot center in 
which the auxiliary information is evaluated and transformed 
into an explanatory variable. It has widely been hypothe-
sized that the best relationship between the target variable 
on the ground and any explanatory variable derived from the 
auxiliary information is obtained if the support is spatially 
identical to the sample plot extent. In case of angle count 
sampling, an individual extent for each sample plot can be 
approximated by regarding the maximum limiting distance 
of its sample trees as the outer plot radius. However, many 
design-based applications under double-sampling do not 
allow for a between-plot change of the support for a specific 
explanatory variable (Mandallaz 2013a, b).

For this reason, the task is to find a unique support for 
each auxiliary information that leads to the best overall 
model accuracy. Deo et  al. (2016) conducted extensive 
analysis to identify optimal supports for modeling stand-
ing timber volume for variable-radius plot designs in coni-
fer forests. They analyzed 24 different radii (i.e., circular 
supports) in which they extracted 57 metrics from a ALS-
derived point cloud with an average point density of 18 
pulses per square meter. They successively evaluated the 
prediction performance of each support size by using the 
ALS metrics in a random forest algorithm and compar-
ing the resulting model accuracies. In order to identify the 
best-performing supports for our explanatory variables, 
we followed a similar approach. The explanatory variables 
were calculated using individual (i.e., plot-varying) sup-
ports (ind), i.e., an individual support radius was used for 

(1)
treespeciesterr(x) = f

RF
(treespecies,meanheight,

stddev, prop.conif ,wgb)

each plot according to the maximum limiting distance of 
all sample trees associated with the respective sample plot. 
We then compared the model accuracies achieved by the 
individual supports against the model accuracies from a set 
of fixed (i.e., non plot-varying) supports. The extents of the 
fixed supports were chosen from the cumulative distribution 
function (ECDF) of the maximum limiting distances of all 
5791 sample plots of the analyzed forest area (Fig. 3). We 
considered the 25th (q25, 9 m), 50th (q50, 12 m), 80th (q80, 
15 m) and the 100th (q100, 38 m) percentiles, resulting in 
support diameters of 18, 24, 30 and 76 m (Fig. 3). While 
in this study we also used circular supports to extract the 
auxiliary information, also other support shapes are possible 
(e.g., rectangles, hexagons). We also want to emphasize that 
the use of different support sizes for each explanatory vari-
able is perfectly valid in the infinite population framework 
of design-based estimators (Mandallaz 2013a, b).

Model building and evaluation

In order to judge the quality of the treespecies variable, the 
user’s accuracy for each classified species category and the 
overall accuracy of the classification scheme were calculated 
based on the confusion matrix (Congalton and Green 2008). 
As reference data, we calculated the actual main plot tree 
species by applying the respective threshold to the sample 
trees of each sample plot. The classification accuracy was 
evaluated for all support sizes for both the calibrated and 
the uncalibrated treespecies variables. The measures of the 
regression model accuracy using both CHM and treespe-
cies variables were defined as the 10-fold cross-validated 
root-mean-square error (RMSE

cv
 , Eq. 2) and the adjusted 

coefficient of determination (adjusted R2 ) of the multiple 
linear regression model defined in Eq. (3). Additionally, we 
considered the interaction terms meanheight: treespecies, 
meanheight2 : treespecies, meanheight: ALSyear, stddev: 
ALSyear and meanheight: stddev and performed a variable 
selection based on the Akaike information criterion (AIC) 
(Akaike 2011) in order to minimize the number of variables 
in the model. Due to a pronounced unbalanced design in the 
treespecies-ALSyear strata (Online Resource 2), no interac-
tion between treespecies and ALSyear was possible. We eval-
uated the model for all support combinations, considering the 
use of individual support sizes for each auxiliary information, 
using both the calibrated and the uncalibrated treespecies 
variable. The calibration model (“Tree species classification 
map” section) for the treespecies variable was recalculated 
for each respective support and threshold setting.

A total of 206 sample plots included no sample trees and 
the timber volume density Y(x) was thus set to zero. These 
zero-plots were removed from the modeling dataset since 
they acted as leverage points in cases where the ALS height 
metrics were recorded long before the terrestrial survey. 



496	 European Journal of Forest Research (2018) 137:489–505

1 3

Together with the missing tree species information (“Tree 
species classification map” secton), the modeling dataset s 
was limited to n = 5171 observations. 

Results

Classification accuracies

Effect of support size and threshold

Evaluating the uncalibrated tree species predictions revealed a 
dependency of the classification accuracies on both the applied 
threshold and the support size. Firstly, increasing the threshold 
led to a decrease in the user’s accuracies (UA) for most of the 
tree species independent of the support choice (Fig. 4). The 
reason for this is that raising the threshold to higher values 
leads to a higher probability for the reference class than for 
the predicted class to be assigned as class “Mixed”. This is 
due to the distinct difference in the spatial resolution between 
the reference and prediction data: The rather coarse spatial 
resolution of the tree species raster map causes the predicted 
class to remain classified as one of the five tree species much 
longer than the reference data, which consist of individual 
sample trees of a sample location. This effect is amplified by 
high thresholds. The probability of the predicted class to also 
be classified as “Mixed” can, however, be raised by increas-
ing the number of raster cells to be evaluated. For this reason, 
the user’s accuracies improve when using larger support sizes, 
and this effect is most pronounced under high thresholds. This 
scale-threshold dependency of the user’s accuracy particularly 
affects tree species that most commonly occur in mixed forest 
stands in Rhineland-Palatinate, i.e., Scots pine, oak and beech. 
The user’s accuracies for tree species that are mostly promi-
nent in pure forest stands (spruce, Douglas fir) logically turned 
out to be much more robust to changes in the thresholds and 

(2a)
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Fig. 4   Classification accuracy for the main tree species of a sample 
location before and after calibration: (top) overall accuracies. (Bot-
tom) user’s accuracies. ind plot-individual support sizes
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support sizes. Among the uncalibrated tree species predictions, 
beech and spruce produced the best predictions achieving UAs 
of up to 70 and 80%. Although the predictions for Douglas fir 
and Scots pine generally performed less well than beech and 
spruce, similar UAs can be produced by adjusting the thresh-
old and support choices. UAs for oak never performed better 
than 50%. A detailed table of the user’s and overall accuracies 
is provided in Online Resource 3.

Calibration

Calibration substantially diminished the effect of the scale-
threshold dependency for the five tree species and also 
increased the UAs for Scots pine and oak. Whereas the UAs 
for beech and spruce were found to be slightly lower after 

calibration, the overall accuracy under each support choice 
was always considerably increased by calibrating the tree 
species prediction (Fig. 4). With respect to the calculated 
random forest models, the initial tree species prediction 
(treespecies) and the information about the growing region 
(wgb) turned out to be the most valuable information, fol-
lowed by the estimated proportion of coniferous trees (prop.
conif) and the mean canopy height (meanheight).

Regression model accuracies

Effect of support size and threshold

Figure 5 shows the accuracies of the regression model 
(Eq. 3) achieved under all possible combinations of support 

Fig. 5   10-fold RMSEcv [%] and adjusted R2 realized under various support choices for the CHM and treespecies explanatory variables
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sizes for the auxiliary data. The stepwise selection proce-
dure always included all considered single and interaction 
terms. In terms of adjusted R2 and RMSE

cv
 , the analysis 

revealed that the choice of the CHM support size controls 
the overall level of the model’s accuracy. The information 
about the main plot tree species can then be used to further 
improve the model fit under suitable treespecies support and 
threshold settings. When using the uncalibrated treespecies 
variable, an increase in the treespecies support size causes 
an increase in the model performance if low thresholds are 
used, whereas high thresholds (80%, 100%) cause a decrease 
in the model performance. This threshold dependency could 
be removed by calibrating the treespecies variable. The high-
est adjusted R2 and the lowest RMSE

cv
 were realized using 

the q50 support for both the CHM and calibrated treespe-
cies variables in combination with a (treespecies) threshold 
of 100%, resulting in adjusted R2 of 0.48 and RMSE

cv
 of 

136.62 m2/ha (43.8%). However, various support and thresh-
old combinations for the CHM and treespecies variables can 
be used to yield almost identical RMSE

cv
 and adjusted R2 

values. A detailed table of the model accuracies is given in 
Online Resource 4.

Effect of misclassifications

We accessed the magnitude of the misclassification effect 
for all models that were analyzed in “Regression model 
accuracies” section, i.e., for all possible support and thresh-
old combinations for the CHM and treespecies predictor 
variables. We first compared the adjusted R2 of each model 
when using the uncalibrated treespecies variable against 
the adjusted R2 using the actual, i.e., error-free variable. 
We then did the same comparison for the model using the 
calibrated treespecies predictor variable. Figure 6 provides 

a visualization of this comparison. Note that only the model 
with the predicted tree species variables can be applied to 
additional sample locations where no terrestrial survey has 
been carried out.

As expected, the highest adjusted R2 for every evaluated 
model was always achieved using the error-free tree species 
variable, whereas the misclassifications in the tree species 
variable led to a systematic decrease in the model accuracy. 
The calibration of the initially predicted main plot tree spe-
cies using the random forest classification algorithm (“Tree 
species classification map” section) turned out to not only 
improve the classification accuracies (“Classification accura-
cies” section), but also to considerably decrease the effect 
of the misclassifications on the regression model predictions 
and accuracy. Figure 6 (right) shows that the adjusted R2 
under the actual and the calibrated predicted tree species 
variable are in general much closer to, and in many cases 
even on the identity line. The differentiation into two dis-
tinct point clouds results from the poor model performance 
under support size q100 for the CHM variables (i.e., the 
lower point cloud). Whereas the misclassifications in the 
uncalibrated treespecies variable led to a residual inflation 
of 0.01–0.05 in adjusted R2 , it was only between 0 and 0.01 
after calibration. Further analysis revealed that when using 
the calibrated treespecies variable, the regression coeffi-
cients were almost identical to the ones received using the 
actual main plot tree species.

Final regression model

In order to address research questions 1 and 2 (i.e., the 
gain in model accuracy by tree species information and 
effect of heterogeneity in the ALS data), we investigated 
the model properties in more detail. For this purpose, we 
decided to use the best found model that was achieved 

Fig. 6   Effect on the adjusted 
R
2 when substituting the actual 

main tree species with the 
predicted main tree species of 
a sample plot. Each point in 
the graph represents the timber 
volume regression model under 
different support and threshold 
settings. The dotted line tracks 
the model with the highest 
adjusted R2 under the use of the 
error-free tree species variable. 
Semitransparent colors for the 
data points are used to visualize 
overlap.
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under the support settings of q50 for both auxiliary data 
with a threshold of 100% for the tree species variable as 
the regression model of choice. The reason for inspecting 
this model was that (a) the model provided the highest 
adjusted R2 among all validated models while reducing the 
data handling complexity for upcoming applications (i.e., 
identical support sizes for all remote sensing data) and (b) 
the calibration neutralized the effects of misclassifications 
on the model predictions. The interaction term between 
meanheight2 and treespecies (i.e., considering separate cur-
vatures for each tree species) turned out not to have a sig-
nificant influence on the model accuracy and was dropped, 
resulting in an adjusted R2 of 0.48 and a slightly increased 
RMSE

cv
 of 140.62 m2/ha (46.7%). The final model thus 

comprised 39 parameters (regression coefficients), i.e., the 
intercept, three main effects for continuous variables, 13 
main effects for categorical variables and 22 interaction 
parameters (Table 3).

We also conducted an analysis for detecting influential 
data points or outliers for the final regression model. We 
here considered the commonly applied criteria of leverages 
and Cook’s Distance as among others described in Fahrmeir 
et al. (2013, pp. 160–167). The critical threshold of 2p/n 
(i.e., twice the average of the hat matrix’ diagonal entries) 
was exceeded by 10% of the observations. However, only 3% 
of these leverage points were assigned to studentized residu-
als with values > 1 or < −1. Removing these observations 

from the dataset and refitting the model led to an adjusted 
R2 of 0.49 compared to 0.48 when including them. Addi-
tionally, Cook’s Distance values Di did not exceed a value 
of 0.019, and were thus far apart from the commonly used 
critical threshold of Di > 0.5 that indicate a considerably 
change of the regression model results when omitting them. 
We thus decided not to remove any observations from the 
modeling dataset.

Interpretation of final regression model

Figure 7 provides a visualization of the timber volume 
predictions separated by the calibrated tree species and 
the ALS acquisition years. Sample plots classified as oak 
and Scots pine revealed to have an almost identical rela-
tionship (nearly identical slopes) for the mean canopy 
height–timber volume relationship. They only differ by 
a marginally higher intercept for Scots pine plots, mean-
ing that given the same mean canopy height a sample 
plot dominated by Scots pine yields a marginally higher 
timber volume on the plot level than a plot dominated 
by oak. Beech-dominated sample plots tend to achieve 
a higher timber volume than oak and Scots pine for can-
opy heights below 20 m, but realize the lowest timber 
volumes for canopy heights above 20 m. Sample plots 
dominated by any of the remaining coniferous tree spe-
cies (Douglas fir, spruce) revealed to have higher slopes 

Fig. 7   Visualization of the 
timber volume prediction func-
tion (final regression model) on 
the sample plot level for each 
main plot tree species and ALS 
acquisition year. For visualiza-
tion purposes, the predictor 
variable stddev was set to its 
average value within the respec-
tive treespecies and ALSyear 
categories. The terrestrially 
observed timber volume values 
are plotted in the background
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than broadleaf classified plots. This indicates that given 
the same mean canopy height, sample plots dominated by 
Douglas fir and spruce yield higher timber volume values 
than broadleaf- or Scots pine-dominated sample plots, and 
this difference becomes more pronounced with increasing 
mean canopy heights. Within the group of coniferous-
dominated sample plots, spruce turned out to have the 
highest slope, thereby yielding the highest timber volume 
values for mean canopy heights above 15 m. An undesired 
characteristic of the model is that the predicted timber 
volume can in some cases (< 1%) take negative values 
for low canopy heights (e.g., for spruce-dominated plots 
with meanheight below 5 m and stddev of 4 m). However, 
we chose not to use a log-transformation of the response 
variable. Doing so would have prevented the subsequent 
calculation of the g-weight variance of the design-based 
estimators (Mandallaz 2013a; Mandallaz et al. 2013), 
which is only possible for response variables on the origi-
nal scale. The g-weight variance provides the benefit of a 
better variance estimate for internal models by consider-
ing the dependency of the regression coefficients on the 
realized sample. The rare occurrence of negative predic-
tions were, however, not considered to have an influence 
on subsequent design-based estimates when averaging 
multiple predictions within given spatial domains.

Effect of time lags and heterogeneity in ALS data

Incorporating the ALS acquisition year as a categorical 
variable (ALSyear) in the regression model substantially 
accounted for the variability in the data introduced by 
(a) the time lags between ALS acquisition and terrestrial 
survey, and (b) variation in ALS data quality which are 
due to sensor and postprocessing techniques (Table 3). 
Whereas the adjusted R2 for the regression model without 
considering the ALS acquisition year as additional pre-
dictor variable (submodel 1) was 0.36, it could already 
been increased to 0.40 by including the tree species vari-
able (submodel 2). A further stratification by the ALS 
acquisition year increased the adjusted R2 of submodel 
1 from 0.36 to 0.45, and the adjusted R2 of submodel 3 
from 0.40 to 0.48.

We further analyzed the model residuals within each 
ALS acquisition year (within-group variation) for the 
final model and nested submodels. It turned out that the 
R2 values vary distinctly between the ALS acquisition 
year strata (Table 2). More precisely, the within-group R2 
can be higher and lower than the overall R2 of the respec-
tive model. Figure 8 shows that a stratification according 
to the ALS acquisition years (submodel 2) can already 
increase the R2 in most acquisition year strata, compared 
to the basic model using only the ALS height metrics as 

predictor variables (submodel 1). In the ALS acquisition 
year stratum 2007, the increase in R2 even reached 0.08.

Added value of tree species map information

Introducing the predicted main tree species of a sample plot 
as an additional categorical variable to submodel 2 yielded 
a further increase in the adjusted R2 of 0.03 (Table 3). How-
ever, the improvement was even more pronounced in ALS 
acquisition years close or identical to the year of the ter-
restrial inventory (Fig. 8). We observed an increase of 0.06 
in R2 for ALS acquisition year 2012, and of 0.07 for ALS 
acquisition year 2011. The analysis illustrated once more 
that misclassifications in the tree species variable generally 
reduce model accuracy compared to using error-free tree 

Table 2   R2 , RMSE and RMSE% of final regression model within 
ALS acquisition year strata (ALSyear)

AreaALSyear area covered by ALS acquisition given in km2. n number 
of validation data

ALSyear AreaALSyear R2 RMSE RMSE% n

2012 2807 0.61 135.84 44.87 408
2011 4361 0.57 146.21 48.29 883
2010 4182 0.51 120.90 39.93 1171
2009 2100 0.42 133.42 44.07 559
2008 2968 0.48 130.38 43.06 701
2008_1 2116 0.33 175.43 57.94 394
2007 3498 0.46 136.47 45.08 418
2003 602 0.27 154.48 51.02 529
2002 775 0.44 141.55 46.75 314

Fig. 8   R2-values of the final regression model, submodel 1 and sub-
model 2 achieved within the ALS acquisition year strata
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species information. The residual inflations caused by the 
misclassifications in the uncalibrated treespecies variable 
within the ALSyear strata were up to 0.05 in R2 . However, 
the calibration was able to substantially decrease or even 
remove the effects of misclassifications on the model accu-
racy in all ALS acquisition year strata.

Discussion

Stratification according to ALS acquisition years 
and tree species

Incorporating the main tree species of a sample location in 
the timber volume regression model increased the model 
accuracy and revealed strong evidence for the existence of 
a tree species-specific behavior concerning timber volume 
on the plot level. This result seems reasonable regarding the 
species-specific taper functions on single-tree level applied 
in the BWI3 (Kublin 2003; Kublin et al. 2013). These find-
ings also agree with those of Latifi et al. (2012) who found 
an almost identical improvement in RMSE of 2% when 
stratifying to broadleaf and coniferous tree species. The 
overall RMSE of their model was, however, 10% smaller 
than in our study. This might be due to a more heterogeneous 
dataset of much smaller sample size in the cited study, but 
also because the temporal alignment between the auxiliary 
data acquisition and the terrestrial survey was much bet-
ter than in our case. Additionally, the number of different 
tree species present in their dataset was lower than in our 
case and only comprised Scots pine, European beech and 
oak. The individual effects of spruce and Douglas fir indi-
cated by our model also support the findings of Breidenbach 
et al. (2008), who found a higher percentage of coniferous 
trees in a sample plot to increase the timber volume pre-
dictions. This was not true for Scots pine and oak whose 
effects turned out to be very similar for our dataset. How-
ever, in our study the stratification according to the ALS 
acquisition years severely limited the flexibility of species-
specific prediction functions and model interpretability. In 

particular, using the ALS acquisition years as categorical 
variables led to highly unbalanced datasets when stratify-
ing according to the main plot tree species. This prevented 
the use of further stratification variables such as bioclimatic 
growing regions due to confounding effects and consequent 
singularities in the design matrices. Using the ALS acquisi-
tion years as categorical variables also implied an artificial 
increase in the number of parameters in the OLS regres-
sion model, which was, however, not regarded as critical 
with respect to overfitting issues due to the high amount 
of observations used for fitting the regression coefficients 
(Draper and Smith 2014, Ch. 15.1). A stratification to the 
ALS acquisition years, however, proved to be an effective 
means in accounting for the artificially introduced noise in 
the data caused by quality variations and the large time lags 
between the remote sensing and terrestrial data. It allowed 
for a model accuracy that was very close to those reported 
by Maack et al. (2016) who conducted a very similar study 
in the German federal state of Baden-Württemberg. Model 
accuracies were also particularly higher in ALS acquisition 
year strata in which the data showed considerably less noise 
or were closer to the date of the terrestrial survey. This effect 
was significantly reduced or even removed when merging 
several ALS acquisition year strata. Promising steps with 
respect to more up-to-date canopy height information have 
already been made, as the topographic survey institution of 
RLP is currently processing a canopy height model from 
aerial imagery acquisitions for 2011 and 2012 covering the 
entire federal state. These aerial photography acquisitions 
will in the future be conducted in a 2-year period, allow-
ing to derive up-to-date canopy height information in the 
framework of future forest inventories. For a smaller study 
area, Kirchhoefer et al. (2017) have already demonstrated 
that similar model accuracies for German NFI data can be 
achieved using imagery-based canopy height models.

Incorporating the calibrated tree species information fur-
ther improved the model accuracy by 0.03 in adjusted R2 . 
Compared to the simple model only containing ALS height 
metrics, including the ALS quality and calibrated tree spe-
cies information increased the adjusted R2 by 0.12 in total. A 

Table 3   Accuracy metrics for submodels of final OLS regression model

Interaction terms are indicated by “:”

Model terms Model Parameters R2
adj

RMSEcv RMSEcv%

Meanheight + stddev + meanheight2 + treespe-
cies + ALSyear + meanheight:treespecies + meanheight:ALSyear  
+ meanheight:stddev + stddev:ALSyear

Final model 39 0.48 140.62 46.69

Meanheight + stddev + meanheight2 + meanheight:stddev Submodel 1 5 0.36 155.54 51.65
Meanheight + stddev + meanheight2 + ALSyear + meanheight:ALSyear  

+ meanheight:stddev + stddev:ALSyear
Submodel 2 29 0.45 145.62 48.35

Meanheight + stddev + meanheight2 + treespe-
cies + meanheight:treespecies + meanheight:stddev

Submodel 3 15 0.40 150.32 49.92
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differentiated evaluation of the final regression model revealed 
that the highest R2-values were achieved within ALS acquisi-
tions year strata close or identical with the year of the terres-
trial survey, showing differences of up to 0.3 between the R2 s. 
Also the gain in R2 by including the tree species information 
was largest (i.e., 0.07) in combination with ALS information 
acquired in the year of the terrestrial inventory. These insights 
were particularly interesting with respect to the further use 
of the regression model for small area estimation. Small area 
estimators generally gain modeling strength by defining the 
prediction model globally (i.e., using all data in the inventory 
area), and then applying the so-derived prediction model to 
a subset of observations located within the area of interest 
(Mandallaz 2013a). Consequently, the proposed stratification 
technique in the prediction model is expected to yield a gain 
in model accuracy and a reduction of the small area estima-
tion errors if the small area domain mostly includes data from 
strata that have high within-strata model accuracies. Findings 
of Breidenbach et al. (2008) indicated that a further increase 
in model accuracies could possibly be achieved when incorpo-
rating these categorical variables as random rather than fixed-
effects in linear mixed-effects models (Pinheiro and Bates 
2000). The reason we did not apply this family of models 
was that small area regression estimators subsequently applied 
in RLP (Mandallaz 2013a; Mandallaz et al. 2013) require the 
internal models to be fitted by OLS technique.

Calibration of tree species map information

The accuracy assessment of the initially derived main plot 
species from the classification map revealed the presence of 
misclassifications that led to a decrease in model accuracy. 
This is in agreement with the potential effects of erroneous 
explanatory variables discussed in Carroll et al. (2006) and 
Gustafson (2003), i.e., an increase in variability (noise) in the 
data that can increase the amount of unexplainable variance 
and thereby reduce the model accuracy. One reason for the 
misclassifications was that the classification algorithm of Stof-
fels et al. (2015) was exclusively trained in pure stands with 
the objective to predict the dominant tree species of a forest 
stand. Thus, our requirements on the classification map dif-
fered considerably from the ones imposed by Stoffels et al. 
(2015) and have to be considered as far more difficult to meet. 
Firstly, the reference data used in the accuracy assessment also 
included understory trees that were recorded in the BWI3 sam-
ple. Secondly, determining an exact spatial validation unit for 
a sample location (support) is not possible due to the proper-
ties of angle count sampling (“Choice of support under angle 
count sampling” section). Thirdly, distinct discrepancies in 
the spatial scale between the reference data and the classifica-
tion map severely hamper exact predictions of the main plot 
tree species, especially in mixed forest stands. The latter issue 

caused a pronounced dependency of the user’s accuracy on the 
support and threshold choice, particularly for tree species that 
most commonly occur in mixed forest structures, i.e., Scots 
pine (91%), oak (90%) and beech (85%) (von Thünen-Institut 
2014). With respect to this setup, the application of our calibra-
tion method proved to be of high value. It led to an increase in 
the classification accuracies, particularly for those tree species 
that performed worse in the uncalibrated setup, and thereby 
successfully minimized and even removed the deleterious 
effect of misclassifications on model accuracy and regression 
coefficients. Whereas the extensive analysis in our study deep-
ened the understanding of the afore mentioned scale-effects, 
an alternative method for future applications could be to use 
map-derived percentages of each tree species as predictor vari-
ables in the random forest algorithm in order to directly predict 
the terrestrially observed main plot tree species.

Choice of support under angle count sampling

The validation of different support sizes underlined that 
the support choice can impact the accuracy of a predic-
tion model and thus confirmed the findings of Deo et al. 
(2016). In the present study, differences in the model accu-
racies, however, turned out to be small for most support 
choices. An exception was the choice of the q100 support 
for the CHM-derived variables (38 m radius), where the 
model accuracy was considerably worse than under the 
optimal settings. Contrary to our hypothesis, the use of 
plot-individual supports did not yield the best prediction 
performance overall. Kirchhoefer et al. (2017) recently 
came to the same result when they transferred the angle 
count sampling technique to a pixelwise selection method 
of the auxiliary data that resembles the sample tree selec-
tion even more precisely. In their study, the application 
of fixed support sizes did also not perform worse than 
under variable supports. We consider two plausible rea-
sons for the joint findings: First, the determination of an 
exact spatial extent that can be transferred to auxiliary 
data extraction remains technically infeasible under angle 
count sampling. Thus, angle count sampling does not seem 
to be adequate when linking inventory information with 
remote sensing data. Secondly, inaccuracies in the DGPS-
measurements of the plot center locations as reported by 
Lamprecht et al. (2017) may have an increased impact on 
the model accuracy the more exact the auxiliary data deri-
vation spatially corresponds to those of the field survey. 
However, the extensive analysis carried out in our study 
also indicated that the optimal support size does not only 
depend on the spatial extent of the field plots, but also on 
the spatial resolution of the remote sensing data as well as 
the context in which the derived information is used in the 
prediction model. In the case of transforming the tree spe-
cies information map into a suitable categorical predictor 
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variable, the use of a large support size of 38 m radius 
turned out to yield the best model accuracy. However, only 
few sample locations in the study area were actually char-
acterized by limiting circles of that particular size. An 
analysis to find the best support settings therefore seems to 
be advisable prior to further applications of design-based 
or model-dependent inventory methods so as not to lose 
model accuracy by unsuitable support choices. The con-
cept of the demonstrated analysis method for identifying 
suitable supports can be transferred to any kind of auxil-
iary information, predictor variable and prediction model.

Conclusion

We draw three major conclusions from our study: (1) our 
analyses strongly indicated that the acquisition of auxiliary 
data close to the date of the terrestrial survey is a key factor 
to achieve good model accuracies. Particularly for large-scale 
inventory applications, this requirement is often difficult to 
meet. In such cases, we consider that the proposed method 
of including quality information about the auxiliary data in a 
prediction model can be an effective technique for improving 
the prediction accuracy. Ongoing studies investigate whether 
this modeling technique can also lead to smaller estimation 
errors of design-based estimators. (2) Our study also indi-
cated that the relationship between the field-measured timber 
volume and remote sensing-derived height information is tree 
species specific. We expect that using the tree species infor-
mation in a timber volume model would even lead to higher 
prediction accuracies when combined with explanatory vari-
ables that can further explain the variation within each tree 
species group, such as bioclimatic growing conditions, soil 
properties and stand density on the plot level. (3) We con-
sider the demonstrated calibration technique to be a valuable 
method for future studies where an external tree species map 
(i.e., the map was not created for the specific study objective) 
is used in prediction models. The application of a calibration 
model can also be transferred to any error-prone explanatory 
variable and be a simple means to clean the dataset from 
noise and thus increase the model accuracy.
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