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Abstract

Despite many uses of ultrasound, some pathologies such as breast cancer still cannot
reliably be diagnosed in either conventional B-mode ultrasound imaging nor with
more recent ultrasound elastography methods. Speed-of-sound (SoS) is a quantitative
imaging biomarker, which is sensitive to structural changes due to pathology, and
hence could facilitate diagnosis. Full-angle Ultrasound Computed Tomography
(USCT) was proposed to obtain spatially-resolved SoS images, however, its water-bath
setup involves practical limitations. To increase clinical utility and for widespread
use, recently, a limited-angle Fourier-domain SoS reconstruction was proposed,
however, it suffers from significant image reconstruction artifacts. In this work,
we present a SoS reconstruction strategy, where the forward problem is formulated
using differential time-of-flight measurements based on apparent displacements along
different ultrasound wave propagation paths, and the inverse problem is solved
in spatial-domain using a proposed total-variation scheme with spatially-varying
anisotropic weighting to compensate for geometric bias from limited angle imaging
setup. This is shown to be robust to missing displacement data and easily allow for
incorporating any prior geometric information. In numerical simulations, SoS values
in inclusions are accurately reconstructed with 90% accuracy up to a noise level of
50%. With respect to Fourier-domain reconstruction, our proposed method improved
contrast ratio from 0.37 to 0.67 for even high noise levels such as 50%. Numerical full-
wave simulation and our preliminary in-vivo results illustrate the clinical applicability
of our method in a breast cancer imaging setting. Our proposed method requires
single-sided access to the tissue and can be implemented as an add-on to conventional
ultrasound equipment, applicable to a range of transducers and applications.

1. Introduction

Ultrasound (US) imaging is a low-cost, portable, easily accessible, real-time, and non-
invasive technology. Conventional B-mode ultrasound images show the reflectivity of
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tissue interfaces and scattering within the body. Although for many tissues this may
present contrast, yet it fails to differentiate others. In particular, for breast cancer
imaging, B-mode shows higher sensitivity than the gold standard X-ray mammography
to early-stage invasive cancers. However, it provides low specificity to differentiate
benign and malignant tumors, and thus cannot prevent unnecessary biopsies. Moreover,
B-mode image interpretation is still not a quantitative approach, with its outcome very
much dependent on operator experience (Arribas et al. 2016).

Biomechanical properties of soft tissues can be altered by pathological processes.
This may provide complementary information for clinical diagnosis to detect tissue
abnormalities. Since pathological tissues may cause changes in the biomechanical
properties of tissues, tissue elasticity has been used in medicine for centuries as a
diagnosis marker. Manual palpation is still commonly used for screening breast and
prostate tumors. However, this qualitative method is limited to superficial regions.

Quantification of tissue biomechanical properties using ultrasound has a high
potential for diagnosis and staging of diseases. Elastography is the “computerized
palpation”, where elastic properties of the tissue, e.g. Young’s or shear modulus or
shear-wave speed (SWS), are estimated from the displacement field measurements
in ultrasound images as a response to tissue excitations or perturbations (Ophir
et al. 1991, Eskandari et al. 2008, Sarvazyan et al. 2011, Goksel et al. 2013). However,
the specificity of elastography for differential diagnosis is limited, with measurements
varying strongly with the tissue mechanical loading state (Cosgrove et al. 2013).

An independent biomechanical intrinsic material characteristic is bulk modulus,
which relates to the propagation of longitudinal waves in the material, measurable by
ultrasound as the speed-of-sound (SoS). Measuring SoS has been shown to outperform
SWS for differentiation of common phantom and ez-vivo tissues (Glozman &
Azhari 2010), and has a strong potential for benign and malignant tumor differentiation
(Bamber & Hill 1981, Jeong et al. 2008, Li et al. 2009, Duric et al. 2010, Zografos
et al. 2015). A large clinical comparison study between SWS and SoS for breast lesion
differentiation is yet not available. Nevertheless, it was shown in several individual
studies that SoS is able to discriminate between adipose and fibrous tissues, and has
been applied in several clinical contexts such as breast density classification (Sak
et al. 2015, Sanbria et al. 2018), diagnosis of liver steatosis (Imbault et al. 2017) and
assessment of fatty musculoskeletal degeneration (Qu et al. 2017).

A family of methods called Ultrasound Computed Tomography (USCT) has been
proposed to quantitatively measure SoS (Jeong et al. 2008, Nebeker & Nelson 2012,
Duric et al. 2013). USCT reconstructs ultrasound propagation speed from transmission
measurements based on an elevated number of transducer elements located around
the inspected tissue, which is immersed in a degassed water tank. A tomographic
reconstruction scheme uses time delays and amplitudes of the ultrasound signal
transmitted along multiple angular directions. However, most body parts are not easily
submersible and hence are not accessible by USCT. Furthermore, this method requires a
bulky and burdensome setup and imaging work-flow, negating most advantages of typical
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ultrasound systems, and thus constraining its clinical translation. Medical applicability
of USCT is currently limited mainly to the breast. These systems allow for the automatic
imaging of the whole breast in a 3D coordinate system, familiar to radiologists and can
help reduce operator-dependency, thus having potential in screening and diagnosis.

For widespread clinical use of USCT capabilities, it would be desirable to use
standard ultrasound probes for SoS imaging. Ultrasound is currently used in the clinics
as a supplementary diagnostic modality, following an initial imaging modality — often the
X-ray mammography. Diagnosis in B-mode US images is currently based on qualitative
interpretation of lesion geometric features, with low specificity for lesion differentiation,
and therefore any suspicious cases ending up with biopsies as histology being the gold-
standard in diagnosis. Adding SoS capabilities to conventional ultrasound imaging
could improve lesion differentiation, thus reducing unnecessary biopsies and providing
early staging of cancers. Several approaches have been proposed to estimate SoS in
pulse-echo mode using reflected signals. Iterative optimization of average SoS values
based on the blurring effect of point-like structures in B-mode image reconstruction
or based on registration of ultrasound images acquired from different directions were
discussed in (Kriicker et al. 2004, Shin et al. 2010, Cho et al. 2014), mostly aiming
for estimating a single homogeneous-equivalent SoS value for correcting aberration
artifacts. Another method (Byram et al. 2012) relies in the co-registration of different
ultrasound views for isolated bright point reflectors, such as a wire target, however, the
latter are typically not available in real tissue textures, which consist of diffuse speckle
patterns. Other early attempts to measure SoS distributions used a beam tracking
technique (Robinson et al. 1991, Kondo et al. 1990, Cespedes et al. 1992), in which two
separated transducers generate intersecting beams, but this can provide a very coarse
SoS resolution. More recently, a Fourier domain reconstruction has been proposed to
link echo phase shifts from different beamforming directions to reconstruct local SoS
variations, for reconstructing SoS images (Jaeger et al. 2015) and with preliminary
in-vivo results showing promise in differentiating abdominal tissue layers (Jaeger &
Frenz 2015b). This method, however, suffers from significant image reconstruction
artifacts and loss of resolution in the axial direction for moderate noise levels, i.e 10%
(20dB) noise, or for incomplete echo shift datasets. As a result, it does not allow
quantitative interpretation of the SoS images, which limits its clinical applicability. To
address these challenges, spatial domain algorithms have been discussed as a possible
extension in (Jaeger & Frenz 2015a); however, to the best of our knowledge, a specific
method has not yet been proposed, nor quantitatively validated in the literature.
Another recent work demonstrated quantitative SoS imaging based on the time-of-flight
measurements to a passive reflector as the timing reference (Sanabria & Goksel 2016)
and a spatial domain regularization; however, this requires two-sided access to the
investigated tissue.

In this work, an SoS image reconstruction method is proposed by solving an inverse
problem directly in the spatial domain. This allows spatial-domain regularization, where
we utilize here an anisotropically-weighted total-variation method. This enables the
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delineation of tumorous inclusions, and the accurate prediction of their speed-of-sound
values. This reconstruction method utilizes a set of echo shift measurements in the
observed domain, which can be obtained using image registration and displacement
tracking techniques on different ultrasound transmitter excitations, such as plane-
wave transmits in different angles. With a spatial domain reconstruction, we can also
incorporate incomplete echo measurements and prior information about the inclusion
geometry. The proposed method only requires single-sided access to the tissue and is
applicable with a conventional ultrasound array transducer, being well-suited to image
internal organs such as the liver and the kidney. Furthermore, this can also significantly
simplify the clinical work-flow for organs in which double-sided access is still possible, in
particular the breast, since no water bath or additional hardware elements are necessary.

2. Methods

Below, we first present the SoS problem formulation and its spatial discretization
for differential time-of-flight measurements along arbitrary wave paths. Next our
proposed solution to the regularized inverse problem is introduced. Finally, a
practical beamformer implementation for producing different wave paths and differential
measurements is given.

2.1. Spatial Domain Reconstruction (SDR)

In the following, the wavefront propagation is estimated /represented by rays, similarly to
light propagation in optics. Without loss of generality, it is assumed that an ultrasound
transducer emits and receives ultrasound waves along a total of P wave propagation
paths p, corresponding to trajectories along which ultrasound waves propagate, as in
Fig. 1(a). Accordingly, the time delay ¢, for each path, also known as Time-of-Flight
(ToF), is defined as the time interval between the time of transmission and of reception
of the ultrasonic wave. To relate time and SoS quantities, the imaging region is first
discretized into a predefined grid [z, z] containing a finite number of cells C' determining
the resolution of the image. With a path length [, . per ray path p and grid cell ¢ from
the transmitter Tx to an arbitrary scatterer S and back to the receiver Rx, the ToF
values can be calculated in function of the slowness o, (= v,7!, the inverse of discretized
SoS) as follows:

C
t, = / odl =Y " lycoe. (1)
¢ c=1

However, in general, the position of inner tissue structures is not accurately known, and
only relative time measurements 7, along different paths can be obtained as:

P
Tm = Z wm,ptp' (2)
p=1
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Figure 1. Speed-of-sound (SoS) reconstruction setup. (a) Rays p; and ps represent
paths traversed by wavefronts arriving at point S for different plane-waves at angular
directions ¢, and 6. Discretization for proposed Spatial Domain Reconstruction (SDR)
is also shown. (b) Wave path definition based on plane wave beamforming.

For each measurement m={1,..., M}, 7,, provides relative time delays between
paths t, using the weights w,,, = {0,%1}. These relative delays summarize the sound
speed deviations accumulated along different wave propagation paths from the probe to
the acoustic scatterer S. Substituting (1) in (2), the relative time measurement can be
expressed as

c P c
T = Z (Z wm7plp7c> o, = Z L, c0c, (3)
c=1 p=1 c=1
where the last equation merges the path lengths [, . and relative measurement weights
Wy, i0 a single linear combination of weighted path lengths L,, .. The system (3) is a
forward problem, which can be expressed in a matrix form as

T = Lo, (4)

where L € RM*C represents geometric information that depends on the transmitter-
receiver setup of the transducer. The slowness values per cell ¢ are assembled in o € R®
and the time measurements 7,, in 7 € R, respectively, and o can be reconstructed
using (4).

A complete set of path orientations [—m, 7] traversing each cell ¢ is necessary for
a complete computed tomographic reconstruction (Kak & Slaney 1988). However, for
pulse-echo imaging with a conventional ultrasound probe with single-sided tissue access,
each cell is only traversed by a limited set of angular directions 6, 65..., thus the
reconstruction problem is incomplete. Moreover, relative path measurements lead to an
ill-conditioned matrix L. Therefore, we solve (4) as a regularized optimization problem:

o = argmin||T — Lo||; + \||Da||1, (5)

where ¢, norm total variation (TV) ((Sidky et al. 2006)) is used for edge-preserving
regularization. A is the regularization constant and D, in a simple form, can be the
first-order discrete differentiation operator.
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2.2. Multi-Angle Anisotropically-Weighted Total Variation

Considering limited-angle nature of our USCT problem, i.e., with naturally lower
resolution in the axial direction, one can regularize gradients in each axes
differently.  This leads to the following Anisotropically-Weighted Total-Variation
(AWTV) regularization (Sanabria & Goksel 2016):

IDo|[awrv = Y Klowir; — i) + (1= K)|oije1 — 0, (6)
2¥}
where i and j are discretization indices, in horizontal (x) and vertical (y) directions.
Derivation of AWTYV is further elaborated in Appendix A. Similarly to (Sanabria &
Goksel 2016), £ = 0.9 was used, leading empirically to an optimum performance for the
imaging setup discussed in this paper as well.
Extending on this idea, one can also use multiple gradient directions in the spatial

regularization term, instead of two orthogonal gradient estimates, which is then referred
to as Multi-Angle Anisotropically-Weighted Total-Variation (MA-AWTYV)

[Do|[va-awry = Z Z Ka|Dao|, (7)

V] a:{a17a27"'7a1\]}

where D, o=Do - e, is the directional derivative along the unit vector e, with angle a.
Given the maximum imaging angle 6,,.,, the gradient directions « for a total of different
N, directions are chosen as {ax} = {0k, 180° — i} to ensure an optimum coverage of
the available angular directions with

1 2

O, = {0 emaa:—aemax—w'
=10 N,/2 -1 N,/2 -1

s Omaa } - (8)
The weights are calculated based on the setup geometry and hence available projection
directions spatially at each cell as follows: For each wave path p crossing cell ¢, we
calculate the inclination 6 of the wave path. If § < 6,,,., we then increment the weight
Ko Of the closest gradient direction {a} with respect to 6 by the geometric overlap of
path p with cell ¢. We then compute the mean {x,} over all cells, and use these set of
weights for the subsequent SoS reconstruction.
The proposed reconstruction problem using MA-AWTYV is given as

Gya-awry = argmin||r — Lo||; + A Y > kol Daol (9)
o —
ij o«

where the weights are normalized such that ) r,=1. Note that not including the
directions outside the imaging angular span [—0,,4.,0maes] effectively assigns them
no regularization. This avoids over-constraining directions, for which no boundary
information is available, which reduces image artifacts. For conventional medical
ultrasound arrays, 8 > 30° leads to strong grating lobes and cluttering and is typically
not used (Hoskins et al. 2010). The regularization term A is an optimization constant
that balances the solution and regularization term. The quantitative speed of sound

values are then calculated from the slowness values as SoS =&—1.
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2.3. Incorporating prior information

For cases when the position and geometry of inclusions are known a priori (for
instance, from an ultrasound B-mode image), a constrained reconstruction can be
defined to determine homogeneous SoS values robustly in the inclusions. For instance,
a target region can be a suspect breast lesion, for which tissue malignancy (BIRADS
classification) needs to be staged (Arribas et al. 2016). Proposed prior information
helps to reduce the number of degrees of freedom in the reconstruction inverse
problem. An average SoS value obtained with this approach in a suspicious lesion
may facilitate tumor classification and differential diagnosis (Sanabria et al. 2018).
Tumor heterogeneity via spatially-resolved images can be an additional diagnostic
factor. Given (9), prior information is incorporated to (5) as follows: all R values
oror = {01,09,...0r} within a target region-of-interest (ROI) are grouped as a single
value oror. Accordingly, the corresponding columns of the geometric matrix L can be
summed up 1,101 + 1,202 + ... + l, ROROI = (ZR

c=1
of gradient matrix D corresponding to ogror are also summed up, which leads to the

lpc)oror = lp rotoror. The columns

neighborhood derivatives vanishing inside the grouped ROI, leaving only regularization
along the circumference.

2.4. Multiple plane-wave transmits for a practical imaging scenario

An ultrasound probe consists of N transducer elements, each of which can be fired
individually as transmitter Tx or used as receiver Rx. Recording each combination
(which is called multi-static or full-matriz data) results in a total of NxN radio-
frequency (RF) wave traces A(t, Tx, Rx) in function of echo time ¢. Assuming linearity
in system electronics, scattering response, and acoustic propagation at low-power
ultrasonic signals, different beamforming processes (synthetic apertures) can then be
retrospectively constructed based on superposition from this data (Holmes et al. 2005).
For instance, by delaying, scaling and adding up these traces, one can synthesize full-
aperture plane, single-element circular, and collimated aperture wavefronts and focused
beams, among others. After such beamforming, relative delay measurements 7,,, can be
taken between beamformed ray paths (Robinson et al. 1991, Cespedes et al. 1992, Byram
et al. 2012, Jaeger et al. 2015).

For the sake of simplicity and without loss of generality, we hereafter focus on full-
aperture plane-wave beamforming (Fig. 1(b)), which allows a direct comparison of our
reconstructed method with another recent method (Jaeger et al. 2015). In this case,
spatial diversity is obtained by controlling the angle of incidence 6 of the plane wavefront.
Consequently, the same tissue position (x,y) can be accessed from two different wave
propagation paths (pi,ps) corresponding to two different angles (61,605). The weights
L are calculated by subtracting the ray path lengths [, . at steering angle 6y from the
ones at reference angle ;. [,. are calculated with ray tracing assuming straight ray
paths. A line anti-aliasing algorithm (Wu 1991) is used to avoid interpolation errors.
The relative time measurements 7,, at coordinate (z,y) can be obtained from the shift
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of point observed in images seen from these two angles.

Clutter may complicate time measurements 7, if the matched tissue scatterer S
at (z,y) (Fig. 1(b)) is overlapped with echoes from other reflecting tissue structures.
Therefore, the received echoes at each receiver element Rx are delayed and summed to
achieve a focused beam, so that tissue reflectivity is maximized in a small region around
the desired measurement point (z,y). Applying both plane wave Tx beamforming and
focused Rx beamforming, tissue reflectivity (speckle) images B(x, y, 0) at different angles
0 are generated as:

B(z,y,0) = Z Z A(trx — t1x, Tx, Rx) (10)
Tx=1 Rx=1

tre = 1/vg(zsin(h) + ycos(0) + \/(x — € - Rx)? + 42) (11)

try = 1/vp - Tx - £ - sin(f) /vg (12)

where t, and tg, are respectively the transmit and receive delays, ¢ is the transducer
inter-element separation (array pitch) and vp is the average speed of sound in the
medium. A nominal value of vy = 1540 m/s for soft tissue is used for beamforming.

Time measurements 7(z,y,0) are obtained by registering the two images B; =
B(z,y,0) and By = B(x,y,0 + Af). Speckle tracking methods are well-known in the
literature, such as based on cross-correlation or optical-flow (Lubinski et al. 1999, Pan
et al. 2009, Zahiri-Azar et al. 2010, Zahiri-Azar et al. 2011, Makhinya & Goksel 2015).
In this work, a one-dimensional correlation search is performed in y, using a zero-
normalized cross-correlation (ZNCC) (Pan et al. 2009) to find the vertical displacement
Ay at each point (x,y) (Fig. 2), from which 7 = Ay/vg/cos(f). The correlation
coefficient gzncc, which ranges between -1 and 1, with the largest positive values
providing the best correlation, is used as a quality metric of the speckle tracking.

Due to the finite transducer aperture size, there are shadow regions in the imaging
area where a plane wavefront may not arrive and no time measurements can be recorded
(Fig. 1(b)). The proposed SDR method can handle these regions by simply excluding
them from the input 7,, measurements, since 7,, are independent from the reconstruction
grid o.. Time measurements collected at multiple different angles {6;,0s,...,04} can
also be combined by stacking as input to (5) and solved together at once, in order to
increase accuracy and robustness.

3. Experiments and Results

The reconstruction was implemented in Matlab® (The MathWorks, Inc.) with version
r2017b (2018). The optimization problems (A.2) and (9) were solved with the CVX
package (Grant & Boyd 2014, Boyd & Vandenberghe 2009), using the numerical solver
Mosek v8.0, which is a high-performance optimizer for large-scale Second Order Cone
Programming (SOCP) problems using an interior-point method. Cells with little
information, i.e. those traversed by < 1% of the rays in comparison to the most
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Figure 2. Plane-wave relative delay measurements 7, at an angle 85=20° with respect
to #1=0°. a) Setup, b) Simulated 7, at noise level of 10%.

traversed cell, were not included in the reconstruction problem. A typical MA-AWTV
reconstruction in CVX presently runs in <30s on an Intel® Core™ i7-4770k CPU @3.5
GHz with 16 GB RAM for a single frame and for a domain of size 40x38 mm with
0.3mm reconstruction discretization using a pair of plane-wave angular projections with
the same discretization resolution. For our synthetic tests, we first studied the effects of
noise, regularization, and parametrization in reconstructions using ray-based synthetic
data generation. This allows to study the effects of measurement errors using simulated
noise on identical forward and inverse problems. In order to study any physical wave
effects in reconstructions, we later used full-wave simulations of our physical acquisition
setup, to study image reconstruction from subsequent computed displacements. Finally,
we present reconstructed images from data collected with an ultrasound machine.

3.1. Synthetic Dataset via Ray-based Wavefront Modeling

Ten different examples of artificial inclusions were defined in a homogeneous tissue
with a depth and width of 40 mm, as shown in Fig.3(a). The colorbar that is used
for the quantitative reconstruction outputs is shown on the left corner of the figures.
Background SoS was set to 1554 m/s and the inclusions are either 1538 m/s or 1570 m/s,
which correspond to 1% SoS contrast relative to the background, which is in the range of
pathophysiological changes in the breast tumor (Sanabria et al. 2018). P8-P10 simulate
smoothly varying SoS distributions. P10 was generated by multiplying P7 with a raised-
cosine window with 0.5 roll-off. P9 and P10 simulate vertical and horizontal gradients
in the background SoS, with a cosine reaised between 1540 m/s and 1554 m/s with 1.0
roll-off.

Relative time measurements 7,, were simulated at each cell ¢ by comparing plane
wavefronts at angles 6;=20° and —20° with respect to 6,=0°. To isolate image
degradation effects due to the incomplete reconstruction problem, 7,, values were directly
generated using ray tracing for calculating L and the same geometric weights L were
used in the inverse problem. To study sensitivity to errors in time-delay estimation,
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time-delay errors were synthesized and added to the 7,, matrix, following a Gaussian
distribution with zero mean and a standard deviation expressed as percentage with
{1,2,5,10,20,50,56,63}% of the peak 7, value for each simulated example, and hereafter
referred to as noise level. Frequency Domain Reconstruction (FDR) (Jaeger et al. 2015)
performed evaluations using a similar numerical simulation scheme, therefore allowing
us for a direct comparison herein.

An example of 7,, is plotted in Fig. 2 for tissue model P8 and a noise level of 10%.
The inclusion SoS is higher than the background. This leads to values 7,,>0 below
the left edge of the inclusion region (P), where the path 6y through the background is
slower than the reference path #,=0°, which traverses the inclusion. Conversely, 7,,<0
are observed below the right corner of the inclusion region (Q), where only the path 6,
traverses the inclusion and is thus faster than path 6.

3.2. Frequency- vs. Spatial-Domain Reconstruction

In Fig.3 our proposed method Spatial Domain Reconstruction (SDR) is compared to
FDR. For SDR, the proposed MA-AWTYV was used with three gradient directions. The
regularization parameters were adjusted via grid search separately for both FDR and
SDR cases to report the best possible image quality with each. For FDR, this led to a
regularization parameter y=60 for noiseless case, y=1000 for noise levels between 1% and
10%, and v=3000 for noise levels between 20 and 63%. For SDR, the same regularization
constant A=0.025 was used at all noise levels. Missing 7,, readings for regions outside
the overlap of angled plane-wave traversal were ignored implicitly by SDR, and were
set to zero in FDR. Results at four measurement noise levels ({0,1,10,50}%) are shown
qualitatively here in Fig. 3, whereas all results are evaluated and compared quantitatively
later in figures 6 and 7.

Fig.3 shows that the FDR images present low contrast already at moderate
noise levels of 10%, e.g. the inclusion geometries in P2 and P4 cannot be resolved.
Image distortions such as resolution loss and strong streaking artifacts common with
limited-angle computed tomography algorithms and were previously reported in (Jaeger
et al. 2015) are also observed in the examples herein. Since ray paths orthogonal to the
imaging direction are missing, the image resolution is reduced in the vertical direction
y. Such strong streaking artifacts with FDR occlude the inclusions and also degrades
the vertical resolution (e.g., smearing the two circles in P6 into one blob) already at
noise level of 1%.

Given the same 7, data, the proposed SDR method provides a visible image quality
improvement with respect to FDR. The SDR method achieves piecewise delineation
of homogeneous inclusions, effectively filtering out noise from the images. Both
reconstructions at zero noise level and up to a noise level of 10% show consistent
results, with minor image degradation. For instance, the two vertical inclusions in P6
are separable up to a noise level of 5% in Fig.3. Any remaining artifacts include a loss
of vertical resolution for very flat inclusions (P4) due to limited angular information,
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Figure 3. (a) Reconstructions of 10 different examples of artificial inclusions in
homogeneous and non-homogeneous tissue samples, with the colorbar shown on top-
left. SoS reconstruction using the baseline method FDR (b)-(e) and our proposed SDR
with MA-AWTYV (f)-(i) for different noise levels. Time measurements were simulated
at angles #;=20° and —20° with respect to the reference angle 5=0°.

(b) FDR 0%

and the disappearance of one of the inclusions of P2 at a noise level of 10%, which
corresponds to a corner region where only a few 7,, measurements are available. For the
simulations of vertical and horizontal background (P9-P10), both methods could not
yield an accurate reconstruction, this is due to the fact that our regularization assumes
a piece-wise constant data.

3.3. Regularization Norm

We show in Fig.4, SDR results with different data and regularization norms: /5-
norm regularization, Total Variation (TV), Anisotropically-Weighted Total Variation
(AWTV) with ¢;- and fy-norm in data term, and Multi-angle AWTV. For fy-norm
regularization, A=0.0063 was found to be optimal. For TV, AWTV and MA-AWTYV,
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the same regularization constant A=0.025 as above was used. TV (A.1) provides piece-
wise homogeneous inclusions effectively eliminating streaking artifacts; however, due
to the limited angle information, a loss of resolution in the vertical direction y is still
observed. AWTV with k=0.9 (A.2) effectively regularizes the reconstructions with the
available angular information while preserving the inclusion shape. AWTV with ¢;-
norm in the data term (Fig. 4(e)) yields a minor improvement in reconstruction quality
compared to AWTV with fy-norm data term (Fig.4(d)). For remaining comparisons,
¢1-norm data term was used. The use of multiple regularization directions with MA-
AWTV (9) improves the reconstruction for edges that are not axis-aligned. The
proposed SDR is superior to FDR regardless of the data and regularization norm.
Although FDR formulation is somewhat similar to SDR with ¢-norm, the latter enables
implicit handling of inaccurate and missing (out of plane-wave overlap) displacement
readings, enabling better reconstructions seen herein. Of different SDR regularizations,
throughout this paper we used our proposed MA-AWTYV as the choice for further
evaluations.

3.4. Sensitivity to Parameterization

SDR is observed to be robust against variations in the regularization constant A, as
shown in Fig.5. A single choice of \*=0.025 was sufficient for good performance
for all inclusion geometries and noise levels. In addition, the reconstruction results
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Figure 4. SoS reconstruction for artificial inclusions in Fig. 3 (a) and noise level of
10%, by using regularization alternatives. (a) FDR as baseline, ( ) SDR with f3-norm
regularization, (c¢) SDR with TV, (d) SDR with AWTV (x = 10) with f3-norm in the
data term, (¢) SDR with AWTV (x = 10) with ¢;-norm in the data term, (f) SDR
with MA-AWTYV (the same as Fig. 3(h).
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were visually stable over an order of magnitude, i.e. A=[0.0062,0.05]. Too small A
(e.g., A=0.00062) introduce noise in the images, whereas too large A lead to over-
regularization, which smears the inclusion geometries.

3.59. Quantitative Metrics for Evaluation

We used the following metrics (Varghese & Ophir 1998) to quantitatively evaluate and
compare reconstruction methods:

a) Background noise o} calculated as the SoS standard-deviation in the background
region

b) Root-Mean-Square Error as

RMSE = \/ Zil(tg — ) (13)

where v} and v; are the estimated and ground-truth SoS values at image cell ¢

c¢) Contrast Ratio in [%] as

* %
CR = 100M (14)
llbg
where 1. and pf, are the mean values of SoS estimations in the inclusion and
background
SoS [m/s]

P1 P2

g
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g
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A

Figure 5. SoS reconstruction using our proposed SDR for different regularization
constants A at a noise level of 10%.
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d) Dice coefficient of inclusion as
2|t . N Cinel

inc

|Ci*nc| U |CiHC|

(15)

where ¢}, and ¢y are the regions of the reconstructed and ground-truth inclusions,
respectively. To delineate the inclusion in the reconstructed images, we used a SoS
cut-off value defined from the ground-truth as the mid-value between the preset

background and inclusion values.

RMSE provides a global quantitative assessment of image reconstruction quality,
while oy, provides the noise floor. CR has a quantitative diagnostic meaning, since
it describes the SoS contrast fidelity with which inclusions can be reconstructed. For
instance, for an inclusion with a SoS contrast of 1%, a CR = 0.5% indicates that the
inclusion is reconstructed with only half of its actual physical SoS contrast. Therefore, in
a diagnostic setting, a low CR would increase the number of false negatives and decrease
Negative Predictive Value (NPV). The Dice coefficient enables a quantitative assessment
of geometric fidelity for inclusion delineation in a synthetic setting, where ground-truth
contrast is assumed to be known for a reconstruction-independent delineation threshold.

These metrics were used to evaluate our proposed method SDR and the baseline
FDR for different noise levels and the geometries shown in Fig.3. For each evaluation
metric, the average over all ten simulation examples are shown in Fig. 6. All metrics show
superior performance with SDR. For 1% noise level (SNR=40dB) the CR is improved
from 0.5% with FDR to 0.99% with SDR, in excellent agreement with respect to the
ground truth at 1%. For moderate noise levels (10%, SNR=20dB) SDR still achieves a
sufficient contrast of 0.90%, while the contrast of FDR drops to 0.37%. For very large
noise levels (for instance, 50%, SNR=6dB), the CR of SDR drops to 0.67%. If prior
information about the inclusion geometry is available, the quantitative prediction is
significantly improved, as seen with CR=0.90% at the same noise level, as in Fig. 6(b).
RMSE metrics for smooth inclusion geometries are plotted in Fig. 7. The sharp P7 and
smooth P8 inclusions show comparable RMSE. TV may filter out SoS variations in the
reconstructions, which is observed by P9 and P10 showing relatively higher RMSE. In
all cases, SDR resulted in RMSE values lower than FDR, while also presenting a better
agreement with the ground truth.

3.6. Multi-angle Reconstruction

Reconstruction quality can also be improved by combining measurements from several
plane wave angles, instead of using only two angles as was in Fig.3. SDR is better
suited than FDR for multi-angle reconstruction, since SDR can inherently handle and
seamlessly combine missing displacement readings from different angles. This is seen
with increasing number of 7,,, observations in Fig. 8, where displacements with respect to
0,=0° for 2 angles at 6;={=£10}° were compared to 6 angles at ¢;={+10, +20, +30}° and
12 angles at §;={=£5, £10, 15, £20, +25, £30}°. A noise level of 50% was simulated to
represent a scenario of poor speckle tracking performance. While FDR does not show
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Figure 6. Quantitative metrics evaluated for baseline FDR and our proposed method
SDR at different noise levels, where average metrics from all simulation geometries in
Fig. 3 are plotted: (a) Contrast Ratio (CR); (b) Dice coefficient of inclusion; (c¢) root
mean-square error (RMSE); and (d) background noise o3 .
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Figure 7. Quantitative RMSE metrics for smooth digital phantoms P7-P10 evaluated
for FDR and our proposed SDR at different noise levels. Plots show the average across
5 noise realizations.

much visual improvement, SDR results significantly improve with increasing number of
plane-wave angles. For instance, smaller inclusions are resolved in examples P1 and P2,
and the vertical inclusions in P6 are separated. This is also confirmed by the quantitative
metrics (Fig.9). By using 6 instead of 2 angles, the CR at noise level 50% improves
from 0.67% to 0.86% and the Dice coefficient from 0.87 to 0.94. For 12 angles, the
CR is 0.87% and the Dice coefficient is 0.95, which shows an asymptotic improvement
up to a saturation point. Angular steps smaller than 5° did not bring any significant
improvement. If prior information is available, the CR improves to 93%.

3.7. Numerical Wave Sitmulations

The synthetic dataset experiments and studies above are limited due to their assumption
of ideal data created geometrically. As a more realistic simulation, we performed
numerical simulations of wave propagation. A tissue domain of size 45mm x40 mm
was simulated, where an inclusion of 5mm radius was located at the depth of 20 mm.
The inclusion had a speed-of-sound of 1548 m/s and the background 1515m/s, which
were simulating a tumor with 2.2% speed-of-sound contrast. The sampling frequency of
the transducer was set to 5 MHz.
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Figure 9. Quantitative metrics for baseline FDR and our proposed method SDR with
time measurements at multiple path angles. (a) shows Contrast Ratio (CR), (b) Dice
coefficient of inclusion, (¢) Root mean square error (RMSE), and (d) Background noise
04, The average of all simulation geometries in Fig. 8 is plotted.
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For the simulation we used finite-difference time-domain (FDTD) method (Sanabria
et al. 2015) in 2D. The model implements elastic wave propagation in terms of
particle velocity v, and stress tensor o,,, which leads to a system of equations
Oy = p 0,0 and 910y, = ChyrsOsvr in function of the density p, the elasticity
tensor Clg,s, and the corresponding stiffness properties. A pixel size of hgpprp = 5 pum
and a time step h; = 1.5ns were used, which allowed to accommodate the bandwidth
and dispersion effects, providing accurate time measurements down to 5ns for known
reflector positions (Sanabria & Goksel 2016). Multi-static data was simulated by running
N=128 simulations for each individual Tx excitation. Due to the high time precision
required, the simulations are computationally expensive, requiring 2.5 h per Tx element
with a Tesla K40c GPU, while the synthetic tests above can be simulated in a few
seconds. The results were binned to a pixel of 0.05mm and a sampling frequency of
24 MHz. A convolution-based scattering model (Bamber & Dickinson 1980, Mattausch
& Goksel 2018) with 120 scatterers-per-mm? was next simulated and used to modulate
the Tx-Rx channel data via fast convolution in the frequency domain. This allowed for
having high-frequency scattering effects that may go beyond the FDTD bandwidth.

Plane-wave data was then synthesized from the simulated multi-static data between
f=—15° and 15° with 0.5° steps and these images were beamformed with conventional
delay-and-sum algorithm. The displacement tracking algorithm described in Section 2.4
was applied between consecutive pairs of beamformed images. A signal correlation block
of 1 x 1Tmm? (52 x 3 samples) was used, with a search range of 0.125 us (5 samples).
The calculated delays were cumulated for time measurements 7, with respect to 0°, i.e.
for images at angles {—15, —13,..,15}° with 2° increments. As regularization constants,
~v=5000 for FDR and A=0.05 for SDR were used.

Fig. 10(a) shows wave propagation snapshots for a plane wave with §=0°, where
all 128 elements are excited, before it reaches the inclusion and at the center of the
inclusion. As one can see, the wave diffracts once it reaches the inclusion due to the
speed-of sound difference and a phase difference is observed. The B-mode image of the
domain is shown in Fig. 10(b). Since the same speckle density was used in inclusion
and background, the inclusion appears as isoechoic. Two bright lines are observed on
top and below the inclusion, corresponding to reflected ultrasound waves. These are
generated at the inclusion boundaries due to the acoustic impedance change. Fig. 10(c)
shows the input time measurements 7, at § = 15°. A similar triangular pattern in
Fig.2 can be observed, which indicates an increased speed-of-sound in the inclusion
region. Fig10(d) shows results for the baseline FDR algorithm, in comparison with
the proposed SDR reconstruction, as in Fig10(e). Lobular artifacts are observed at
the horizontal boundaries of the inclusion, which are associated to mode interference
for rays that are incident (quasi)parallel to the inclusion edges, for which, according to
Snell’s law, strong refractions occur. Speckle decoherence is observed at the boundaries
of the plane wavefront and in the near field region, which lead to shadow regions in the
speckle pattern (Fig.10(c)). Overall, these effects have a much larger impact on FDR
(Fig.10(d)), for which the inclusion position is distorted vertically by 2.4 mm, and SoS
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deviations (11.3 m/s, 0.72%) and strong artifacts are observed. The SDR reconstruction
shows a satisfactory inclusion delineation, with SoS values close to the baseline (error 0.3
m/s, 0.02%). Given the large area of missing displacement data, only a minor artifact
of SoS reduction is observed in SDR, beneath the stiff inclusion at a depth of 30mm.

The full-wave simulations show that, even if the exact speckle positions are not
known a priori (due to the unknown SoS distribution), relative displacements between
the same speckle patterns observed from different angular directions allow still to
reconstruct SoS images, with the uncertainties in the assumed geometric matrix L not
having a large impact in the reconstruction. The approximation of (4) is shown to
be valid since SoS variations in biological tissues are in general small, thus preserving
speckle coherence.

3.8. In-Vivo Data

To illustrate the clinical applicability of our method, we herein present first preliminary
in-vivo results. The data was recorded from a female patient (of 80-90 year-old age
group) with a breast lesion, which the biopsy later revealed as Invasive Ductal Carcinoma
(IDC). This preliminary data was acquired at the University Hospital of Zurich, as
approved by the institutional review board and local ethics committee.

Conventional B-mode ultrasound images and multi-static (full-matrix) data were
acquired using a SonixTouch ultrasound machine (Ultrasonix Medical Corporation,
Richmond, BC, Canada). We used a standard commercial ultrasound probe (L14-5,
Ultrasonix). The probe was operated at 5 MHz and is a linear array of N=128 transducer
elements with a pitch of 0.3 mm between elements, an element elevation of 7mm, and
a total aperture of 38 mm. Ultrasound echoes were recorded as a function of time.
The probe provides two-dimensional ultrasound imaging in a plane perpendicular to
the transducer elements, with the width of the image corresponding to the linear array
direction. Multi-static data was generated by sequentially transmitting an ultrasound
pulse by a single transducer element and simultaneously recording the echoes received by
all receiver elements. A multi-channel data acquisition board (SonixDAQ, Ultrasonix)

o(@) Wave propagation (b) B-mode _ (9 T (ps)

0 0 0 - 0 X
X(mm) x(mm) x(mm) x(mm) x(mm)

Figure 10. FDTD simulation of a domain with a circular inclusion at depth 20 mm.
(a) Wave propagation at different depths. (b) B-mode image of the domain. (c)
Displacement tracking for plane wave with § = 15°. (d) FDR baseline reconstruction.
(e) Our proposed SDR reconstruction. An angular range [—15° : 15°] is used in both
cases.
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helps collect raw pre-beamformed data in parallel with a sampling frequency of 40 MHz
and 12 bits per sample. The process is repeated for all transmitter elements, so that a
total of N? time traces were recorded in < 0.1s (about 100 MB).

Plane-wave data was synthesized from the multi-static data between §=—22.5° and
22.5° with 0.5° steps and the acquired images were beamformed with conventional delay-
and-sum algorithm. The displacement tracking algorithm described in Section 2.4 was
applied between consecutive pairs of beamformed images. This small angle step of 0.5°
between the image pairs prevented any speckle decorrelation. A signal correlation block
of 1 x 1Tmm? (52 x 3 samples) was used, with a search range of 0.125 us (5 samples).
The calculated delays were accumulated for time measurements 7,, with respect to 0°,
i.e. for images at angles {—22.5, —17.5,..,22.5}° with 5° increments. As regularization
constants, y=5000 for FDR and A=0.07 for SDR were chosen, for leading to visually
best results. No prior information about the inclusion geometry was used.

Conventional ultrasound B-mode image is seen in Fig.11(a). The B-mode image
consists of a hypo-echoic region followed by some acoustic shadowing. An accurate
delineation of the lesion was not possible from this B-mode image, but only its
lateral extent could be estimated by the clinical expert. Fig.11(b) shows the tracked
displacements 7, at ¢ = 12.5°. In accordance with Fig.2, positive and negative 7,
are respectively observed below the left and right sides of the inclusion region, which
indicates an increased SoS in the inclusion region. Fig11(c)-(d) show reconstruction
results for the baseline FDR algorithm in comparison with our proposed SDR.
Reconstruction color ranges were scaled individually to fit all SoS values reconstructed
by each method.

The time measurements 7, in Fig.11 show large regions where no reliable
displacement information could be extracted reliably (i.e. correlation coefficient gznce <
0.5). These are mostly the areas close to the transducer where near-field effects dominate
and a plane wavefront has not yet established as in Fig. 2. Moreover, in low-echogenicity
regions around the breast lesion, the signal falls below the noise floor of the system,
hindering an effective displacement estimation.
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Figure 11. In wvivo SoS imaging of an 88 year old woman with breast cancer :
(a) B-mode image; (b) displacement tracking for plane wave with 6; = 12.5°; (c)
reconstruction with FDR; and (d) reconstruction with proposed SDR. An angular
range of (—22.5°, 22.5°) was used.
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The baseline method FDR requires a complete set of 7 measurements for the entire
tissue region to perform the Fourier Transform, whereas our proposed SDR method can
effectively handle any missing tracking results, while still leveraging information from
other tracked locations. The combination of a large part of measurement data missing,
together with the noise of the speckle measurements, leads to a poor reconstruction with
FDR, in which the tumorous inclusions cannot be delineated. In particular, streaking
artifacts are observed. In Fig.11(c), a SoS reduction is observed behind the tumorous
inclusion (x = 0, y = 25). Moreover, a SoS elevation is observed at (x = 15, y = 25),
where the corresponding B-mode image shows no tissue distortion. In contrast, our
SDR algorithm delineates an inclusion geometry at (x = 0, y = 10) above the mid-range
SoS value (1580 m/s), as a single focal region as confirmed by biopsy and with a lateral
extent in agreement with that observed in B-mode. The sharp delineation of the lesion
is remarkable, considering the lack of time measurement information in and around
the tumor region. Similarly to the numerical example in Fig. 10, a potential artifact of
reduced SoS is observed beneath the tumor around a depth of 25mm. Nevertheless, this
cannot be confirmed as it can also be an actual heterogeneity in the breast tissue, and
will be the focus of future evaluations.

3.9. Accommodating Missing Information

For testing the handling of dropout regions above, we evaluated the in-vivo data, where
we first segmented the breast tumor geometry for carcinoma case in Fig. 11(d) as shown
below in Fig. 12(a). We then simulated relative delay measurements 7,, and estimated
speed-of-sound values while ignoring (b) and using (c) the dropout region mask in
Fig. 11(b). For both cases, SDR outputs are very close to ground-truth, with a SoS error
in the inclusion of 5 m/s (0.3%), where as FDR yields non-aligned reconstructions, with
5.1 mm vertical displacement for c¢), and strong deviations between both cases (20 m/s
error, 1.3%). Overall, the time delay information relevant to the reconstruction is located
below the tumor region, so drop out regions within the tumor or above have a minor
impact in the reconstruction. Additional tests (not shown) were performed for synthetic
geometries and different drop out region sizes, with 30% image dropouts being handled
effectively by SDR with minor distortion. For instance, in comparison to Fig. 10(e),
where artifacts of SoS reduction are observed in SDR reconstruction due to large regions
of missing displacements, in Fig. 12(c) the missing displacement information covers a
smaller region in the near field and these artifacts are no more observed in the SDR
results, while being still present in FDR.

4. Discussion and Conclusions

We propose a spatial-domain reconstruction method to calculate SoS distributions in
an arbitrary grid from the time measurements recorded by a conventional linear-array
transducer, given defined ultrasonic propagation paths. We assume in our imaging
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Figure 12. Simulation of in vivo speed-of-sound imaging output for testing the
handling of drop-out regions. (a) Segmentation of breast tumor; (b) simulated full
displacement tracking for plane wave with § = 12.5° (at noise level of 10%), and
reconstructions with FDR and SDR; and (c) results with simulated displacement
tracking in which the experimentally erroneous info was masked out. An angular

range of (—22.5°, 22.5°) was used in both cases.

model that speed of sound variations in the tissue are small, within a few percent.
Accordingly, ultrasound wavefronts are considered to propagate as straight ray paths of
minimal cross-section, thus neglecting ray trajectory variations due to physical effects
such as refraction, diffraction and interference effects. Our results of reconstructions
on full-wave numerical simulation data indeed show that this simplified propagation
model can produce satisfactory reconstructions. Speed-of-sound variation in function of
ultrasound pulse frequency is known to be small in human tissues (Levy et al. 2007),
and at low transmit powers, amplitude-dependent nonlinearities are minimal; thus wave
dispersion was considered herein to be negligible, therefore calculating a single group
velocity for speed-of-sound.

Quantitative speed-of-sound images are obtained, which can provide a biomarker
for tissue diagnosis and differentiation. Our numerical experiments illustrate that the
proposed SDR method allows for accurate reconstruction of sound speed maps with high
spatial resolution and contrast, and low RMSE using a minimum of only two plane-
wave transmit angles. The regularization parameter X is used to regularize the inverse-
problem using the geometric information based on the transmitter-receiver setup of the
transducer and local ray-path information. Due to limited angle tomographic nature,
especially at higher noise levels, the vertical resolution of our reconstructed images
decrease. With our pulse-echo approach using a conventional transducer, increased
number of angles for reconstruction are possible using higher steering angles, given
that transducer elements have sufficiently wide main lobe response. Higher steering
angles, however, limit the overlapping field-of-view (FoV) where scattering shifts and
thus reconstructions can be performed. Thus, to keep the FoV sufficiently large at
higher steering, larger transducer arrays (apertures) are in turn necessitated. One
key advantage of our method with respect to the previous state of the art is that it
can exclude regions of missing information in the reconstruction, therefore satisfactorily
accommodating varying overlapping FoVs between different angular pairs. Besides these
limitations, our solution strategy can easily be extended to other transducer geometries
by taking this into account in our forward problem (L) formulation in Eq. (4).

Speed-of-sound values are known to vary among patients and with pathology, and
different authors reported varying SoS values for malignant tissue (Li et al. 2009, Duric
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et al. 2010). Moreover, breast density differences may already present SoS variations
in healthy patients between approximately 1400 m/s (fatty breast) and 1550 m/s
(extremely dense breast) (Sanbria et al. 2018, Sak et al. 2015). The average SoS value
observed for the in-vivo results in Fig. 11(d) is 1618 m/s (£12m/s standard deviation),
corresponding to a 4.8% SoS increase with respect to the background SoS in that image.
This finding corroborates with prior speed-of-sound observations with full-angle USCT
of the breast, e.g. in (Andre et al. 2008). Although this is a promising in-vivo result,
further clinical evidence is required to confirm any observations and to assert medically-
relevant conclusions.

The inverse problem can be solved, even if time measurements are only available
for partial regions of the tissue domain. Therefore, the reliability of the measurements
can be directly incorporated, for instance, in terms of a correlation coefficient. Prior
inclusion delineations and arbitrary complex path geometries can be easily incorporated
with simple relations (scaling and additions). The latter can allow in the future to define
arbitrary measurement configurations beyond plane wave beamforming and correct for
physical effects such as wave refraction.

Our proposed method uses measurements of observed echo phase delays between
different lines of propagation, which thus uses pulse-echo measurements from single-
sided tissue access, in contrast to transmission USCT, e. g., with circular arrays (Duric
et al. 2010, Koch et al. 2015) and to those techniques that require a passive reflector
on the other side of the investigated tissue (Krueger et al. 1998, Huang & Pai-
Chi 2005, Sanabria & Goksel 2016). In contrast to other methods which use mis-
registration of ultrasound images when scanning the tissue from different angles (Kriicker
et al. 2004, Shin et al. 2010, Cho et al. 2014), our proposed method utilizes the echo
shift measurements, which is much more sensitive to sound-speed variations than use of
the envelope(Jaeger et al. 2015). In comparison to beam tracking technique (Robinson
et al. 1991, Kondo et al. 1990, Cespedes et al. 1992), in which two separated transducers
generate intersecting beams, our method can provide finer SoS resolution. We have
observed a loss of coherence and regions of missing information in the near field, which
the SDR reconstruction handles satisfactorily. An optimization and comparison of
different speckle tracking approaches, which was out of scope in this work, would be
still desirable in the future to improve displacement tracking.

The proposed method contributes to a group of recent developments, which can
be implemented as an add-on to conventional ultrasound equipment, particularly for
focal disease detection and diagnosis. Apart from breast scanning, a broad range of
applications can be envisaged for the musculoskeletal system, liver, kidney, spleen,
prostate, brain, and thyroid. In general, the proposed method can be used at any
organ site where conventional ultrasound imaging is used today. Future extensions
are envisaged to obtain other acoustic parameters, such as the acoustic attenuation,
to increase the reliability of the diagnosis across complex tumor populations. With
computational optimizations and use of GPUs, our ultimate goal is to display speed-
of-sound as a complementary modality overlaid on or shown side-by-side with standard
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B-mode ultrasound. We have herein focused on widely available pulse-echo ultrasound
linear probes, however, the proposed method is applicable to other probe geometries
(convex, three-dimensional) and ultrasound imaging setups, for instance, Automatic
Breast Ultrasound (ABUS)(Wenkel et al. 2008).
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Appendix A. Anisotropically-Weighted Total Variation

Considering limited-angle nature of our USCT problem, one can weight individual
directional derivatives differently, leading to the general form

1
IDaly =3 > loir1 = oijl + |oij — oijl) (A1)

i?j

where ¢ and j are discretization indices, in horizontal (x) and vertical (y) directions.
Taking the reconstruction outcome for different cost-function norm into account, ¢;-
norm was observed to improve image quality compared to f5 norm, potentially reducing
detrimental effects from outliers and allowing for an effective scaling between the two
terms (Boyd & Vandenberghe 2009).

We next extend the TV regularization to incorporate the available angular
information for each ray path. This has been shown recently to improve reconstructions
of an incomplete USCT problem (Sanabria & Goksel 2016). For defined wave paths,
the angular tomographic disparity [—#6, 6] available for each cell can be different at
different locations of the imaging field-of-view, due to the limited imaging aperture.
Nevertheless, such angular tomographic coverage is known geometrically for each cell,
and can be introduced accordingly in a spatial reconstruction. Hence, one can weight
the SoS (slowness) gradient contributions in different angular directions according to the
available ray information in these directions. The resulting regularization, combined
with the TV approach, is called “Anisotropically Weighted Spatial Regularization”
(AWTV).

In the simpler AWTV implementation (Sanabria & Goksel 2016), a constant & is
used as weight to balance horizontal and vertical gradients according to the available
ray information in each direction:

IDo|lawry = > Kloia; —oijl+ (1= K)loi 01 — 01, (A.2)

i,J
In ultrasound B-mode imaging, resolution is typically higher in the axial direction
of beam propagation. In computed tomography, however, reconstruction resolution
depends not only on the separability of backscattered echoes but also on the angular
coverage of projections. In limited-angle tomographic reconstruction problems such as
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the one presented here, missing projection directions prevent resolving gradients in the
orthogonal direction, therefore, a larger regularization is applied in these directions to
correctly delineate spatial transitions. With a conventional ultrasound transducer, as
in Fig. 1(a), ultrasound beams naturally propagate in the vertical direction Y or with
a moderate inclination # with respect to Y, while ultrasound beams in the horizontal
direction X cannot be synthesized. Therefore, we set a larger regularization for X
gradients than for Y gradients, in order to accommodate a higher constraint in the
directions where boundaries can be resolved. In particular, for the imaging setup
discussed in this paper, an optimum performance is attained with x = 0.9.
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