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Abstract. In this paper, we deal with several reoptimization variants
of the Steiner tree problem in graphs obeying a sharpened β-triangle in-
equality. A reoptimization algorithm exploits the knowledge of an opti-
mal solution to a problem instance for finding good solutions for a locally
modified instance. We show that, in graphs satisfying a sharpened trian-
gle inequality (and even in graphs where edge-costs are restricted to the
values 1 and 1+γ for an arbitrary small γ > 0), Steiner tree reoptimiza-
tion still is NP-hard for several different types of local modifications, and
even APX-hard for some of them.

As for the upper bounds, for some local modifications, we design linear-
time (1/2+β)-approximation algorithms, and even polynomial-time ap-
proximation schemes, whereas for metric graphs (β = 1), none of these
reoptimization variants is known to permit a PTAS. As a building block
for some of these algorithms, we employ a 2β-approximation algorithm
for the classical Steiner tree problem on such instances, which might be
of independent interest since it improves over the previously best known
ratio for any β < 1/2 + ln(3)/4 ≈ 0.775.

1 Introduction

The Steiner tree problem is a very prominent optimization problem with many
practical applications, especially in network design, see for example [16,18].
Given a complete weighted graph G = (V,E) with edge cost function c and
a set S ⊆ V of vertices called terminals, the Steiner tree problem consists of
finding a minimum-cost connected subgraph of G containing all vertices from
S. The problem is known to be APX-hard, even if the edge costs are restricted
to 1 and 2 [4]. A minimum spanning tree on the terminal vertices is sufficient
for achieving a 2-approximation (see, e. g., [18]), and the best currently known
approximation ratio for the Steiner tree problem is 1+ln(3)/2 ≈ 1.55 for general
edge costs and 1.28 for edge costs 1 and 2 [19].

In this paper, we analyze the hardness of even more restricted input instances.
More precisely, we consider all instances where the edge costs are restricted to
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the values 1 and 1 + γ for any 0 < γ ≤ 1. Also this restricted problem variant
is known to be APX-hard [15]. In particular, restricting the edge costs in the
described way also covers the class of Steiner tree problems where the edge-costs
satisfy the sharpened β-triangle inequality, i. e., where the cost function c satisfies
the condition c({v1, v2}) ≤ β · (c({v1, v3}) + c({v3, v2})), for some 1/2 ≤ β < 1
and for all vertices v1, v2, and v3. The graphs satisfying a sharpened triangle
inequality form a subclass of the class of all metric graphs. Intuitively speaking,
for vertices that are points in the Euclidean plane, a parameter value β < 1
prevents that three vertices can be placed on the same line. For more details
and motivation of the sharpened triangle inequality, see [9].

For analyzing how the transition from metric Steiner graphs (β = 1) to
Steiner graphs with sharpened β-triangle inequality influences the computa-
tional hardness, we consider the question whether additional knowledge about
the input is helpful for finding a good solution. More precisely, we consider the
model of reoptimization algorithms which handles problems where an instance
together with one of its optimal solutions is given and the problem is to find
a good solution for a locally modified instance. This concept of reoptimization
was mentioned for the first time in [20] in the context of postoptimality analysis
for a scheduling problem. Since then, the concept of reoptimization has been
investigated for several different problems like the traveling salesman problem
[1,3,8,12], knapsack problems [2], covering problems [7], and the shortest common
superstring problem [6]. In these papers, it was shown that, for some problems,
the reoptimization variant is exactly as hard as the original problem, whereas
reoptimization can help a lot for improving the approximation ratio for other
problems, for an overview of some results see also [11]. These results show that
the reoptimization concept gives new insight into the hardness of the underlying
optimization problems and allows for a more fine-grained complexity analysis.

The Steiner tree reoptimization problem in general weighted graphs was pre-
viously investigated in [5,10,13] for various types of local modifications. We show
that eight reoptimization variants (insertion and deletion of terminal or non-
terminal vertices, increasing and decreasing edge costs, and changing the status
of vertices from terminal to non-terminal and vice versa) are NP-hard on graphs
with edge costs restricted to 1 and 1 + γ. The best approximation algorithms
for the four reoptimization variants considered in [5] (a terminal becomes a non-
terminal or vice versa; the cost of an edge increases or decreases) achieve a
constant approximation ratio in metric graphs, i. e., graphs that satisfy the tri-
angle inequality for β = 1. Here, we show that, on β-metric graphs, all of these
four cases permit, in contrast to the non-reoptimization problem, a PTAS for
any β < 1. When the local modification, however, consists in removing vertices,
we show that the Steiner tree reoptimization is as hard to approximate as the
original problem.

The two algorithmically most interesting reoptimization variants are the ad-
dition of terminal and of nonterminal vertices. For these modifications, we prove
the APX-hardness of the corresponding reoptimization variants, which solves
also the analogous open problem for reoptimization in Steiner trees with arbi-



trary edge costs. Escoffier et al. [13] designed simple linear-time algorithms for
metric input instances (β = 1) which achieve an approximation ratio of 3/2.
Using the same algorithms, but a much more complex and technically involved
analysis, we prove a (1/2 + β)-approximation for graphs satisfying a sharpened
β-triangle inequality. Note that the ratio (1/2 + β) tends to 3/2 for β tending
to 1 and to 1 for β tending to 1/2. These proofs employ a 2β-approximation al-
gorithm for the classical non-reoptimization version of the Steiner tree problem
in β-metric graphs which may be of independent interest since it improves over
the previously best known ratio for any β < 1/2 + ln(3)/4 ≈ 0.775.

2 Preliminaries

Given a graph G = (V,E) and a subset S ⊆ V of vertices, called terminals,
a Steiner tree for (G,S) is a subtree T of G spanning all terminals, i. e., T =
(V (T ), E(T )) is a tree such that S ⊆ V (T ) ⊆ V and E(T ) ⊆ E. The vertices in
V − S are called non-terminals.

In a weighted graph G = (V,E) with cost function c : E → Q+, a minimum
Steiner tree is a Steiner tree T of minimum cost, i. e., minimizing

∑

e∈E(T ) c(e)

over all Steiner trees ofG. In the remainder of the paper, we denote byG = (V,E)
a complete, undirected edge-weighted graph with a cost function c. The vertex
set V of G is also denoted by V (G) and the edge set E of G is also denoted by
E(G). Furthermore, we denote by S ⊆ V (G) the set of terminals of G. The sum
of the costs of all edges in a subgraphH of G is defined by c(H) =

∑

e∈E(H) c(e).

For the cost of an edge {x, y}, we use the notation c(x, y) instead of c({x, y}).
We are now ready to define the underlying optimization problem for our further
investigations.

The minimum Steiner tree problem (Min-STP) in connected edge-weighted
graphs is the problem of finding a minimum Steiner tree for an input instance
(G,S, c). If the cost function c satisfies the β-triangle inequality, the minimum
Steiner tree problem on the the input instance (G,S, c) is called Min-∆β-STP.
Similar to the Min-∆β-STP, we consider the problem Min-(1, 1 + γ)-STP, where
only edges of cost 1 and 1+ γ are allowed. The relation of the Min-∆β-STP and
the Min-(1, 1 + γ)-STP is as follows.

Lemma 1. For any graph G = (V,E) and any 0 < γ ≤ 1, any cost function
c : E → {1, 1 + γ} satisfies also the (1 + γ)/2-triangle inequality.

Proof. Let x, y, and z be three different vertices in V . If all three edges {x, y},
{y, z}, and {z, x} cost the same, then obviously our claim holds. Otherwise,
either two of the edges have cost 1 or two of the edges have cost 1 + γ. Since
1 + γ ≤ 1+γ

2 · (1 + 1), our claim also holds for these cases. ⊓⊔

We now formally define the reoptimization variants of Min-∆β-STP that we
consider.

Definition 1. The minimum Steiner tree reoptimization problem with the local
modification lm (Min-STRP-lm) is the following optimization problem. The goal



is to find a minimum Steiner tree for an input instance (G′, S′, c′), given an opti-
mal Steiner tree TOld for the instance (G,S, c), where (G′, S′, c′) = lm((G,S, c)).

We consider the following local modifications. When adding a non-terminal
(AddNonTerm), V (G′) = V (G) ⊎ {vNew}, S

′ = S, and c is the restriction of c′

to V (G). When adding a terminal vertex (AddTerm), V (G′) = V (G) ⊎ {vNew},
S′ = S ⊎ {vNew}, and c is the restriction of c′ to V (G). When removing a
terminal or non-terminal vertex v (RemNonTerm, RemTerm), V (G′) = V (G)\v,
S′ = S\v, and c′ is the restriction of c to V (G′). When increasing or decreasing
the cost of one edge e (IncEdge, DecEdge), G′ = G, S′ = S, c′(f) = c(f) for
all f ∈ E(G)\{e}, and c′(e) is larger or smaller than c(e), respectively. When
changing the status of a vertex v (Term→NonTerm, NonTerm→Term), G′ = G,
S′ = S\v or S′ = S ∪ {v}, respectively, and c′ = c.

The corresponding problem variants where the edge cost function c′ satisfies
the sharpened β-triangle inequality for some 1/2 ≤ β ≤ 1 and the variant with
edge costs in {1, 1 + γ} are Min-∆β-STRP-lm and Min-(1, 1 + γ)-STRP-lm,
respectively.

3 Reoptimization Hardness

All reductions in this paper require a transformation of an instance of the sat-
isfiability problem into a (1, 1 + γ)-Steiner tree instance. The following trans-
formation extends the one used in the NP-hardness proof for the Steiner tree
problem in [17].
Transformation 1. Let Φ be a SAT instance with m clauses CΦ

1 , C
Φ
2 , . . . , C

Φ
m

and n variables xΦ
1 , x

Φ
2 , . . . , x

Φ
n . We construct from Φ a (1, 1 + γ)-Steiner tree

instance (G = (V,E), S ⊂ V, c : E → {1, 1 + γ}). In the construction, we say
that two vertices are connected, if and only if the edge between these vertices
has cost one.

In V , there are m terminal vertices C1, C2, . . . , Cm representing the clauses
and 2 · n nonterminal vertices x1, x̄1, x2, x̄2, . . . , xn, x̄n representing the positive
and negative variables. Each Ci is connected to the k nonterminal vertices that
represent the literals within the clause CΦ

i . For connecting the variables, we
introduce a terminal vertex y. For every i, xi and x̄i are connected to y (see Fig.
1). The idea of the construction is to build a Steiner tree by connecting each
clause-vertex of a satisfied clause with exactly one variable-vertex. We have to
ensure, however, that for every i, either xi or x̄i is in an optimal Steiner tree.
To this end, we introduce auxiliary terminal vertices aij for i = 1, 2, . . . , n and
j = 1, 2, . . . , ⌈1/γ⌉. For any i and j, aij is connected to xi and to x̄i. Furthermore,
xi and x̄i are connected. All remaining edges have cost 1 + γ. Fig. 1 shows an
example of a Steiner tree for a satisfiable formula.

Normal Form. Given a (1, 1 + γ)-Steiner tree instance (G = (V,E), S, c) that
was constructed from a SAT formula using Transformation 1 and a Steiner tree
T within that instance, we construct a new Steiner tree T ′ that is at most as
expensive as T and satisfies some structural properties. In the following, we refer
to vertices xi and x̄i as variable-vertices and to the vertices Cj as clause-vertices.
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Fig. 1. Steiner tree for the formula (x1, x2, x4), (x̄1, x2, x3), (x̄1, x̄3, x̄4), (x̄2, x̄3, x̄4).
The squares are terminal vertices and the circles are non-terminal vertices. All edges
depicted in the graph have cost 1. All remaining edges have cost 1+ γ. The solid edges
form a minimal Steiner tree that corresponds to the assignment x1 = 1, x2 = 1, x3 = 0,
and x4 = 1.

In the Steiner tree in normal form, for each i, either xi or x̄i is connected to
the terminal vertex y and to all auxiliary vertices ai,j . Furthermore, all auxiliary
vertices are leaves. This way, the edges incident to the auxiliary vertices define
an assignment of the variables. We define X as the set of all variable-vertices
that are adjacent to auxiliary variables. Moreover, each clause-vertex Ci is a leaf
that is connected to a variable-vertex xj or x̄j and there is no clause-vertex that
is connected to a variable-vertex outside of X via an edge of cost 1 + γ.

In the following, we describe different types of “bad” structures that may be
contained in T and we give transformations to remove them. Each step has to
be repeated until all occurrences of that type have been eliminated.

(1) First, we ensure that each auxiliary vertex is a leaf in T ′. Let ai,j be an
auxiliary vertex in T that has (at least) two neighbors v1 and v2, such that v1
is not an auxiliary vertex. (Note that, since T is connected, the absence of such
a vertex ai,j of vertices means that all auxiliary vertices are leaves.)

We distinguish two cases. First, let us assume that c(ai,j , v2) = 1 + γ. Then
we replace the edge {ai,j, v2} by {v1, v2}. Otherwise, if c(ai,j , v2) = 1, we replace
{ai,j , v1} by {v1, v2}. Since v2 ∈ {xi, x̄i} in this case and c(xi, x̄i) = 1 for any i,
this transformation does not increase the cost of T ′. Eventually, after sufficiently
many repetitions of this step, each auxiliary vertex is connected to exactly one
vertex, and there are no edges connecting two auxiliary vertices.

(2) Since ⌈1/γ⌉ · γ ≥ 1, we can eliminate all edges of cost 1+ γ that are incident
to auxiliary vertices. If, for some i, all auxiliary vertices ai,j are connected with
cost 1+γ, then we can remove all of those edges, connect each of the vertices ai,j



to xi, and connect xi to y, which does not increase the overall cost. Otherwise,
at least one of the auxiliary variables is connected to either xi or x̄i. Then,
connecting each vertex ai,j to the same vertex (and removing the old incident
edge) results in a new Steiner tree that has at most the same cost as the old one.
If there is an i such that an auxiliary variable ai,j is connected to xi and another
auxiliary vertex ai,j′ is connected to x̄i, we connect all auxiliary variables to xi

and remove all edges to x̄i.

(3) Now, for each i, all auxiliary vertices aij in T ′ are connected to one vertex
vi ∈ {xi, x̄i}. Suppose that, for some i, vi is not connected to y. Then, since T ′

is a connected graph, there is path from vi to y that starts with an edge e. We
replace e by {vi, y}.

(4) Next, we ensure that the clause-vertices are only connected to variable-
vertices. Suppose that e is an edge in T ′ that connects two clause-vertices Ci

and Cj . From one of the two vertices, say from Ci, there is a path to y that does
not contain e. In this case, we remove e and connect Cj to a vertex-variable from
X . Similarly, we replace each edge between a clause-vertex and y by an edges
between that clause vertex and a variable-vertex from X . Therefore, we have
removed all edges between clause-vertices and non-variable-vertices. (Remember
that all auxiliary vertices are leaves.)

(5) To ensure that the clause-vertices are leaves, suppose that there is a variable
vertex vi (either xi or x̄i) that is not connected to y but it is connected to several
clause vertices. Then, since T ′ is a tree, there is exactly one clause vertex Cj

adjacent to vi that is connected to y by a path not containing vi. We remove
the first edge of the path and insert the edge {vi, y}.

Note that, if all variable-vertices connected to clause-vertices are also con-
nected to y, then any clause vertex that is not a leaf would have two disjoint
paths to y. But since T ′ is a tree, this cannot happen.

(6) Now we refine T ′ as follows. If there is any clause-vertex Ci that is connected
to a variable-vertex vj /∈ X with cost 1 + γ, then we replace the edge {Ci, vj}
by an edge between Ci and a vertex from X . If due to the transformation a
variable-vertex becomes a leaf, we remove its incident edge.

(7) Finally, we modify X and some of its incident edges. The purpose of this
step is to ensure that for each i, the majority of edges from clause vertices to the
variable-vertices xi and x̄i is incident to X . If there is a variable-vertex xi ∈ X
such that more clause-vertices are connected to x̄i via edges of cost 1 than to
xi, we connect all adjacent auxiliary vertices and all clause-vertices that are
connected to xi with cost 1+γ to x̄i instead and we update X by adding x̄i and
removing xi. For x̄i ∈ X , the transformation is analogous.

Lemma 2. Let Φ be a Boolean formula with m clauses and n variables. Then
the Steiner tree instance (G,S, c) obtained by applying Transformation 1 has an
optimal solution of cost (1+ ⌈1/γ⌉)n+m if and only if Φ is satisfiable and, if Φ
is not satisfiable, the cost of any solution is higher than that value. Furthermore,



from a satisfying assignment for Φ one can efficiently compute an optimal Steiner
tree in (G,S, c).

Proof. For distinguishing the clauses and variables of Φ from the correspond-
ing vertices in the Steiner tree instance, we denote the clauses by CΦ

i and the
variables by xΦ

i and x̄Φ
i .

First, let us assume that Φ is satisfiable. Similar as in the proof of Lemma 3,
we construct the following Steiner tree T . Let ϕ = (ϕ1, ϕ2, . . . , ϕn) ∈ {0, 1}n be
a satisfying assignment of Φ. For each variable xΦ

i , if ϕi = 1 then we connect all
auxiliary variables ai,j as well as y to the vertex xi. Otherwise, if ϕi = 0, then we
connect these vertices to x̄i. This way, the variable-vertices in the constructed
tree correspond to the assignment ϕ. Let X be the set of variable-vertices that
are now part of the constructed tree. For any clause CΦ

i that is satisfied by ϕ,
we use one edge of cost 1 to connect the clause-vertex Ci to a vertex from X .
Then the overall cost of the solution is ((1 + ⌈1/γ⌉)n+m. Since T is in normal
form and all clause-vertices are connected with edges of cost 1, T is minimal.

Now, let us assume that Φ is not satisfiable. Let T be a minimal Steiner tree
in normal form for the given instance, where the set X contains all variable-
vertices connected to auxiliary vertices. Then there is a subtree of T containing
all auxiliary-vertices, X , and m that has a cost of (1 + ⌈1/γ⌉)n. Since Φ is not
satisfiable, there must be at least one clause-vertex that has no edge of cost
1 to X . Thus, the cost of all edges for connecting the clause-vertices sums up
to at least m + γ. Therefore, the overall cost of the Steiner tree is at least
((1 + ⌈1/γ⌉)n+m+ γ > ((1 + ⌈1/γ⌉)n+m. ⊓⊔

For showing the hardness of approximation of the (1, 1+γ)-Steiner tree reop-
timization problem with adding vertices, we use a gap-preserving reduction from
Es-OCC-MaxEkSAT i. e., maximum satisfiability, where each variable occurs in
exactly s clauses and each clause consists of exactly k literals. We use formalisms
similar to [21].

Lemma 3. There is a gap-preserving reduction from Es-OCC-MaxEkSAT to
the (1, 1 + γ)-Steiner tree reoptimization problem with adding a single vertex by
transforming a Boolean formula Φ into a reoptimization instance consisting of an
old instance (GO, SO, cO), an optimal Steiner tree TO, and a modified instance
(GN , SN , cN ), such that

– if an optimal assignment for Φ satisfies at least p ·m clauses, then there is
a Steiner tree in G of cost at most m · ((1 + ⌈1/γ⌉)k/s+ 1 + (1 − p) · γ) +
m · ⌈1/γ⌉+ 1, and

– if an optimal assignment for Φ satisfies less than (p − ε) · m clauses, then
any Steiner tree in G costs at least m · ((1 + ⌈1/γ⌉)k/s + 1 + (1 − (p −
ε))min{γ, 2/s}) +m · ⌈1/γ⌉+ 1,

where m is the number of clauses and ε > 0 is a constant.

Proof. Our proof is structured as follows. For any input instance Φ of Es-OCC-
MaxEkSAT, we consider the input instance (Gt, St, ct) created by applying
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Fig. 2. Example of a Steiner tree as used in Lemma 3.

Transformation 1. In (Gt, St, ct), we replace the clause-vertices by gadgets, which
leads to a new Steiner tree instance (G,S, c) (see Figure 2). Within this instance,
we can efficiently compute an optimal Steiner tree. By adding a terminal or non-
terminal vertex z, however, we obtain a new input instance (GN , SN , cN). For
this instance, we give an upper and a lower bound on the cost of an optimal
Steiner tree depending on the number of clauses that are satisfiable within Φ.
With these bounds, the gap between p and p−ε translates into a new gap by ap-
plying the computed lower bound for p and the upper bound for p−ε. Note that
all intermediate instances and solutions can be computed from Φ in polynomial
time and thus they do not significantly help to solve (GN , SN , cN).

Let n be the number of different variables in Φ. For distinguishing the clauses
and literals of Φ from the corresponding vertices in the Steiner tree instance, we
denote the clauses by CΦ

i and the literals by xΦ
i and x̄Φ

i . Furthermore, let σ be
the value such that σ · m clauses of Φ are satisfied by an optimal assignment
ϕ ∈ {0, 1}n.

For each clause-vertex Ci, we introduce a nonterminal vertex C′
i and ⌈1/γ⌉

terminal vertices si,1, si,2, . . . , si,⌈1/γ⌉. In the following, we refer to these terminal
vertices as split-vertices. Each vertex C′

i is connected to all vertices belonging to
the gadget of its clause. Furthermore, for 1 ≤ i < m, the vertex si,1 is connected
to si+1,1. As before, all remaining edges have a cost of 1 + γ.

Using a similar argumentation as for the auxiliary vertices, we conclude that
there is an optimal Steiner tree that, for each i, contains all edges between C′

i

and its split-vertices. Furthermore, each such component has to be connected
to the remaining graph with a cost of at least 1. Thus each of these gadgets
adds a cost of at least 1 + ⌈1/γ⌉ to any solution, which sums up to at least



m · (1 + ⌈1/γ⌉) additional cost to an optimal solution for (G,S, c). Therefore,
applying Lemma 2, the cost of an optimal solution for (G,S, c) is at least (1 +
⌈1/γ⌉)n+m+m · (1 + ⌈1/γ⌉).

Now, we construct an optimal Steiner tree TO for (G,S, c). Without loss of
generality, let us assume that the clauses and variables are labelled in such a way
that CΦ

1 contains xΦ
1 . Then TO contains, for i = 1, 2, . . . , n, j = 1, 2, . . . , ⌈1/γ⌉,

and k = 1, 2, . . . ,m, all edges {y, xi}, {ai,j , xi}, {x1, C1}, {C1, C
′
1}, {C

′
k, sk,j},

and, for k = 1, 2, . . . ,m − 1, {sk,1, sk+1,1}. This way, TO is obviously a valid
Steiner tree and, since each of its edges is of cost 1, the cost of TO is (1 +
⌈1/γ⌉)n + 1 + (m − 1) + m · (1 + ⌈1/γ⌉), which we have already shown to be
optimal.

Now, the local modification is to add the vertex z in such a way that z is
connected to all vertices sk,j and to y. This way, we obtain the new, locally
modified instance (GN , SN , cN) with one added vertex.

We begin with the upper bound. To this end, we construct the following
Steiner tree. For each variable xΦ

i , if ϕi = 1, then we connect all auxiliary vari-
ables ai,j as well as y to the vertex xi. Otherwise, if ϕi = 0, then we connect
these vertices to x̄i. This way, the variable-vertices in the constructed tree cor-
respond to the assignment ϕ. Let X be the set of variable-vertices that are now
part of the constructed tree. For any clause CΦ

i that is satisfied by ϕ, we use one
edge of cost 1 to connect the clause-vertex Ci to a vertex from X . We connect all
clause-vertices of non-satisfied clauses to an arbitrary vertex from X with cost
1 + γ. Furthermore, we use all m · ⌈1/γ⌉+ 1 edges of cost 1 from z. The overall
cost of that Steiner tree is (1+ ⌈1/γ⌉)n+m+(1− σ)m · γ +m · ⌈1/γ⌉+1. Note
that the upper bound decreases with growing σ.

For the lower bound, note that, since we assume γ ≤ 1, there is an optimal
solution in normal form for (GN , SN , cN) that contains z and all its edges of cost
1. Suppose that, in some optimal solution in normal form, there is a vertex sk,j
that is not connected to z. Then, according to our argumentation above, we can
assume this vertex to be connected to C′

k. But then, connecting all splitting-
vertices of C′

k to z instead of to C′
k does not increase the cost of the solution.

We still have to ensure that the modified solution is connected. If the solution
already contains the edge {y, z}, then either Ck is connected to the remaining
tree and we are done or Ck is only connected to C′

k. In the latter case, there
must be an edge e in the given optimal Steiner tree that connects the gadget
of clause k to the remaining graph. By removing the two edges e and {Ck, C

′
k}

and adding an edge between Ck and a vertex from X , however, we obtain a
connected solution of at most the same cost. For amortizing the cost of {y, z},
we only need one clause gadget where its clause-vertex can be connected to X
with cost 1, which always exists in an optimal solution in normal form. With
this discussion, it is not hard to verify that an optimal solution does not need
the vertices C′

i.

Let T be an optimal Steiner tree for the given instance in normal form that
contains z and all of its incident edges of cost 1 and none of the vertices C′

i. The
subtree T ′ induced by the auxiliary variables, the vertex y, and the variable-



vertices that are connected to auxiliary variables has a fixed cost of (1+⌈1/γ⌉)n.
Additionally, all clause-vertices have to be in T . For each of them, there is an
edge of cost at least 1. There are at most σm clause-vertices connected to T ′ with
cost 1, since more such clause-vertices would imply that there is an assignment
ϕ′ that satisfies more than σm clauses in Φ. The remaining clause-vertices are
either connected with cost 1+γ to T ′, or they are connected to variable vertices
outside of T ′ with cost 1. In the latter case, however, the number of clause-
vertices connected to the same variable-vertex v is limited, because there are
exactly s clauses in Φ with the same variable. Furthermore, there cannot be
more than s/2 different clauses connected to v, since otherwise changing ϕ such
that v is in T ′ would satisfy additional clauses, contradicting the optimality of
ϕ. For connecting v to T ′, an edge of cost 1 is necessary. Therefore, the average
cost for connecting a clause-vertex to a variable-vertex outside of T ′ is at least
(s/2+ 1)/(s/2) = 1+ 2/s. Altogether, a lower bound on the cost of the optimal
Steiner tree is (1 + ⌈1/γ⌉)n+m+ (1− σ)mmin{γ, 2/s}+m · ⌈1/γ⌉+ 1.

Note that there are k·m literals in Φ, and each variable occurs exactly s times,
and therefore n = km/s. Therefore, the upper bound is m · ((1 + ⌈1/γ⌉)k/s+
1+(1− (p− ε)) · γ)+m · ⌈1/γ⌉+1 and the lower bound is m · ((1+ ⌈1/γ⌉)k/s+
1 + (1− p)min{γ, 2/s}) +m · ⌈1/γ⌉+ 1. ⊓⊔

With this preparation, showing the APX-hardness for adding vertices can
be done by using the APX-hardness of E5-OCC-MaxE3SAT [14]. For removing
a terminal or a non-terminal, a simple argumentation shows the corresponding
reoptimization problem to be as hard as the original problem.

Theorem 1. The problem Min-(1, 1 + γ)-STRP-lm for γ > 0 as well as the
problem Min-∆β-STRP-lm for β > 1/2 and lm ∈ {AddTerm,AddNonTerm,
RemTerm,RemNonTerm} are APX-hard.

Proof. For the Min-(1, 1 + γ)-STP, consider the problem E5-OCC-MaxE3SAT.
There is a ε such that it is NP-hard to decide whether all m clauses or at most
mε clauses are satisfiable [14]. Thus, due to Lemma 3, it is NP-hard to decide
whether an optimal Steiner tree in a (1, 1+γ)-Steiner tree instance with 1+(2+
⌈1/γ⌉) · (3m/5)+m+1 vertices costs at most m · ((1+⌈1/γ⌉)3/5+1+0 ·γ)+m ·
⌈1/γ⌉+1 or at leastm·((1+⌈1/γ⌉)3/5+1+(1−(1−ε))min{γ, 2/5})+m·⌈1/γ⌉+1.
This implies that there is no

(1 + ⌈1/γ⌉)3/5 + 1 + εmin{γ, 2/5}+ ⌈1/γ⌉+ 1/m

(1 + ⌈1/γ⌉)3/5 + 1 + ⌈1/γ⌉+ 1/m

= 1 +
εmin{γ, 2/5}

(1 + ⌈1/γ⌉)3/5 + 1 + ⌈1/γ⌉+ 1/m

approximation algorithm for the Min-(1, 1 + γ)-STP. For any β > 1/2, due to
Lemma 1, the Min-∆β-STP contains all instances of the Min-(1, 2β)-STP.

For the local modifications, where vertices are removed, we show that the
problem stays as hard as the original problem without reoptimization. More
precisely, we show that an α-approximation for any of the two reoptimization



problems implies an α-approximation for the Min-(1, 1 + γ)-STP. Therefore, the
APX-hardness of the reoptimization problems follows. Let (G = (V,E), S, c)
be a Min-(1, 1 + γ)-STP instance. We assume without loss of generality that
all optimal Steiner trees for that instance contain at least one non-terminal.
Otherwise, a minimum spanning tree on the vertices of S is an optimal solution.
Then we construct the instance (G′ = (V ′, E′), S′, c′) from (G,S, c) by adding a
new vertex v to V (either terminal or non-terminal) such that c′({v, w}) = 1 for
all w ∈ S and c′({v, w′}) = 1+γ for all w′ ∈ V \S. Since any optimal Steiner tree
in G has (due to the contained non-terminal) at least |S| edges, connecting v to
all edges of S yields an optimal Steiner tree in (G′, S′, c′). Now suppose that the
reoptimization problem, where (G′, S′, c′) and the discussed optimal solution are
given and (G,S, c) is the new, modified input instance, is α-approximable. Then
also the original problem is α-approximable since we can efficiently construct
the reoptimization problem and use its computed solution. ⊓⊔

Note that Theorem 1 implicitly provides an alternative proof for the APX-
hardness of the problems Min-(1, 1 + γ)-STP and Min-∆β-STP.

We now show that also the remaining reoptimization problems from Defini-
tion 1 are NP-hard.

Theorem 2. The Steiner tree reoptimization problem Min-(1, 1 + γ)-STRP-lm
is NP-hard for all local modifications from Definition 1.

We restrict ourselves to show only the hardness for the local modifications
NonTerm→Term and Term→NonTerm, since these two cases already contain
most of the required ideas. The remaining local modifications only require mi-
nor changes.

Proof. We reduce from SAT, let Φ be a CNF formula with m clauses and n
variables.

For Min-(1, 1 + γ)-STRP-NonTerm→Term, we construct a formula Φ′ and a
formula Φ′′ such that the transformation of Φ′′ is a locally modified instance of
the transformation of Φ′. Consider the formula Φ′, where a new variable x that
is added to each clause of Φ. It is clear that assigning 1 to each of the variables
satisfies Φ′. Let I ′ be the Steiner tree instance obtained by transforming Φ′

and adding a clause-vertex x̄ as non-terminal vertex.Due to Lemma 2, we can
compute a minimal Steiner tree T in I1 such that T has a cost of (1+⌈1/γ⌉)(n+
1) + m. For constructing a modified instance I2, let us consider the formula
Φ′′ obtained by adding the clause {x̄} to Φ′. Then the instance I2 is the same
instance as I1, except that the non-terminal clause-vertex x̄ now is a terminal
vertex. For satisfying Φ′′, the assignment of x has to be 0. Therefore, Φ′′ is
satisfiable if and only if Φ is satisfiable. Thus, due to Lemma 2, Φ is satisfiable
if and only if I2 has a minimal Steiner tree of cost (1 + ⌈1/γ⌉)(n+ 1) +m+ 1.

The reduction for Min-(1, 1 + γ)-STRP-Term→NonTerm is similar to the
previous one, but I1 has two additional clause-vertices {x} and {x̄}. The clause-
vertex {x} is then removed in I2. The formula Φ′ that corresponds to I1 is not
satisfiable (since no assignment satisfies both clauses {xΦ} and {x̄Φ}), according



to Lemma 2 no solution for I1 has a cost of less than (1 + ⌈1/γ⌉)n + m + γ.
But taking a solution as for NonTerm→Term and connecting {x̄} directly to the
variable-vertex x has a cost of exactly (1+ ⌈1/γ⌉)n+m+γ. Thus, a solution for
I1 can efficiently be computed, but as for NonTerm→Term, solving I2 optimally
is as hard as deciding the satisfiability of Φ. ⊓⊔

4 Approximation Algorithms

We start this section by presenting an approximation algorithm for the problem
Min-∆β-STP. This algorithm, besides being interesting by itself, will be useful
for some of the subsequent approximation algorithms for reoptimization.

In any instance (G,S, c) consisting of terminals only, i. e., if S = V (G), the
minimum spanning tree is an optimal solution to the minimum Steiner tree
problem. Intuitively speaking, the minimum Steiner tree problem can be viewed
as the problem of finding a subset Y of non-terminals which minimizes the cost
of a minimum spanning tree on S ∪ Y over all possible choices of Y . But also in
those graphs in which the optimal solutions contain non-terminal vertices, the
minimum spanning tree on the set of terminals gives a useful approximation of
the minimum Steiner tree. To estimate the quality of this approximation, we
need the following technical lemma for the subsequent approximability result.

Lemma 4. Given an input instance (G,S, c) for Min-∆β-STP, for some 1/2 ≤
β ≤ 1, and a minimum Steiner tree TOpt for this instance, let T1, . . . , Tk be the
maximal subtrees of TOpt consisting of non-terminals only. For any Ti, let N(Ti)
be the set of neighbors of Ti in TOpt. Then there exists a connected subgraph H
of G with the following properties.

1. V (H) = S,
2. H contains a cycle on the vertices of N(Ti) for all i ∈ {1, . . . , k}, and
3. c(H) ≤ 2β · c(TOpt).

Proof. If there exists an optimal solution TOpt without non-terminals, then H =
TOpt is a minimum spanning tree and thus c(H) = c(TOpt) ≤ 2β · c(TOpt).

Let T1, . . . , Tk be the maximal subtrees of TOpt consisting of non-terminals
only. For all i ∈ {1, . . . , k}, let T ′

i be the subtree of TOpt containing exactly the
vertices V (Ti)∪N(Ti). Let Ci be the cycle on the vertices of N(Ti) as ordered by
a depth-first traversal of T ′

i (see Fig. 3). In T ′
i , there are no neighboring terminals,

which means that there do not exist any two terminals v1, v2 ∈ V (T ′
i ) such that

{v1, v2} ∈ E(T ′
i ). This implies that every edge in Ci is a shortcut of at least two

edges from TOpt. From this, and since the depth-first traversal visits every edge
exactly two times, the cost of Ci can be estimated by c(Ci) ≤ 2β · c(T ′

i ).
Let Ecircus =

⋃

1≤i≤k E(Ci) be the set of all cycle edges and let Earbor =
EOpt−

⋃

1≤i≤k E(T ′
i ) be the set of all edges between terminals in TOpt. The graph

H is the union of the cycles Ci, for all i ∈ {1, . . . , k}, together with the subtrees of
TOpt which contain terminals only, i. e., V (H) = S and E(H) = Ecircus ∪Earbor.
Thus, H satisfies the constraints 1 and 2. The graph H is connected since the
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Fig. 3. The construction in the proof of Lemma 4

terminals inside the subtrees T ′
i are connected by the cycle Ci. Moreover, the

subtrees T ′
i are connected either by a common vertex or by edges from Earbor.

We know that c(TOpt) =
∑k

i=1 c(T
′
i )+c(Earbor). By definition of T ′

i , any two

trees T ′
j , T

′
l are edge-disjoint, therefore c(Ecircus) ≤ 2β ·

∑k
i=1 c(T

′
i ). This implies

c(H) = c(Ecircus) + c(Earbor) ≤ 2β ·
∑k

i=1 c(T
′
i ) + c(Earbor) ≤ 2β · c(TOpt), which

proves that H also satifies constraint 3. ⊓⊔

Theorem 3. Let G be graph with cost function c satisfying the β-triangle in-
equality for 1/2 ≤ β ≤ 1. Let S be a set of terminals. Then the minimum
spanning tree on S is a 2β-approximation of the minimum Steiner tree for the
instance (G,S, c).

Proof. This follows directly from the constraints 1 and 2 of Lemma 4. ⊓⊔

Polynomial-Time Approximation Schemes. Here, we present polynomial-
time approximation schemes for some of the reoptimization variants. The concept
in all cases relies on the properties of graphs with sharpened triangle inequality.

Theorem 4. Let (G,S, c) be a Steiner tree instance where c satisfies the sharp-
ened β-triangle inequality for some 1/2 < β < 1. Then there is a PTAS for the
reoptimization variants of the Min-∆β-STP when the edge-costs are increased
or decreased and when the status of vertices is changed, i. e., when a terminal
becomes a non-terminal or vice versa.

Proof. Let e = {u, v} be a cheapest edge in G and let f = {x, y} be a most
expensive edge in G. Without loss of generality let us assume that c(e) = 1.
Then the cost of f can be bounded from above by c(f) ≤ 2β2/(1−β), see [9] for
a proof. The existence of a PTAS for Steiner tree reoptimization in graphs with
edge-costs bounded by a constant was shown in [10] for changing the status of



Algorithm 1 Approximation algorithm for Min-∆β-STRP-AddNonTerm

Input: (G = (V, E), S, c), TOld, (GNew = (V ∪ vNew, E ∪ {{vNew , x} | x ∈ V }), S, c)
1: Compute the minimum spanning tree TMST on the vertex set S ∪ {vNew}.
2: Compute the best solution TAlg between TOld and TMST.
Output: The Steiner tree TAlg.

a vertex. With the same argument, we can also conclude that there is a PTAS
when changing the the edge costs. ⊓⊔

Adding a Non-Terminal. Now, we consider the Steiner tree reoptimization
problem with the local modification of adding a non-terminal to the graph. We
assume that the new instance satisfies the β-triangle inequality for the same β
as the old instance. We design an algorithm for Min-∆β-STRP-AddNonTerm
that outputs the better of the following two feasible solutions: The first feasible
solution is simply the given optimal solution to the old instance, the second is
obtained by computing a minimum spanning tree on the terminals together with
the newly inserted vertex. This procedure is shown in Algorithm 1.

For analyzing the cost of TMST as computed in Algorithm 1, we want to
compare it to an optimal solution TOpt for the new instance. For this comparison,
we deal with every subtree of TOpt rooted in a neighbor of vNew, together with
its connection to vNew, separately. For our estimations, we need the following
technical lemma which is a generalization of Lemma 4.

Lemma 5. Let G be a graph and let S ⊆ V be a set of terminals in G. Let
T be a subtree of G rooted in some non-terminal vertex x of degree ≥ 2, and
let ST = S ∩ V (T ) be the set of terminals in T . Let vNew ∈ V − V (T ) be one
additional vertex. By T ′ we denote the tree (V (T )∪{vNew}, E(T )∪{{vNew, x}}).
Let xfirst be the first and xlast be the last terminal in T as found by a depth-first
search starting from x. Then there exists a connected subgraph H with V (H) =
{vNew} ∪ ST with costs c(H) ≤ β · c(vNew, x) + 2β · c(T )− β · c(x, xlast).

Proof. According to Lemma 4, there exists a connected subgraph H ′ of G on
the vertices of ST with cost c(H ′) ≤ 2β · c(T ).

There exists a maximal subtree Tx of T consisting of non-terminals only
which contains x as described in the proof of Lemma 4. Moreover, there exists
a cycle Cx on the neighbors of Tx such that the edge {xfirst, xlast} is contained
in Cx.

From Cx, we construct a path Px containing N(Tx) by deleting the edge
{xfirst, xlast}. The desired graph H is now obtained from H ′ by substituting Px

for Cx and adding the edge {vNew, xfirst} (see Fig.4). It remains to show that the
cost of H satisfies the constraint of the lemma. By T ′

x we denote the subtree of
T on the vertices from V (Tx) ∪N(Tx).

As already shown in the proof of Lemma 4, analyzing a depth-first traversal
of T ′

x leads to c(Cx) ≤ 2β · c(T ′
x). Without loss of generality, such a depth-first
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Fig. 4. The construction in the proof of Lemma 5

traversal may start from vertex x. The vertices xfirst and xlast are the first and
the last terminals on the traversal path. This traversal path starts with a simple
path Px,xfirst

from x to xfirst and ends with a simple path Pxlast,x from xlast to
x.

In the proof of Lemma 4, we have seen that shortening the subpath of the
traversal path between two consecutive terminals on the traversal path generates
an edge whose cost can be bounded from above by β times the cost of the
corresponding subpath.

Summing over all these shortened edges on the path Px from xfirst to xlast

yields a cost of at most 2β · c(T ′
x)−β · c(Px,xfirst

)−β · c(Pxlast,x), since every edge
of T ′

x is part of exactly two of the corresponding subpaths for the complete cycle
Cx, and only the edges on the paths Px,xfirst

and Pxlast,x are used exactly once,
since the cost of the edge from xlast to xfirst is not included in the above sum.

As already mentioned above, H is obtained by adding the edge {vNew, xfirst}
to Px. Thus, c(H) = c(PT ) + c(vNew, xfirst), moreover

c(vNew, xfirst) ≤ β · (c(vNew, x) + c(Pxfirst,x)).



From this we have

c(H) ≤ 2β · c(T ′
x)− β · c(Px,xfirst

)− β · c(Pxlast,x) + β · (c(vNew, x) + c(Pxfirst,x))

≤ 2β · c(T ′
x) + β · c(vNew, x)− β · c(x, xlast)

≤ 2β · c(T ′
x) + β · c(vNew, x)− β · δT .

⊓⊔

Theorem 5. For any 1/2 ≤ β ≤ 1, Algorithm 1 is a linear-time
(

1
2 + β

)

-
approximation algorithm for Min-∆β-STRP-AddNonTerm.

Proof. Constructing a spanning tree TMST can be done in linear time, where the
size of the input is measured in the number of edges. Let TOpt be an optimal
solution for the new instance (GNew, S, c), and let TAlg be the Steiner tree com-
puted by Algorithm 1. If vNew does not occur in TOpt, then TOld and thus also
TAlg is an optimal solution.

Thus, we assume that vNew ∈ V (TOpt). Let {x1, . . . xk} be the set of neighbors
of vNew in TOpt. By removing vNew from TOpt, we get a forest of k trees T1, . . . , Tk,
where Ti is rooted in xi. Let γ1 denote the cost of all edges adjacent to vNew in
TOpt, i. e., γ1 =

∑k
i=1 c(vNew, xi), and let γ2 =

∑k
i=1 c(Ti) denote the sum of costs

of all trees Ti. Thus, the cost of the optimal solution satisfies c(TOpt) = γ1 + γ2.
We get a solution for the old instance by connecting the vertices x1 to xk by a
path P = (x1, . . . , xk). The cost of this path can be estimated as c(P ) ≤ 2β · γ1.
The path P together with the trees Ti constitute a solution of cost greater than
or equal to c(TOld), this implies

c(TOld) ≤ c(P ) +

k
∑

i=1

c(Ti) ≤ 2β · γ1 + γ2. (1)

For each tree Ti, we can construct a graph Hi on the terminals of Ti together
with vNew as described in Lemma 5. If the vertex xi of Ti is a non-terminal,

c(Hi) ≤ β · c(vNew, xi) + 2β · c(Ti) (2)

follows from Lemma 5, for all 1
2 ≤ β ≤ 1. If the root vertex xi is a terminal,

adding the edge {vNew, xi} to the graph constructed according to Lemma 4 yields

c(Hi) ≤ c(vNew, xi) + 2β · c(Ti) (3)

for all 1
2 ≤ β ≤ 1. Note that (2) implies (3) also for the trees rooted in a

non-terminal.
LetH be the union of the graphsH1, . . . , Hk as a subgraph of G, i. e., V (H) =

S ∪ {vNew} and E(H) =
⋃k

i=1 E(Hi). Then

c(TMST) ≤ c(H) =

k
∑

i=1

c(Hi) ≤

k
∑

i=1

(c(vNew, xi) + 2β · c(Ti))

≤

k
∑

i=1

c(vNew, xi) + 2β ·

k
∑

i=1

c(Ti)

≤ γ1 + 2β · γ2. (4)



Summing Equations (1) and (4) yields

2 · c(TAlg) ≤ c(TOld) + c(TMST) ≤ 2β · γ1 + γ2 + γ1 + 2β · γ2

≤ (1 + 2β) · (γ1 + γ2) = (1 + 2β) · c(TNew)

and thus c(TAlg) ≤
1+2β

2 · c(TNew) =
(

1
2 + β

)

· c(TNew). ⊓⊔

Adding a Terminal. In this section, we consider the case where the inserted
vertex is a terminal. Here, the old optimal solution is not feasible for the new
instance. Therefore, we analyze two different candidates for a good feasible so-
lution. The first candidate is a minimum spanning tree for the new instance on
all terminals including the newly added one. The second candidate is obtained
by connecting the inserted terminal to a vertex in the old optimal solution by
the cheapest edge possible. This procedure is shown in Algorithm 2.

Algorithm 2 Approximation algorithm for Min-∆β-STRP-AddTerm

Input: (G = (V,E), S, c), TOld, (GNew = (V ∪ vNew, E ∪ {{vNew, x} | x ∈ V }), S ∪
{vNew}, c)

1: Compute the minimum spanning tree TMST over the set of vertices S ∪ {vNew}.
2: Compute TOld+ from TOld by choosing the cheapest edge connecting vNew with S.
3: Compute the best solution TAlg between TOld and TMST.
Output: The Steiner tree TAlg.

For analyzing the approximation ratio of Algorithm 2, we compare the costs
of the computed solutions TMST and TOld+ to the costs of an optimal solution for
the new instance. We distinguish two cases for the proof according to whether
there exists a non-terminal among the neighbors of vNew in an optimal solu-
tion TOpt for the new instance or not. The proof for the case where there is a
neighboring non-terminal will again make use of Lemma 5.

Theorem 6. For any 1
2 ≤ β ≤ 1, Algorithm 2 is a linear-time

(

1
2 + β

)

-approx-
imation algorithm for Min-∆β-STRP-AddTerm.

Proof. The construction of both TMST and TOld+ is obviously possible in linear
time. Let TOpt be an optimal solution of the new minimum Steiner tree instance.
As in the proof of Theorem 5, let TOld be the optimal solution of the old instance
and let TMST and TOld+ be the outputs of step 2 and step 3 of Algorithm 2,
respectively. Let {x1, . . . , xk} be the neighbors of vNew in TOpt. By deleting
vNew from TOpt, we get a set of trees T1, . . . , Tk. In the following, we denote
the set of terminal neighbors of vNew in TOpt by ΓT and the set of non-terminal
neighbors by ΓN. We denote by γ1 the sum of the costs of edges connecting
vNew with a terminal in TOpt, i. e., γ1 =

∑

xi∈ΓT
c(vNew, xi), and by γ2 the

sum of costs of edges connecting vNew with a non-terminal in TOpt, i. e., γ2 =
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Fig. 5. The structure of the new optimal solution in the proof of Theorem 6

∑

xi∈ΓN
c(vNew, xi). Let γ3 be the sum of the costs of all trees Ti where the root

xi ∈ ΓT, and let γ4 be the sum of the costs of all trees Tj where the root xj ∈ ΓN

(see Fig. 5). Hence, c(TOpt) = γ1 + γ2 + γ3 + γ4.
We distinguish two cases according to the number of non-terminals adjacent

to vNew.
Case 1: |ΓN| = 0, (γ2 = γ4 = 0). First we look at the case where all vertices
xi in the neighbourhood of vNew are terminals. This implies c(TNew) = γ1 + γ3.
In the case, where there is only one terminal x in the neighborhood of vNew

in TOpt, Algorithm 2 connects vNew by the edge {vNew, x} in step 3 and finds
the optimal solution. Thus, we may assume that |ΓT| ≥ 2. In order to estimate
c(TMST), for each tree Ti, we first construct a graph Hi containing the terminals
of Ti. By connecting vNew to Hi by the edge {vNew, xi}, we get a graph H which
consists of all terminals in GNew, i. e., V (H) = S∪{vNew}. It is obvious that the
cost of TMST is smaller than c(H). Now we can estimate c(TMST) as follows:

c(TMST) ≤
k

∑

i=1

c(vNew, xi) +
k

∑

i=1

c(Hi). (5)

According to Lemma 4, the cost of Hi satisfies c(Hi) ≤ 2β · c(Ti), and thus
∑k

i=1 c(Hi) ≤ 2β · γ3. Together with Equation (5), we get

c(TMST) ≤ γ1 + 2β · γ3. (6)

For the cost of TOld+ , we get

c(TOld+) = c(TOld) + c(vNew, xfirst),

where {vNew, xfirst} is the cheapest edge from vNew to a terminal in G. To es-
timate TOld+ , we connect the terminals x1, . . . , xk by a path P . The union of



P with the trees Ti constitutes a feasible solution for the old instance. So we
know that the cost of the old optimal solution is at most the cost of the union
of P and all Ti, i. e., c(TOld) ≤ c(P )+

∑k
i=1 c(Ti). For the cost of P , this implies

c(P ) ≤ 2β ·
∑k

i=1 c(vNew, xi) − β · c(vNew, xl) − β · c(vNew, xm), where xl 6= xm,
and thus c(TOld) ≤ 2β · γ1 + γ3 − β · c(vNew, xl)− β · c(vNew, xm). Without loss
of generality, let c(vNew, xl) < c(vNew, xm). Then we can estimate c(TOld+) as

c(TOld+) ≤ 2β · γ1 + γ3 − 2β · c(vNew, xl) + c(vNew, xl) ≤ 2β · γ1 + γ3. (7)

By adding Equations (6) and (7), we get

2 · c(TAlg) ≤ c(TMST) + c(TOld+) ≤ γ1 + 2β · γ3 + 2β · γ1 + γ3
≤ (1 + 2β) · (γ1 + γ3) = (1 + 2β) · c(TNew)

and thus c(TAlg) ≤ (1 + 2β)/2 · c(TNew) = (1/2 + β) · c(TNew).
Case 2: |ΓN| ≥ 1. Let ΓT = {x1, . . . , xf} and ΓN = {xf+1, . . . , xk} be the
sets of terminals and non-terminals in the neighborhood of vNew, respectively,
for some 0 ≤ f < k in TOpt. To estimate the cost of TMST, we first construct,
for each tree Ti with i ∈ {1, . . . , f}, a spanning graph as already described in
case 1. For each tree Tj with j ∈ {f + 1, . . . , k}, we construct a spanning graph
connected with vNew as described in Lemma 5. This implies

c(TMST) ≤ γ1 + 2β · γ3 + β · γ2 + 2β · γ4 −

k
∑

j=f+1

β · c(xj , xlastj), (8)

where xlastj is the last terminal of a depth-first traversal of Tj as described in
Lemma 5, for j ∈ {f + 1, . . . , k}. For estimating the cost of TOld+ , we connect
the vertices x1, . . . , xk by a path P , analogously to case 1. The union of P
and the trees Ti, for i = 1, . . . , k, gives a feasible solution for the old instance.
Thus, c(TOld) ≤ c(P ) + γ3 + γ4. The cost of P can be bounded from above by
c(P ) ≤ 2β · (γ1 + γ2)− β · c(vNew, xj), where xj ∈ {f + 1, . . . , k}.

From this, we get

c(TOld+) ≤ 2β(γ1 + γ2) + γ3 + γ4 − β · c(vNew, xi) + c(vNew, xlasti)

≤ 2β(γ1 + γ2) + γ3 + γ4 − β · c(vNew, xi) + β · (c(vNew, xi) + c(xi, xlasti))

≤ 2β(γ1 + γ2) + γ3 + γ4 + c(xi, xlasti). (9)

Adding Equations (8) and (9) yields

2 · c(TAlg) ≤ c(TMST) + c(TOld+)

≤ (2β + 1) · γ1 + 3β · γ2 + (2β + 1) · (γ3 + γ4) + c(xi, xlasti)−

k
∑

i=f+1

βδi

≤ (1 + 2β)(γ1 + γ2 + γ3 + γ4) ≤ (1 + 2β) · c(TNew),

and thus c(TAlg) ≤ (1 + 2β)/2 · c(TNew) ≤ (1/2 + β) · c(TNew). ⊓⊔
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Fig. 6. The two feasible solutions in case 2 of the proof of Theorem 6
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