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Ab-initio calculation of femtosecond-time-resolved photoelectron spectra of NO2

after excitation to the A-band
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We present calculations of time-dependent photoelectron spectra of NO2 after

excitation to the A-band for comparison with XUV time-resolved photoelectron

spectroscopy. We employ newly calculated potential energy surfaces of the two lowest-

lying coupled 2A′ states obtained from multi-reference configuration-interaction cal-

culations to propagate the photo-excited wave packet using a split-step-operator met-

hod. The propagation includes the nonadiabatic coupling of the potential surfaces as

well as the explicit interaction with the pump pulse centered at 3.1 eV (400 nm). A se-

miclassical approach to calculate the time-dependent photoelectron spectrum arising

from the ionization to the eight energetically lowest-lying states of the cation allows

us to reproduce the static experimental spectrum up to a binding energy of 16 eV

and enables direct comparisons with XUV time-resolved photoelectron spectroscopy.

a)Electronic mail: hwoerner@ethz.ch
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I. INTRODUCTION

Conical intersections play a central role in the photochemistry of most molecules, determi-

ning the pathway of reactions in molecules of all sizes ranging from DNA to small molecules,

such as 1,3-cyclohexadiene, iodomethane or nitrogen dioxide. The latter is a prototypical

system to study the effect of a conical intersection, which, in NO2, connects the energetically

lowest lying excited state to the ground state. Its presence leads to complex femtosecond

dynamics in the electronically excited state after excitation around 400 nm and enables the

dissociation of the molecule after internal conversion to the ground-state surface. These pro-

perties as well as the limited number of electrons and nuclei make NO2 an ideal candidate to

benchmark high-level ab-initio calculations against suitable experimental observables. The

spectroscopic properties of NO2 have been determined with high accuracy1–9. However,

femtosecond time-resolved experiments have only recently become possible with the intro-

duction of multiphoton time-resolved photoelectron spectroscopy (MP-TRPES)10–15 (for a

review, see16) and time-resolved high-harmonic spectroscopy (TRHHS)17–22. Whereas these

techniques could be realized with state-of-the-art femtosecond lasers, their interpretation

is sometimes challenging because of the high peak intensities associated with femtosecond

laser pulses. The previous experiments on NO2 nicely illustrate this statement because

substantially different observations were reported with respect to the dynamics created by

single-photon excitation at 400 nm. For example, oscillations in the yield of NO+ and

slow (near-zero eV) photoelectrons were reported with periods ranging from 500 to 750

fs, in pump-probe experiments involving 400-nm and 267-nm laser pulses10,13,14. In con-

trast to this, oscillations with a period of ∼220 fs were observed in time-resolved mass

spectrometry23. Time-resolved high-harmonic spectroscopy revealed 1-2 oscillations with a

period close to 100 fs18–20. Notably, all of these observations were attributed to dynamics

induced by single-photon excitation in the vicinity of 400 nm. A distinctive feature of the

TRHHS results18 was the unequivocal demonstration of dominant single-photon excitation

through the wavelength dependence of the signals, i.e. the presence of the characteristic

few-picosecond dissociation time scale of NO2 for excitation above the dissociation thres-

hold at 3.23 eV (398 nm) and its absence for excitation below the threshold. This hallmark

of single-photon excitation in NO2 has not been reported in any of the MP-TRPES experi-

ments, although a small number of studies based on coincidence detection have established
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the contribution of single-photon excitation at long pump-probe delays (> 400−500 fs)12,14.

Recently, some of the present authors have applied extreme-ultraviolet (XUV)-TRPES to the

same excited-state dynamics in NO2
24. The application of single-photon ionization removes

the complications induced by the high peak intensities and reveals the genuine dynamics of

the photo-excited molecular system over its complete reaction path. The main motivation

for the present (theoretical) work was the interpretation of these novel experimental results,

as well as a possible future modelling of TRHHS or MP-TRPES results.

On the theoretical side, NO2 has been also been extensively studied. Potential-energy

surfaces of the energetically lowest lying electronic states of the neutral molecule25–33 and the

cation34,35 have been calculated for a long time and have reached a high level of accuracy. The

surfaces with the highest density of points so far were Davidson-corrected multi-reference

configuration-interaction (MRCI) calculations with the Dunnings correlation-consistent po-

larized valence quadruple zeta (cc-pVQZ) basis set36 for the two lowest electronic states of

the neutral molecule32 and MRCI cc-pVDZ36 calculations for the cationic molecule35. Some

of the surfaces have been used to calculate time-dependent wave packets after excitation,

lea to insights into the short-time dynamics37 and enabling the calculation of experimental

observables, such as photoelectron spectra and photoelectron angular distributions38. Ho-

wever, due to the strong dependence of the potential energies of the different states of NO2

on the nuclear coordinates (both in the cation as well as in the neutral molecule), there

are many accessible cationic states for a given binding energy after excitation at 400 nm.

This makes high-level calculations of photoelectron spectra very expensive. In this work, we

extend previous wave-packet calculations of two of the present authors37,38 to a larger grid,

enabling us to accurately describe the photodissociation. Simultaneously, we improve the

level of theory from complete active space self-consistent field (CASSCF) to MRCI, which

allows us to reach quantitative accuracy with respect to the dissociation threshold. We pre-

sent the results of full-dimensional quantum-mechanical wave-packet calculations on these

novel surfaces. Subsequently, we report the calculation of time-dependent photoelectron

spectra for comparison with recent experimental data from XUV-TRPES24 in an extended

range of binding energies for the channels leading to the two lowest lying states of 1A′, 1A′′,

3A′ and 3A′′ character of the cationic molecule within a semiclassical model.
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II. METHOD

A. Calculation of potential-energy surfaces

To describe the nuclear arrangement of NO2, we use three different coordinate systems:

internal coordinates, Jacobi coordinates39, and Cartesian coordinates (see figure 1).

mr
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r 1r = r
2

FIG. 1. Coordinate systems for NO2: Black: internal coordinates with the NO bond lengths r1

and r2, as well as the bond angle β. Green: Jacobi coordinates r,R, and θ. The coordinate R

is measured from the center of mass along the NO-bond, i.e. r2m = r2mO/ (mO +mN) from the

nitrogen nucleus, where mO and mN are the atomic masses of oxygen and nitrogen, respectively.

Orange: molecular-frame Cartesian coordinates. The molecule lies in the yz-plane. The origin is

located in the center of charge and z is pointing along the β-angle bisector.

The potentials, which are used in the wave-packet calculations and the photoelectron

calculations, are determined on the following grid:

r = 0.9Å + 2.625 · 10−2Å ir, (1)

with ir = 0, ... , 90,

R = 0.484375Å + 2.21875 · 10−2Å iR, (2)

with iR = 0, ... , 155,

θ = 180◦ − (45/64)◦ iθ, with iR = 0, ... , 250. (3)

This grid consists of 3.6 million points. For the electronic states of the neutral molecule,

28250 points were calculated and the remaining ones interpolated. The calculated points

were not equidistant. Their density was chosen to be high in the potential minimum, around

the conical intersection, and where problems with the interpolation on the grid occurred.

The number of points was increased until satisfactory potential surfaces up to an energy of
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3.5 eV of the (1)2A′ state above the lowest energy in the grid were achieved. The quantum-

chemistry calculations were performed using the Molpro suite40. We first determined the

two-state-averaged wave functions with the MC-SCF approach with a CAS(13,10)41,42 in a

simplified configuration, namely rinit1 = rinit2 = 1/2 (r1 + r2). This was taken as an initial

guess for a two-state-averaged CASSCF(13,10) calculation at the final configuration with a

subsequent MRCI(13,10)43–45 calculation. Here, (13,10) refers to the chosen active space: we

used 10 open orbitals with 13 active electrons. In the case of CASSCF calculations, the five

orbitals with the lowest energies were closed. For the MRCI calculation, two orbitals were

closed and three were frozen (core) orbitals. All calculations used the optimized augmen-

ted Dunnings correlation-consistent polarized valence quadruple zeta (aug-cc-pVQZ) basis

set36. The output was checked for convergence problems and, in case of errors, recalculated.

Configurations which could not be converged or resulted in energies which were significantly

different from the surrounding points were excluded. For the potential surfaces of the neu-

tral states, we tried to calculate the potential at 29174 grid points (i.e. 924 calculations did

not converge). For the potential surfaces of the cationic states, the number of points was

decreased (between 5864 and 6167 points), as they were not needed for the propagation.

Further details are given in appendix A.

The diabatization of the neutral adiabatic potentials was performed on the basis of a

phenomenological approach46,47 by maximizing the transition dipole moment µyD,12 between

the diabatic states. The reliability of this diabatization scheme has been numerically verified

in ref. 46. This leads to a diabatization angle

αµ =
1

2
atan2(µy11 − µ

y
22, 2µy12) , (4)

where µy11 and µy22 are the permanent dipole moments along the y-axis of the (1)2A′ and

(2)2A′ states, respectively, and µy12 is the transition dipole moment between them (see figure

1 for the definition of the y-axis). This method relies on the properties of the (1)2A1 and

(1)2B2 states (labeled in the C2v symmetry of the ground state) and fails when a third state

interacts significantly with these states. In these parts of the coordinate space, the mixing

angle was approximated. Generally, the angles were visually inspected for cuts along θ and

smoothly continued to 0, π/2, or −π/2, respectively. Figure 2 illustrates the diabatization

process. The treatment of areas with non-negligible coupling of a third state is further

discussed in the appendix B.
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FIG. 2. Illustration of the diabatization process. All plots are cuts through the hypersurfaces of

the lowest-lying electronic states of NO2 with r = 1.1625 Å and R = 1.7047 Å. (a) Calculated

permanent dipole moments of (1)2A′ and (2)2A′ along the y-axis (blue and red), as well as their

transition dipole moment (black). (b) Mixing angles: The black curve illustrates the mixing angle

calculated according to equation (4) and the green curve is the modified diabatization angle which

was used in the diabatization. (c) Final result of the diabatization: The adiabatic potentials

are colored in red and blue, the diabatic potentials in yellow and violet. The additional avoided

crossings around θ = 80◦ (between the first and second adiabatic state), 105◦ and 165◦ (both

between the second and third adiabatic state) were not diabatized.

The raw data attached to this paper includes the adiabatic energies, the diabatic energies

and coupling constants, the permanent dipole moments and transition dipole moments in

the y-direction between the two lowest 2A′ states of the neutral molecule, as well as the

adiabatic energies of each of the two lowest 1A′, 1A′′, 3A′, and 3A′′ states of the cationic
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molecule. The interpolation method is described in the appendix C.

B. Calculation of the vibronic wave packet

The vibronic wave packet was calculated with a split-step-operator method presented

before37. As the wave packet is calculated on a grid, the dissociating parts of the wave

function could not be fully described. Absorbing barriers were constructed48 and tested for

minimal reflection of the wave function at the edges of the grid. The optical potential has

the shape

Vopt(θ, R, r) = max(A(θ, R, r) , A(θ′, R′, r′)) . (5)

with

A(θ, R, r) = max(0,mr (r − rabs) , (6)

mR (R−Rabs) ,mθ (θ − θabs)) ,

where rabs = 3.0263 Å,mr = 1.2425 eV Å
−1
, Rabs = 3.7016 Å,mR = 1.1828 eV Å

−1
, θabs =

21.7969 deg, and mθ = −0.0139 eVdeg−1. The primed parameters are defined as the set

of Jacobi-coordinates using the center of mass along the other bond of NO2 (see equations

B1-B3). This definition ensures that the symmetry of the generated wave packet is not bro-

ken due to the absorption. The initial ground state wave function was found by calculating

an energy spectrum of a Gaussian centered at the equilibrium position49 and subsequent

filtering of the wave function with the lowest energy50. The energy of the ground state

wave function was determined to be 0.233 eV above the minimal energy on the grid, which

is in good agreement with the zero-point-energy derived from experimental vibrational fre-

quencies using the harmonic-oscillator approximation (0.228 eV). The wave function was

propagated with a split-step operator method49, explicitly including the dipole-coupling of

the two lowest-lying states due to the pump pulse37. The step size of a typical calculation

was 0.02 fs. The wave functions were saved every 1 fs to serve as input for further calcu-

lations. The following approximations had to be made; first, the rotational motion of the

molecules was not included. They were assumed to be aligned with their y-axis (cf. figure

1) along the polarization of the pump pulse. Second, the transition from the 2A1 ground

state to the 2B1 second excited state was neglected. Previous work51 showed this transition
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to be weak compared to the transition to the 2B2 state at excitation energies above 2.9 eV.

Third, the Renner-Teller coupling of the 2A1 with the 2B1 state around θ = 0◦ and θ = 180◦

was not treated.

To depict the results of a propagation, we project the ground state vibronic wave function

χ0 out of the total wave function according to

χproj(t) = χ(t)−
∫
R

χ0χ(t) dRχ(t) , (7)

and calculate partial densities along specific coordinates with

ρr = ρr2 =

∫ ∣∣∣χproj
i (r, R, θ)

∣∣∣2 sin θ dRdθ (8)

ρβ =

∫ ∣∣∣χproj
i (r1, r2, β)

∣∣∣2 sin θ r1
R

dr1dr2, (9)

where χproj
i denotes the vibrational wave function of state i without contributions of the

initial state.

C. Calculation of photoelectron spectra

Due to the number of the involved cationic states as well as their complexity, it was not

possible to calculate the photoelectron spectra by direct propagation of the wave functions

on the ionic surfaces38. Instead, we turned to a semiclassical model. The cross section σ for

a transition at the energy Etr can generally be written as

σ(Etr) =
πe2Etr

3ε0c

∑
a,b

Pa|〈Ψb| r̂ |Ψa〉|2δ(Etr − (Eb − Ea)) , (10)

where Pa is the population of the initial state, r̂ is the dipole operator, Ψa and Ψb are the

initial and final molecular wave functions, respectively, and Ea and Eb are their energies52.

Following the literature53, one can express equation (10) in terms of the nuclear coordinates

R and the electronic coordinates r by using the Born-Oppenheimer approximation as

σ(Etr) = C
∑
i,k,f,l

Pik

∫∫
〈ψi(R′) | r̂ |ψf (R′)〉χ∗ik(R′)

×χfl(R′)χ∗fl(R)χik(R) 〈ψf (R) | r̂ |ψi(R)〉

×δ(Etr − (Efl − Eik)) dR′dR, (11)

where ψi and ψf are the initial and final electronic wave functions, respectively, χik and

χfl are the initial and final nuclear wave functions with their vibrational quantum numbers
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collectively described by the indices k and l, and we collected the prefactors in C. Inserting

the semiclassical approximation54

Efl − Eik ≈ Vf (R)− Vi(R) , (12)

where Vi and Vf are the potential energies at coordinate R of the involved electronic states,

and the identity ∑
l

χfl(R
′)χ∗fl(R) = δ(R′ −R) (13)

one obtains

σ(Etr) = C
∑
i,k,f

Pik

∫
|〈ψf (R)| r̂ |ψi(R)〉|2 χ∗ik(R)

×χik(R) δ(Etr − (Vf (R)− Vi(R))) dR. (14)

This is known as the multidimensional reflection principle55,56 without the kinetic energy

correction57,58, because the approximation in equation (12) neglects effects of the vibronic

energy53 and thus assumes that the kinetic energies of the nuclei do not change during

the transition. As the electronic transition dipole moment µif (R) = 〈ψf (R)| r̂ |ψi(R)〉 as

well as the δ-function in equation (14) are independent of k, it can also be written in a

time-dependent form

σ(Etr, t) = C
∑
i,f

∫
|µif (R)|2 δ(Etr − (Vf (R)− Vi(R)))

×
∑
k

Pik(t)χ
∗
ik(R)χik(R) dR

= C
∑
i,f

∫
|µif (R)|2 δ(Etr − (Vf (R)− Vi(R)))

× |χi(R, t)|2 dR. (15)

For simplicity, we contracted Pi into χi, such that

Pi(t) =

∫
|χi(R, t)|2 dR. (16)

For photoionization, we define Vf = Ee
kin + Vcat,f , where Ee

kin is the kinetic energy of the

measured electron and Vcat,f the electronic energy of the cationic state, to get

σ(Etr) = C
∑
i,f

∫
|µif (R)|2 |χi(R, t)|2

× δ(Etr − Ee
kin − Vcat,f (R) + Vi(R)) dR. (17)
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As Etr is typically constant in an experiment, we substitute it with the binding energy

Ebind = Etr − Ee
kin

σ(Ebind) = C
∑
i,f

∫
|µif (R)|2 |χi(R, t)|2

× δ(Ebind − Vcat,f (R) + Vi(R)) dR. (18)

Because we did not diabatize the cationic potential energy surfaces, the adiabatic repre-

sentation of χi, Vcat,f , and Vi is used to evaluate equation (18). As the electronic structure

of the involved states is changing in this representation, |µif |2 is strongly configuration de-

pendent. We approximate the dipole matrix element as the norm of the Dyson orbital59–61

by using the sudden approximation, i.e. we disregard any continuum effects. The norm was

determined by calculating a three-state-averaged CASSCF(13,10) CI-expansion of the lowest

lying 2A′ states of the neutral molecule with the aug-cc-pVQZ basis set, with a subsequent

optimization of the CI-coefficients of all relevant states of the cation with invariant molecular

orbitals. See appendix D for more details. In figure 3, the behavior of |µif |2 for a cut along

θ is shown.

Using this approximation and defining the local ionization potential I ifp (R) = Vcat,f (R)−

Vi(R), the photoelectron spectrum is given by

σ(Ebind, t) = C
∑
i,f

∫
|χi(R, t)|2 |µif (R)|2

× δ
(
Ebind − I ifp (R)

)
dR. (19)

The cationic potential energies were shifted collectively by 0.32 eV in order to maximally

overlap the photoelectron bands with the experimental spectrum of NO2. Using the calcu-

lated time-dependent wave functions, photoelectron spectra of individual channels can be

calculated according to equation (19).

Depending on the excitation energy, a significant part of the wave function runs into the

absorption barrier at large R and r. To include the absorbed population into our model, its

spectrum σabs has to be approximated. To take the configuration dependence of the spectra

of the absorbed parts of the wave functions into account, we calculated the time-integrated

density

Pint(r, R, θ) =

∫
t

∣∣χproj(r, R, θ, t)
∣∣2 dt (20)

10



80 100 120 140 160 180

 / deg.

0

2

4

6

8

10

12

14

16

18

V
 /

 e
V

(2)
2
A

(1)
2
A (1)

3
A

(1)
3
A

(2)
3
A

0

0.2

0.4

0.6

0.8

|
if
|2

 /
 1

b

a

FIG. 3. Illustration of the calculated transition-matrix element |µif (R)|2 for the example of the

transitions from the two energetically lowest adiabatic 2A′ states (black curves in (b)) to the

cationic (1)3A′ (blue), (1)3A′′ (red) and (2)3A′′ (yellow) states in a cut through r = 1.1625 Å and

R = 1.7047 Å. (a) Dyson norm. The color indicates the final state and the line style the initial

state. (The legend is given in the lower panel.) (b) Cut through the potential surfaces of the states.

The magnitude of the overlap is strongly dependent on the electronic structure of the initial and

the final state. Avoided crossings in the involved states can lead to sharp changes in the Dyson

norm, as can be observed for the case of the transition from (2)2A′ to (2)3A′′ (dashed yellow line)

due to the crossing at θ = 140◦ in the final state. However, not all crossings lead to a change in

Dyson norm, as can be observed for the crossing of the neutral states at θ = 130◦ in the transition

to the (1)3A′ state (solid blue line).
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and from this the conditional probability density in r

Pcond(R, θ |r ) =
Pint(r, R, θ)∫

R,θ
Pint(r, R, θ) sin θdRdθ

. (21)

The photoelectron signal of the absorbed wave packet can then be approximated by

σifabs = C

∫
R,r≥rabs

Pcond(R) |µif (R)|2

×δ
(
Ebind − I ifp (R)

)
dR. (22)

The total photoelectron signal was then calculated using

σtot =
∑
i,f

σif (Ebind, t)

=
∑
i,f

σif0 (Ebind, t) + (1− P (t))σifabs(Ebind, t) , (23)

where σif0 (Ebind, t) is the photoelectron spectrum without absorbed contributions from state

i to state f and P is the total population in the grid. We simulated the limited energy

resolution of the experiment by convolving the resulting spectrum with a Gaussian with a

FWHM of 0.35 eV. To simulate the probe pulse, the spectra were convolved with a Gaussian

with a FWHM of 8 fs (electric field envelope).

III. RESULTS

A. Potential-energy surfaces

The potential-energy surfaces used in the propagation agree very well with earlier high-

level calculations and experimental values (see table I). The dissociation threshold, which

is shifted by -0.2 eV (-6.25 %) from the experimental value, shows the largest deviation. A

cut through the calculated potential energy surfaces with rNO = 1.625 Å is shown in figure

4.

B. Vibronic wave packets

The result of a wave packet propagation with a Fourier-limited excitation pulse of 8 fs

duration (FWHM of the electric field envelope), centered at 400 nm, and a peak intensity

12



TABLE I. Comparison of the calculated potential surface with Kurkal et al.32 and experimental

values.

this work Kurkal et al.32 Experiment

V / eV r1 = r2/a0 β/deg. V / eV r1 = r2/a0 β/deg. V / eV r1 = r2/a0 β/deg.

(1)2A1 minimum 0 2.258 134.0 0 2.2609 134.3 0 2.2551 133.92

(1)2B2 minimum 1.248 2.380 101.9 1.31 2.3659 101.9 1.213 2.3513 102.63

(1)2Πu minimum 1.766 2.266 180 1.726 2.263 180 1.834,5 2.3244,5 180

(1)2A1/(1)2B2 cusp 1.313 2.374 107.4 1.28 2.3590 106.6 1.21±0.091 2.3551 103.11

(1)2A′: NO + O 3.028 3.11 3.236,7

of 1 · 1012 W/cm2 is illustrated in figures 5 and 6. Figure 5 (Multimedia view) shows the

density of the excited wave packets with isosurfaces. It is a static representation of the

linked animation of the densities in steps of 1 fs. Figure 6 shows the partial densities in r

and β as defined in the equations (8) and (9) and the behavior of the populations in the

electronic states. Note that the partial density in r has to remain in the C2v symmetry of

the vibronic ground state equilibrium of the molecule, i.e. ρr = ρr2 = ρr1 . Thus, a molecule

which is strongly asymmetrically stretched is associated with density at small and large r

at the same time.

The excited wave packet initially moves symmetrically towards longer r1 and r2 and

smaller β and reaches the conical intersection within 12 fs after its excitation, where most of

the population transfers to the lower adiabatic state. The remaining part of the wave packet

scatters at the conical intersection and reaches a turning point at θ ≈ 100◦ and 14 fs, moving

back towards the conical intersection (cf. the upper panels of the figures 5a-d and 6b). The

excited wave packet on the lower adiabatic state reaches the turning point at β ≈ 88◦ later

(20 fs) and afterwards moves towards 180◦ (lower panels). In contrast to this, the turning

point in r occurs earlier (16 fs), leading to a maximal contraction of the molecule (around

24 fs), and a subsequent expansion (fig. 6a, bottom). Only during this extension is the

asymmetric stretch mode significantly excited, where one NO bond length oscillates around

the equilibrium distance, while the other oxygen moves towards the absorption barrier (at

3.0263 Å). Simultaneously, the wave packet spreads in the angle dimension. The leading

edge of the wave packet reaches the absorbing barrier after 87 fs (figures 5g-j and 6). The
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FIG. 4. Cut at r = 1.625 Å through the 2A′ potential energy surfaces of neutral NO2 in Jacobi

coordinates. The top panel (a) shows the adiabatic potentials, the result of the diabatization is

shown in the lower panel (b). In the back planes, a cut thorugh R = 1.35 Å is shown, and on the

right, cuts through θ = 128◦ are illustrated.

second crossing of the upper adiabatic wave packet over the conical intersection around 20

fs after the excitation (fig. 5b-d) leads to a second distinct wave packet on the lower surface,

which does not lead to fast dissociation. While the coherent vibration of one of the bond

lengths is visible until the end of the simulation (fig. 6a), the wave packet clearly disperses

very rapidly, such that no distinct variations in the wave-packet density can be observed for

times longer than ∼150 fs. The loss of population due to absorption is mainly caused by

the elongation of the bond length into the absorbing barrier at large r, rather than at small

β.

The chosen pump pulse excites 2.58 % of the sample. The adiabatic population dynamics

show that most of the excited population relaxes to the adiabatic ground state with the first

crossing of the conical intersection. The significant net transfer to the upper adiabatic state
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FIG. 5. Isosurfaces of the time-dependent difference in adiabatic nuclear densities in internal

coordinates calculated as ρi(t) = |Ψi(t,R)|2 − |Ψi(t = 0,R)|2. Blue are negative contributions, i.e.

where population was removed due to the excitation, and red are positive contributions. The black

line indicates the seam of the conical intersection. Linked is animated version of this figure in steps

of 1 fs (Multimedia view). An animation of the isosurfaces shown from another perspective is part

of the supplementary material.

around 38 fs correlates with the second crossing of the initially formed wave packet across

the conical intersection, visible in fig. 5e-f and 6b.

The results of our new calculations closely resemble the original work over the first 50-100

fs, i.e. before the wave packet has started to explore the dissociative regions of the potential

energy surface. This can be seen by comparing the population dynamics shown in fig. 6c

of the present article with fig. 3 of ref. 37. The population dynamics for longer delays are

also similar, i.e. the population of the upper diabatic state (red curve in fig. 6c) shows local
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grid is shown with the black dashed curve (left scale).
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(b) Adiabatic projected densities ρβ. (c) Populations: dotted lines represent the diabatic represen-

tation and solid lines the adiabatic representation. The total population in the grid is shown with

the black dashed curve (left scale).

16



maxima at 100 and 170 fs in both calculations. However, the local maxima are somewhat

less pronounced in the new calculations compared to ref. 37.

Experimentally, pump pulses of 8 fs are difficult to achieve and very challenging to apply

to single-photon excitation. The total excitation fraction indeed scales with the total pump

fluence, whereas multi-photon excitation and ionization scale faster than linearly with the

peak intensity. Therefore, it is challenging to achieve a sufficient excitation fraction (e.g.

> 1 %), while avoiding multi-photon processes with a short pump pulse. Recent experi-

mental work24 therefore used 56 fs long (FWHM of the electric field envelope, i.e. 40 fs

FWHM of the intensity envelope) excitation pulses. The longer excitation duration leads

to a significant broadening of the wave packets in configuration space, as can be seen in

figure 7. In particular, the longer pump pulse blurs the fine details of the fast wave-packet

motion in the bond-length coordinate, especially the predicted coherent vibrations in the

lower adiabatic state (fig. 6a). The slower dynamics in the bond-angle coordinate are less

affected by the long pump pulse. In this case, the dominant part of the wave packet mo-

ving to larger bond angles on the lower adiabatic surface is preserved (fig. 7b). The main

difference between the dynamics induced by the short and long pulses is the blurring of the

second wave-packet component created on the lower adiabatic surface around t=20 fs when

the conical intersection is approached for the second time. However, the relative amplitude

of this second wave packet component is small in fig. 6b, explaining why the dominant

features observed in the case of the 8-fs pulse are retained in the case of the 56-fs pulse.

A similar conclusion is reached when comparing the population dynamics in figs. 6c and

7c. The main features in the population dynamics induced by the long pump pulse can be

rationalized as a temporal convolution of the short-pulse dynamics with a Gaussian envelope.

In the picosecond time range, the dynamics are known to be complex. Individual re-

sonances show strongly varying dissociation constants close to the dissociation threshold,

leading to excitation-energy-dependent dissociation times62,63. In picosecond and femto-

second time-resolved experiments, due to the bandwidth of the excitation pulse and the

associated spectral averaging, a monotonic increase of the dissociation rates with increasing

excitation energies64,65 has been reported (see crosses in fig. 8b). This trend is reproduced

by our calculations. Figure 8a shows the adiabatic and total populations as a function of

time for different excitation energies. For all excitation energies, we observe an initial fast
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decay due to the coherent movement of a wave packet to the absorption barrier around 150

fs after excitation. Subsequently, the dissociation can be approximated by an exponential

decay. The extracted dissociation times τ , which are determined by exponential fits to the

total population at 250 fs < t < 10 ps are shown as black circles in fig. 8a. These results

cannot directly be compared with the experimental dissociation rates, because the latter

were obtained with picosecond pump pulses with correspondingly narrower spectra. We

have therefore converted the decay rates from the literature (crosses) into expected decay

rates induced by 56-fs pulses as described in Appendix E. The result is displayed as a red

line in fig. 8b. Our calculations reproduce the general trend of an increasing dissociation

rate with increasing excess energy and agree with the experimental results for excess energies

above 0.1 eV. Our calculations overestimate the dissociation rate at lower excess energies,

and in particular for the cases where the spectrum of the pump pulse is centered below the

dissociation threshold.

C. Photoelectron spectra

The time-dependent wave functions can be used to calculate extreme-ultraviolet time-

resolved photoelectron spectra24,66 according to equation 23. The time-dependent spectrum

of NO2, assuming an 8-fs long pump pulse centered at 400 nm and an 8-fs long probe pulse

centered at 45.75 nm (27.1 eV) with a bandwidth of 0.33 eV, is depicted in fig. 9a. In

this article, we concentrate on the analysis of the time-dependent photoelectron spectra

generated by these short pulses. The comparison of calculations with longer pulses and

experimental data will be shown in a future publication24. We consider all transitions from

the neutral (1)2A′ and (2)2A′ states to each of the energetically lowest-lying two states of

1A′,1 A′′,3 A′, and 3A′′ character of the cationic molecule. The spatially confined character

of the wave packets up to 70 fs after excitation leads to strong modulations in the spectrum.

For delays larger that 70 fs, i.e. when the wave packet covers a dominant fraction of the

available configuration space and one NO-bond is significantly elongated, the spectrum can

be structured into three parts: ionization of the NO-fragment leading to a band around

9.3 eV, ionization of the O-fragment leading to a sharp band around 13.3 eV, and the

hot ground state of NO2 leading to a broad band ranging from 10 to 14 eV, peaking at

12.3 eV. Note that significant loss of population in the grid only occurs for delays longer
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FIG. 8. Simulation of the picosecond dissociation dynamics of NO2: Results of wave packet

calculations with a 56 fs long excitation pulse centered at 2.95, 3.05 and 3.15 eV with a peak

intensity of 1 ·1012 W/cm2 in the top, middle and bottom panel, respectively. The total population

(black) and the population of the lower adiabatic state (blue) are indicated with the left scale, the

population of the upper adiabatic state (red) is indicated with the right scale. The parameter

τ is the lifetime of the excited molecule determined by a fit to Ptot = a exp(−t/τ) + b with t ∈

[0.25, 10] ps. (b) Decay constants vs. energy offset of the central pump energy Epump with respect

to the calculated dissociation energy E0 = 3.028 eV. The expected experimental femtosecond

response of the system was simulated with an exponential fit to the population when exciting with

a Fourier-limited laser pulse characterized by a gaussian spectrum centered at the pump energy63.

Experimental values were taken from picosecond time-resolved measurements64.
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than 100 fs (cf. figure 6). To illustrate the accuracy of the method, fig. 9b compares the

calculated spectrum of unexcited NO2 to the correpsonding experimental spectra. The

blue line shows the experimental spectrum reported by Baltzer et al.8 using He-I radiation

(21.2 eV), whereas the red line shows experimental spectrum obtained in our laboratory

using a 27.1 eV high-harmonic source24. The yellow line shows the calculated photoelectron

spectrum with all photoionization matrix elements µif set to unity, whereas the black line

shows the full calculation that uses the Dyson norm as an approximation to these matrix

elements. A good agreement is obtained between the full calculation and our experimental

spectrum. In particular the relative intensities are all reasonably well reproduced, the largest

deviation (of less than a factor of two) occurring for the band at 13.0 eV binding energy,

i.e. the (1)3B2 ((1)3A′) state of NO+
2 . This agreement motivates our use of the Dyson-norm

approximation in the present work. The comparison of the experimental results further

shows the significant variation of the photoionization cross section into the (1)3B2 ((1)3A′)

continuum as a function of the photon energy. The comparison of the two calculations further

shows the importance of including the photoionization matrix elements as the latter entirely

suppress the broad photoelectron band centered around 16 eV because the corresponding

photoionizing transitions are forbidden by Koopman’s correlations. The absence of the

photoelectron band with an onset at ∼17 eV from both calculations is due to the fact that

the corresponding states of the cation ((3)3A′ and (3)3A′′ according to ref. 8) were not

included in our calculation.

These calculations reveal the complex nature of the time-dependent photoelectron spectra

of the excited-state dynamics in NO2. The present calculations are therefore essential for

a detailed interpretation of experimental XUV-TRPES spectra, because they enable an

identification of the contributions of individual channels. The contributions of the different

channels are exemplarily shown for a pump-probe delay of 50 fs in 9c.

Figure 10 shows the signal arising from the ionization channel from the coupled states

of the neutral molecule to the (1)1A′ state of the cation in more detail. While the binding

energy of the photoelectron is determined by the local ionization potential Ip at the position

of the wave packet, the probability to ionize is determined by the photoionization matrix

element. Cuts through the potential surfaces along r and β are illustrated in the figure

10a, which give rise to the Ip shown in panel b. The electronic structures of the states lead

to a strongly varying matrix element along these cuts (panel b, right scale). A calculation
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FIG. 9. Calculated time-dependent photoelectron spectrum of NO2. (a) Total time-dependent

photoelectron spectrum of the excited part of the wave function. (b) Comparison of the static

spectrum calculated from the ground-state wave function with experimental spectra (red24 and

blue8). The calculation using a constant photoionization matrix element µif (yellow) shows a sig-

nificantly worse agreement with the experiment than the calculation including variable matrix ele-

ments (violet). (c) Individual contributions from different channels to the photoelectron spectrum

at a pump-probe delay ∆t of 50 fs. The contributions from different channels are differentiated

by their initial states (solid and dashed) and final states (colors). All spectra are normalized

with respect to the maximum of the cross-section of the first photoelectron peak (assigned to the

transition (1)2A1 → (1)1A1 around Ebind = 11.2 eV) of the static spectrum.
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with the transition matrix elements set to 1, as illustrated in panel c, shows the strong

modulations due to the movement of the wave packet. For example, the excitation in the

Franck-Condon region leads to the appearance of a peak at 8.1 eV, which is offset from

the binding energy of the corresponding band in the static photoelectron spectrum by the

excitation energy. The peak is shifting fast towards higher binding energies as the wave

packet moves towards the conical intersection (mainly along β). The crossing of the conical

intersection leads to the appearance of the transition from the lower adiabatic state, which

initially shows strong modulations due to the oscillation in β and r (see figure 6). The

intensity maximizes due to accumulation of density at turning points of the dynamics or,

on longer time scales, when the wave packet reaches areas where the local Ip is similar for

many configurations (e.g. when the molecule reaches configurations with an elongated r).

The spread of the wave packet in the potential leads to a spectrum with 4 eV width. If

one includes the ionization probability (fig. 10d), the direct interpretation of the spectra

becomes more complicated. Exemplarily, the ionization of the initially formed wave packet

is strongly suppressed, leading to the near-vanishing of the expected peak at 8.1 eV around

∆t = 0. In the case of the transition to the (1)1A′ state, the ionization of the NO fragment

is Koopman’s forbidden, such that the band is losing intensity when the molecule reaches

strongly stretched configurations. The large range of local Ips covered by the wave packet,

which leads to the overlap of contributions from many ionization channels, as well as the

strong influence of the matrix element, make it challenging to interpret experimental time-

resolved photoelectron spectra without extended theoretical modeling of the system24,66.

IV. CONCLUSION

The potential energy surfaces presented here are, to our knowledge, the most spatially

extended (for NO+
2 ) and are obtained at the highest level of theory (for NO2) published so

far. We performed full-dimensional wave-packet calculations on the electronic surfaces of the

neutral molecule, revealing the signatures of the conical intersection and extending the time

scale of previous studies to the picosecond range. This enabled us to report time-dependent

photoelectron spectra for a broad range of binding energies and involving many ionization

channels which are needed for a direct comparison to recent experimental results in XUV

time-dependent photoelectron spectroscopy (XUV-TRPES)24. The comparison allows for a
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FIG. 10. Illustration of the photoionization channels (1)2A′ → (1)1A′ and (2)2A′ → (1)1A′. (a)

shows the potential surfaces of the involved states in cuts along r1 with r2 = 1.190 Å and β = 134◦

(left) and β with r1 = r2 = 1.190 Å(right). The potentials of the neutral molecule are only shown

in regions which are energetically accessible to the wave packet. Both, the ionization potentials

depicted in (b) (left scale, blue), as well as the norm of the Dyson orbital (red, right scale) vary

strongly along the cuts. Panel (c) depicts the calculated photoelectron spectrum of the channels

with the matrix elements set to 1, while panel d illustrates the complete implementation of equation

19.
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stringent test of the ab-initio method presented here. The calculations allow interpretations

of time-dependent spectra of XUV-TRPES, laying the foundation for a quantitative evalu-

ation of such experiments. They also open the perspective for the quantitative interpreta-

tion of time-resolved high-harmonic spectroscopy and several other experimental techniques,

such as core-level transient absorption spectroscopy67 by using similar techniques. Finally,

NO2 is an ideal candidate to demonstrate electronic control over non-adiabatic wave-packet

dynamics68–70, one of the major perspectives of attosecond science.

SUPPLEMENTARY MATERIAL

The Supplementary Material available with this article consists of the following files:

• NO2 2Ap.txt: Adiabatic and diabatic energies of the doublet A′ states of NO2. Table

of potential energies and dipole moments along the y-axis of the two energetically

lowest lying doublet A′ states of the neutral NO2 molecule in dependence of the Jacobi

coordinates. The table is organized in 14 columns and has one header row. The first

three columns are the indices ir, iR and iθ according to equations (1) to (3) in the

main text of the article. The columns 4 to 6 are the associated Jacobi coordinates r,

R, and θ. The distances are given in Angstrom, the angle in degrees. The subsequent

two columns, 7 and 8, are the calculated adiabatic energies in eV of the (1)2A′ and

(2)2A′ states, respectively. Columns 9 and 10 describe the diabatic potential energies

in electron Volts. Column 11 is the coupling matrix element between the two surfaces

in eV. The columns 12 and 13 are the dipole moments along the y-axis of the two

states in debye. Column 14 is the transition dipole along the y-axis between the states

in debye. The dipole moments are direct outputs of the Molpro program. The sign of

the transition dipole moment is adjusted to correct for the arbitrary phase-flipping in

the calculation. The axis convention is given in figure 1 of the article.

• NO2 1Ap.txt: Adiabatic energies of the singlet A′ states of NO+
2 . Table of the adia-

batic potential energies of the two energetically lowest lying singlet A′ states of NO+
2

in dependence of Jacobi coordinates. The table is organized in 8 columns and has one

header row. The first five columns contain the same information as in the paragraph

above. The subsequent two columns, 7 and 8, are the calculated adiabatic energies in
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eV of the (1)1A′ and (2)1A′ states, respectively.

• NO2 1App.txt: Adiabatic energies of the singlet A′′ states of NO+
2 . Same as previous

item for the two energetically lowest lying singlet A′′ states of NO+
2 .

• NO2 3Ap.txt: Adiabatic energies of the triplet A′ states of NO+
2 . Same as previous

item for the two energetically lowest lying triplet A′ states of NO+
2 .

• NO2 3App.txt: Adiabatic energies of the triplet A′′ states of NO+
2 . Same as previous

item for the two energetically lowest lying triplet A′′ states of NO+
2 .

• WP8fs r 200fs.avi: An animation of the time-dependent wave-packet dynamics viewed

from a different perspective compared to Fig. 5.
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Appendix A: Potential surface calculations

For the calculation of the potential energy surfaces of the neutral molecule, two main

difficulties had to be treated. First, as can be seen in fig. 11, a sharp avoided crossing of

the second with the third 2A′ state at large θ and r below 1.5 Å led to an artificial jump

in the calculated energy of the lower state (indicated by an arrow). This was corrected by

calculating the relevant volume without state-averaging, and shifting the energy to maximize

the overlap at smaller θ. As the energy of the (2)2A′ state is larger than 4 eV and the diabatic

coupling of the lowest two states is negligible, no accurate energy of the higher state is needed

at these structures.
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FIG. 11. Illustration of the artifact at large θ and small r in the adiabatic potentials: Blue and

red: state-averaged potential surfaces. Yellow: single state calculation of the lower surface, shifted

for minimal deviation between 152 and 161 degrees.

Second, due to the approximation of the (3)2A′ state to the lower states at large R, three-

state averaged calculations had to be performed in these regions. The energy was shifted

for minimal deviation along R = 3.1469 Å.

Appendix B: Diabatization details

For r > rref = 1.8188 Å, the third 2A′ state couples too strongly to the other states to use

the phenomenological diabatization method. Instead, the angle was taken to be constant

(i.e. αD(θ, R, r > rref) = αD(θ, R, r = rref)), which was checked by comparing to cuts at

larger r. An example is shown in fig. 12. For large R, the same problem occurred. Here, the

construction of the diabatic potentials was more involved. We used an inherent property

of the Jacobi coordinates; for every set of Jacobi-coordinates (θ, R, r), there is a second set
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FIG. 12. Illustration of the diabatization process at long r. Shown are cuts through the hyper-

sufaces with R = 1.9266 Å and with r = rref = 1.8188 Å and r = r1 = 1.9500 Å, respectively .

(a) Mixing angles: The black curve shows the mixing angle calculated from the dipole moments at

r = rref (according to eq. 4) and the green curve its modification for the diabatization procedure.

The black dashed curve illustrates the calculated diabatization angle for r = r1. (b) Potential

surfaces for r = rref : the adiabatic potentials in red and blue, the diabatic potentials in yellow

and violet. (c) Potential surfaces for r = r1: same color code as in (b). Additionally, the dashed

curves indicate the diabatic surfaces calculated with the dipole-dependent mixing angle αµ (shown

as the black dashed curve in panel a). The proximity of the third adiabatic state leads to problems

with the phenomenological model of the diabatization. The mixing angle was approximated by the

values at r = rref .
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(θ′, R′, r′) with identical properties, where

r′ =

√
(mr +R cos θ)2 +R2 sin θ2, (B1)

R′ =

√
m2R2 + 2m (m2 − 1) rR cos θ + (m2 − 1)2 r2, (B2)

θ′ = atan2

(
rR sin θ

mr2 −m3r2 −mR2 + (1− 2m2)rR cos θ

)
, (B3)

m =
mO

mO +mN

. (B4)

Here, mO and mN are the atomic masses of O and N. The diabatic potentials around

(θ′, R′, r′) were used to interpolate the potential and extract a mixing angle for (θ, R, r).

For a set of coordinates with 2.0375 Å ≤ R ≤ 2.2594 Å, this enabled us to make an edu-

cated guess how to consistently extrapolate the mixing angle into areas (at small θ) where

three states interact. Further out, with R > 2.2594 Å, the interpolated mixing angles were

fitted with a heuristic function α = a arctan(b θ + c) + π/4 for each cut along θ.

Appendix C: Interpolation

The adiabatic and diabatic energies, as well as the dipole moments at the calculated points

were interpolated on the complete grid by iterative one-dimensional Akima-interpolations71.

Sections of the surface with at least six subsequent points with a maximal distance of d

between them were searched and the missing points in between them interpolated (only

interpolating up to the third point from each end of the array). The new set of points

was included in the similar next interpolation along the second dimension (R). This was

repeated along the first two dimensions with increasing d. Then, the interpolation along

the third dimension (r) was performed and the process repeated until no additional points

were generated anymore. Finally, the interpolation was extended to the data points at the

edge. For the interpolation along θ, the mirror plane at θ = 180◦ was taken into account.

As the interpolations of the diabatic and adiabatic surfaces were performed independently,

small errors had to be corrected afterwards: e.g., if the lowest diabatic energy at a certain

geometry was smaller than the lowest adiabatic energy, the diabatic energy was adjusted to

coincide with the adiabatic energy. The amplitudes of the diabatic coupling constant were

calculated from the interpolated surfaces. Its sign was taken from a direct interpolation of

the defined coupling constants at the calculated points of the grid.

28



Appendix D: Calculation of ionization probability

The calculation of the structure dependent transition strength is motivated by work of

Aberg59,72,73. Within the MC-SCF approach41, electronic states Ψ can be expanded in a

basis of Slater determinants φi as

Ψ =
∑
k

ckφk, (D1)

where ck are CI coefficients. The Slater determinants can be expressed as a sequence of

creation operators associated with the molecular orbitals (acting on the empty space)74,

resulting in expressions for the initial i and final states f

Ψi =
∑
k

ckφk =
∑
k

ck

N∏
r=1

(
â+r
)Sr,k |vac〉 (D2)

Ψf =
∑
l

clφl =
∑
l

cl

N∏
r=1

(
â+r
)Sr,l |vac〉, (D3)

where r runs over the number of (spin-)orbitals in the CI calculation and Sr,n are the

occupation-number vectors of the individual orbitals in the nth determinant. If we choose a

biorthonormal basis, the operators are the same for the neutral and cationic molecule. We

approximate the ionization probability within the sudden approximation as the norm of the

Dyson orbital of the transition from state i to state f 60,61

|Φif |2 =

∣∣∣∣∣∑
q

〈
Ψf
∣∣ âq ∣∣Ψi

〉
ϕq

∣∣∣∣∣
2

, (D4)

where ϕq are the individual orbitals associated with the annihilation operators âq. Using

the equations D2 and D3 this results in

|Φif |2 =
∑
q

∣∣∣∣∣∑
l

∑
k

ckcl

×

〈
vac

∣∣∣∣∣
1∏

r=N

(âr)
Sr,l âq

N∏
r=1

(
â+r
)Sr,k

∣∣∣∣∣ vac

〉∣∣∣∣∣
2

, (D5)

where we used the orthonormality of the individual orbitals ϕq. The bra-ket evaluates to ±1

or 0, depending on the occupation of the initial state and the number of permutations needed

to annihilate the qth electron from the initial state74. In practice, we evaluated equation

D5 by calculating the state averaged electronic structure of the three lowest 2A′ states
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with CASSCF(13,10) within the Molpro suite40 and subsequently, while not optimizing the

orbitals anymore, the three lowest cationic 1A′, 1A′′, 3A′, and 3A′′ states. All determinants

with ck, cl ≥ 0.0001 were included.

Appendix E: Calculation of expected experimental fs response

The femtosecond response illustrated in fig. 8b was caluclated similarly to a previously

presented method63. The picosecond decay rates from jet-cooled NO2
64 were interpolated to

a function kps(E) with the excitation energy E. The expected bound population PB after a

broadband excitation was then calculated as

PB(Epump, t) =

∫
E

Ipump(E,Epump) (1− exp(−kps(E) t)) dE, (E1)

where Ipump describes the intensity spectrum of the excitation pulse. We assumed a Fourier-

limited gaussian pulse centered at Epump with a FWHM of 56 fs. Subsequent monoexponen-

tial fits to the population PB(Epump, t) result in the energy-dependent femtosecond decay

constants.
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M. Spanner, Y. Mairesse, V. Blanchet, E. Mével, E. Constant, P. B. Corkum, and D. M.

Villeneuve, Science 334, 208 (2011).

19P. M. Kraus, Y. Arasaki, J. B. Bertrand, S. Patchkovskii, P. B. Corkum, D. M. Villeneuve,

K. Takatsuka, and H. J. Wörner, Phys. Rev. A 85, 043409 (2012).
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