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1 Introduction

In studying the quantization of field theories on a general spacetime an important tool

which captures the leading quantum properties of the theory is the heat kernel of the

Laplacian. Even if the full quantum theory is ill-defined or ill-understood (as is the case

for theories of gravity), this leading one loop behaviour is typically well defined and often

under analytic control. Knowing the heat kernel enables one to compute, for instance, the

one loop determinants that contribute to the free energy. The heat kernel also contains

the information about the propagator and other important one loop effects such as the

anomalies of the quantum theory.

In these notes we will study the heat kernel on (Euclidean) AdS3 spacetime for particles

of arbitrary spin s. In studying the leading quantum effects for pure gravity or supergravity

on AdS3 one needs to compute the heat kernel for particles with spin less than or equal

to two. More generally, for a string theory on AdS3 one would need the heat kernel for

particles of arbitrary spin s. With a view to some of these potential applications we obtain

expressions for the heat kernel of the Laplacian ∆(s) acting on tensor fields (transverse and

traceless of arbitrary spin s). We will give answers for the cases of S3 and some simple

quotients as well as for Euclidean AdS3 (i.e. H+
3 ) and its thermal quotient. In particular,

we obtain explicit expressions for the heat kernel for coincident points whose integral over

proper time gives the one loop determinant.

As an immediate application of these results we are able to evaluate the one loop con-

tribution from the physical spin 3
2 gravitino in, for example, N = 1 supergravity on thermal

AdS3. This one loop result together with the answer for the spin two graviton combines

into left- and right-moving super-Virasoro characters for the identity representation

Z1−loop =

∞∏

n=2

|1 + qn−
1
2 |2

|1 − qn|2 , (1.1)

where q = eiτ parametrizes the boundary T 2 of the thermal AdS3. This agrees with the

general argument given by Maloney and Witten [1] which was based on an extension of the

results of Brown and Henneaux [2]. Maloney and Witten in fact also argued that (in an

appropriate choice of scheme) this result was perturbatively one loop exact. The bosonic

version of this argument for pure gravity (the denominator term in (1.1)) has been checked

by the computation of Giombi et.al. [3] who have explicitly evaluated the heat kernel for

transverse vectors and spin two fields. Our results for the supergravity case complete this

check of the Maloney-Witten argument.

We now give a broad overview of our methods. As mentioned above, the heat kernel for

AdS3 and its thermal quotient have been explicitly evaluated for transverse vectors and spin

two tensors [3]. The method of evaluation employed there is however fairly cumbersome

to generalise to arbitrary spin. We will instead adopt a more geometric approach. We will

exploit the fact that S3 = SU(2) = (SU(2) × SU(2))/SU(2) and H+
3 = SL(2,C)/SU(2)

are homogeneous spaces. The fields of arbitrary spin s are therefore sections of what are

known as homogeneous vector bundles on these coset spaces. This will allow us to use

some well-known techniques of harmonic analysis to write down the eigenfunctions of the
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spin s Laplacian ∆(s) in terms of matrix elements of representations of SU(2)× SU(2) and

SL(2,C). These have, in fact, already appeared in the physics literature in a series of papers

by Camporesi and Higuchi [4–9] (see also [10–14] for some related work). We will heavily

draw upon these methods and adapt them to obtain the expressions of interest to us.

Given the eigenfunctions of the Laplace operator we can evaluate the heat kernel as

K
(s)
ab (x, y; t) = 〈y, b|et∆(s) |x, a〉 =

∑

n

ψ(s)
n,a(x)ψ

(s)
n,b(y)

∗ etλ
(s)
n (1.2)

for arbitrary pairs of points (x, y) on the space in question (S3 or H+
3 ). Here a, b are labels

for the 2s + 1 dimensional representation for spin s. The eigenfunctions ψn have been

labelled by n, which will denote a multi-index, while λ
(s)
n is the corresponding eigenvalue.

Using the group theoretic origin of the wave functions ψ
(s)
n,a(x) we can carry out partial sums

over degenerate eigenstates (those having the same eigenvalue λ
(s)
n ). This manifests itself

as a generalised version of the addition theorems that make their appearance in special

function theory.

Given the heat kernel one can compute the one loop determinant, for instance, by

considering the coincident limit of the heat kernel

ln det(−∆(s)) = Tr ln(−∆(s)) = −
∫ ∞

0

dt

t

∫ √
g d3xK(s)

aa (x, x; t) . (1.3)

To compute the heat kernel, as well as one loop determinants, on quotients of S3 or H+
3 we

can use the method of images. The basic quotients we will study are Lens space quotients

of S3 while the analogous quotient in H+
3 is the one giving Euclidean thermal AdS.1

We will describe the S3 case (and its quotient) in great detail in sections 2, 3 and 4, both

because it is compact and because many of the group theoretic features use only familiar

facts about representations of SU(2). In section 2 we briefly summarize some of the relevant

ideas from harmonic analysis which lead to the explicit forms of the eigenfunctions of the

spin s Laplacian. We go on to give a number of different expressions for these eigenfunctions

as well as their explicit form for low values of the spin. Section 3 uses these expressions

and their group theoretic origin to write down the heat kernel for separated points. Once

again a number of explicit expressions are worked out. Section 4 deals with a Lens space

like quotient of S3 and the method of images is applied to obtain the heat kernel.

The case of H+
3 is more subtle since it involves harmonic analysis on a non-compact

group. The relevant representations are infinite dimensional, and the discrete sums in (1.2)

become continuous integrals with an appropriate measure. While these are relatively well

understood in the case of interest to us, namely SL(2,C), we will practically implement

the calculation by performing a suitable analytic continuation of the answers from S3.

Analytic continuation from compact to non-compact groups is often fraught with danger,

and one needs to proceed with caution. In this case, however, it is known from works of

Helgason [15] and Camporesi-Higuchi [7, 9] that analytic continuation works. In fact, S3

and H+
3 are among the simplest examples of ‘dual spaces’ on which harmonic analysis can

1In the case of H+
3 and its thermal quotient the expression in (1.3) suffers from a trivial volume divergence

which we will ignore; we shall concentrate on the finite piece which contains all the nontrivial q dependence.

– 3 –
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be analytically continued. We will elaborate on this in section 5. In section 6, we extend

this analytic continuation to thermal quotients of S3 and H+
3 and obtain an explicit and

relatively simple expression for the (integrated and coincident) heat kernel (see eq. (6.9)).

We check that this answer correctly reproduces all the previously known cases (i.e. spins

s = 0, 1, 2).

Finally, in section 7, we use the results of section 6 to evaluate the one loop partition

function of N = 1 supergravity on AdS3. This additionally requires a careful analysis of

the physical quadratic fluctuations of the massless gravitino about the AdS3 background.

We carry this out and show that the final answer takes the expected form (1.1). Various

additional details are relegated to the four appendices.

2 Construction of harmonics on S3

We will be interested in the symmetric traceless divergence free (transverse) tensors of spin

s on S3. This is sufficient information to study fields in arbitrary representations.2 To

construct the heat kernel we need the complete set of eigenfunctions of the corresponding

Laplacian ∆(s). This can be explicitly studied using harmonic analysis on homogeneous

vector bundles which applies directly to homogeneous spaces of the form G/H (see [9] for

an accessible introduction for physicists). The harmonic wavefunctions can be expressed

in terms of matrix elements of particular representations of G. We will start by consid-

ering the case where G is compact as exemplified by S3 which can be thought of as the

homogeneous space

S3 ∼= (SU(2) × SU(2))/SU(2) , (2.1)

with the denominator acting diagonally on (SU(2) × SU(2)), i.e.

(gL, gR) 7→ (gL · h, gR · h) , h ∈ SU(2) . (2.2)

We can identify the quotient space, via the projection map π, with SU(2) = S3 itself,

π : SU(2) × SU(2) → SU(2) , (gL, gR) 7→ gL · g−1
R . (2.3)

This map is evidently independent of the representative, i.e. it is invariant under replacing

(gL, gR) by (gL · h, gR · h).
Below we will describe the corresponding tensor harmonics on S3 in terms of matrix

elements of SU(2) × SU(2).

To write explicit expressions we will also need to choose definite coordinates on S3.

The most common set of coordinates is the spherical system parametrized by (χ, θ, φ) in

which the metric of S3 reads

ds2 = dχ2 + sin2 χ (dθ2 + sin2 θ dφ2) . (2.4)

2Note that since we are working in three dimensions there are no non-trivial antisymmetric representa-

tions that need to be considered: the two form is dual to a vector and the three form to a scalar.
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The corresponding group element in SU(2) is parametrized by

g(χ, θ, φ) =

(

cosχ+ i sinχ cos θ i sinχ sin θ eiφ

i sinχ sin θ e−iφ cosχ− i sinχ cos θ

)

. (2.5)

This will be useful for comparing some of the results to known expressions in the literature.

However, for performing the thermal quotient it will be most convenient to use double

polar coordinates (ψ, η, ϕ) in terms of which the metric reads

ds2 = dψ2 + cos2 ψ dη2 + sin2 ψ dϕ2 . (2.6)

In terms of these coordinates the elements of SU(2) are given by

g(ψ, η, ϕ) =

(

e−iη cosψ ieiϕ sinψ

ie−iϕ sinψ eiη cosψ

)

. (2.7)

2.1 Tensor harmonics and representation theory

The nature of S3 as a homogeneous space allows one to choose tensor harmonics with

respect to a basis which reflects this homogeneity (see below). Though focussing on S3

(and later H+
3 ) many of the ideas are general and we will often indicate the generalization

to general homogeneous spaces. We refer to [9] for a more comprehensive discussion.

An important role will be played by sections σ(x) of the principal bundle SU(2)×SU(2)

over the base SU(2) (being parametrized by x). That is

σ : SU(2) → SU(2) × SU(2) , such that π ◦ σ = idSU(2) . (2.8)

Obviously, there is no canonical choice of a section. In particular, for any given σ, we can

define σ̂ via

σ̂ = σ · (h(x), h(x)) , (2.9)

where h(x) is any map from SU(2) → SU(2). From the definition of the quotient ac-

tion (2.2), it is clear that any two sections are related in this manner.

Any given section σ(x) actually also determines a natural choice for a basis of tensor

valued functions. Define va (a = 1 . . . 2s+1) as a basis for a spin s representation of SU(2)

at the origin (of S3 viewed as a group). Then a basis of sections of the spin s tensor bundle

can be defined via

θa(x) = σ(x)va . (2.10)

For the case of spin s = 1, va can be thought of as a vector in the tangent space of

SU(2) × SU(2) at the identity, and the action of σ(x) ∈ SU(2) × SU(2) is the usual push-

forward. The form of the resulting vielbein basis, for some of the sections that we will use, is

summarized in appendix B. The generalization to arbitrary spin s is then straightforward.

We will expand our tensor harmonics in this basis.

Ψ(x) =
∑

a

Ψa(x)θa(x) . (2.11)

– 5 –
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In other words, it is the components Ψa(x) (with respect to the basis θa(x)) which will

be the eigenfunctions of the Laplace operator ∆(s). The arbitrariness we saw above in the

choice of the section reflects a freedom in the choice of basis (see appendix A for more

details). We will see below that this freedom will be reduced in the presence of quotients.

The tensor harmonics that will be explicitly given below are always defined with respect

to some basis {θα(x)} determined by a particular choice of section.

Having identified the basis of tensors, we can now give explicit formulae for the com-

ponent tensor harmonics [9]. Here we will describe the approach for a general compact

homogeneous space. Geometrically, the tensors we are considering are sections of homoge-

neous vector bundles Eρ associated to the principal bundle G over the homogeneous space

G/H, with structure group H and transforming under some particular representation ρ of

H. The harmonic analysis of such vector bundles is an extension of the usual harmonic

analysis for scalars.

The crucial point we shall use is that there is a natural embedding of the space of

sections of these bundles into the space of functions on G. We can make this correspondence

one to one if we restrict ourselves to the functions ψa(g) on G,3 that are equivariant with

respect to H. These functions obey

ψa(gh) = ρ(h−1)ba ψb(g) (2.12)

for any g ∈ G and h ∈ H, where ρ(h) is the representation of H acting on the fibres of the

vector bundle. We can thus think of the ψa(g) as components of a vector which lie in the

vector space of a typical fibre (e.g. at the origin with respect to a basis {va} in our case)

of the associated vector bundle.

Now we can use the section σ(x) of the principal fibre bundle G to construct tensor

valued component functions on G/H (with respect to the basis θa(x) arising from the

section σ(x) as in (2.10)) via

Ψa(x) = ψa(σ(x)) . (2.13)

In our case, with g ∈ G = SU(2) × SU(2), is not difficult to see that the functions

ψ(λ;I)
a (g) = Uλ(g−1)Ia , (2.14)

are equivariant with respect to H = SU(2). Here λ denotes a representation of SU(2)L ×
SU(2)R which contains the spin s representation under the diagonal action of SU(2). The

label a takes values in the spin s representation that is contained in λ under the diagonal

action, while I labels the different states in the representation λ. Finally, Uλ denotes

the matrix elements of the unitary representation λ. We shall exhibit this formula more

explicitly below, see (2.19) and (2.20). There is also an obvious generalization of this for

arbitrary G and H.

For each such choice of λ, we can thus write down, using the above correspondence

(2.13), the components of a tensor section as

Ψ(λ;I)
a (x) = Uλ(σ(x)−1)Ia . (2.15)

3Technically, this is the statement that L2(G) decomposes into a union (over representations ρ, with

some multiplicity) of the spaces L2(G/H,Eρ). This is familiar to physicists in the study of monopole

harmonics on S2 (G = SU(2), H = U(1)) all of which arise from (equivariant) functions on S3.

– 6 –
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In fact, these components of (2.14) are actually eigenfunctions of the spin s Laplacian (with

the conventional spin connection in the covariant derivative) for each state in λ (labelled

by I) [9]. These constitute a complete set of rank s tensor harmonics, whose components

(with respect to the basis (2.10)) are described by the index a. In order to describe the

transverse and traceless tensors of spin s the representations λ must be taken to be of the

form [4, 13]

λ+ =
(n

2
+ s,

n

2

)

or λ− =
(n

2
,
n

2
+ s
)

, (2.16)

where n = 0, 1, . . .. It is clear that these representations contain the spin s representation in

their diagonal. The eigenvalue of the tensor harmonics only depends on λ (or equivalently

n), and for λ of the form (2.16) is given by [8]

−E(s)
n = 2

[

C2

(n

2
+ s
)

+ C2

(n

2

)]

− C2(s) = (s+ n)(s+ n+ 2) − s , (2.17)

where C2(j) = j(j + 1) is the usual second order Casimir for the SU(2) representation

labelled by j.

For each such λ (or n), the label I takes (n + 2s + 1) · (n + 1) different values; for

s > 0 there are then 2 · (n + 2s + 1) · (n + 1) different transverse and traceless rank s

tensor harmonics with the same eigenvalue E
(s)
n , whereas for s = 0 (scalar harmonics), the

two choices λ± coincide, and the degeneracy is (n+ 1)2, as is familiar from the description

of the hydrogen atom. In the following we shall only be considering the transverse and

traceless tensor harmonics corresponding to the representations (2.16).

To write out (2.14) more explicitly, we specify a section as

σ(x) = (gL(x), gR(x)) , where gL(x) · g−1
R (x) = x . (2.18)

The tensor harmonics for λ = λ+ = (n2 + s, n2 ) are then explicitly

Ψ(s)(n+;m1,m2)
a (x) =

∑

k1,k2

〈s, a|n
2

+ s, k1;
n

2
, k2〉D

(n
2
+s)

k1,m1
(g−1
L (x))D

(n
2
)

k2,m2
(g−1
R (x)) , (2.19)

while for λ = λ− = (n2 ,
n
2 + s) we have instead

Ψ(s)(n−;m1,m2)
a (x) =

∑

k1,k2

〈s, a|n
2
, k1;

n

2
+ s, k2〉D

(n
2
)

k1,m1
(g−1
L (x))D

(n
2
+s)

k2,m2
(g−1
R (x)) . (2.20)

In either case I = (m1,m2) labels the different states in λ and thus denotes different tensor

harmonics. Concentrating for definiteness on λ = λ+, 〈s, a|n2 + s, k1;
n
2 , k2〉 is the Clebsch-

Gordon coefficient describing the decomposition of the tensor product (n2 +s)⊗(n2 ) into spin

s, while D
(j)
m,n(g) is the (m,n)-matrix element of the SU(2) rotation g in the representation

j. The above wavefunctions are normalized so that

∑

a

∫

dµ(x)Ψ(s)(n+;m1,m2)
a (x)∗ Ψ

(s)(n+;m′

1,m
′

2)
a (x) =

2π2(2s + 1)

(n + 2s+ 1)(n + 1)
δm1,m′

1 δm2,m′

2 ,

(2.21)

where dµ(x) is the Haar measure on S3 = SU(2), normalized so that the volume of S3

is 2π2.
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2.2 Choice of section

The formula (2.19) (or (2.20)) obviously depends on the choice of a section σ(x) or, in

other words, of (gL(x), gR(x)). We will now concentrate, for reasons that will become

clearer later, on two out of infinitely many choices of sections.

The first, which we call the ‘canonical section’ is in some sense the most obvious choice:

σcan(x) = (gL(x), gR(x)) = (e, x−1) . (2.22)

With respect to the induced basis of tensor functions, the tensor harmonics labelled by

(n;m1,m2) in (2.19) are given as

Ψ
(s)(n+;m1,m2)
a(can) (x) =

∑

l1,l2

〈s, a|n
2

+ s, l1;
n

2
, l2〉D

(n
2
+s)

l1,m1
(e)D

(n
2
)

l2,m2
(x)

= 〈s, a|n
2

+ s,m1;
n

2
, a−m1〉D

(n
2
)

a−m1,m2
(x) . (2.23)

This answer is simple in some respects, being given purely in terms of single SU(2) rotation

matrix elements.

The second choice of section we will consider is a so-called ‘thermal section’ because

it respects the thermal quotient symmetry. As we shall explain in more detail below, the

thermal quotient is obtained by the group action

x 7→ AxB−1 , (2.24)

where A and B are fixed elements of SU(2). Given any such group action, there are special

sections that respect this symmetry. By this one means that the quotient acts on the

principal bundle G = SU(2) × SU(2) in a way which commutes with the right action by

H = SU(2). This is achieved by having the quotient act by a left action on G. Not

all sections of the principal bundle will be compatible with this left action in the sense

of obeying

(
gL(AxB−1), gR(AxB−1)

)
= σ

(
AxB−1

)
= (A,B) · σ(x) = (A · gL(x), B · gR(x)) . (2.25)

The thermal section will turn out to obey this relation in the case of thermal quotients.

In terms of the spherical coordinates of (2.4) and (2.5), a thermal section is given by

gL(χ, θ, φ) =

(

cos θ2 e
i(φ+χ)/2 − sin θ

2 e
i(φ−χ)/2

sin θ
2 e

−i(φ−χ)/2 cos θ2 e
−i(φ+χ)/2

)

, (2.26)

and

gR(χ, θ, φ) =

(

cos θ2 e
i(φ−χ)/2 − sin θ

2 e
i(φ+χ)/2

sin θ
2 e

−i(φ+χ)/2 cos θ2 e
−i(φ−χ)/2

)

. (2.27)

For the following it will be important that these group elements factorize as

gL(x) = U(n̂)ei
χ

2
σ3 , gR(x) = U(n̂)e−i

χ

2
σ3 , (2.28)

– 8 –
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where σ3 is the usual Pauli matrix

σ3 =

(

1 0

0 −1

)

, and U(n̂) =

(

cos θ2e
iφ

2 − sin θ
2e
iφ

2

sin θ
2e

−iφ

2 cos θ2e
−iφ

2

)

. (2.29)

Note that U(n̂) can be viewed as a (local) section for the principal U(1) (Hopf) bundle S3

over the base S2. This section is well defined except at the poles θ = 0, π.

Later on we shall also need the thermal section in the double polar coordinates (2.6),

for which it takes the form

gL(ψ, η, ϕ) =




ei(ϕ−η)/2 cos ψ2 iei(ϕ−η)/2 sin ψ

2

ie−i(ϕ−η)/2 sin ψ
2 e−i(ϕ−η)/2 cos ψ2



 , (2.30)

and

gR(ψ, η, ϕ) =




ei(ϕ+η)/2 cos ψ2 −iei(ϕ+η)/2 sin ψ

2

−ie−i(ϕ+η)/2 sin ψ
2 e−i(ϕ+η)/2 cos ψ2



 . (2.31)

Note that in these coordinates we can write

gL(ψ, η, ϕ) = ei
(ϕ−η)

2
σ3V (ψ) , gR(ψ, η, ϕ) = ei

(ϕ+η)
2

σ3V (ψ)−1 , (2.32)

where

V (ψ) =

(

cos ψ2 i sin ψ
2

i sin ψ
2 cos ψ2

)

. (2.33)

It is straightforward to check that with both sets of coordinates we have indeed

gL(x)g−1
R (x) = x, where x is of the form (2.5) and (2.7), respectively. The expres-

sion for the components of the tensor harmonics are then given by (2.19) with gL(x), gR(x)

as above. There is no immediate simplification (see however section 2.3.2 below), and the

expressions are more complicated than (2.23).

2.3 Explicit formulae

In order to illustrate the general construction from above we shall now exhibit some explicit

solutions. This will also allow us to connect our formulae to existing results in the literature.

The reader who is not interested in this detailed comparison may proceed directly to

section 3.

2.3.1 The scalar case

The scalar case (s = 0) is the simplest since the answer will be independent of the choice

of section, as we shall verify momentarily. In fact, using the general formula (2.19) for

s = a = 0 we get (recall that λ+ = λ− in this case)

Ψ(n;m1,m2)(x) =
∑

m

〈0, 0|n
2
,−m;

n

2
,m〉D(n

2
)

−m,m1

(
gL(x)−1

)
D

(n
2
)

m,m2(gR(x)−1) , (2.34)
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where gL(x) and gR(x) are any section, i.e. satisfy gL(x) · gR(x)−1 = x. Using

〈0, 0|n
2
,−m;

n

2
,m〉 =

(−1)
n
2
−m

√
n+ 1

, (2.35)

as well as the fact that D
(j)
−m,m1

(g−1
L ) = (−1)m1+mD

(j)
−m1,m(gL) we can do the sum over m

in (2.34) explicitly, and we obtain

Ψ(n;m1,m2)(x) =
(−1)

n
2
+m1

√
n+ 1

D
(n
2
)

−m1,m2
(x) . (2.36)

This is evidently independent of the chosen section. All these functions have eigenvalue

λn = −n(n+ 2). Since m1,m2 each range over (n+ 1) values, we have a total degeneracy

of (n + 1)2. The answer (2.36) is also familiar from the Peter-Weyl theorem as forming a

complete, orthonormal basis for functions on S3.

2.3.2 Factorization

In the spherical coordinates of (2.4) the sphere S3 is parametrized in terms of the angles

(θ, φ) defining an S2, times a radial coordinate χ. Typical results for tensor harmonics

available in the literature (e.g. [8, 9]) are usually given in a factorized form in terms of

these coordinates. However, our group theoretic basis of eigenfunctions (2.19), (2.20) with

the thermal section (2.26), (2.27) does not exhibit such a factorization. To compare with

the results in the literature we will consider particular linear combinations of the group

theoretic eigenfunctions which exhibit this factorization.

For example, for the scalar harmonics, we define

Φn lm(x) =
n+ 1√

2π2

∑

m1,m2

〈n
2
,m1;

n

2
,m2|l,m〉Ψ(n;m1,m2)(x) , (2.37)

where l = 0, 1 . . . n, and m runs over the (2l+1) values m = −l . . . l, thus accounting again

for the (n+ 1)2 fold degeneracy of the scalar harmonics with eigenvalue

∆(0)Φn lm = −n(n+ 2)Φn lm . (2.38)

A straightforward computation then exhibits the factorized form

Φn lm(χ, θ, φ) = Cn l
1

(sinχ)1/2
P

−l−1/2
n+1/2 (cos χ)Y lm(θ, φ) , (2.39)

were Cn l =
√

(n+ 1) (n+l+1)!
(n−l)! and P

−l−1/2
n+1/2 is the associated Legendre function of the first

kind, which can be expressed either in terms of hypergeometric functions or Jacobi Poly-

nomials (see [16])

P
−l−1/2
n+1/2 (cosχ) =

1

Γ(l + 3/2)

(
sinχ/2

cosχ/2

)l+1/2

F (−n− 1/2, n + 3/2, l + 3/2; sin2 χ/2)

= 2−l−
1
2

(n− l)!

Γ(n+ 3
2)

sinl+
1
2 χP

(l+ 1
2
,l+ 1

2
)

n−l (cosχ) . (2.40)
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Y lm(θ, φ) are the normalized (scalar) spherical harmonics on S2.

For the general case of spin s, we define, using the thermal section,

Φ
+(s)
a,n lm(χ, θ, φ) =

∑

m1,m2

〈n
2

+ s,m1;
n

2
,m2|l,m〉Ψ(s)(n+;m1,m2)

a(therm) (x)

Φ
−(s)
a,n lm(χ, θ, φ) =

∑

m1,m2

〈n
2
,m1;

n

2
+ s,m2|l,m〉Ψ(s)(n−;m1,m2)

a(therm) (x) ,

where l runs over the values

l = s, s+ 1, . . . , s+ n , (2.41)

while m takes the (2l+1) values m = −l,−l+1, . . . , l−1, l; altogether we thus have again

2 ·
s+n∑

l=s

(2l + 1) = 2(n+ 1)(2s + n+ 1) (2.42)

different solutions. To see that these solutions are again in factorized form we insert the

definition of Ψ
(s)(n±;m1,m2)
a(therm) (x) from (2.19) and (2.20) into (2.41), and use (2.28) as well

as (A.1). A straightforward computation then shows that

Φ
±(s)
a,n lm(χ, θ, φ) = Q

±(s)
a,n l (χ)D(l)

a,m(U †(n̂)) , (2.43)

where

Q
+(s)
a,n l (χ) =

∑

k

〈s, a|n
2

+ s, k;
n

2
, a− k〉 e−iχ(2k−a)〈n

2
+ s, k;

n

2
, a− k|l, a〉

Q
−(s)
a,n l (χ) =

∑

k

〈s, a|n
2
, k;

n

2
+ s, a− k〉 e−iχ(2k−a)〈n

2
, k;

n

2
+ s, a− k|l, a〉 .

(2.44)

Since U(n̂) is only a function of (θ, φ), (2.43) thus gives a formula for the harmonics in

factorized form. In fact, the D
(l)
a,m(U †(n̂)) are equivariant functions on S2 under the U(1)

action of the principal U(1) bundle over S2. Thus they correspond to different tensor

harmonics on S2. They are the same as the usual spin-weighted spherical harmonics of

Newman and Penrose, and essentially the same as the familiar monopole harmonics [17].

For the spinor case, s = 1
2 , we have checked that the resulting harmonics agree precisely

with the explicit formulae given in [9]. Actually, these functions are also eigenfunctions of

the Dirac operator /∇ with eigenvalues ±i(n + 3
2 ), and thus the eigenvalue with respect to

/∇2 is −(n+ 3
2)2. This differs from E

(1/2)
n in (2.17) by a constant (independent of n) whose

origin lies in the non-trivial curvature of S3.

We have also worked out (2.41) for the vector harmonics s = 1, and compared them to

the explicit formulae of [8]. In identifying these solutions with each other one has to take

into account, as mentioned in section 2.1, that the components of the harmonics in the

thermal section are defined with respect to the standard vielbein on S3, see eq. (B.9). On

the other hand, the vector harmonics of [8] are given with respect to a coordinate basis. It

follows from (B.9) that the dictionary between the two bases is

Ψ±1 =
1√

2 sinχ

[ 1

sin θ
Ψφ ∓ iΨθ

]

, Ψ0 = Ψχ , (2.45)
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where we have suppressed the [±, (n, l,m)] labels that are common on both sides. Once

this is taken into account, the above group theory solutions Φ
±(1)
a,n lm agree precisely with

(linear combinations) of the harmonics given in [8].

3 Heat kernel on S3

With this detailed understanding of the spin s harmonics we can now calculate the spin s

heat kernel as per (1.2)

K
(s)
ab (x, y; t) =

∑

(n±;m1,m2)

a(s)
n Ψ(s)(n±;m1,m2)

a (x)
(

Ψ
(s)(n±;m1,m2)
b (y)

)∗

eE
(s)
n t , (3.1)

where x and y are two points of S3, and the sum runs over all spin s harmonics labelled

by (n±;m1,m2) as above. Furthermore, E
(s)
n is defined in (2.17), while the normalisation

constant a
(s)
n equals

a(s)
n =

1

2π2

(n+ 2s+ 1) (n + 1)

(2s+ 1)
. (3.2)

This normalizes the heat kernel so that, using (2.21), we get

∑

a

∫

dµ(x)K(s)
aa (x, x; t) =

∞∑

n=0

d(s)
n eE

(s)
n t , (3.3)

where

d(s)
n = (2 − δs,0) (n + 1) (n + 2s+ 1) (3.4)

is the total multiplicity of transverse spinor harmonics of eigenvalue E
(s)
n . (The prefactor

(2 − δs,0) takes into account that for s > 0 there are two sets of harmonics for each n,

while for s = 0 there is only one.) Note that (3.3) is the ‘trace’ over the heat kernel that

is important for the calculation of the one-loop determinant.

Inserting our general formula for the harmonics, see eq. (2.19), the heat kernel becomes

K
(s)
ab (x, y; t) =

∑

l1,l2;m1,m2

∑

p1,p2;q1,q2

a(s)
n 〈s, a|l1, p1; l2, p2〉 〈l1, q1; l2, q2|s, b〉 eE

(s)
n t

×D(l1)
p1,m1

(gL(x)−1)
(

D(l1)
q1,m1

(gL(y)−1)
)∗

×D(l2)
p2,m2

(gR(x)−1)
(

D(l2)
q2,m2

(gR(y)−1)
)∗

, (3.5)

where (l1, l2) runs over all pairs of representations of the form (n2 + s, n2 ) or (n2 ,
n
2 + s), and

E
(s)
n , expressed in terms of (l1, l2), equals

E(s)
n = −(s+ n)(s+ n+ 2) + s = −2

[

l1(l1 + 1) + l2(l2 + 1)
]

+ s(s+ 1) . (3.6)

Since the representations are unitary we have

(

D(l1)
q1,m1

(gL(y)−1)
)∗

= D(l1)
m1,q1(gL(y)) ,

(

D(l2)
q2,m2

(gR(y)−1)
)∗

= D(l2)
m2,q2(gR(y)) . (3.7)
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Thus we can perform the sum over m1 and m2 and obtain

K
(s)
ab (x, y; t) =

∑

l1,l2

∑

p1,p2;q1,q2

a(s)
n 〈s, a|l1, p1; l2, p2〉 〈l1, q1; l2, q2|s, b〉 eE

(s)
n t

×D(l1)
p1,q1

(

gL(x)−1gL(y)
)

D(l2)
p2,q2

(

gR(x)−1gR(y)
)

. (3.8)

Written in terms of the more abstract description of the tensor harmonics, eq. (2.15), this

formula takes the form

K
(s)
ab (x, y; t) =

∑

λ

a(s)
n Uλ(σ(x)−1σ(y))ab e

E
(s)
n t , (3.9)

where λ runs over all the representations of the form (2.16), and a
(s)
n and E

(s)
n are as defined

in (3.2) and (2.17), respectively. Furthermore, the matrix elements are taken in the spin

s subrepresentation with respect to the diagonal SU(2). Finally, we can also use (A.1) to

rewrite (3.8) as

K
(s)
ab (x, y; t) =

∑

a′,b′

D
(s)
aa′(gL(x)−1)D

(s)
b′b (gL(y)) (3.10)

×
∑

l1,l2

∑

p1,p2;q2

a(s)
n 〈s, a′|l1, p1; l2, p2〉 〈l1, p1; l2, q2|s, b′〉 eE

(s)
n tD(l2)

p2,q2(x y
−1) ,

where we have used that gL(y)gR(y)−1 = y and similarly for x.

The un-integrated heat kernel (3.8) and (3.10) obviously depends in general on the

choice of section, as is clear, for instance, from the first line of (3.10). Indeed this de-

pendence just reflects the way the components of the harmonics themselves depend on the

choice of section, see (A.2). For the case of the scalar, this ambiguity is not present and one

can write the final answer explicitly, which we do in the next subsection. For higher spin,

the expression cannot be simplified further unless one makes a specific choice of section (as

also coordinates). We exhibit the answer for the thermal section in section 3.2.

3.1 The scalar case

In the scalar case, s = 0, the representation labels a and b are trivial, and so is the first

line of (3.10). The scalar heat kernel is then of the form

K(0)(x, y; t) =
1

2π2

∞∑

n=0

∑

m

(n+ 1)2|〈n
2
,m;

n

2
,−m|0, 0〉|2 e−n(n+2)tD

(n
2
)

m,m(y x−1)

=
1

2π2

∞∑

n=0

(n+ 1)e−n(n+2)t Tr n
2
(y x−1) , (3.11)

where we have used (2.35). Since

Tr n
2
(y x−1) =

sin(n+ 1)ρ

sin ρ
, (3.12)

where ρ is the geodesic distance between x and y, we can rewrite the scalar heat kernel as

K(0)(ρ; t) =
1

2π2

∞∑

n=0

(n+ 1)
sin(n+ 1)ρ

sin ρ
e−n(n+2)t . (3.13)

This reproduces the answer given, for example, in [5].
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3.2 Higher spin

As mentioned above, for larger s, (3.10) does not simplify further, unless we make some

specific choices. In the following we shall use the spherical coordinates (2.4), and consider

the thermal section (2.26) and (2.27).

Since S3 is a homogeneous space, we may, without loss of generality, assume the point

y to be at the ‘origin’, i.e. to be represented by the identity matrix

gL(y) = gR(y) = e . (3.14)

The thermal section for the other point x is then described by (2.28). Then we can

write (3.8) as

K
(s)
ab (x, e; t) =

∑

l1,l2

∑

p1,p2;q1,q2

a(s)
n 〈s, a|l1, p1; l2, p2〉 〈l1, q1; l2, q2|s, b〉 eE

(s)
n t

×D(l1)
p1,q1

(

e−i
χ

2
σ3U †(n̂)

)

D(l2)
p2,q2

(

ei
χ

2
σ3U †(n̂)

)

=
∑

l1,l2

∑

p1,p2;q1,q2

a(s)
n 〈s, a|l1, p1; l2, p2〉 〈l1, q1; l2, q2|s, b〉 eE

(s)
n t

× ei(p2−p1)χD(l1)
p1,q1(U

†(n̂))D(l2)
p2,q2(U

†(n̂))

=
∑

b′

D
(s)
b′b (U

†(n̂))
∑

l1,l2

a(s)
n eE

(s)
n t

×
∑

p1,p2

〈s, a|l1, p1; l2, p2〉 〈l1, p1; l2, p2|s, b′〉 ei(p2−p1)χ

≡ D
(s)
ab (U †(n̂))K(s)

a (χ, 0; t) . (3.15)

In the penultimate line we have employed the identity (A.1), and in the last line we have

used that the Clebsch Gordan coefficents vanish unless b′ = a. Finally, we have defined

K(s)
a (χ, 0; t) =

∑

l1,l2

∑

p1,p2

a(s)
n |〈l1, p1; l2, p2|s, a〉|2 eE

(s)
n t eiχ(p2−p1) . (3.16)

We should mention in passing that this form of the heat kernel in spherical coordinates

can also be deduced from the alternative factorized form of the eigenfunctions Φ
±(s)
a,nlm that

we obtained in (2.43).

The radial part of the heat kernel K
(s)
a (χ, 0; t) can be evaluated using the explicit form

of the Clebsch-Gordan coefficents appearing in (3.16); this is carried out in appendix C.

The final answer is

K(s)
a (χ, 0; t) =

1

2π2

1

(2s+ 1)

∞∑

n=0

(n + 1)!(2s + 1)!

(n + 2s)!
K(s)
a;n(χ) eE

(s)
n t , (3.17)

where K
(s)
a;n(χ) is given in terms of Gegenbauer polynomials in (C.7). It follows from the

explicit formula for K
(s)
a;n(χ) that

K(s)
a;n(χ = 0) = (2 − δs,0)

(n+ 2s+ 1)!

n!(2s+ 1)!
, (3.18)
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and thus for χ = 0 the complete heat kernel simplifies to

K
(s)
ab ((χ = 0, θ, φ), e; t) = D

(s)
ab (U †(n̂))

1

2π2

1

(2s + 1)

∞∑

n=0

d(s)
n eE

(s)
n t , (3.19)

where U(n̂) was defined in terms of (θ, φ) in (2.29), and the mutliplicity d
(s)
n was introducted

in (3.4).

3.2.1 The spinor case

As a cross check we can compare with some of the existing results in the literature. We

have already evaluated the scalar case. The next simplest case is then the spinor case

(s = 1
2). This has been obtained explicitly in, for instance [9]. The only small difference

is that they evaluate the heat kernel for the operator /∇2 rather than the spinor Laplacian.

The eigenvalues of the former are −(n + 3
2)2 while that of the latter are −(n + 3

2 )2 + 3
2 .

Taking this shift into account, the result given there (see e.g. eq. (3.4) of the published

version of [9] or eq. (4.12) of the arXiv version) is

K
( 1
2
)

ab ((χ, 0, 0), e; t) = δab

[

1

2π2

∞∑

n=0

(n + 1)(n + 2)φn(χ) e−t(n+ 3
2
)2+ 3

2
t

]

, (3.20)

where φn(χ) is given in terms of Jacobi polynomials as

φn(χ) =
n! Γ(3

2 )

Γ(n+ 3
2)

cos
χ

2
P

( 1
2
, 3
2
)

n (cosχ) . (3.21)

Using the recursion

P
( 1
2
, 3
2
)

n (cosχ) = P
( 1
2
, 1
2
)

n (cosχ) − sin2 χ

2
P

( 3
2
, 3
2
)

n+ (cosχ) , (3.22)

and the relation of the Jacobi polynomials P
(m,m)
n to the Gegenbauer polynomials we find

φn(χ) =
2

(n+ 1)(n + 2)
cos

χ

2

[

C2
n(cosχ) − C2

n−1(cos χ)
]

. (3.23)

Putting this back in (3.20), we find that it agrees precisely with the general expression

in (3.17) for the special case of (s = 1
2).

3.2.2 The vector case

As a last example we write the answer for the vector case (s = 1) in full detail. We again

consider the heat kernel for the points between the north pole e, and the point (χ, θ, φ) on

S3. The heat kernel is obtained from (3.15) and (3.17)

K
(1)
ab ((χ, θ, φ), e; t) = D

(1)
ab (U †(n̂))

1

π2

∞∑

n=0

1

(n+ 2)
K(1)
a;n(χ) e−t((n+1)(n+3)−1) , (3.24)

and (C.7) implies that the explicit expressions for K
(1)
a;n(χ) are

K
(1)
1;n(χ) = K

(1)
−1;n(χ) = 2

[
cosχC3

n(cos χ) − 2Cn−1(cosχ) + cosχC3
n−2(cosχ)

]
, (3.25)
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and

K
(1)
0;n(χ) = 2C2

n(cosχ) . (3.26)

It is also useful to rewrite this expressions in terms of trignometric functions. Using (C.9)

and the recursion relations satisfied by the Gegenbauer polynomials we find that

K
(1)
0;n(χ) =

1

2 sin3 χ

(

(n+ 3) sin(n+ 1)χ− (n+ 1) sin(n + 3)χ
)

, (3.27)

K
(1)
1;n(χ) = K

(1)
−1;n(χ) = − 1

8 sin3 χ

[

(2 + n)(3 + n) sinnχ− 2(2 + 4n+ n2) sin(n+ 2)χ

+(n+ 2)(n + 1) sin(n+ 4)χ
]

.

The above form of the radial heat kernel is suitable for analytical continuation to AdS3

(see section 5.3.3).

4 Heat kernel on thermal S3

In perparation for the calculation on thermal H+
3 we now want to study the heat kernel

on the thermal quotient of S3, i.e. on the manifold S3/Γ, where Γ describes a specific

group of identifications. These identifications are most easily described in the double polar

coordinates (2.6), where the action of the generator γ of Γ, is given by

γ : η 7→ η + β , ϕ 7→ ϕ+ ϑ . (4.1)

In order for this group action to be globally well-defined, we should take Γ to be of finite

order, Γ ∼= ZN , i.e. γN = 1. This corresponds to a Lens space quotient of S3. The generator

γ acts on the group element g in (2.7) as

g 7→ g̃ =

(

ei
τ
2 0

0 e−i
τ
2

)

g

(

e−i
τ̄
2 0

0 ei
τ̄
2

)

= Ag Ā−1 , (4.2)

where

τ ≡ τ1 − τ2 = ϑ− β; τ̄ ≡ τ1 + τ2 = ϑ+ β (4.3)

and

A =

(

ei
τ
2 0

0 e−i
τ
2

)

, Ā =

(

ei
τ̄
2 0

0 e−i
τ̄
2

)

. (4.4)

The section that is compatible with this group action must satisfy (compare (2.25))

σ(γ(x)) = (A, Ā) · σ(x) . (4.5)

As explained above (2.25), such a choice of section is necessary for the compatibility of the

thermal quotient with the coset space identification on the principal bundle G. Another

way to understand this requirement is as follows. The group action (4.2) induces a natural

map (via push forward) relating the tangent basis at g to that at g̃. On the other hand, the

choice of section specifies a vielbein (see (2.10)) for all g ∈ G. The condition (2.25) implies

that the vielbein at g̃ agrees precisely with the push-forward via (4.2) of the vielbein at g.

Obviously, (4.5) is not satisfied by every section; in particular, it is not true for the

‘canonical’ section (2.22). On the other hand, one easily checks that it is satisfied by the

thermal section (2.30) and (2.31).
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4.1 Method of images

The heat kernel on the quotient space can be calculated from that on S3 by the method

of images. We can fix one of the points (say x) and sum over the images of the second one

(y). This is to say, we have
∑

m∈ZN

K
(s)
ab (x, γm(y); t) , (4.6)

where N is the order of γ. We will be interested in obtaining the determinant of ∆(s) on

S3/Γ, which means that we need to find the integrated traced heat kernel for coincident

points on the orbifolded space, i.e.

∑

m∈ZN

∑

a

∫

S3/Γ
dµ(x)K(s)

aa (x, γm(x); t) . (4.7)

Here we have traced over the group theory indices a, b with a simple Kronecker delta since

we are working in a tangent space basis (such as the usual vielbein basis for the s = 1 case).

If we were working in a coordinate basis, then the expression would be more complicated,

involving a Jacobian factor such as ∂γ(x)µ

∂xν [3].

Since we are considering the identification (4.1), we need to understand the heat kernel

evaluated at two points x and y = γm(x) that have the same value for the ψ-component

(and only differ in their η- and ϕ-component). In this case it follows from (2.32) that

gL(x)−1gL(y) = V (ψ)−1 U1 V (ψ) , gR(x)−1gR(y) = V (ψ)U2 V (ψ)−1 , (4.8)

where V (ψ) is defined in (2.33) with ψ = ψ(x) = ψ(y), and U1 and U2 are of the form

U1 = exp

(

i
(∆ϕ− ∆η)

2
σ3

)

= eim
τ
2
σ3 , U2 = exp

(

i
(∆ϕ+ ∆η)

2
σ3

)

= eim
τ̄
2
σ3 (4.9)

with ∆ϕ = ϕ(y) − ϕ(x) = mϑ and ∆η = η(y) − η(x) = mβ, and additionally using the

definition (4.3). With these conventions (3.8) for the particular case of y = γm(x) becomes

K
(s)
ab (x, y = γm(x); t) =

∑

l1,l2

∑

p1,p2;q1,q2

a(s)
n 〈s, a|l1, p1; l2, p2〉 〈l1, q1; l2, q2|s, b〉 eE

(s)
n t

×D(l1)
p1,q1

(

V (ψ)−1U1V (ψ))
)

D(l2)
p2,q2

(

V (ψ)U2V (ψ)−1
)

.

We can write the trace over a = b more abstractly as
∑

a

K(s)
aa (x, γm(x); t)

=
∑

l1,l2

a(s)
n eE

(s)
n t Tr s

[(

V (ψ)−1U1V (ψ)
)(l1)

⊗
(

V (ψ)U2V (ψ)−1
)(l2)

]

, (4.10)

where the trace is only taken over the spin s subrepresentation in the tensor product

(l1 ⊗ l2). Conjugation with the operator V (ψ)⊗V (ψ) does not modify the trace (since the

subpresentation s is invariant under the action of g⊗g), and thus (4.10) can be rewritten as

∑

a

K(s)
aa (x, y; t) =

∑

l1,l2

a(s)
n eE

(s)
n t Tr s

[

U
(l1)
1 ⊗

(
V (ψ)2U2V (ψ)−2

)(l2)
]

. (4.11)

– 17 –



J
H
E
P
0
4
(
2
0
1
0
)
1
2
5

Let us denote a general diagonal group element by

D(α) =

(

eiα 0

0 e−iα

)

. (4.12)

Since both U1 and U2 are diagonal, it follows that

D(α)U1D(α)−1 = U1 , D(β)U2D(β)−1 = U2 . (4.13)

Taking α = −(ϕ − η)/2 and β = −(ϕ + η)/2, and using the same argument as in going

to (4.11), we then obtain

∑

a

K(s)
aa (x, y; t) =

∑

l1,l2

a(s)
n eE

(s)
n t Tr s

[

U
(l1)
1 ⊗

(
g U2 g

−1
)(l2)

]

, (4.14)

where

g = D
(

(ϕ− η)/2
)

V (ψ)2D
(

−(ϕ+ η)/2
)

=

(

e−iη cosψ ieiϕ sinψ

ie−iϕ sinψ eiη cosψ

)

= g(ψ, η, ϕ) ,

(4.15)

and g(ψ, η, ϕ) is defined in (2.7). Next we perform the integral over S3/Γ in (4.7). This

amounts to integrating (4.14) over ψ in the fundamental domain of S3/Γ. Equivalently, we

may integrate ψ over the full range ψ ∈ [0, π2 ], and divide by the appropriate volume factor.

In addition, since (4.14) is actually independent of η and ϕ — this is obvious from (4.11)

— we may also integrate η, ϕ ∈ [0, 2π]. But then the second group element in (4.14) equals

∫

S3

dg
(
g U2 g

−1
)(l2)

=
2π2

dim(l2)
Tr (l2)(U2)1l2 , (4.16)

where we have used Schur’s lemma, observing that the operator on the left hand side

commutes with all group elements. Thus the integrated heat kernel becomes

∫

S3/Γ
dµ(x)

∑

a

K(s)
aa (x, γm(x); t)

= πτ2
∑

l1,l2

a
(s)
n

dim(l2)
Tr (l2)(U2)e

E
(s)
n t Tr s

[

U
(l1)
1 ⊗ 1(l2)

]

, (4.17)

where the prefactor πτ2 = 2π2 τ2
2π comes from the relative volume of S3/Γ to S3. The final

trace can now be easily done (for example using similar arguments as above), and it equals

Tr s

[

U
(l1)
1 ⊗ 1(l2)

]

= Tr (l1)(U1)
2s+ 1

dim(l1)
. (4.18)

Plugging this back into (4.17) we therefore obtain

∫

S3/Γ
dµ(x)

∑

a

K(s)
aa (x, γm(x); t) =

πτ2
2π2

∑

l1,l2

Tr (l1)(U1) Tr (l2)(U2) e
E

(s)
n t , (4.19)
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where we have used the formula for a
(s)
n from (3.2). Finally, doing the sum over m leads to

∑

m∈ZN

∑

a

∫

S3/Γ
dµ(x)K(s)

aa (x, γm(x); t)

=
τ2
2π

∑

m∈ZN

∞∑

n=0

[

χ(n
2
)(mτ)χ(n

2
+s)(mτ̄ ) + χ(n

2
+s)(mτ)χ(n

2
)(mτ̄)

]

eE
(s)
n t

≡ K(s)(τ, τ̄ , t) , (4.20)

where we have assumed that s > 0; otherwise the second term in the middle line of (4.20)

is absent. We have also used the notation

χ(l)(τ) = Tr(l)(e
i τ
2
σ3) =

sin (2l+1)τ
2

sin τ
2

(4.21)

for the SU(2) character in the representation l.

5 Heat kernel on AdS3

Having derived the heat kernel for an arbitrary tensor Laplacian on S3 as well as on

its ‘thermal’ quotient, we will now extend the analysis to the case of H+
3 ; the thermal

quotient of H+
3 will be discussed in the next section. As mentioned in the introduction,

this is simplest done by performing a suitable analytic continuation to H+
3 (and its thermal

quotient). Since this is, in general, a tricky procedure we will motivate and describe in

some detail how it is to be carried out. As will become clear, for the particular case

of H+
3 , the central ingredients in our calculation (such as the eigenfunctions, eigenvalues

and their measure) have been independently computed and checked to obey the analytic

continuation from their S3 counterparts, see in particular the series of papers by Camporesi

and Higuchi [7–9]. These explicit results can be taken as the ultimate justification for our

use of the analytic continuation procedure.

5.1 Preliminaries

Euclidean AdS3 is the hyperbolic space H+
3 which can be thought of as the homoge-

neous space

H+
3

∼= SL(2,C)/SU(2) , (5.1)

where the quotienting is done by the usual right action. We can view SL(2,C) as an

analytic continuation of SU(2) × SU(2) in a way which will be made explicit below.

As in the case of S3 we will need to choose coordinates for explicit expressions. Cor-

responding to the spherical coordinates on S3 (2.4) we have now

ds2 = dy2 + sinh y2 (dθ2 + sin2 θ dφ2) , (5.2)

which is obtained by the continuation χ→ −iy and ds2 → −ds2, of (2.4).
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The coset space representative of SL(2,C)/SU(2) (for a given (y, θ, φ)) can be taken

to be the continuation of (2.5)

g̃(y, θ, φ) =

(

cosh y + sinh y cos θ sinh y sin θ eiφ

sinh y sin θ e−iφ cosh y − sinh y cos θ

)

. (5.3)

For the thermal quotient it will be convenient to work in the double polar coordinate

analogue of (2.6), i.e. to use the metric

ds2 = dρ2 + cosh2 ρ (dt)2 + sinh2 ρ (dϕ)2 . (5.4)

This is related to (2.6) by the continuation ψ → −iρ, η → it and ds2 → −ds2. Therefore

corresponding to (2.7) we now have the coset space element

g̃(ρ, t, ϕ) =

(

et cosh ρ eiϕ sinh ρ

e−iϕ sinh ρ e−t cosh ρ

)

. (5.5)

To carry through the construction of eigenfunctions as described in section 2, we will

first need an appropriate choice of section. As is familiar from the analysis of the Lorentz

group in four dimensions, the representations of SL(2,C) are most easily described in terms

of SU(2) × SU(2). The Lie algebra of the former is a complexified version of the latter.

More precisely, if we write the Lie algebra of SO(4) as so(4) ≃ su(2)⊕su(2) with generators

a(1) and a(2), respectively, then the diagonal SU(2) by which we quotient SO(4) to obtain

S3 is generated by h = a(1) + a(2). Defining k = a(1) − a(2), the complexification k → −ik
describes then the continuation from S3 to H+

3 . This is equivalent to the continuation

χ→ −iy described above.

Thus it will still be useful to describe the coset representative of SL(2,C)/SU(2) in

terms of pairs of group elements (g̃L, g̃R) that live in the appropriately complexified version

of SU(2) × SU(2). The relevant expressions for the complexification are obtained from

those on S3 precisely by the analytic continuation of the coordinates described above. In

particular, the analogue of the thermal section is now described by (g̃L(x), g̃R(x)), where

in spherical coordinates we have (compare with (2.26) and (2.27))

g̃L(y, θ, φ) =

(

cos θ2 e
i(φ−iy)/2 − sin θ

2 e
i(φ+iy)/2

sin θ
2 e

−i(φ+iy)/2 cos θ2 e
−i(φ−iy)/2

)

= U(n̂)e
y

2
σ3 (5.6)

and

g̃R(y, θ, φ) =

(

cos θ2 e
i(φ+iy)/2 − sin θ

2 e
i(φ−iy)/2

sin θ
2 e

−i(φ−iy)/2 cos θ2 e
−i(φ+iy)/2

)

= U(n̂)e−
y

2
σ3 . (5.7)

In the double polar coordinates which we use for the quotienting, we have similarly (com-

pare with (2.30) and (2.31))

g̃L(ρ, t, ϕ) =






et/2eiϕ/2 cosh
ρ

2
et/2eiϕ/2 sinh

ρ

2

e−t/2e−iϕ/2 sinh
ρ

2
e−t/2e−iϕ/2 cosh

ρ

2




 (5.8)
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and

g̃R(ρ, t, ϕ) =






e−t/2eiϕ/2 cosh
ρ

2
−e−t/2eiϕ/2 sinh

ρ

2

−et/2e−iϕ/2 sinh
ρ

2
et/2e−iϕ/2 cosh

ρ

2




 . (5.9)

One can check that with both sets of coordinates we have indeed g̃L(x) · g̃−1
R (x) = g̃(x),

where g̃(x) is given in (5.3) and (5.5), respectively.

5.2 Harmonic analysis on H+
3

As was described in section2.1, to obtain the eigenfunctions of the Laplacian ∆(s) on G/H,

we need facts from the harmonic analysis on G. For a general noncompact semi-simple

G this is an intricate subject (see e.g. [18]). However, the results for G = SL(2,C) are

relatively well known to physicists since SL(2,C) is the Lorentz group in four dimensions.

Some useful general references on the subject, particularly for the infinite dimensional

representations which we will need below, are [19, 20].

The component eigenfunctions of the tensor harmonics are given in terms of matrix

elements of appropriate unitary representations of SL(2,C). One of the major differences

between the compact and the noncompact cases is that the (nontrivial) unitary repre-

sentations of the latter are necessarily infinite dimensional. Recall that the usual finite

dimensional (and hence non-unitary) representations of SL(2,C) are labelled by (j1, j2),

where j1 and j2 are the half-integer spin representations of the two SU(2)s. In fact, the

most general representation (or the ‘complete series’) of SL(2,C), including the unitary

representations, can also be labelled by (j1, j2), where j1, j2 are now complex but subject

to some constraints such as (ji − j2) being a half integer.

The unitary representations come in two series: the so-called ‘principal series’ and

the ‘complementary series’. However, only the principal series will play a role in what

follows. This is because they are the only representations that arise in the decomposition

of functions on SL(2,C) and therefore (see the discussion around (2.12)) for sections of

bundles on SL(2,C)/SU(2).4 These correspond to j1 and j2 taking the values

2j1 = s− 1 + iλ , 2j2 = −s− 1 + iλ , (5.10)

where λ ∈ R
+ and s is half-integer, see for example [18, section II.4]. When restricted to

the diagonal SU(2) subgroup, these representations decompose into an infinite number of

SU(2) representations of spin s, s + 1, s + 2, . . . [19, 20]. Thus these representations play

the role of the representations (n2 + s, n2 ) in the S3 case and will describe the transverse,

traceless spin s tensors on H+
3 . Comparison to (5.10) suggests that the appropriate analytic

continuation for n is [8]

n 7→ −s− 1 + iλ . (5.11)

Thus eigenfunctions of ∆(s) are given (in the thermal section) by the matrix elements

of the SL(2,C) element (g̃L(x), g̃R(x)) in these representations labelled by a continuous

4In general, additional (normalizable) representations - the ‘discrete series’ - could also appear when

considering even dimensional hyperbolic spaces.
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parameter λ ∈ R
+ (for fixed s). Their eigenvalues are, up to a sign, given by the same

analytic continuation (5.11) applied to (2.17),

E
(s)
λ = −(λ2 + s+ 1) . (5.12)

The sign is a consequence of the fact that the metric has changed sign under the ana-

lytic continuation, ds2 → −ds2. Thus the analytic continuation of (2.17) gives minus the

eigenvalue of the Laplacian on H+
3 .

5.3 The heat kernel on H+
3

In computing the heat kernel the sum over n in (1.2) is now to be replaced by an integral

over λ. The measure for the integration is determined from the so-called Plancherel mea-

sure which describes the decomposition of the space of functions on G into its irreducible

representations. We will continue to refer to the measure thus obtained for the decompo-

sition of the sections on G/H with spin s (in the case of G = SL(2,C) and H = SU(2)) as

the Plancherel measure and denote it by dµ(s)(λ).

This Plancherel measure for H+
3 (or more generally, the hyperbolic spaces HN ) has

been computed by Camporesi and Higuchi (see for example [7, 8]). The explicit expression

is given by

dµ(s)(λ) =
1

2π2
(2 − δs,0)

(λ2 + s2)

(2s+ 1)
dλ , (5.13)

which is, up to a sign and the prefactor (2 − δs,0), precisely the analytic continuation of

the S3 normalisation constant a
(s)
n = 1

2π2
(n+2s+1)(n+1)

(2s+1) (see (3.2)) by our analytic continua-

tion (5.11). (The origin of this sign is again the change of sign in the analytic continuation

of the metric ds2 → −ds2. The origin of the prefactor (2− δs,0) is also the same as before,

namely that there are two choices λ± for s > 0 (see (2.16)), which fall together for s = 0.)

The H+
3 heat kernel for spin s fields then takes the form

K
(s)
ab (x, y; t) =

∫ ∞

0
dµ(s)(λ)φ

(s)
λ,ab(x, y) e

−t(λ2+s+1) , (5.14)

where φ
(s)
λ,ab(x, y) = Uλ,sab (σ(x)−1σ(y)) are the matrix elements of the representation (λ, s)

projected onto the spin s representation of the diagonal SU(2) (cf. (3.9)). In particular, the

index a still labels the components of the spin s field and takes values from −s to s. The

functions Uλ,sab (g) are sometimes known as generalised spherical functions (for spin s) and

have many important properties. For example, they are determined completely by knowing

the values on a maximal torus.5 In spherical polar coordinates this is the statement that

we know the complete answer to the heat kernel once we know the value for one of the

points at the origin and the other at some (χ, 0, 0) for S3 (cf. (3.15)) and (y, 0, 0) for H+
3 .

The spherical functions also satisfy simple radial Laplacian equations, which ensures that

we can also have a simple analytic continuation for them. We refer the reader to section 5.3

of [9] for more properties of these spherical functions.

5We can decompose a general SL(2, C) element g as g = h1t h2, where h1, h2 ∈ SU(2) and t lies in the

maximal torus.
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For our purposes it is sufficient to make the following observations. In the thermal sec-

tion, using the spherical coordinates (5.2), we can use a similar reasoning as in section 3.2.

We can choose one point to be at the origin and factor out the S2 angular dependence as

in (3.15). Then the other point can be taken to be (y, 0, 0) and we obtain

K(s)
a (y, 0; t) =

∫ ∞

0
dµ(s)(λ)φ

(s)
λ,a(y) e

−t(λ2+s+1) , (5.15)

where φ
(s)
λ,a(y) is the analytic continuation of K

(s)
a;n(χ) in (3.17) under χ→ −iy. These func-

tions are expressed in terms of Gegenbauer polynomials in (C.7). In order to perform the

analytic continuation explicitly, we can use the definition of the Gegenbauer polynomials

in terms of hypergeometric functions

Cαn (cosχ) =
Γ(2α+ n)

Γ(n+ 1)Γ(2α)
F

(

2α+ n,−n, α+
1

2
; sin2 χ

2

)

. (5.16)

The right hand side can be defined for complex values of the arguments and in particular

under the continuation n→ −s−1+ iλ. Note that the index α takes the values s+a+1 in

(C.7) and therefore continues to be an integer. Also the sum there continues to be a finite

one with an upper limit given by 2a. It is not easy to perform the integral over λ for general

spin and give an explicit form of the heat kernel on AdS3. However, we can do this integral

for a few simple cases and check that the above prescription gives the correct result.

5.3.1 The scalar case

The heat kernel for the case s = 0 can be easily evaluated. In this case, we can in fact write

the answer slightly more generally, namely directly in terms of the geodesic separation r

between the two points. Instead of (3.15) we can start with the expression (3.13). Since

the metric ds2 → −ds2 in the analytic continuation we continue ρ → −ir. Together with

the continuation n→ −1 + iλ, we find that (3.13) becomes

K(0)(r; t) =
1

2π2

∫ ∞

0
dλλ e−t(λ

2+1) sinλr

sinh r
, (5.17)

where we have absorbed a sign into the λ measure, see (5.13). After integrating over λ

we obtain

K(0)(r; t) =
e−t

(4πt)3/2
r e−

r2

4t

sinh r
. (5.18)

The explicit form of the geodesic distance on H+
3 between the points (y, θ, φ) and (y′, θ′, φ′)

is given by

cosh r = cosh y′ cosh y − sinh y′ sinh y cos θ′ cos θ − sinh y′ sinh y sin θ sin θ′ cos(φ′ − φ) .

(5.19)

The expression (5.18) agrees with the heat kernel determined in [3] for the case m2 = 0 —

the general case is easily obtained from this since the mass only contributes an additive

term to the exponent in (5.18).
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5.3.2 The spinor case

For (s = 1
2) we can again take the answer for the sphere, in this case worked out in (3.20),

and perform the above analytic continuation. Instead of writing it in terms of Gegenbauer

polynomials we can directly use, for the analytic continuation, the hypergeometric form of

the Jacobi polynomial appearing in (3.21)

P (α,β)
n (cosχ) =

Γ(n+ α+ 1)

Γ(n+ 1)Γ(α+ 1)
F
(

n+ α+ β + 1,−n, α+ 1; sin2 χ

2

)

. (5.20)

After the continuation n→ −3
2 + iλ, (3.20) then becomes

K
( 1
2
)

ab = δab

[
1

2π2

∫ ∞

0
dλ

(

λ2 +
1

4

)

φλ(y) e
−t(λ2+ 3

2
)

]

, (5.21)

with φλ(y) = cosh y
2F (3

2 + iλ, 3
2 − iλ, 3

2 ,− sinh2 y
2 ). Here we have again absorbed an overall

minus sign into the measure, see (5.13). This agrees with eq. (5.14) of [6] (apart from the

same shift in the exponent, see the discussion before (3.20)).

5.3.3 The vector case

For s = 1 we can analytically continue the answer for the 3-sphere given in (3.24) and

(3.27) using

n→ −2 + iλ , χ→ −iy . (5.22)

For the case where we evaluate the heat kernel between the north pole and the point

(y, 0, 0) = (χ, 0, 0), the geodesic distance r agrees with y. Using the above prescription we

then obtain after some straightforward manipulations

K
(1)
00 (r, 0; t) = −

√
π

t

e−2t

2π2

(
1

sinh2 r
e−

r2

4t − cosh r

sinh3 r

∫ r

0
dxe−

x2

4t

)

, (5.23)

K
(1)
11 (r, 0; t) = K

(1)
−1−1(r, 0; t),

=
e−2t

4π2 sin3 r

√
π

t

(
r

2t
e−

r2

4t sinh2 r + e−
r2

4t sinh r cosh r −
∫ r

0
dxe−

x2

4t

)

.

To check that this result satisfies the heat equation for vectors we recall that the heat

equation for a U(1) gauge field is given by (see for instance [3] which we follow by also

adding the constant two to the Laplacian)

− (∆(1) + 2)Kµν′(x, x
′; t) = − ∂

∂t
Kµν′(x, x

′; t) , (5.24)

where x = (y, θ, φ) and x′ = (y′, θ′, φ′) are two points on H+
3 . We are interested in the heat

kernel satisfying the Lorentz-gauge condition

∇µKµν′(x, x
′; t) = 0 , ∇ν′Kµν′(x, x

′; t) = 0 . (5.25)

Thus the initial condition at t = 0 is

Kµν′(x, x
′; 0) = gµν′(x) δ

3(x, x′) + ∇µ∇ν′
1

∆(0)
δ3(x, x′) . (5.26)
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Since H+
3 is a maximally symmetric space, we can write the heat kernel, following [3], as

Kµν′(x, x
′; t) = F (t, u)∂µ∂ν′u+ ∂µ∂ν′S(t, u) , (5.27)

where 1 + u = cosh r, and r is the geodesic distance between the points x and x′ given

by (5.19). The heat equation (5.24) then reduces to

(∆(1) + 1)F (t, u) = ∂tF (t, u) , (5.28)

∆(1)S(t, u) − 2

∫ ∞

u
F (t, v)dv = ∂tS(t, u) ,

while the Lorentz gauge condition (5.25) becomes

∂F

∂u
(1 + u) + F + ∂t∂uS = 0 , (5.29)

and the initial conditions on F and S are

F (0, u) = −δ3(x, x′) S(0, u) =
1

∆(0)
δ3(x, x′) = − 1

4π
coth r . (5.30)

The correct solution is then

F (r, t) = − e−
r2

4t

(4πt)3/2
r

sinh r
, (5.31)

S(r, t) = − 2

(4π)3/2
√
t

cosh r

sinh r

∫ r

0
e−

x2

4t .

Note that this solution differs form that found in [3], for which the Lorentz gauge condition

was not implemented and which therefore satisfied the boundary condtion Kµν′(x, x
′; 0) =

gµν′(x)δ
3(x, x′), which is different from (5.26). In fact, [3] had to subtract out a scalar

degree of freedom from the trace of their heat kernel to obtain the physical one loop

determinant for vectors. This is unnecessary for the solution given in (5.31) since the

Lorentz gauge condition guarantees that only the physical degrees of freedom contribute.

In order to compare (5.27) to (5.23) we need to convert the coordinate basis implicit

in (5.27) to the tangent space indices of (5.23). For the case where x is the north pole and

x′ = (r, 0, 0) the relations turn out to be

K
(1)
00 (r, 0; t) = −F (r, t) cosh r − ∂2

∂r2
S(r, t) , (5.32)

K
(1)
11 (r, 0; t) = K

(1)
−1−1(r, 0; t) = −F (r, t) − 1

sinh r

∂

∂r
S(r, t) ,

where we have used (2.45). Substituting (5.31) we then reproduce indeed (5.23) up to an

overall factor of e−2t. The origin of this factor is that in (5.24), following [3], we have

analyzed the heat equation for (∆(1) + 2), rather than for the Laplacian ∆(1) itself.

– 25 –



J
H
E
P
0
4
(
2
0
1
0
)
1
2
5

5.4 The coincident heat kernel

It is difficult to do the integrals over λ for the heat kernel in general. However it is easy

to obtain the expression for the coincident heat kernel for arbitrary spin s. One need only

consider the integrand of (5.14) to notice that the coincident traced heat kernel K
(s)
aa (x, x; t)

is given by

K(s)
aa (x, x; t) = (2s + 1)

∫ ∞

0
dµ(s)(λ) eE

(s)
λ
t

= (2 − δs,0)
1

2π2

∫ ∞

0
dλ (λ2 + s2) e−t(λ

2+s+1)

=
1

(4πt)
3
2

(2 − δs,0) (1 + 2s2t) e−t(s+1) . (5.33)

For s = 1, 2 this agrees precisely with the answers of Giombi et.al. [3] (up to shifts in the

exponent which come from mass terms), as well as with the general expression for the zeta

function in [9].

6 Heat kernel on thermal H
+

3

6.1 The thermal identification

We are actually interested in determining the heat kernel for thermal AdS3. Thermal AdS3

is obtained from Euclidean AdS3 (i.e. H+
3 ) described above by identifying points under a Z

action. To identify the relevant Z action it is useful to write H+
3 in double polar coordinates

(5.4), which were obtained from the corresponding coordinates on S3 by the continuation

iψ = ρ , iη = −t . (6.1)

Translating the thermal identifications (4.1) of S3 into the analytically continued variables

then corresponds to

t ∼ t− iβ , φ ∼ φ+ ϑ . (6.2)

Thus β has the interpretation of the inverse temperature. In addition, the analytically

continued variables, τ and τ̄ of (4.3) are now

τ = ϑ+ iβ , τ̄ = ϑ− iβ , (6.3)

and are indeed complex conjugates of one another.

6.2 The heat kernel

As discussed in section 5, we could analytically continue the harmonic analysis on S3 to

that on H+
3 . We are now considering quotients of these two spaces. The identifications

being made in the quotienting are also analytic continuations of each other, as seen in

the previous subsection. We therefore expect that the expressions for the heat kernel on

the thermal quotient of S3 described in section 4 should be analytically continued as well.

However, it should be pointed out that the group Γ ∼= ZN generated by γ in the S3 case
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is finite in order for the identifications to make global sense. There is no such constraint

in the case of the identifications on H+
3 , and therefore the group is just Z. This difference

however only plays a role when taking into account the sum over the images to obtain the

full heat kernel: in the thermal S3 case (4.6) is a finite sum, while the corresponding sum

for H+
3 (see below) will involve an infinite sum over m.

However, this is a global aspect of the quotienting which we expect to be irrelevant

to the analytic continuation of a particular image point to the heat kernel. Indeed, the

analysis of section 4.1 was essentially algebraic, and thus can be equally applied for the case

of H+
3 . There we had written the expressions in terms of group integrals and as traces over

the appropriate SU(2) representations. These group theoretic operations carry over into

the noncompact case though care should be taken in the group integrals and definitions of

the trace. This is normally accomplished through the various ingredients of the harmonic

analysis on the noncompact groups that we have mentioned so far. The additional feature

we need to use in our analytic continuation of the results of section 4.1 is the trace. For

a noncompact group one can define what is called the the Harish-Chandra (or global)

character which is defined as a distributional analogue of the usual trace. In the case of

SL(2,C) this has been worked out and will be explained more explicitly below.

Using these ingredients we will assume the analysis of section 4.1 can be carried through

in an identical fashion for SL(2,C); in the following we shall consider, for ease of notation,

the case s > 0 — the calculation for s = 0 is almost identical. Instead of the SU(2)×SU(2)

character given in (4.20) we now end up with a character of the SL(2,C) element M =

diag(e
iτ
2 , e

−iτ
2 ). The SL(2,C) character for an element with diagonal entries (α,α−1) is

given by (see e.g. [19, p. 100] or [20, p. 117] — note that there is a typo in [20])

χ(j1,j2)(α) =
α2j1+1ᾱ2j2+1 + α−2j1−1ᾱ−2j2−1

|α− α−1|2 . (6.4)

Thus the final answer for the integrated heat kernel for the case of thermal AdS3 takes the

form (cf. (4.20))

K(s)(τ, τ̄ ; t) = 2 · τ2
2π

∑

m∈Z

∫ ∞

0
dλχλ,s(e

imτ
2 ) e−t(λ

2+s+1) (6.5)

with

χλ,s(e
imτ
2 ) =

1

2

cos(msτ1 −mλτ2)

| sin mτ
2 |2 , (6.6)

which is just the character of M evaluated for j1 = 1
2(s− 1 + iλ) and j2 = 1

2(−s− 1 + iλ).

Since s > 0 we also have to consider the contribution where the roles of j1 and j2 are

interchanged, and this is responsible for the overall factor of 2 in (6.5). For fixed m the

integral over λ of

τ2
2π | sin mτ

2 |2
∫ ∞

0
dλ cos(msτ1 −mλτ2)e

−t(λ2+s+1) (6.7)

can be peformed by Gaussian integration, and we obtain

τ2

4
√
πt| sin mτ

2 |2
cos(msτ1)e

−
m2τ2

2
4t e−(s+1)t . (6.8)
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The term with m = 0 diverges; it describes the integrated heat kernel on H+
3 since for

m = 0 the two points y = γm(x) = x and x coincide. The divergence is then simply a

consequence of the infinite volume of H+
3 . In any case, the contribution with m = 0 is

independent of τ , and therefore not of primary interest to us. Subtracting it out, the final

result is then

K(s)(τ, τ̄ ; t) =

∞∑

m=1

τ2√
4πt| sin mτ

2 |2
cos(smτ1)e

−
m2τ2

2
4t e−(s+1)t . (6.9)

This is the central result of the paper which we shall use extensively below.

For the case s = 1, (6.9) gives exactly the answer of [3] for the transverse components as

given in their eqs. (4.16) and (4.17). (Note that their 2πτ is our τ ; furthermore the relative

factor e2t comes from the curvature contribution in their eq. (2.15).) For the case of s = 2,

while the contribution from the transverse components is not separately considered in [3],

it can be inferred from their result eq. (4.25) (together with eq. (4.22)). In fact the first

term in their eq. (4.25) is exactly equal to (6.9) with s = 2 (again up to a relative factor

of e2t coming from the curvature contribution). In the next section we also check that the

correct one loop graviton determinant is reproduced by this result.

The expression (6.9) for the case of s = 0 and s = 1 is of the form given by the Selberg

trace formula for scalars and transverse vectors. In fact, the heat kernel for these cases were

written down in [21] using the Selberg trace formula — see their eqs. (B.1) and (B.2). (A

general reference for the trace formula in this context is [22], section 3.4, see also [23, 24]).

The trace formula essentially gives a path integral like interpretation to the heat kernel

answer. To summarize the salient points we note that the sum over m is a sum over closed

paths of non-zero winding number m and of length mτ2 weighted with a classical action
m2τ2

2
4t . The denominator in (6.9) is proportional to |1 − qm|2 (with q = eiτ ). This is the

semiclassical (or van-Vleck) determinant. Finally, from the explicit form of the s = 1 case

quoted in eq. (B.1) of [21], one interprets the cosmτ1 piece of (6.9) as a monodromy term.

This suggests that the general spin s answer given by us here can be understood in terms

of a general Selberg trace formula for symmetric traceless tensors of rank s. We should

like to mention though that the Selberg trace formula is generally applied to quotients

of H+
3 of finite volume. In such cases there is an additional finite piece coming from the

m = 0 (or ‘direct’) term. As mentioned earlier, for the thermal quotient this is a trivial (q

independent) volume divergence.

7 Partition function of N = 1 supergravity

As an interesting application of the formalism we have developed in the previous sections

we can now evaluate the one loop partition function of N = 1 supergravity in thermal H+
3

and explicitly check the argument of Maloney and Witten [1]. We will, in the process, also

derive the expressions for the one loop determinant in the bosonic (pure gravity) sector

reproducing the results of the check of [3].

The field content of N = 1 supergravity consists of the graviton of spin s = 2, and the

Majorana gravitino of spin s = 3/2. The complete one loop partition function of N = 1
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supergravity is therefore the product of the graviton and gravitino contribution

Z1−loop = Zgraviton
1−loop · Zgravitino

1−loop . (7.1)

The calculation of the two contributions will be described in detail below, first for the

graviton (section 7.1), and then for the gravitino (section 7.2). In each case we can reduce

the calculation of the one loop partition function to determinants of the form det(−∆(s) +

m2
s), where ∆(s) denotes an appropriate spin s Laplacian, while ms is a mass shift. In turn

these determinants can be easily deduced from the heat kernel since we have

− log det(−∆(s) +m2
s) =

∫ ∞

0

dt

t
K(s)(τ, τ̄ ; t) e−m

2
st , (7.2)

where K(s) is the spin s heat kernel that was determined above (6.9). Thus the knowledge

of the heat kernel allows us to calculate the one loop partition functions fairly directly.

7.1 The one loop determinant for the graviton

The one loop contribution of the graviton to the effective action has been evaluated by

several authors [25–27]. Including the gauge fixing terms and the ghosts, the one loop

partition function for the graviton in D spacetime dimensions is given by [27]

Zgraviton
1−loop = det−1/2(∆LL

(2) − 2R/D) · det1/2(∆LL
(1) − 2R/D) , (7.3)

where ∆LL
(2) and ∆LL

(1) denote the Lichnerowicz Laplacians on rank 2 symmetric traceless

and vectors, respectively, while R is the scalar curvature. For H+
3 the curvature tensors,

in units of the radius of AdS3, are

Rµρνσ =
R

6
(gµνgρσ − gµσgνρ) , Rµν =

R

3
gµν , R = −6 . (7.4)

Note that the convention for the scalar curvature used in [27] differs by a sign from the

above (conventional) definition.

To convert the Lichnerowicz Laplacian to the ordinary Laplacian we use the rela-

tions [25]

∆LL
(2) Tµν = −∆(2)Tµν − 2RµρνσT

ρσ +RµρT
ρ
ν +RνρTµ

ρ (7.5)

∆LL
(1) Tµ = −∆(1)Tµ +RµρT

ρ ,

where Tµν and Tµ are arbitrary symmetric traceless tensors and vectors, respectively. Us-

ing (7.4) we then find

(∆LL
(2) − 2R/D)Tµν = (−∆(2) − 2)Tµν (7.6)

(∆LL
(1) − 2R/D)Tµ = (−∆(1) + 2)Tµ .

Thus the one loop partition function of the graviton is given by

Zgraviton
1−loop = det−1/2(−∆(2) − 2) · det1/2(−∆(1) + 2) , (7.7)
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which can be directly evaluated in terms of the heat kernel. In fact, using (7.2) we sim-

ply have

logZgraviton
1−loop = −1

2
log(det(−∆(2) − 2)) +

1

2
log(det(−∆(1) + 2)) (7.8)

=
1

2

∫ ∞

0

dt

t

(

K(2)(τ, τ̄ ; t) e2t −K(1)(τ, τ̄ ; t) e−2t
)

.

Using the expression (6.9) for the heat kernel, and performing the t-integral with the help of

1

4π1/2

∫ ∞

0

dt

t3/2
e−

α2

4t
−β2t =

1

2α
e−αβ , (7.9)

we then obtain

logZgraviton
1−loop =

1

2

∞∑

m=1

1

m| sin mτ
2 |2

(
cos(2mτ1)e

−mτ2 − cos(mτ1)e
−2mτ2

)
(7.10)

=
∞∑

m=1

1

m

(
q2m

1 − qm
+

q̄2m

1 − q̄m

)

= −
∞∑

n=2

log |1 − qn|2 ,

where q = exp(iτ), and in the last line we have expanded out the geometric series. Thus

the one loop gravity partition function is given by

Zgraviton
1−loop =

∞∏

n=2

1

|1 − qn|2 . (7.11)

This was argued to be the result for pure gravity in [1] by a quantum extension of the

argument of Brown and Henneaux [2]. It also reproduces precisely the calculation of [3].

Including the tree level contribution |q|−2k, the total one loop gravity partition function is

just the product of a left- and a right-moving Virasoro vacuum representation at c = c̄ =

24k [1]. Since there are no bulk propagating states in 3d gravity, the perturbative partition

function simply counts the contributions of the so-called boundary Brown-Henneaux states

which are obtained by acting on the SL(2,C) invariant vacuum by the Virasoro generators

L−n (with n ≥ 2).

7.2 One loop determinant for the gravitino

The calculation for the one loop gravitino partition function is slightly more complicated.

The gravitino that is of relevance to us is a Majorana gravitino, but it is actually easier to

study first the case of a Dirac gravitino. Its action is given by [28]

S = −
∫

d3z
√
g ψ̄µ(Γ

µνρDνψρ + m̂Γµν)ψν . (7.12)

Here Γµ are defined as Γµ = γaeµa with eµa being the vielbeins, and

γ0 =

(

0 −i
i 0

)

, γ1 =

(

0 1

1 0

)

, γ2 =

(

1 0

0 −1

)

. (7.13)

– 30 –



J
H
E
P
0
4
(
2
0
1
0
)
1
2
5

The Γ-matrices satisfy the usual Clifford algebra, {Γµ,Γν} = 2gµν , and we define

Γµν =
1

2
(ΓµΓν − ΓνΓµ) (7.14)

Γµνρ =
1

3!
(ΓµΓνΓρ − ΓνΓµΓρ + cyclic) .

Furthermore the covariant derivative is given by

Dµψν = ∂µψν +
1

8
ωabµ [γa, γb]ψν − Γ̃ρµνψρ , (7.15)

where Γ̃ρµν are the Christoffel symbols, while ωabµ refers to the spin connection. For a

massless gravitino m̂ is related to the radius of AdS3 by

m̂2 =
1

4
. (7.16)

The gravitino Lagrangian has the gauge symmetry

δψµ = Dµǫ− m̂Γµǫ , (7.17)

and thus we need to worry about isolating the gauge invariant degrees of freedom. To do

so we shall fix a gauge and use the Fadeev-Popov method, following [29]. To start with we

remove from ψµ the gauge trivial part

ψµ = ϕµ +
Γµ
3
ψ , (7.18)

where Γµϕµ = 0 and ψ = Γµψµ. The remaining field ϕµ we then further decompose as

ϕµ = ϕ⊥
µ +

(

Dµ −
1

3
ΓµD̂

)

ξ , where Dµϕ⊥
µ = Γµϕ⊥

µ = 0 . (7.19)

Here D̂ = ΓµDµ, and Dµψ is defined by

Dµψ = ∂µψ +
1

8
ωabµ [γa, γb]ψ . (7.20)

With respect to this decomposition the gravitino Lagrangian (7.12) then becomes (the

details are described in appendix D)

S = −
∫

d3z
√
g

(

ϕ̄⊥µ(D̂ − m̂)ϕ⊥
µ − 2

9
ξ̄(D̂ − 3m̂)[∆(1/2) − 3/4]ξ (7.21)

+
2

9
ξ̄ [∆(1/2) − 3/4]ψ − 2

9
ψ̄ [∆(1/2) − 3/4] ξ +

2

9
ψ̄ (D̂ − 3m̂)ψ

)

.

Furthermore, the change in the measure is equal to [29]

Dφµ = Dϕ⊥
µ DξDψ det−2

[
∆(1/2) − 3/4

]
, (7.22)

where the power of −2 comes from the fact that we are dealing with a two-component

Dirac fermion. It follows from (7.17) that the components transform under a gauge trans-

formation as

δϕ⊥
µ = 0 , δξ = ǫ , δψ = (D̂ − 3m̂)ǫ . (7.23)
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In particular, we can therefore fix the gauge ψ = 0, for which the corresponding Fadeev-

Popov determinant is

∆FP = det−2(D̂ − 3m̂) . (7.24)

To perform the one loop integration we also need to add a gauge fixing term in the action

in (7.21). This is done by treating m̂ as an independent variable not given by the rela-

tion (7.16) in the intermediate steps of the one loop integration; this amounts to adding

an explicit gauge fixing term [29]. After performing the integration over ϕ⊥
µ , ξ, and ψ we

then obtain the one loop determinant

ZDirac
1−loop = det−2

[
∆(1/2) − 3/4

]
det−2(D̂ − 3m̂) (7.25)

×det2(D̂ − m̂)ϕ⊥ det2(D̂ − 3m̂)ξ det2
[
∆(1/2) − 3/4

]

ξ
det−2(D̂ − 3m̂)ψ ,

where the first line arise from the change in the measure and the Fadeev-Popov determinant,

while the terms in the second line come from integrating out ϕ⊥, ξ and ψ, as indicated by

the suffices. Simplifying and taking the square of the operators in the determinants then

leads to (see eq. (D.19) and (D.20))

ZDirac
1−loop =

det2(D̂ − m̂)(3/2)

det2(D̂ − 3m̂)(1/2)
=

det(−∆(3/2) − 9
4)

det(−∆(1/2) + 3
4)

. (7.26)

The actual one loop determinant for the Majorana gravitino that appears in N = 1

supergravity is the square root of (7.26), i.e.

Zgravitino
1−loop =

(

det(−∆(3/2) − 9
4 )

det(−∆(1/2) + 3
4 )

)1/2

, (7.27)

and its logarithm is hence given by

logZgravitino
1−loop =

1

2
log(det(−∆(3/2) − 9/4)) − 1

2
log(det(−∆(1/2) + 3/4)) (7.28)

= −1

2

∫ ∞

0

dt

t

(

K̂(3/2)(τ, τ̄ ; t) e
9
4
t −K(1/2)(τ, τ̄ ; t) e−

3
4
t
)

.

Since we are dealing with fermions of spin s = 1
2 and s = 3

2 , the heat kernels K(1/2)(τ, τ̄ ; t)

and K(3/2)(τ, τ̄ ; t) that appear here differ slightly from (6.9). Indeed, for the thermal par-

tition function one has to impose antiperiodic boundary conditions for the fermions along

the thermal circle. In our heat kernel calculation we have summed over the images (labelled

by m) that describe the contribution from wrapping the thermal circle m times. Thus for

fermions we need to introduce an additional factor of (−1)m. With this modification, and

after performing the t-integral with the help of (7.9) we then obtain

logZgravitino
1−loop = −1

2

∞∑

m=1

(−1)m

m| sin mτ
2 |2

[

cos
(

3
2mτ1

)
e−

mτ2
2 − cos

(
m
2 τ1
)
e−

3mτ2
2

]

= −
∞∑

m=1

(−1)m

m

[

q
3m
2

1 − qm
+

q̄
3m
2

1 − q̄m

]

=

∞∑

n=1

log |1 + qn+ 1
2 |2 , (7.29)
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where the sum over n comes again from the geometric series. Thus the partition function

of the N = 1 gravitino is given by

Zgravitino
1−loop =

∞∏

n=1

|1 + qn+ 1
2 |2 . (7.30)

Together with (7.11) and the tree level contribution this then gives

Zcombined = |q|−2k
∞∏

n=2

|1 + qn−
1
2 |2

|1 − qn|2 , (7.31)

where the factor |q|−2k is the contribution of the tree level partition function. This partition

function has indeed the form of a trace

Z = Tr
(

qL0−
c
24 q̄L̄0−

c̄
24

)

(7.32)

over the irreducible vacuum representation of the N = 1 super Virasoro algebra at c = c̄ =

24k, as argued on the basis of a quantum Brown-Henneaux reasoning in [1].

Incidentally, if we impose instead periodic boundary conditions for the fermions along

the thermal circle, we would obtain (7.29) without the factor of (−1)m. Performing the

same steps as above this would then lead to

Z ′
combined = |q|−2k

∞∏

n=2

|1 − qn−
1
2 |2

|1 − qn|2 = Tr
(

(−1)F qL0−
c
24 q̄L̄0−

c̄
24

)

, (7.33)

which corresponds, as expected, to the introduction of a (−1)F factor in the dual conformal

field theory partition function.

8 Final remarks

We have seen how the heat kernel (and therefore the one loop determinants) for arbitrary

spin s fields on (thermal) AdS3 can be obtained in a group theoretic way. The simplicity

of the final answer (6.9), expressed in terms of characters of SL(2,C) (see (6.5)), is a

reflection of the underlying symmetry of the spacetime. It is interesting to observe that

the computation of the one loop (super)gravity answers of section 7 essentially assembles

these SL(2,C) characters into a (super) Virasoro character, where the SL(2,C) is the global

part of the asymptotic isometry group given by the two copies of the Virasoro algebra. We

therefore believe there is useful insight to be gained by viewing the one loop heat kernel

answers in this group theoretic way.

Amongst the potential applications of the results given here are checks of the conjec-

tures made in [30] for the one loop behaviour of chiral or log gravity. An explicit calculation

of the one loop fluctuations of the chiral (log) gravity action should be amenable to a sim-

ilar analysis.

Moving further onto more nontrivial theories of gravity, the heat kernel can be expected

to play a useful role in a better understanding of one loop string theory on AdS3 [31]. This
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was, in fact, one of the prime motivations for this work. One expects the one loop string

computation to be assembled as a sum of heat kernel contributions of different spin (and

mass). The exact answer of [31] does actually reflect this property. These and related

matters are currently under investigation [32], and we hope to report on them soon.

Finally, the considerations of this paper can be generalized, using a similar group the-

oretic approach, to higher dimensional AdS spacetimes (and their quotients). Once again,

this is likely to be useful in the investigation of the one loop quantum string/M dynamics

on these spacetimes. Another case of interest is AdS2 where the methods of this paper

could be useful in evaluating Sen’s quantum entropy function (see, for instance, [33–35]).
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A Change of sections as change of basis

In this section we show that the tensor harmonics are completely independent of the choice

of the section. A different choice of section just results in a different choice of the basis in

which the tensor harmonics are expressed. We demonstrate this by evaluating the tensor

harmonics given in (2.19) for the section σ̂, where σ̂ is defined via (2.9). Instead of (2.19)

we obtain

Ψ̂(n;m1,m2)
a (g) =

∑

p1,p2

〈s, a|n
2

+ s, p1;
n

2
, p2〉D

(n
2
+s)

p1,m1 (h−1 · g−1
L )D

(n
2
)

p2,m2(h
−1 · g−1

R )

=
∑

p1,p2

〈s, a|n
2

+ s, p1;
n

2
, p2〉

×
∑

q1,q2

D
(n
2
+s)

p1,q1 (h−1)D
(n

2
)

p2,q2(h
−1)D

(n
2
+s)

q1,m1 (g−1
L )D

(n
2
)

q2,m2(g
−1
R ) .

Next we observe that

∑

p1,p2

〈s, a|n
2

+ s, p1;
n

2
, p2〉D

(n
2
+s)

p1,q1 (h−1)D
(n
2
)

p2,q2(h
−1) =

∑

b

D
(s)
ab (h−1)〈s, b|n

2
+ s, q1;

n

2
, q2〉

(A.1)
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since the Clebsch-Gordon coefficients describe the decomposition of the tensor product into

the spin s representation. Thus we obtain

Ψ̂(n;m1,m2)
a (g) =

∑

b

D
(s)
ab (h−1)

∑

q1,q2

〈s, b|n
2

+ s, q1;
n

2
, q2〉D

(n
2
)

q1,m1(g
−1
L )D

(n
2
)

q2,m2(g
−1
R )

=
∑

b

D
(s)
ab (h−1)Ψ

(n;m1,m2)
b (g) . (A.2)

On the other hand, the basis (2.10) with respect to which this tensor harmonic is defined

also changes as we change the section. In fact, it follows directly from (2.10) that

θ̂a(x) =
∑

b

σ(x)D
(s)
ab (h)vb =

∑

b

D
(s)
ab (h) θb(x) . (A.3)

This basis thus transforms precisely in the opposite way to the tensor harmonics, so that
∑

a

Ψ̂a θ̂a =
∑

a

Ψa θa . (A.4)

Thus the actual tensor harmonic is completely independent of the choice of the section, as

had to be the case.

B Vielbeins for the thermal section

In this section, we will obtain the vielbein for the thermal section using the two different

coordinates (2.5) and (2.7). For the case of G = SU(2), a natural basis for the tangent

space at the identity of SU(2)×SU(2)/SU(2) is given by Ta = (Ta,−Ta), a = 1, 2, 3, where

T1 = i

(

0 i

−i 0

)

, T2 = i

(

0 1

1 0

)

, T3 = i

(

1 0

0 −1

)

. (B.1)

In the coordinates (2.5) the thermal section is given by (2.26) and (2.27). The tangent

vector σ(g)(Ta,−Ta) describes the variation

gL 7→ g̃L = gL + ǫgL Ta (B.2)

gR 7→ g̃R = gR − ǫgR Ta (B.3)

and this leads to

g̃L g̃
−1
R = (gL + ǫgL Ta) · (g−1

R + ǫTag
−1
R )

= gL · g−1
R + ǫgL Ta g

−1
R + ǫgL Ta g

−1
R + O(ǫ2) . (B.4)

Hence the corresponding tangent vector for (G×G)/G is simply

δg = gL Ta g
−1
R . (B.5)

For the above section one then finds

gL(χ, θ, φ)T3 gR(χ, θ, φ)−1 = i

(

eiχ cos2 θ
2 − e−iχ sin2 θ

2 cosχ sin θ eiφ

cosχ sin θ e−iφ eiχ sin2 θ
2 − e−iχ cos2 θ

2

)

= ∂χ g (B.6)
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as well as

gL(χ, θ, φ)T2 gR(χ, θ, φ)−1 = i

(

− sin θ cos θ eiφ

cos θ e−iφ sin θ

)

=
1

sinχ
∂θ g , (B.7)

and

gL(χ, θ, φ)T1 gR(χ, θ, φ)−1 =

(

0 −eiφ
e−iφ 0

)

=
1

sinχ sin θ
∂φ g . (B.8)

Thus the corresponding vielbein is the standard vielbein defined by

e3 = ∂χ , e2 =
1

sinχ
∂θ , e1 =

1

sinχ sin θ
∂φ . (B.9)

In the double polar coordinates (2.7) the thermal section is given by (2.30) and (2.31).

The same arguments as above then imply that the corresponding vielbein is

gL(ψ, η, ϕ)T1 gR(ψ, η, ϕ)−1 =

(

0 −eiϕ
e−iϕ 0

)

=
1

sinψ
∂ϕ g , (B.10)

gL(ψ, η, ϕ)T2 gR(ψ, η, ϕ)−1 =

(

−e−iη sinψ ieiϕ cosψ

ie−iϕ cosψ −eiη sinψ

)

= ∂ψ g , (B.11)

and

g(ψ, η, ϕ)L T3 gR(ψ, η, ϕ)−1 = i

(

e−iη 0

0 eiη

)

= − 1

cosψ
∂η g , (B.12)

leading to

e1 =
1

sinψ
∂ϕ , e2 = ∂ψ , e3 = − 1

cosψ
∂η . (B.13)

C Evaluation of the radial heat kernel on S3

To evaluate (3.16) it is convenient to write l1 = n̂
2 ± s

2 , l2 = n̂
2 ∓ s

2 , where n̂ = n+s. Then the

Racah formula for the Clebsch-Gordan coefficent appearing in (3.16) is particularly simple

|〈 n̂− s

2
, k;

n̂+ s

2
,−k + a|s, a〉|2 = |〈 n̂+ s

2
,−k + a;

n̂− s

2
, k|s, a〉|2

=

[
(n̂− s)!(2s + 1)!

(n̂+ s+ 1)!

]

× ( n̂+s
2 − k + a)!( n̂+s

2 + k − a)!

( n̂−s2 − k)!( n̂−s2 + k)!(s + a)!(s − a)!
. (C.1)

The sum we need to carry out — we are suppressing for the moment the k-independent

bracket [·] in (C.1), as well as a
(s)
n̂ eE

(s)
n̂
t — is

K(s)
a;n(χ) =

1

(s+ a)!(s − a)!

n̂−s
2∑

k=− n̂−s
2

( n̂+s
2 − k + a)!( n̂+s

2 + k − a)!

( n̂−s2 − k)!( n̂−s2 + k)!

×
(

ei(2k−a)χ + e−i(2k−a)χ
)

, (C.2)
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where the two terms in the last line come from the two different choices l1 = n̂
2 ± s

2

and l2 = n̂
2 ∓ s

2 .(We are assuming here that s > 0 — for s = 0 the second term is not

present.) Note that this expression is symmetric under a 7→ −a, since this can be absorbed

into relabelling k 7→ −k. We may therefore, without loss of generality, restrict ourselves

to a ≥ 0.

Putting p = k + n̂−s
2 , the first exponential in (C.2) becomes

z−a
n̂−s∑

p=0

(p+ s− a)!

p!(s− a)!

(n̂− p+ a)!

(n̂ − s− p)!(s + a)!
z(2p−n̂+s) , (C.3)

where we have written z = eiχ. To evaluate this sum let us define the generating function

Fs,a(w, z) =





∞∑

p=0

(p + s− a)!

p!(s − a)!
(wz)p



×





∞∑

q=0

(q + s+ a)!

q!(s+ a)!
(wz−1)q



 , (C.4)

whose wn̂−s coefficient is precisely the sum in (C.3) (without the prefactor of z−a). The

sums in (C.4) can be worked out straightforwardly, and we obtain

Fs,a(w, z) =
1

(1 − wz)s−a+1

1

(1 −wz−1)s+a+1
=

1

[(1 − wz)(1 − wz−1)]s+a+1
(1 − wz)2a

=
1

(1 − 2w cosχ+ w2)s+a+1
(1 − wz)2a . (C.5)

The first term in Fs,a(w, z) is precisely the generating function for the Gegen-

bauer polynomials

1

(1 − 2w cosχ+ w2)λ
=

∞∑

p=0

Cλp (cos χ)wp (C.6)

(see 8.930 of [16]), and thus we find for (C.2)

K(s)
a;n(χ) = (2 − δs,0)

min(2a,n)
∑

r=0

(−1)r
(2a)!

r!(2a− r)!
cos[(r − a)χ]Cs+a+1

n−r (cosχ) , (C.7)

where we have now restored the z−a term from (C.3) and included the second exponential

in (C.2), i.e. added in the term with χ 7→ −χ. (For prefactor (2− δs,0) guarantees that the

result is also correct for s = 0.) In addition we have used that n̂−s = n. We note in passing

that for a = 0 this simplifies to K
(s)
0;n(χ) = (2−δs,0)Cs+1

n (cosχ). We also remind the reader

that this expression is only valid for a ≥ 0, and that K
(s)
a;n(χ) is invariant under a 7→ −a.

Including the prefactors that were left out in going to (C.2) we then obtain for (3.16)

K(s)
a (χ, t) =

1

2π2

∞∑

n=0

(n+ 1)!(2s)!

(n+ 2s)!
K(s)
a;n(χ) e−((n+s)(n+s+2)−s)t . (C.8)

In the scalar case, s = 0, we have a = 0, and the formula agrees with (3.13) since the first

Gegenbauer polynomial simply equals

C1
n(cosχ) =

sin(n+ 1)χ

sinχ
. (C.9)

– 37 –



J
H
E
P
0
4
(
2
0
1
0
)
1
2
5

D Gravitino action

In this appendix we provide the details for the derivation of the action (7.21). We start

with the gravitino Lagrangian (7.12), and express ψ in terms of ϕ⊥, ξ, and ψ, using (7.18)

and (7.19). The resulting terms are all quadratic in these fields, and we shall analyze them

in turn.

The quadratic term in ϕ⊥ is given by

−
∫

d3z
√
g ϕ̄⊥

µ (ΓµνρDν + m̂Γµρ)ϕ⊥
ρ , (D.1)

where in Euclidean space ϕ̄⊥ = (ϕ⊥)†. Using that Γµϕ⊥
µ = 0 as well as {Γµ,Γν} = 2gµν

and the definition (7.14), we find

−
∫

d3z
√
g ϕ̄⊥µ(ΓνDν − m̂)ϕ⊥

µ . (D.2)

The cross term between ϕ⊥ and ξ is of the form

−
∫

d3z
√
g
(

ϕ̄⊥ρΓµDµDρ ξ +Dρξ†ΓµDµϕ
⊥
ρ

)

, (D.3)

where we have used that Γµϕ⊥
µ = Dµϕ⊥

µ = 0. Both terms actually vanish. For the first

term we use

(DµDρ −DρDµ)ξ =
1

8
Rµρσδ [Γ

σ,Γδ]ξ (D.4)

to move Dρ to the left of Dµ, where it vanishes (up to a total derivative) since Dρϕ
⊥ρ = 0.

Thus the first term equals

− 1

8

∫

d3z
√
g ϕ̄⊥ρΓµRµρσδ [Γ

σ,Γδ]ξ , (D.5)

which is seen to vanish upon using (7.4) and Γµϕ⊥
µ = 0. Similar manipulations can be used

to show that the second term in (D.3) also vanishes.

The cross term between ϕ⊥ and ψ vanishes directly upon using Dµϕ⊥
µ = Γµϕ⊥

µ = 0.

The quadratic term involving the spinor component ξ arises from

−
∫

d3z
√
g (D̃µξ) (ΓµνρDν + m̂Γµρ)D̃ρξ , (D.6)

where D̃ρ = Dρ − Γρ

3 D̂ is the differential operator that appeared in the defining equation

for ξ, (7.19). Using ΓµD̃µξ = 0, and performing the same steps as in the analysis leading

to (D.2), we can rewrite (D.6) as

−
∫

d3z
√
g (D̃µξ) (ΓρDρ − m̂)D̃µξ . (D.7)

Next we integrate by parts to move the operator D̃µ to the right. Using ΓµD̃µξ = 0 the

term proportional to m̂ reduces to

− m̂

∫

d3z
√
g

(

ξ̄ Dµ

(

Dµ − Γµ

3
D̂

)

ξ

)

, (D.8)
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where we have written out D̃µ in terms of the covariant derivative Dµ and D̂. For the first

term in (D.7) integration by parts leads to

∫

d3z
√
g ξ̄ Dµ(Γ

σDσ)D̃
µξ

︸ ︷︷ ︸

A

−1

3

∫

d3z
√
g ξ̄(ΓρDρ)Γµ(Γ

σDσ)D̃
µξ

︸ ︷︷ ︸

B

. (D.9)

For B we use {Γµ,Γσ} = 2δσµ as well as ΓµD̃
µξ = 0 to obtain

B = −2

3

∫

d3z
√
g ξ̄(ΓρDρ)Dµ

(

Dµ − 1

3
ΓµD̂

)

ξ . (D.10)

For A we use the commutation relation

(DµDσ −DσDµ)D̃
µξ = RµσD̃

µξ +
1

8
Rµσνδ [Γ

ν ,Γδ]D̃µξ . (D.11)

to rewrite it as

A =

∫

d3z
√
g

(

ξ̄(ΓσDσ)DµD̃
µξ + ξ̄ ΓσRµσD̃

µξ + ξ̄ Γσ
1

8
Rµσνδ [Γ

ν ,Γδ ]D̃µξ

)

. (D.12)

Substituting the explicit expressions (7.4) for the the curvature tensor and Ricci tensor of

H+
3 , the last two terms of (D.12) become

R

3

∫

d3z
√
g

(

ξ̄ ΓµD̃µξ −
1

2
ξ̄ ΓµD̃µξ

)

= 0 , (D.13)

which vanish because of ΓµD̃µξ = 0. The first term of A in (D.12) has the same form as

B in (D.10), and thus the total contribution quadratic in ξ equals

∫

d3z
√
g

[
1

3
ξ̄ (ΓσDσ)Dµ

(

Dµ − Γµ

3
D̂

)

ξ − m̂ ξ̄Dµ

(

Dµ − Γµ

3
D̂

)

ξ

]

. (D.14)

Using (D.4) we can simplify

Dµ

(

Dµ − Γµ

3
D̂

)

ξ = Dµ

(

Dµ − 1

3
ΓµΓσDσ

)

ξ =
2

3

(

∆(1/2) +
R

8

)

ξ . (D.15)

Thus the final answer for the quadratic ξ term takes the form

2

9

∫

d3z
√
g ξ̄(ΓσDσ − 3m̂)(∆(1/2) +R/8)ξ . (D.16)

The cross term between ξ and ψ can be analyzed similarly, and it leads to

2

9

∫

d3z
√
g
[

ψ̄(∆(1/2) +R/8)ξ − ξ̄(∆(1/2) +R/8)ψ
]

. (D.17)

The quadratic term in ψ reduces with similar manipulations to

− 2

9

∫

d3z
√
g ψ̄(D̂ + 3m̂)ψ . (D.18)
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Combing (D.2), (D.16), (D.17) and (D.18), and setting R = −6 then finally leads to

eq. (7.21).

For the derivation of (7.26) we also need the identities

−(ΓµDµ+m̂)(ΓρDρ−m̂)ϕ⊥
σ =

(

−DµDµ +
5R

12
+ m̂2

)

ϕ⊥
σ =

(

−∆(3/2) −
9

4

)

ϕ⊥
σ (D.19)

and

− (ΓσDσ + 3m̂)(ΓρDρ − 3m̂) ξ =

(

−DµDµ +
R

4
+ 9 m̂2

)

ξ =

(

−∆(1/2) +
3

4

)

ξ . (D.20)

They follow upon using (D.4) and the analogue for spin 3/2

(DµDρ −DρDµ)ϕ
⊥
ν = Rσνρµϕ

⊥
σ +

1

8
Rµρσδ [Γ

σ,Γδ]ϕ⊥
ν , (D.21)

as well as (7.4). We have also substituted the value of m̂2 from (7.16).
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