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Abstract
Despite many uses of ultrasound, some pathologies such as breast cancer still cannot

reliably be diagnosed in either conventional B-mode ultrasound imaging nor with

more recent ultrasound elastography methods. Speed-of-sound (SoS) is a quantitative

imaging biomarker, which is sensitive to structural changes due to pathology, and

hence could facilitate diagnosis. Full-angle Ultrasound Computed Tomography

(USCT) was proposed to obtain spatially-resolved SoS images, however, its water-bath

setup involves practical limitations. To increase clinical utility and for widespread

use, recently, a limited-angle Fourier-domain SoS reconstruction was proposed,

however, it suffers from significant image reconstruction artifacts. In this work,

we present a SoS reconstruction strategy, where the forward problem is formulated

using differential time-of-flight measurements based on apparent displacements along

different ultrasound wave propagation paths, and the inverse problem is solved

in spatial-domain using a proposed total-variation scheme with spatially-varying

anisotropic weighting to compensate for geometric bias from limited angle imaging

setup. This is shown to be robust to missing displacement data and easily allow for

incorporating any prior geometric information. In numerical simulations, SoS values

in inclusions are accurately reconstructed with 90% accuracy up to a noise level of

50%. With respect to Fourier-domain reconstruction, our proposed method improved

contrast ratio from 0.37 to 0.67 for even high noise levels such as 50%. Numerical full-

wave simulation and our preliminary in-vivo results illustrate the clinical applicability

of our method in a breast cancer imaging setting. Our proposed method requires

single-sided access to the tissue and can be implemented as an add-on to conventional

ultrasound equipment, applicable to a range of transducers and applications.

1. Introduction

Ultrasound (US) imaging is a low-cost, portable, easily accessible, real-time, and non-

invasive technology. Conventional B-mode ultrasound images show the reflectivity of
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tissue interfaces and scattering within the body. Although for many tissues this may

present contrast, yet it fails to differentiate others. In particular, for breast cancer

imaging, B-mode shows higher sensitivity than the gold standard X-ray mammography

to early-stage invasive cancers. However, it provides low specificity to differentiate

benign and malignant tumors, and thus cannot prevent unnecessary biopsies. Moreover,

B-mode image interpretation is still not a quantitative approach, with its outcome very

much dependent on operator experience (Arribas et al. 2016).

Biomechanical properties of soft tissues can be altered by pathological processes.

This may provide complementary information for clinical diagnosis to detect tissue

abnormalities. Since pathological tissues may cause changes in the biomechanical

properties of tissues, tissue elasticity has been used in medicine for centuries as a

diagnosis marker. Manual palpation is still commonly used for screening breast and

prostate tumors. However, this qualitative method is limited to superficial regions.

Quantification of tissue biomechanical properties using ultrasound has a high

potential for diagnosis and staging of diseases. Elastography is the “computerized

palpation”, where elastic properties of the tissue, e.g. Young’s or shear modulus or

shear-wave speed (SWS), are estimated from the displacement field measurements

in ultrasound images as a response to tissue excitations or perturbations (Ophir

et al. 1991, Eskandari et al. 2008, Sarvazyan et al. 2011, Goksel et al. 2013). However,

the specificity of elastography for differential diagnosis is limited, with measurements

varying strongly with the tissue mechanical loading state (Cosgrove et al. 2013).

An independent biomechanical intrinsic material characteristic is bulk modulus,

which relates to the propagation of longitudinal waves in the material, measurable by

ultrasound as the speed-of-sound (SoS). Measuring SoS has been shown to outperform

SWS for differentiation of common phantom and ex-vivo tissues (Glozman &

Azhari 2010), and has a strong potential for benign and malignant tumor differentiation

(Bamber & Hill 1981, Jeong et al. 2008, Li et al. 2009, Duric et al. 2010, Zografos

et al. 2015). A large clinical comparison study between SWS and SoS for breast lesion

differentiation is yet not available. Nevertheless, it was shown in several individual

studies that SoS is able to discriminate between adipose and fibrous tissues, and has

been applied in several clinical contexts such as breast density classification (Sak

et al. 2015, Sanbria et al. 2018), diagnosis of liver steatosis (Imbault et al. 2017) and

assessment of fatty musculoskeletal degeneration (Qu et al. 2017).

A family of methods called Ultrasound Computed Tomography (USCT) has been

proposed to quantitatively measure SoS (Jeong et al. 2008, Nebeker & Nelson 2012,

Duric et al. 2013). USCT reconstructs ultrasound propagation speed from transmission

measurements based on an elevated number of transducer elements located around

the inspected tissue, which is immersed in a degassed water tank. A tomographic

reconstruction scheme uses time delays and amplitudes of the ultrasound signal

transmitted along multiple angular directions. However, most body parts are not easily

submersible and hence are not accessible by USCT. Furthermore, this method requires a

bulky and burdensome setup and imaging work-flow, negating most advantages of typical
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ultrasound systems, and thus constraining its clinical translation. Medical applicability

of USCT is currently limited mainly to the breast. These systems allow for the automatic

imaging of the whole breast in a 3D coordinate system, familiar to radiologists and can

help reduce operator-dependency, thus having potential in screening and diagnosis.

For widespread clinical use of USCT capabilities, it would be desirable to use

standard ultrasound probes for SoS imaging. Ultrasound is currently used in the clinics

as a supplementary diagnostic modality, following an initial imaging modality – often the

X-ray mammography. Diagnosis in B-mode US images is currently based on qualitative

interpretation of lesion geometric features, with low specificity for lesion differentiation,

and therefore any suspicious cases ending up with biopsies as histology being the gold-

standard in diagnosis. Adding SoS capabilities to conventional ultrasound imaging

could improve lesion differentiation, thus reducing unnecessary biopsies and providing

early staging of cancers. Several approaches have been proposed to estimate SoS in

pulse-echo mode using reflected signals. Iterative optimization of average SoS values

based on the blurring effect of point-like structures in B-mode image reconstruction

or based on registration of ultrasound images acquired from different directions were

discussed in (Krücker et al. 2004, Shin et al. 2010, Cho et al. 2014), mostly aiming

for estimating a single homogeneous-equivalent SoS value for correcting aberration

artifacts. Another method (Byram et al. 2012) relies in the co-registration of different

ultrasound views for isolated bright point reflectors, such as a wire target, however, the

latter are typically not available in real tissue textures, which consist of diffuse speckle

patterns. Other early attempts to measure SoS distributions used a beam tracking

technique (Robinson et al. 1991, Kondo et al. 1990, Cespedes et al. 1992), in which two

separated transducers generate intersecting beams, but this can provide a very coarse

SoS resolution. More recently, a Fourier domain reconstruction has been proposed to

link echo phase shifts from different beamforming directions to reconstruct local SoS

variations, for reconstructing SoS images (Jaeger et al. 2015) and with preliminary

in-vivo results showing promise in differentiating abdominal tissue layers (Jaeger &

Frenz 2015b). This method, however, suffers from significant image reconstruction

artifacts and loss of resolution in the axial direction for moderate noise levels, i. e 10%

(20 dB) noise, or for incomplete echo shift datasets. As a result, it does not allow

quantitative interpretation of the SoS images, which limits its clinical applicability. To

address these challenges, spatial domain algorithms have been discussed as a possible

extension in (Jaeger & Frenz 2015a); however, to the best of our knowledge, a specific

method has not yet been proposed, nor quantitatively validated in the literature.

Another recent work demonstrated quantitative SoS imaging based on the time-of-flight

measurements to a passive reflector as the timing reference (Sanabria & Goksel 2016)

and a spatial domain regularization; however, this requires two-sided access to the

investigated tissue.

In this work, an SoS image reconstruction method is proposed by solving an inverse

problem directly in the spatial domain. This allows spatial-domain regularization, where

we utilize here an anisotropically-weighted total-variation method. This enables the
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delineation of tumorous inclusions, and the accurate prediction of their speed-of-sound

values. This reconstruction method utilizes a set of echo shift measurements in the

observed domain, which can be obtained using image registration and displacement

tracking techniques on different ultrasound transmitter excitations, such as plane-

wave transmits in different angles. With a spatial domain reconstruction, we can also

incorporate incomplete echo measurements and prior information about the inclusion

geometry. The proposed method only requires single-sided access to the tissue and is

applicable with a conventional ultrasound array transducer, being well-suited to image

internal organs such as the liver and the kidney. Furthermore, this can also significantly

simplify the clinical work-flow for organs in which double-sided access is still possible, in

particular the breast, since no water bath or additional hardware elements are necessary.

2. Methods

Below, we first present the SoS problem formulation and its spatial discretization

for differential time-of-flight measurements along arbitrary wave paths. Next our

proposed solution to the regularized inverse problem is introduced. Finally, a

practical beamformer implementation for producing different wave paths and differential

measurements is given.

2.1. Spatial Domain Reconstruction (SDR)

In the following, the wavefront propagation is estimated/represented by rays, similarly to

light propagation in optics. Without loss of generality, it is assumed that an ultrasound

transducer emits and receives ultrasound waves along a total of P wave propagation

paths p, corresponding to trajectories along which ultrasound waves propagate, as in

Fig. 1(a). Accordingly, the time delay tp for each path, also known as Time-of-Flight

(ToF), is defined as the time interval between the time of transmission and of reception

of the ultrasonic wave. To relate time and SoS quantities, the imaging region is first

discretized into a predefined grid [x, z] containing a finite number of cells C determining

the resolution of the image. With a path length lp,c per ray path p and grid cell c from

the transmitter Tx to an arbitrary scatterer S and back to the receiver Rx, the ToF

values can be calculated in function of the slowness σc (= vc
−1, the inverse of discretized

SoS) as follows:

tp =

∫
C

σdl ≈
C∑
c=1

lp,cσc. (1)

However, in general, the position of inner tissue structures is not accurately known, and

only relative time measurements τm along different paths can be obtained as:

τm =
P∑
p=1

wm,ptp. (2)
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Figure 1. Speed-of-sound (SoS) reconstruction setup. (a) Rays p1 and p2 represent

paths traversed by wavefronts arriving at point S for different plane-waves at angular

directions θ1 and θ2. Discretization for proposed Spatial Domain Reconstruction (SDR)

is also shown. (b) Wave path definition based on plane wave beamforming.

For each measurement m={1, . . . ,M}, τm provides relative time delays between

paths tp using the weights wm,p = {0,±1}. These relative delays summarize the sound

speed deviations accumulated along different wave propagation paths from the probe to

the acoustic scatterer S. Substituting (1) in (2), the relative time measurement can be

expressed as

τm =
C∑
c=1

(
P∑
p=1

wm,plp,c

)
σc =

C∑
c=1

Lm,cσc, (3)

where the last equation merges the path lengths lp,c and relative measurement weights

wm,p in a single linear combination of weighted path lengths Lm,c. The system (3) is a

forward problem, which can be expressed in a matrix form as

τ = Lσ, (4)

where L ∈ RM×C represents geometric information that depends on the transmitter-

receiver setup of the transducer. The slowness values per cell c are assembled in σ ∈ RC

and the time measurements τm in τ ∈ RM , respectively, and σ can be reconstructed

using (4).

A complete set of path orientations [−π, π] traversing each cell c is necessary for

a complete computed tomographic reconstruction (Kak & Slaney 1988). However, for

pulse-echo imaging with a conventional ultrasound probe with single-sided tissue access,

each cell is only traversed by a limited set of angular directions θ1, θ2. . . , thus the

reconstruction problem is incomplete. Moreover, relative path measurements lead to an

ill-conditioned matrix L. Therefore, we solve (4) as a regularized optimization problem:

σ̂ = arg min
σ
||τ − Lσ||1 + λ||Dσ||1 , (5)

where `1 norm total variation (TV) ((Sidky et al. 2006)) is used for edge-preserving

regularization. λ is the regularization constant and D, in a simple form, can be the

first-order discrete differentiation operator.
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2.2. Multi-Angle Anisotropically-Weighted Total Variation

Considering limited-angle nature of our USCT problem, i.e., with naturally lower

resolution in the axial direction, one can regularize gradients in each axes

differently. This leads to the following Anisotropically-Weighted Total-Variation

(AWTV) regularization (Sanabria & Goksel 2016):

||Dσ||AWTV =
∑
i,j

κ|σi+1,j − σi,j|+ (1− κ)|σi,j+1 − σi,j|. (6)

where i and j are discretization indices, in horizontal (x) and vertical (y) directions.

Derivation of AWTV is further elaborated in Appendix A. Similarly to (Sanabria &

Goksel 2016), κ = 0.9 was used, leading empirically to an optimum performance for the

imaging setup discussed in this paper as well.

Extending on this idea, one can also use multiple gradient directions in the spatial

regularization term, instead of two orthogonal gradient estimates, which is then referred

to as Multi-Angle Anisotropically-Weighted Total-Variation (MA-AWTV)

||Dσ||MA-AWTV =
∑
i,j

∑
α={α1,α2,...,αN}

κα|Dασ|, (7)

where Dασ=Dσ · eα is the directional derivative along the unit vector eα with angle α.

Given the maximum imaging angle θmax, the gradient directions α for a total of different

Nα directions are chosen as {αk} = {θk, 180◦ − θk} to ensure an optimum coverage of

the available angular directions with

θk = {0, θmax
1

Nα/2− 1
, θmax

2

Nα/2− 1
, . . . , θmax} . (8)

The weights are calculated based on the setup geometry and hence available projection

directions spatially at each cell as follows: For each wave path p crossing cell c, we

calculate the inclination θ of the wave path. If θ < θmax, we then increment the weight

κα of the closest gradient direction {α} with respect to θ by the geometric overlap of

path p with cell c. We then compute the mean {κα} over all cells, and use these set of

weights for the subsequent SoS reconstruction.

The proposed reconstruction problem using MA-AWTV is given as

σ̂MA-AWTV = arg min
σ
||τ − Lσ||1 + λ

∑
i,j

∑
α

κα|Dασ| , (9)

where the weights are normalized such that
∑

α κα=1. Note that not including the

directions outside the imaging angular span [−θmax, θmax] effectively assigns them

no regularization. This avoids over-constraining directions, for which no boundary

information is available, which reduces image artifacts. For conventional medical

ultrasound arrays, θ > 30◦ leads to strong grating lobes and cluttering and is typically

not used (Hoskins et al. 2010). The regularization term λ is an optimization constant

that balances the solution and regularization term. The quantitative speed of sound

values are then calculated from the slowness values as SoS =σ̂−1.
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2.3. Incorporating prior information

For cases when the position and geometry of inclusions are known a priori (for

instance, from an ultrasound B-mode image), a constrained reconstruction can be

defined to determine homogeneous SoS values robustly in the inclusions. For instance,

a target region can be a suspect breast lesion, for which tissue malignancy (BIRADS

classification) needs to be staged (Arribas et al. 2016). Proposed prior information

helps to reduce the number of degrees of freedom in the reconstruction inverse

problem. An average SoS value obtained with this approach in a suspicious lesion

may facilitate tumor classification and differential diagnosis (Sanabria et al. 2018).

Tumor heterogeneity via spatially-resolved images can be an additional diagnostic

factor. Given (9), prior information is incorporated to (5) as follows: all R values

σROI = {σ1, σ2, . . . σR} within a target region-of-interest (ROI) are grouped as a single

value σROI. Accordingly, the corresponding columns of the geometric matrix L can be

summed up lp,1σ1 + lp,2σ2 + . . . + lp,RσROI = (
∑R

c=1 lp,c)σROI = lp,ROIσROI. The columns

of gradient matrix D corresponding to σROI are also summed up, which leads to the

neighborhood derivatives vanishing inside the grouped ROI, leaving only regularization

along the circumference.

2.4. Multiple plane-wave transmits for a practical imaging scenario

An ultrasound probe consists of N transducer elements, each of which can be fired

individually as transmitter Tx or used as receiver Rx. Recording each combination

(which is called multi-static or full-matrix data) results in a total of N×N radio-

frequency (RF) wave traces A(t,Tx,Rx) in function of echo time t. Assuming linearity

in system electronics, scattering response, and acoustic propagation at low-power

ultrasonic signals, different beamforming processes (synthetic apertures) can then be

retrospectively constructed based on superposition from this data (Holmes et al. 2005).

For instance, by delaying, scaling and adding up these traces, one can synthesize full-

aperture plane, single-element circular, and collimated aperture wavefronts and focused

beams, among others. After such beamforming, relative delay measurements τm can be

taken between beamformed ray paths (Robinson et al. 1991, Cespedes et al. 1992, Byram

et al. 2012, Jaeger et al. 2015).

For the sake of simplicity and without loss of generality, we hereafter focus on full-

aperture plane-wave beamforming (Fig. 1(b)), which allows a direct comparison of our

reconstructed method with another recent method (Jaeger et al. 2015). In this case,

spatial diversity is obtained by controlling the angle of incidence θ of the plane wavefront.

Consequently, the same tissue position (x, y) can be accessed from two different wave

propagation paths (p1, p2) corresponding to two different angles (θ1, θ2). The weights

L are calculated by subtracting the ray path lengths lp,c at steering angle θ2 from the

ones at reference angle θ1. lp,c are calculated with ray tracing assuming straight ray

paths. A line anti-aliasing algorithm (Wu 1991) is used to avoid interpolation errors.

The relative time measurements τm at coordinate (x, y) can be obtained from the shift
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of point observed in images seen from these two angles.

Clutter may complicate time measurements τm if the matched tissue scatterer S

at (x, y) (Fig. 1(b)) is overlapped with echoes from other reflecting tissue structures.

Therefore, the received echoes at each receiver element Rx are delayed and summed to

achieve a focused beam, so that tissue reflectivity is maximized in a small region around

the desired measurement point (x, y). Applying both plane wave Tx beamforming and

focused Rx beamforming, tissue reflectivity (speckle) images B(x, y, θ) at different angles

θ are generated as:

B(x, y, θ) =
N∑

Tx=1

N∑
Rx=1

A(tRx − tTx,Tx,Rx) (10)

tRx = 1/vB(x sin(θ) + y cos(θ) +
√

(x− ξ ·Rx)2 + y2) (11)

tTx = 1/vB · Tx · ξ · sin(θ)/vB (12)

where tTx and tRx are respectively the transmit and receive delays, ξ is the transducer

inter-element separation (array pitch) and vB is the average speed of sound in the

medium. A nominal value of vB = 1540 m/s for soft tissue is used for beamforming.

Time measurements τ(x, y, θ) are obtained by registering the two images B1 =

B(x, y, θ) and B2 = B(x, y, θ + ∆θ). Speckle tracking methods are well-known in the

literature, such as based on cross-correlation or optical-flow (Lubinski et al. 1999, Pan

et al. 2009, Zahiri-Azar et al. 2010, Zahiri-Azar et al. 2011, Makhinya & Goksel 2015).

In this work, a one-dimensional correlation search is performed in y, using a zero-

normalized cross-correlation (ZNCC) (Pan et al. 2009) to find the vertical displacement

∆y at each point (x, y) (Fig. 2), from which τ = ∆y/vB/ cos(θ). The correlation

coefficient qZNCC, which ranges between -1 and 1, with the largest positive values

providing the best correlation, is used as a quality metric of the speckle tracking.

Due to the finite transducer aperture size, there are shadow regions in the imaging

area where a plane wavefront may not arrive and no time measurements can be recorded

(Fig. 1(b)). The proposed SDR method can handle these regions by simply excluding

them from the input τm measurements, since τm are independent from the reconstruction

grid σc. Time measurements collected at multiple different angles {θ1, θ2, . . . , θA} can

also be combined by stacking as input to (5) and solved together at once, in order to

increase accuracy and robustness.

3. Experiments and Results

The reconstruction was implemented in Matlab R© (The MathWorks, Inc.) with version

r2017b (2018). The optimization problems (A.2) and (9) were solved with the CVX

package (Grant & Boyd 2014, Boyd & Vandenberghe 2009), using the numerical solver

Mosek v8.0, which is a high-performance optimizer for large-scale Second Order Cone

Programming (SOCP) problems using an interior-point method. Cells with little

information, i.e. those traversed by < 1% of the rays in comparison to the most
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Figure 2. Plane-wave relative delay measurements τm at an angle θ2=20◦ with respect

to θ1=0◦. a) Setup, b) Simulated τm at noise level of 10%.

traversed cell, were not included in the reconstruction problem. A typical MA-AWTV

reconstruction in CVX presently runs in <30 s on an Intel R© CoreTM i7-4770k CPU @3.5

GHz with 16 GB RAM for a single frame and for a domain of size 40x38 mm with

0.3mm reconstruction discretization using a pair of plane-wave angular projections with

the same discretization resolution. For our synthetic tests, we first studied the effects of

noise, regularization, and parametrization in reconstructions using ray-based synthetic

data generation. This allows to study the effects of measurement errors using simulated

noise on identical forward and inverse problems. In order to study any physical wave

effects in reconstructions, we later used full-wave simulations of our physical acquisition

setup, to study image reconstruction from subsequent computed displacements. Finally,

we present reconstructed images from data collected with an ultrasound machine.

3.1. Synthetic Dataset via Ray-based Wavefront Modeling

Ten different examples of artificial inclusions were defined in a homogeneous tissue

with a depth and width of 40 mm, as shown in Fig. 3(a). The colorbar that is used

for the quantitative reconstruction outputs is shown on the left corner of the figures.

Background SoS was set to 1554 m/s and the inclusions are either 1538 m/s or 1570 m/s,

which correspond to 1% SoS contrast relative to the background, which is in the range of

pathophysiological changes in the breast tumor (Sanabria et al. 2018). P8-P10 simulate

smoothly varying SoS distributions. P10 was generated by multiplying P7 with a raised-

cosine window with 0.5 roll-off. P9 and P10 simulate vertical and horizontal gradients

in the background SoS, with a cosine reaised between 1540 m/s and 1554 m/s with 1.0

roll-off.

Relative time measurements τm were simulated at each cell c by comparing plane

wavefronts at angles θ1=20◦ and −20◦ with respect to θ2=0◦. To isolate image

degradation effects due to the incomplete reconstruction problem, τm values were directly

generated using ray tracing for calculating L and the same geometric weights L were

used in the inverse problem. To study sensitivity to errors in time-delay estimation,



Spatial Domain Reconstruction for Imaging Speed-of-Sound with Pulse-Echo US 10

time-delay errors were synthesized and added to the τm matrix, following a Gaussian

distribution with zero mean and a standard deviation expressed as percentage with

{1,2,5,10,20,50,56,63}% of the peak τm value for each simulated example, and hereafter

referred to as noise level. Frequency Domain Reconstruction (FDR) (Jaeger et al. 2015)

performed evaluations using a similar numerical simulation scheme, therefore allowing

us for a direct comparison herein.

An example of τm is plotted in Fig. 2 for tissue model P8 and a noise level of 10%.

The inclusion SoS is higher than the background. This leads to values τm>0 below

the left edge of the inclusion region (P), where the path θ2 through the background is

slower than the reference path θ1=0◦, which traverses the inclusion. Conversely, τm<0

are observed below the right corner of the inclusion region (Q), where only the path θ2
traverses the inclusion and is thus faster than path θ1.

3.2. Frequency- vs. Spatial-Domain Reconstruction

In Fig. 3 our proposed method Spatial Domain Reconstruction (SDR) is compared to

FDR. For SDR, the proposed MA-AWTV was used with three gradient directions. The

regularization parameters were adjusted via grid search separately for both FDR and

SDR cases to report the best possible image quality with each. For FDR, this led to a

regularization parameter γ=60 for noiseless case, γ=1000 for noise levels between 1% and

10%, and γ=3000 for noise levels between 20 and 63%. For SDR, the same regularization

constant λ=0.025 was used at all noise levels. Missing τm readings for regions outside

the overlap of angled plane-wave traversal were ignored implicitly by SDR, and were

set to zero in FDR. Results at four measurement noise levels ({0,1,10,50}%) are shown

qualitatively here in Fig. 3, whereas all results are evaluated and compared quantitatively

later in figures 6 and 7.

Fig. 3 shows that the FDR images present low contrast already at moderate

noise levels of 10%, e.g. the inclusion geometries in P2 and P4 cannot be resolved.

Image distortions such as resolution loss and strong streaking artifacts common with

limited-angle computed tomography algorithms and were previously reported in (Jaeger

et al. 2015) are also observed in the examples herein. Since ray paths orthogonal to the

imaging direction are missing, the image resolution is reduced in the vertical direction

y. Such strong streaking artifacts with FDR occlude the inclusions and also degrades

the vertical resolution (e.g., smearing the two circles in P6 into one blob) already at

noise level of 1%.

Given the same τm data, the proposed SDR method provides a visible image quality

improvement with respect to FDR. The SDR method achieves piecewise delineation

of homogeneous inclusions, effectively filtering out noise from the images. Both

reconstructions at zero noise level and up to a noise level of 10% show consistent

results, with minor image degradation. For instance, the two vertical inclusions in P6

are separable up to a noise level of 5% in Fig. 3. Any remaining artifacts include a loss

of vertical resolution for very flat inclusions (P4) due to limited angular information,
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Figure 3. (a) Reconstructions of 10 different examples of artificial inclusions in

homogeneous and non-homogeneous tissue samples, with the colorbar shown on top-

left. SoS reconstruction using the baseline method FDR (b)-(e) and our proposed SDR

with MA-AWTV (f)-(i) for different noise levels. Time measurements were simulated

at angles θ1=20◦ and −20◦ with respect to the reference angle θ2=0◦.

and the disappearance of one of the inclusions of P2 at a noise level of 10%, which

corresponds to a corner region where only a few τm measurements are available. For the

simulations of vertical and horizontal background (P9-P10), both methods could not

yield an accurate reconstruction, this is due to the fact that our regularization assumes

a piece-wise constant data.

3.3. Regularization Norm

We show in Fig. 4, SDR results with different data and regularization norms: `2-

norm regularization, Total Variation (TV), Anisotropically-Weighted Total Variation

(AWTV) with `1- and `2-norm in data term, and Multi-angle AWTV. For `2-norm

regularization, λ=0.0063 was found to be optimal. For TV, AWTV and MA-AWTV,
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the same regularization constant λ=0.025 as above was used. TV (A.1) provides piece-

wise homogeneous inclusions effectively eliminating streaking artifacts; however, due

to the limited angle information, a loss of resolution in the vertical direction y is still

observed. AWTV with κ=0.9 (A.2) effectively regularizes the reconstructions with the

available angular information while preserving the inclusion shape. AWTV with `1-

norm in the data term (Fig. 4(e)) yields a minor improvement in reconstruction quality

compared to AWTV with `2-norm data term (Fig. 4(d)). For remaining comparisons,

`1-norm data term was used. The use of multiple regularization directions with MA-

AWTV (9) improves the reconstruction for edges that are not axis-aligned. The

proposed SDR is superior to FDR regardless of the data and regularization norm.

Although FDR formulation is somewhat similar to SDR with `2-norm, the latter enables

implicit handling of inaccurate and missing (out of plane-wave overlap) displacement

readings, enabling better reconstructions seen herein. Of different SDR regularizations,

throughout this paper we used our proposed MA-AWTV as the choice for further

evaluations.

3.4. Sensitivity to Parameterization

SDR is observed to be robust against variations in the regularization constant λ, as

shown in Fig. 5. A single choice of λ?=0.025 was sufficient for good performance

for all inclusion geometries and noise levels. In addition, the reconstruction results

Figure 4. SoS reconstruction for artificial inclusions in Fig. 3 (a) and noise level of

10%, by using regularization alternatives. (a) FDR as baseline, (b) SDR with `2-norm

regularization, (c) SDR with TV, (d) SDR with AWTV (κ = 10) with `2-norm in the

data term, (e) SDR with AWTV (κ = 10) with `1-norm in the data term, (f) SDR

with MA-AWTV (the same as Fig. 3(h).
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were visually stable over an order of magnitude, i.e. λ=[0.0062, 0.05]. Too small λ

(e.g., λ=0.00062) introduce noise in the images, whereas too large λ lead to over-

regularization, which smears the inclusion geometries.

3.5. Quantitative Metrics for Evaluation

We used the following metrics (Varghese & Ophir 1998) to quantitatively evaluate and

compare reconstruction methods:

a) Background noise σ?bg calculated as the SoS standard-deviation in the background

region

b) Root-Mean-Square Error as

RMSE =

√∑C
c=1(v

?
c − vc)2
C

, (13)

where v?i and vi are the estimated and ground-truth SoS values at image cell c

c) Contrast Ratio in [%] as

CR = 100
|µ?inc − µ?bg|

µ?bg
(14)

where µ?inc and µ?bg are the mean values of SoS estimations in the inclusion and

background

Figure 5. SoS reconstruction using our proposed SDR for different regularization

constants λ at a noise level of 10%.
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d) Dice coefficient of inclusion as
2|c?inc ∩ cinc|
|c?inc| ∪ |cinc|

(15)

where c?inc and cinc are the regions of the reconstructed and ground-truth inclusions,

respectively. To delineate the inclusion in the reconstructed images, we used a SoS

cut-off value defined from the ground-truth as the mid-value between the preset

background and inclusion values.

RMSE provides a global quantitative assessment of image reconstruction quality,

while σ?bg provides the noise floor. CR has a quantitative diagnostic meaning, since

it describes the SoS contrast fidelity with which inclusions can be reconstructed. For

instance, for an inclusion with a SoS contrast of 1%, a CR = 0.5% indicates that the

inclusion is reconstructed with only half of its actual physical SoS contrast. Therefore, in

a diagnostic setting, a low CR would increase the number of false negatives and decrease

Negative Predictive Value (NPV). The Dice coefficient enables a quantitative assessment

of geometric fidelity for inclusion delineation in a synthetic setting, where ground-truth

contrast is assumed to be known for a reconstruction-independent delineation threshold.

These metrics were used to evaluate our proposed method SDR and the baseline

FDR for different noise levels and the geometries shown in Fig. 3. For each evaluation

metric, the average over all ten simulation examples are shown in Fig. 6. All metrics show

superior performance with SDR. For 1% noise level (SNR=40 dB) the CR is improved

from 0.5% with FDR to 0.99% with SDR, in excellent agreement with respect to the

ground truth at 1%. For moderate noise levels (10%, SNR=20 dB) SDR still achieves a

sufficient contrast of 0.90%, while the contrast of FDR drops to 0.37%. For very large

noise levels (for instance, 50%, SNR=6 dB), the CR of SDR drops to 0.67%. If prior

information about the inclusion geometry is available, the quantitative prediction is

significantly improved, as seen with CR=0.90% at the same noise level, as in Fig. 6(b).

RMSE metrics for smooth inclusion geometries are plotted in Fig. 7. The sharp P7 and

smooth P8 inclusions show comparable RMSE. TV may filter out SoS variations in the

reconstructions, which is observed by P9 and P10 showing relatively higher RMSE. In

all cases, SDR resulted in RMSE values lower than FDR, while also presenting a better

agreement with the ground truth.

3.6. Multi-angle Reconstruction

Reconstruction quality can also be improved by combining measurements from several

plane wave angles, instead of using only two angles as was in Fig. 3. SDR is better

suited than FDR for multi-angle reconstruction, since SDR can inherently handle and

seamlessly combine missing displacement readings from different angles. This is seen

with increasing number of τm observations in Fig. 8, where displacements with respect to

θ2=0◦ for 2 angles at θ1={±10}◦ were compared to 6 angles at θ1={±10,±20,±30}◦ and

12 angles at θ1={±5,±10,±15,±20,±25,±30}◦. A noise level of 50% was simulated to

represent a scenario of poor speckle tracking performance. While FDR does not show
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Figure 6. Quantitative metrics evaluated for baseline FDR and our proposed method

SDR at different noise levels, where average metrics from all simulation geometries in

Fig. 3 are plotted: (a) Contrast Ratio (CR); (b) Dice coefficient of inclusion; (c) root

mean-square error (RMSE); and (d) background noise σ∗
bg.
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Figure 7. Quantitative RMSE metrics for smooth digital phantoms P7-P10 evaluated

for FDR and our proposed SDR at different noise levels. Plots show the average across

5 noise realizations.

much visual improvement, SDR results significantly improve with increasing number of

plane-wave angles. For instance, smaller inclusions are resolved in examples P1 and P2,

and the vertical inclusions in P6 are separated. This is also confirmed by the quantitative

metrics (Fig. 9). By using 6 instead of 2 angles, the CR at noise level 50% improves

from 0.67% to 0.86% and the Dice coefficient from 0.87 to 0.94. For 12 angles, the

CR is 0.87% and the Dice coefficient is 0.95, which shows an asymptotic improvement

up to a saturation point. Angular steps smaller than 5◦ did not bring any significant

improvement. If prior information is available, the CR improves to 93%.

3.7. Numerical Wave Simulations

The synthetic dataset experiments and studies above are limited due to their assumption

of ideal data created geometrically. As a more realistic simulation, we performed

numerical simulations of wave propagation. A tissue domain of size 45 mm ×40 mm

was simulated, where an inclusion of 5 mm radius was located at the depth of 20 mm.

The inclusion had a speed-of-sound of 1548 m/s and the background 1515 m/s, which

were simulating a tumor with 2.2% speed-of-sound contrast. The sampling frequency of

the transducer was set to 5 MHz.
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Figure 8. SoS reconstruction at 50% noise level, using FDR (b-d) and

our proposed method SDR with MA-AWTV (e-g). Reconstructions with time

measurements at multiple path angles: (b,e) 2 angles at θ1={±20}◦, (c,f) 6 angles

at θ1={±10,±20,±30}◦ and (d,g) 12 angles at θ1={±5,±10,±15,±20,±25,±30}◦
with respect to the reference angle θ2=0◦.

Figure 9. Quantitative metrics for baseline FDR and our proposed method SDR with

time measurements at multiple path angles. (a) shows Contrast Ratio (CR), (b) Dice

coefficient of inclusion, (c) Root mean square error (RMSE), and (d) Background noise

σ∗
bg. The average of all simulation geometries in Fig. 8 is plotted.
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For the simulation we used finite-difference time-domain (FDTD) method (Sanabria

et al. 2015) in 2D. The model implements elastic wave propagation in terms of

particle velocity vp and stress tensor σpq, which leads to a system of equations

∂tvp = ρ−1∂qσpq and ∂tσpq = Cpqrs∂svr in function of the density ρ, the elasticity

tensor Cpqrs, and the corresponding stiffness properties. A pixel size of hFDTD = 5µm

and a time step ht = 1.5 ns were used, which allowed to accommodate the bandwidth

and dispersion effects, providing accurate time measurements down to 5 ns for known

reflector positions (Sanabria & Goksel 2016). Multi-static data was simulated by running

N=128 simulations for each individual Tx excitation. Due to the high time precision

required, the simulations are computationally expensive, requiring 2.5 h per Tx element

with a Tesla K40c GPU, while the synthetic tests above can be simulated in a few

seconds. The results were binned to a pixel of 0.05 mm and a sampling frequency of

24 MHz. A convolution-based scattering model (Bamber & Dickinson 1980, Mattausch

& Goksel 2018) with 120 scatterers-per-mm2 was next simulated and used to modulate

the Tx-Rx channel data via fast convolution in the frequency domain. This allowed for

having high-frequency scattering effects that may go beyond the FDTD bandwidth.

Plane-wave data was then synthesized from the simulated multi-static data between

θ=−15◦ and 15◦ with 0.5◦ steps and these images were beamformed with conventional

delay-and-sum algorithm. The displacement tracking algorithm described in Section 2.4

was applied between consecutive pairs of beamformed images. A signal correlation block

of 1 × 1mm2 (52 × 3 samples) was used, with a search range of 0.125µs (5 samples).

The calculated delays were cumulated for time measurements τm with respect to 0◦, i.e.

for images at angles {−15,−13, .., 15}◦ with 2◦ increments. As regularization constants,

γ=5000 for FDR and λ=0.05 for SDR were used.

Fig. 10(a) shows wave propagation snapshots for a plane wave with θ=0◦, where

all 128 elements are excited, before it reaches the inclusion and at the center of the

inclusion. As one can see, the wave diffracts once it reaches the inclusion due to the

speed-of sound difference and a phase difference is observed. The B-mode image of the

domain is shown in Fig. 10(b). Since the same speckle density was used in inclusion

and background, the inclusion appears as isoechoic. Two bright lines are observed on

top and below the inclusion, corresponding to reflected ultrasound waves. These are

generated at the inclusion boundaries due to the acoustic impedance change. Fig. 10(c)

shows the input time measurements τm at θ = 15◦. A similar triangular pattern in

Fig. 2 can be observed, which indicates an increased speed-of-sound in the inclusion

region. Fig 10(d) shows results for the baseline FDR algorithm, in comparison with

the proposed SDR reconstruction, as in Fig 10(e). Lobular artifacts are observed at

the horizontal boundaries of the inclusion, which are associated to mode interference

for rays that are incident (quasi)parallel to the inclusion edges, for which, according to

Snell’s law, strong refractions occur. Speckle decoherence is observed at the boundaries

of the plane wavefront and in the near field region, which lead to shadow regions in the

speckle pattern (Fig. 10(c)). Overall, these effects have a much larger impact on FDR

(Fig. 10(d)), for which the inclusion position is distorted vertically by 2.4 mm, and SoS
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deviations (11.3 m/s, 0.72%) and strong artifacts are observed. The SDR reconstruction

shows a satisfactory inclusion delineation, with SoS values close to the baseline (error 0.3

m/s, 0.02%). Given the large area of missing displacement data, only a minor artifact

of SoS reduction is observed in SDR, beneath the stiff inclusion at a depth of 30mm.

The full-wave simulations show that, even if the exact speckle positions are not

known a priori (due to the unknown SoS distribution), relative displacements between

the same speckle patterns observed from different angular directions allow still to

reconstruct SoS images, with the uncertainties in the assumed geometric matrix L not

having a large impact in the reconstruction. The approximation of (4) is shown to

be valid since SoS variations in biological tissues are in general small, thus preserving

speckle coherence.

3.8. In-Vivo Data

To illustrate the clinical applicability of our method, we herein present first preliminary

in-vivo results. The data was recorded from a female patient (of 80-90 year-old age

group) with a breast lesion, which the biopsy later revealed as Invasive Ductal Carcinoma

(IDC). This preliminary data was acquired at the University Hospital of Zurich, as

approved by the institutional review board and local ethics committee.

Conventional B-mode ultrasound images and multi-static (full-matrix) data were

acquired using a SonixTouch ultrasound machine (Ultrasonix Medical Corporation,

Richmond, BC, Canada). We used a standard commercial ultrasound probe (L14-5,

Ultrasonix). The probe was operated at 5 MHz and is a linear array ofN=128 transducer

elements with a pitch of 0.3 mm between elements, an element elevation of 7 mm, and

a total aperture of 38 mm. Ultrasound echoes were recorded as a function of time.

The probe provides two-dimensional ultrasound imaging in a plane perpendicular to

the transducer elements, with the width of the image corresponding to the linear array

direction. Multi-static data was generated by sequentially transmitting an ultrasound

pulse by a single transducer element and simultaneously recording the echoes received by

all receiver elements. A multi-channel data acquisition board (SonixDAQ, Ultrasonix)

Figure 10. FDTD simulation of a domain with a circular inclusion at depth 20 mm.

(a) Wave propagation at different depths. (b) B-mode image of the domain. (c)

Displacement tracking for plane wave with θ = 15◦. (d) FDR baseline reconstruction.

(e) Our proposed SDR reconstruction. An angular range [−15◦ : 15◦] is used in both

cases.
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helps collect raw pre-beamformed data in parallel with a sampling frequency of 40 MHz

and 12 bits per sample. The process is repeated for all transmitter elements, so that a

total of N2 time traces were recorded in < 0.1 s (about 100 MB).

Plane-wave data was synthesized from the multi-static data between θ=−22.5◦ and

22.5◦ with 0.5◦ steps and the acquired images were beamformed with conventional delay-

and-sum algorithm. The displacement tracking algorithm described in Section 2.4 was

applied between consecutive pairs of beamformed images. This small angle step of 0.5◦

between the image pairs prevented any speckle decorrelation. A signal correlation block

of 1 × 1mm2 (52 × 3 samples) was used, with a search range of 0.125µs (5 samples).

The calculated delays were accumulated for time measurements τm with respect to 0◦,

i.e. for images at angles {−22.5,−17.5, .., 22.5}◦ with 5◦ increments. As regularization

constants, γ=5000 for FDR and λ=0.07 for SDR were chosen, for leading to visually

best results. No prior information about the inclusion geometry was used.

Conventional ultrasound B-mode image is seen in Fig. 11(a). The B-mode image

consists of a hypo-echoic region followed by some acoustic shadowing. An accurate

delineation of the lesion was not possible from this B-mode image, but only its

lateral extent could be estimated by the clinical expert. Fig. 11(b) shows the tracked

displacements τm at θ = 12.5◦. In accordance with Fig. 2, positive and negative τm
are respectively observed below the left and right sides of the inclusion region, which

indicates an increased SoS in the inclusion region. Fig 11(c)-(d) show reconstruction

results for the baseline FDR algorithm in comparison with our proposed SDR.

Reconstruction color ranges were scaled individually to fit all SoS values reconstructed

by each method.

The time measurements τm in Fig. 11 show large regions where no reliable

displacement information could be extracted reliably (i.e. correlation coefficient qZNCC <

0.5). These are mostly the areas close to the transducer where near-field effects dominate

and a plane wavefront has not yet established as in Fig. 2. Moreover, in low-echogenicity

regions around the breast lesion, the signal falls below the noise floor of the system,

hindering an effective displacement estimation.

Figure 11. In vivo SoS imaging of an 88 year old woman with breast cancer :

(a) B-mode image; (b) displacement tracking for plane wave with θ1 = 12.5◦; (c)

reconstruction with FDR; and (d) reconstruction with proposed SDR. An angular

range of (−22.5◦, 22.5◦) was used.
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The baseline method FDR requires a complete set of τ measurements for the entire

tissue region to perform the Fourier Transform, whereas our proposed SDR method can

effectively handle any missing tracking results, while still leveraging information from

other tracked locations. The combination of a large part of measurement data missing,

together with the noise of the speckle measurements, leads to a poor reconstruction with

FDR, in which the tumorous inclusions cannot be delineated. In particular, streaking

artifacts are observed. In Fig. 11(c), a SoS reduction is observed behind the tumorous

inclusion (x = 0, y = 25). Moreover, a SoS elevation is observed at (x = 15, y = 25),

where the corresponding B-mode image shows no tissue distortion. In contrast, our

SDR algorithm delineates an inclusion geometry at (x = 0, y = 10) above the mid-range

SoS value (1580 m/s), as a single focal region as confirmed by biopsy and with a lateral

extent in agreement with that observed in B-mode. The sharp delineation of the lesion

is remarkable, considering the lack of time measurement information in and around

the tumor region. Similarly to the numerical example in Fig. 10, a potential artifact of

reduced SoS is observed beneath the tumor around a depth of 25mm. Nevertheless, this

cannot be confirmed as it can also be an actual heterogeneity in the breast tissue, and

will be the focus of future evaluations.

3.9. Accommodating Missing Information

For testing the handling of dropout regions above, we evaluated the in-vivo data, where

we first segmented the breast tumor geometry for carcinoma case in Fig. 11(d) as shown

below in Fig. 12(a). We then simulated relative delay measurements τm and estimated

speed-of-sound values while ignoring (b) and using (c) the dropout region mask in

Fig. 11(b). For both cases, SDR outputs are very close to ground-truth, with a SoS error

in the inclusion of 5 m/s (0.3%), where as FDR yields non-aligned reconstructions, with

5.1 mm vertical displacement for c), and strong deviations between both cases (20 m/s

error, 1.3%). Overall, the time delay information relevant to the reconstruction is located

below the tumor region, so drop out regions within the tumor or above have a minor

impact in the reconstruction. Additional tests (not shown) were performed for synthetic

geometries and different drop out region sizes, with 30% image dropouts being handled

effectively by SDR with minor distortion. For instance, in comparison to Fig. 10(e),

where artifacts of SoS reduction are observed in SDR reconstruction due to large regions

of missing displacements, in Fig. 12(c) the missing displacement information covers a

smaller region in the near field and these artifacts are no more observed in the SDR

results, while being still present in FDR.

4. Discussion and Conclusions

We propose a spatial-domain reconstruction method to calculate SoS distributions in

an arbitrary grid from the time measurements recorded by a conventional linear-array

transducer, given defined ultrasonic propagation paths. We assume in our imaging
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Figure 12. Simulation of in vivo speed-of-sound imaging output for testing the

handling of drop-out regions. (a) Segmentation of breast tumor; (b) simulated full

displacement tracking for plane wave with θ = 12.5◦ (at noise level of 10%), and

reconstructions with FDR and SDR; and (c) results with simulated displacement

tracking in which the experimentally erroneous info was masked out. An angular

range of (−22.5◦, 22.5◦) was used in both cases.

model that speed of sound variations in the tissue are small, within a few percent.

Accordingly, ultrasound wavefronts are considered to propagate as straight ray paths of

minimal cross-section, thus neglecting ray trajectory variations due to physical effects

such as refraction, diffraction and interference effects. Our results of reconstructions

on full-wave numerical simulation data indeed show that this simplified propagation

model can produce satisfactory reconstructions. Speed-of-sound variation in function of

ultrasound pulse frequency is known to be small in human tissues (Levy et al. 2007),

and at low transmit powers, amplitude-dependent nonlinearities are minimal; thus wave

dispersion was considered herein to be negligible, therefore calculating a single group

velocity for speed-of-sound.

Quantitative speed-of-sound images are obtained, which can provide a biomarker

for tissue diagnosis and differentiation. Our numerical experiments illustrate that the

proposed SDR method allows for accurate reconstruction of sound speed maps with high

spatial resolution and contrast, and low RMSE using a minimum of only two plane-

wave transmit angles. The regularization parameter λ is used to regularize the inverse-

problem using the geometric information based on the transmitter-receiver setup of the

transducer and local ray-path information. Due to limited angle tomographic nature,

especially at higher noise levels, the vertical resolution of our reconstructed images

decrease. With our pulse-echo approach using a conventional transducer, increased

number of angles for reconstruction are possible using higher steering angles, given

that transducer elements have sufficiently wide main lobe response. Higher steering

angles, however, limit the overlapping field-of-view (FoV) where scattering shifts and

thus reconstructions can be performed. Thus, to keep the FoV sufficiently large at

higher steering, larger transducer arrays (apertures) are in turn necessitated. One

key advantage of our method with respect to the previous state of the art is that it

can exclude regions of missing information in the reconstruction, therefore satisfactorily

accommodating varying overlapping FoVs between different angular pairs. Besides these

limitations, our solution strategy can easily be extended to other transducer geometries

by taking this into account in our forward problem (L) formulation in Eq. (4).

Speed-of-sound values are known to vary among patients and with pathology, and

different authors reported varying SoS values for malignant tissue (Li et al. 2009, Duric
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et al. 2010). Moreover, breast density differences may already present SoS variations

in healthy patients between approximately 1400 m/s (fatty breast) and 1550 m/s

(extremely dense breast) (Sanbria et al. 2018, Sak et al. 2015). The average SoS value

observed for the in-vivo results in Fig. 11(d) is 1618 m/s (±12 m/s standard deviation),

corresponding to a 4.8% SoS increase with respect to the background SoS in that image.

This finding corroborates with prior speed-of-sound observations with full-angle USCT

of the breast, e.g. in (Andre et al. 2008). Although this is a promising in-vivo result,

further clinical evidence is required to confirm any observations and to assert medically-

relevant conclusions.

The inverse problem can be solved, even if time measurements are only available

for partial regions of the tissue domain. Therefore, the reliability of the measurements

can be directly incorporated, for instance, in terms of a correlation coefficient. Prior

inclusion delineations and arbitrary complex path geometries can be easily incorporated

with simple relations (scaling and additions). The latter can allow in the future to define

arbitrary measurement configurations beyond plane wave beamforming and correct for

physical effects such as wave refraction.

Our proposed method uses measurements of observed echo phase delays between

different lines of propagation, which thus uses pulse-echo measurements from single-

sided tissue access, in contrast to transmission USCT, e. g. , with circular arrays (Duric

et al. 2010, Koch et al. 2015) and to those techniques that require a passive reflector

on the other side of the investigated tissue (Krueger et al. 1998, Huang & Pai-

Chi 2005, Sanabria & Goksel 2016). In contrast to other methods which use mis-

registration of ultrasound images when scanning the tissue from different angles (Krücker

et al. 2004, Shin et al. 2010, Cho et al. 2014), our proposed method utilizes the echo

shift measurements, which is much more sensitive to sound-speed variations than use of

the envelope(Jaeger et al. 2015). In comparison to beam tracking technique (Robinson

et al. 1991, Kondo et al. 1990, Cespedes et al. 1992), in which two separated transducers

generate intersecting beams, our method can provide finer SoS resolution. We have

observed a loss of coherence and regions of missing information in the near field, which

the SDR reconstruction handles satisfactorily. An optimization and comparison of

different speckle tracking approaches, which was out of scope in this work, would be

still desirable in the future to improve displacement tracking.

The proposed method contributes to a group of recent developments, which can

be implemented as an add-on to conventional ultrasound equipment, particularly for

focal disease detection and diagnosis. Apart from breast scanning, a broad range of

applications can be envisaged for the musculoskeletal system, liver, kidney, spleen,

prostate, brain, and thyroid. In general, the proposed method can be used at any

organ site where conventional ultrasound imaging is used today. Future extensions

are envisaged to obtain other acoustic parameters, such as the acoustic attenuation,

to increase the reliability of the diagnosis across complex tumor populations. With

computational optimizations and use of GPUs, our ultimate goal is to display speed-

of-sound as a complementary modality overlaid on or shown side-by-side with standard
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B-mode ultrasound. We have herein focused on widely available pulse-echo ultrasound

linear probes, however, the proposed method is applicable to other probe geometries

(convex, three-dimensional) and ultrasound imaging setups, for instance, Automatic

Breast Ultrasound (ABUS)(Wenkel et al. 2008).
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Appendix A. Anisotropically-Weighted Total Variation

Considering limited-angle nature of our USCT problem, one can weight individual

directional derivatives differently, leading to the general form

||Dσ||1 =
1

2

∑
i,j

(|σi+1,j − σi,j|+ |σi,j+1 − σi,j|) , (A.1)

where i and j are discretization indices, in horizontal (x) and vertical (y) directions.

Taking the reconstruction outcome for different cost-function norm into account, `1-

norm was observed to improve image quality compared to `2 norm, potentially reducing

detrimental effects from outliers and allowing for an effective scaling between the two

terms (Boyd & Vandenberghe 2009).

We next extend the TV regularization to incorporate the available angular

information for each ray path. This has been shown recently to improve reconstructions

of an incomplete USCT problem (Sanabria & Goksel 2016). For defined wave paths,

the angular tomographic disparity [−θ, θ] available for each cell can be different at

different locations of the imaging field-of-view, due to the limited imaging aperture.

Nevertheless, such angular tomographic coverage is known geometrically for each cell,

and can be introduced accordingly in a spatial reconstruction. Hence, one can weight

the SoS (slowness) gradient contributions in different angular directions according to the

available ray information in these directions. The resulting regularization, combined

with the TV approach, is called “Anisotropically Weighted Spatial Regularization”

(AWTV).

In the simpler AWTV implementation (Sanabria & Goksel 2016), a constant κ is

used as weight to balance horizontal and vertical gradients according to the available

ray information in each direction:

||Dσ||AWTV =
∑
i,j

κ|σi+1,j − σi,j|+ (1− κ)|σi,j+1 − σi,j|. (A.2)

In ultrasound B-mode imaging, resolution is typically higher in the axial direction

of beam propagation. In computed tomography, however, reconstruction resolution

depends not only on the separability of backscattered echoes but also on the angular

coverage of projections. In limited-angle tomographic reconstruction problems such as



Spatial Domain Reconstruction for Imaging Speed-of-Sound with Pulse-Echo US 24

the one presented here, missing projection directions prevent resolving gradients in the

orthogonal direction, therefore, a larger regularization is applied in these directions to

correctly delineate spatial transitions. With a conventional ultrasound transducer, as

in Fig. 1(a), ultrasound beams naturally propagate in the vertical direction Y or with

a moderate inclination θ with respect to Y, while ultrasound beams in the horizontal

direction X cannot be synthesized. Therefore, we set a larger regularization for X

gradients than for Y gradients, in order to accommodate a higher constraint in the

directions where boundaries can be resolved. In particular, for the imaging setup

discussed in this paper, an optimum performance is attained with κ = 0.9.
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