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a b s t r a c t 

In this work we examine the dispersion of conservative tracers (bromide and fluorescein) in an 

experimentally-constructed three-dimensional dual-porosity porous medium. The medium is highly het- 

erogeneous ( σ 2 
Y = 5 . 7 ), and consists of spherical, low-hydraulic-conductivity inclusions embedded in a 

high-hydraulic-conductivity matrix. The bimodal medium was saturated with tracers, and then flushed 

with tracer-free fluid while the effluent breakthrough curves were measured. The focus for this work is to 

examine a hierarchy of four models (in the absence of adjustable parameters) with decreasing complexity 

to assess their ability to accurately represent the measured breakthrough curves. The most information- 

rich model was (1) a direct numerical simulation of the system in which the geometry, boundary and 

initial conditions, and medium properties were fully independently characterized experimentally with 

high fidelity. The reduced-information models included; (2) a simplified numerical model identical to 

the fully-resolved direct numerical simulation (DNS) model, but using a domain that was one-tenth the 

size; (3) an upscaled mobile-immobile model that allowed for a time-dependent mass-transfer coeffi- 

cient; and, (4) an upscaled mobile-immobile model that assumed a space-time constant mass-transfer 

coefficient. The results illustrated that all four models provided accurate representations of the experi- 

mental breakthrough curves as measured by global RMS error. The primary component of error induced 

in the upscaled models appeared to arise from the neglect of convection within the inclusions. We dis- 

cuss the necessity to assign value (via a utility function or other similar method) to outcomes if one is 

to further select from among model options. Interestingly, these results suggested that the conventional 

convection-dispersion equation, when applied in a way that resolves the heterogeneities, yields models 

with high fidelity without requiring the imposition of a more complex non-Fickian model. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

In natural geological systems, highly heterogeneous materials

re the rule rather than the exception. One approach for represent-

ng systems with very high variations of hydraulic conductivity is

o represent the field as a set of distinct regions either through hy-

rofacies mapping ( Anderson et al., 1999 ), through indicator meth-

ds ( Knudby and Carrera, 2005 ), or a combination of these two

pproaches ( Bianchi and Pedretti, 2017; Lee et al., 2007 ). A partic-

lar simplification of these models is the case of bimodal (or dual-

omain) media, where only two classes of materials are present

e.g., low conductivity immobile regions embedded in high conduc-
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ivity mobile regions) ( Davit et al., 2012; Fiori et al., 2011; Golfier

t al., 2011; Jankovic et al., 2003; Knudby and Carrera, 2005; Moli-

ari et al., 2015; van Genuchten and Wierenga, 1976 ). Such media

an serve as an idealization of a highly heterogeneous but contin-

ous porous medium that has been segmented into high and low

onductivity components so that the total variance of each seg-

ent is reduced. The important hydrogeologic role of such rep-

esentations has been discussed recently by Molz (2015) . Low-

onductivity (frequently referred to by the terminology immobile )

egions are often conceptualized as being spherical or ellipsoidal

n analytical ( Coats et al., 1964; Fernàndez-Garcia and Sanchez-

ila, 2015; Haggerty and Gorelick, 1995; Poley, 1988; Rabinovich

t al., 2013 ), numerical ( Bianchi and Pedretti, 2017; Finkel et al.,

016; Lee et al., 2017 ) and experimental ( Golfier et al., 2011; Zinn

t al., 2004 ) investigations. Ellipsoidal or spherical representations
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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of low-conductivity inclusions have been used extensively both to

represent actual structures observed in the field (e.g., Jussel et al.,

1994; Murphy et al., 1992 ), and as a reasonable simplification of

low-conductivity regions ( Dagan and Lessoff, 2001 ). The relevance

in this approximation has been discussed in detail in Dagan and

Lessoff (2001) , Jankovi ́c et al. (2006) (who use ellipsoidal inclu-

sions in their representations), and in the review by Frippiat and

Holeyman (2008) . In a recent review article on the geological rep-

resentation of heterogeneity, Eaton (2006 , p. 195) discusses such

idealizations for situations where the heterogeneity is particularly

large by noting 

Composite media approaches, in which different heterogeneous

structures of contrasting hydraulic properties, such as inclusions

of different shapes, have also been used to quantify flow nu-

merically ... As these methods become more widely understood,

and implemented in readily available modeling codes, their ap-

plication will allow a geostatistical approach to even the most

heterogeneous flow systems, a significant advance. 

Early investigations of bimodal systems accounted for the influ-

ence of immobile regions on transport phenomena by represent-

ing the immobile region with a stagnant volume fraction which

is coupled to the mobile region with a constant mass transfer co-

efficient α ( Coats et al., 1964; Deans, 1963; Deans and Lapidus,

1960; Rao et al., 1980 ); this idea has been extended to more gen-

eral multiple-region models ( Carrera et al., 1998; Haggerty and

Gorelick, 1995 ), and models that include convection and disper-

sion in both regions ( Ahmadi et al., 1998; Ginn et al., 2017; Golfier

et al., 2007; Goltz and Roberts, 1986; Haggerty and Gorelick, 1995;

Haggerty et al., 20 0 0; van Genuchten and Wierenga, 1976 ). Re-

views of much of the literature on this topic have been presented

by Cherblanc et al. (2003) and Fernàndez-Garcia and Sanchez-

ila (2015) . 

For bimodal representation of heterogeneous materials, the spa-

tial domain is usually envisioned as being separated into two com-

ponents: (1) a connected, high-conductivity medium, and (2) a

disconnected low-conductivity medium. Although in some models

the low-conductivity medium is assumed to be immobile, in more

recent models it is assumed that convective fluxes can exist in

the disconnected phase. Because mass transfer occurs between the

high- and low-conductivity regions, the resulting model can repre-

sent a range of transport behaviors from conventional convection-

dispersion, to transport that appears significantly non-Fickian . The

characteristic times associated with transport in each of the two

regions can span a large range if the conductivity variance in the

medium as a whole is large. Such differences in transport times

can result in asymmetric breakthrough curves and tailing ( Bianchi

et al., 2011; Fiori et al., 2011; Haggerty et al., 20 0 0; Li et al., 2011;

van Genuchten and Wierenga, 1976; Zinn and Harvey, 2003 ). Accu-

rate and economical descriptions of tailing phenomena have been

of significant interest in hydrological applications for some time. 

The objectives of this paper are (1) to describe a new set of

three-dimensional experiments for solute transport in a bimodally-

distributed system, and (2) to assess the ability for a hierarchy of

decreasingly complex models to adequately represent the break-

through curves from these experiments. In particular, we are in-

terested in the use of simplified models to simultaneously reduce

the complexity (our measure of the complexity is an algorithmic

one described in detail below) while maintaining fidelity with the

experimental observations. 

We analyze the experimental results using two strictly nu-

merical, and two upscaled models ( Chastanet and Wood, 2008 ).

Each of these models can be described briefly as follows: (1) A

fully-detailed (i.e., resolving all heterogeneities fully) direct nu-

merical simulation (DNS) of the entire experimental domain, (2)

A fully-detailed, but domain-reduced representation of the ex-
erimental system, (3) An upscaled two-region model account-

ng for transience in the mass transfer process, and finally (4)

n upscaled model that assumes that the mass transfer process

s roughly quasi-steady (so that the mass-transfer coefficient is a

onstant). One important feature of this work is that the experi-

ental system has been highly characterized, so all models of the

ystem are in the absence of adjustable parameters. We examine

he ability of each of these models to represent the experimental

reakthrough curves, and offer some assessment as to how well

educed-complexity models perform as compared to models that

epresent essentially perfect information (i.e., fully-resolved DNS

here the geometrical details are represented explicitly, within the

ounds of experimental error). 

. Background and previous work 

Bimodally-distributed media have been studied experimentally

y a number of researchers; in Table 1 we have summarized the

vailable experimental data (including this work) for both 2- and

-dimensional systems. We have taken particular care to report

nly on experiments with bimodally-distributed media and where

he experimental conditions were described in sufficient detail as

o make the experiments interpretable. 

To address the need to capture tailing associated with bi-

odal media, formally averaged two-region ( Whitaker 1999; Frip-

iat and Holeyman 2008; Li et al. 2011; Golfier et al. 2011 ) and

ven multi-region ( Davit and Quintard 2015 ) transport equations

ave been developed. Although transport phenomena in highly

eterogeneous media have been extensively investigated numeri-

ally, studies which combine the predictive capabilities of numer-

cal models with experimental validation at the Darcy scale are

till somewhat sparse. The most extensively characterized exper-

ments conducted to date in bimodal media are those summarized

n Table 1 . With only two exceptions (one of which is the work

eported here) these experiments were effectively 2-dimensional,

nd many of them have log-variance of conductivities ( σ Y ) that are

ear unity. The experiments detailed in this paper are unique in

hat they are conducted in a medium with 3-dimensional hetero-

eneity, and the variance is more representative of what might be

bserved in the field ( σY = 5 . 71 ). 

To help characterize transport phenomena in bimodal porous

aterials, where the two regions are denoted as the η- and ω-

egion respectively, Zinn et al. (2004) suggested the definition of

hree Péclet numbers (as modified by Golfier et al., 2007 ) 

 e ωω = 

||〈 v ω 〉 ω || 
a 

a 2 

D ω 
= 

||〈 v ω 〉 ω || a 
D ω 

(1)

 e ηω = 

||〈 v η〉 η|| a 
D ω 

a 

L 
(2)

 e ηη = 

||〈 v η〉 η|| 
L 

L 2 

D η
= 

||〈 v η〉 η|| L 
D η

(3)

ere, || 〈 v ω 〉 ω || is the magnitude of the intrinsic velocity in the ω-

egion D ω denotes the effective diffusivity of the solute of interest

 Section 3.3 ), a is the radius of the inclusion, and L denotes the

haracteristic distance for gradients of the concentration; conven-

ionally, this is taken as the system length or (when applicable)

he solute pulse length. To help with the interpretation of Table 1 ,

e note the following definitions specific to media with hetero-

eneities segmented into two hydraulic conductivities 

¯
 = ϕ η ln (K η) + ϕ ω ln (K ω ) (4)

2 
Y = ϕ η

[
ln (K η) − Ȳ 

]2 + 

[
ϕ ω ln (K ω ) − Ȳ 

]2 
(5)
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Fig. 1. Figure of the two Péclet numbers Pe ωω and Pe ηω . The graph is divided into regions with respective dominant mass transport processes. Experiments from other 

studies are included for comparison. Letters correspond to the experimental conditions listed in Table 1 . 
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ote that here, ϕη and ϕω represent the fractions of the total vol-

me of the domain (fluid plus solid) occupied by the high- and

ow-conductivity materials, respectively. 

In physical terms, Pe ωω quantifies the relative dominance of

onvective and diffusive fluxes in the ω-region, and Pe ηω compares

he magnitude of the convective flux in the η-region to the dif-

usive flux in the ω-region. The final Péclet number, Pe ηη , com-

ares convection and diffusion in the high-permeability matrix,

nd it does not usually exhibit a controlling influence on the net

ransport (unless it were unusually large). In Fig. 1 , we have pro-

ided an illustration that very roughly divides the possible com-

inations of Pe ωω and Pe ηω into five different transport schemes.

hese schemes have been discussed in detail by Zinn et al. (2004) ,

olfier et al. (2007) , and Heidari and Li (2014) . Briefly, the schemes

ndicate (1) the relative importance of the various convective ver-

us diffusive processes, and (2) whether the transport time scales

nvolved require for one- or two-equation models to represent the

et transport behavior. This is a qualitative plot that can be use-

ul to generally characterize regimes, but the interpretation is the

ost precise when the combination of Péclet numbers is not near

egime boundaries. For reference, the combination of Péclet num-

ers for our experiment, and those for a number of other exper-

ments from the literature, are plotted for comparison. Because

hese data have archival value, we have also provided the associ-

ted sets of parameters for these experiments in Table 1 . 

. Experiments 

Because of the relative scarcity of carefully-controlled ex-

eriments in highly heterogeneous materials (particularly in 3-
imensions) we performed a set of large-scale (on the order of

 m) experiments with a high-conductivity contrast ( σ 2 
Y 

= 5 . 71 ).

s is often the case, the structure of the heterogeneity in the

xperimental system represented a trade-off between experimen- 

al control and interpretability versus a more realistic representa-

ion of field-like structure. As described in the Introduction, how-

ver, the relevance of bimodal materials as reasonable analogues

o the field has been well established in the literature, and also re-

ects the most common experimental option for handling highly-

eterogeneous materials ( Zinn and Harvey, 2003 ). In this sense, the

xperimental work described below represents an extension of the

ork of Zinn and Harvey (2003) to three dimensions. 

.1. Flow cell 

The experimental system, illustrated in Fig. 2 , consisted of a

ow cell (100 cm long, 50 cm tall, 20 cm thick), constructed of an-

dized aluminum, packed with a dual-porosity medium. The inlet

nd outlet end plates of the flow cell were engineered structures

nominally 50 cm by 20 cm anodized aluminum, with ancillary

aterial to allow the end plates to be bolted to the flow cell), ma-

hined with groves to help distribute flow and create as uniform

 pressure as possible. Six inlet ports were installed at inlet and

utlet plates, again with the goal of distributing the flow and pres-

ure as uniformly as possible. Finally, each end plate was machined

o accept a 50 cm by 20 cm by 1/8 inch piece of sintered stain-

ess steel to further encourage flow distribution. At both the inlet

nd outlet, a manifold of 1/8-inch teflon tubing was constructed to

plit the flow evenly among the 6 inlet ports. The thickness of the

late itself was about 2.5 cm, with another 2.5 cm of tubing cre-
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Fig. 2. Schematic of experimental setup. The flow cell was 100 cm long (in the di- 

rection of flow), 50 cm tall, and 20 cm thick. Tracer solutions were pumped through 

the two-region medium which consisted of 203 embedded inclusions. The inclu- 

sions are colored by their respective layer in the shortest system dimension (20 cm, 

4 layers of inclusions). 
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ting the inlet and outlet manifolds. Additional details about the

onstruction of the flow cell, including the hydraulics of the inlet

nd outlet regions, is available in the thesis by Harrington (2010) . 

.2. Porous materials 

The bimodal porous medium was constructed by embedding

ow-hydraulic-conductivity spherical inclusions (with radius a =
 . 5 cm) in a high-hydraulic-conductivity matrix. In the mate-

ial that follows, the subscripts η and ω will be used to de-

ote the matrix and inclusion phases, respectively. The materi-

ls for the two regions were composed of mono-disperse solid

lass spherical particles (Potters Industries Inc., Valley Forge, PA)

f two different diameters. The high-conductivity matrix (the η-

hase) was composed of spherical particles with a nominal diam-

ter of 2.4 ± 0.4 mm (A-240 Spheriglass). The inclusions (forming

he disconnected ω-phase) were composed of spherical glass par-

icles with a diameter of 0.068 ± 0.023 mm (2530 Spheriglass). The

pherical inclusions were created by sintering the glass particles in

raphite molds for 2.5 h at 725 °C. A total of 203 such inclusions

ere constructed. The sintering process helped to assure that each

nclusion would be geometrically similar, and dramatically simpli-

ed the process of inclusion placement in the background matrix. 

The inclusions were placed spatially using a percolation process

n a simple cubic lattice. The flow cell was divided up into 800

ubic sub-domains (of 125 cm 

3 each, or 5 cm on a side) forming

hree-dimensional simple-cubic lattice. No inclusions were placed

ithin 5 cm proximity of inlet and outlet, so this left a possible

20 sub-domains that could be populated. To populate, a random

umber, n r , 0 ≤ n r ≤ 1, was generated for each of the sub-domains;

f the random number was less than or equal to the percolation

hreshold, N p = 0 . 333 , an inclusion was placed in that sub-domain.

The fractions of the total volume of the domain occupied by the

− and ω−regions are denoted by ϕη and ϕω . Note that these two

uantities are defined as including both the fluid and solid phases

f the η− and ω−regions. Using the number of spheres placed and

heir radius, it is easy to compute that the realized fraction of in-

lusions was 13.3%. Table 2 provides a summary of the physical

arameters that characterize the system. 
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Table 2 

Material properties, transport properties, and dimensions of the experimental system. 

Parameter Description Value Units 

Q 0 inlet flow 45.2 [mL/min] 

c 0, b Initial bromide concentration 25 [mg/L] 

c 0, f Initial fluorescein concentration 1.5 [mg/L] 

εη η-region porosity 0.4 [–] 

εω ω-region porosity 0.31 [–] 

ϕη Volume fraction of the η-region 0.867 [–] 

ϕω Volume fraction of the ω-region 0.133 [–] 

ρη Solid Density of the η-region 2.50 [ g/cm 

3 
] 

ρω Solid Density the ω-region 2.43 [ g/cm 

3 
] 

K η Hydraulic conductivity of the η-region 7.77 ×10 −4 [ m/s ] 

K ω Hydraulic conductivity of the ω-region 0.667 ×10 −6 [ m/s ] 

σ 2 
Y Variance of the natural-log transform of the hydraulic conductivity field 5.7 [–] 

κ Ratio of high to low hydraulic conductivities 1165 [–] 

D m, f 
a Molecular diffusivity of flourescein 4.9 ×10 −10 [m 

2 /s] 

D m, b Molecular diffusivity of bromide 3.5 ×10 −10 [m 

2 /s] 

D η
b Effective diffusivity of flourescein in the η-region 3.77 ×10 −10 [m 

2 /s] 

D ω 
b Effective diffusivity of flourescein in the ω-region 3.64 ×10 −10 [m 

2 /s] 

αL, η Longitudinal dispersivity, η-region 2 . 9 × 10 −2 [m] 

αT, η Transverse dispersivity, η-region 2 . 9 × 10 −3 [m] 

αL, ω Longitudinal dispersivity, ω-region 1 . 5 × 10 −3 [m] 

αT, ω Transverse dispersivity, ω-region 1 . 5 × 10 −4 [m] 

a Radius of spherical inclusions 2.5 [ cm ] 

L Total flow cell length (including manifold) 110 [ cm ] 


L Inlet/outlet plate thickness (including manifold) 5 [ cm ] 

L m Flow cell (internal) media length 100 [ cm ] 

w Flow cell (internal) media width 50 [ cm ] 

h Flow cell (internal) media depth 20 [ cm ] 

a From reference ( Rani et al., 2005 ). 
b Computed using the conventional Maxwell relation, Whitaker (1999 , Chp. 1). 
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The hydraulic conductivity of the coarse medium (the ma-

rix) was measured by packing the flow cell with only the high-

ydraulic-conductivity beads; the flow and pressure drop was then

easured for several flow rates, and the hydraulic conductivity de-

ermined by fitting the data to Darcy’s law. The hydraulic conduc-

ivity of each of the 203 inclusions was independently measured as

ollows. Individual spheres were immobilized by O-rings in a col-

mn specifically-designed for measuring the pressure drop through

ach sphere. A pressure drop was applied and the corresponding

ow rate was measured to provide a measure of the relative con-

uctivity of each sphere. This was then normalized by using the

ydraulic conductivity of the fine medium measured in a column

xperiment similar to that for the coarse medium. There is a cer-

ain amount of uncertainty in the hydraulic conductivity of the

pherical inclusions because the sintering process almost certainly

educed the hydraulic conductivity of the fine porous medium

ompared to its non-sintered original state. Although there was

ariation in the hydraulic conductivity, this variation was small

nd the average value of the hydraulic conductivity for the fine

edium was used in models of the system. 

.3. Tracer experiments 

Two solutions were prepared for use in experiments. First, the

racer solution consisted of 100 ppm sodium borate (to discour-

ge biological growth) at pH 9.3 ± 0.3, to which lithium bromide

 c 0 = 25 mg/L as Br −) and fluorescein ( c 0 = 1.5 mg/L) were added

s inert solutes. These two tracers were selected with the goal

f using two tracers that are largely conservative, but would al-

ow us to assure that unexpected effects (such as ion repulsion or

orption ( Kasnavia et al., 1999 )) did not occur. Solution containing

hese two tracers initially saturated the flow cell. A second solu-

ion consisting of 100 ppm sodium borate was prepared for column

ushing. The column was pre-saturated with the tracer solution

y pumping it through the system until concentrations measured

t the inlet and outlet equilibrated. To conduct the experiments,
he tracer-free solution was injected into the inlet structures of

he tracer-saturated system with an average injection rate, Q 0 ,

f 45.2 mL/min ( Harrington, 2010 ). Breakthrough concentrations of

ourescein were measured at the column outlet using a model 10-

U-005-CE flow-through fluorometer (Turner Designs, Sunnyvale,

A). Effluent Bromide was measured by collecting effluent volume

ractions (using a Gilson 223 fraction collector manufactured by

ilson, Inc., Middleton, WI); concentrations were subsequently de-

ermined using ion chromatography (DX-120 Ion Chromatograph,

ionex, Sunnyvale, CA). 

As is always the case with tracer experiments in complex labo-

atory media, it is important to be clear about the interpretation of

easured concentrations. For our experimental system, we mea-

ured what are essentially concentrations that are flux-averaged

ver the exit plane of the flow cell. Because the Péclet number in

he coarse medium is very high ( Pe ηη = 23925 ), we do not have

o be concerned about the distinction between flux-averaged and

esident concentrations as influenced by the diffusive fluxes (cf.

arker and van Genuchten, 1984 ). Thus, the concentration mea-

ured for the breakthrough curves corresponds to the following

 Golfier et al., 2007 ) 

¯
 η = 

1 

Q 0 

∫ 
A η, effluent 

n ηe · (v ηc η) dA (6) 

n the remainder of the paper, c̄ η will be used to indicate ei-

her an experimentally-measured breakthrough concentration, or 

he appropriately-weighted (via Eq. (6) ) flux averaged concentra-

ion derived from mathematical and numerical models. 

. Hierarchy of models for the bimodal system 

In this section, we describe the application of a hierarchy of

odels, with decreasing complexity, that can be used to repre-

ent the results of the experimental system. This data set provides

n excellent opportunity to test the performance of various up-

caled (information-reduced) models spanning the range from a
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fully-resolved direct numerical simulation (DNS) of the system, to

substantially simplified models that may have significant restric-

tions on their range of validity. In particular, we examine the fol-

lowing hierarchy of models, from the most to the least complex as

follows 

1. Model I . A fully-resolved and converged DNS of the entire do-

main, resolving each inclusion in its appropriate spatial loca-

tion. 

2. Model II . A simplified numerical model developed by conduct-

ing a fully-resolved and converged DNS, but on a domain that

is substantially (one-tenth) the size of the actual flow cell do-

main. The idea here is that the flow cell experiment may be

much larger than a representative elementary volume (REV) of

the system (in the sense described by Wood (2009) and Wood

and Valdés-Parada (2013) ). The purpose of this simulation is to

determine if a smaller volume of the system would still pro-

vide an REV from the perspective of the fidelity of breakthrough

curves. Because there is no unique way to select and REV, and

because the definition of an REV depends, in part, upon the

metric chosen (e.g., Wood et al., 2015 ), this analysis provides

some relevant details on how sensitive breakthrough curves are

to the REV selection. 

3. Model III . The upscaled model of Chastanet and Wood (2008) .

This is a mass-transfer-type model that assumes only that

the system is an REV, and that the relative volume frac-

tions of the two phases (and the associated effective parame-

ters) are known. This particular model is somewhat more gen-

eral than the mass transfer models presented by, for example,

Haggerty and Gorelick (1995) , by allowing for potential tran-

sience in the effective mass-transfer coefficient. 

4. Model IV . A simplified version of the upscaled model of

Chastanet and Wood (2008) . For this model, the conditions of

the system are poised such that one can assume a constant

mass-transfer coefficient for the system, yielding a model that

is identical to that described by Haggerty and Gorelick (1995) . 

Regardless of which model is selected, our analysis ultimately

starts with the governing equations for the system at the mi-

croscale (for this analysis, micro scale means the scale for which

the porous material may be treated as a pre-homogenized con-

tinuum). Because the analysis for the fluorescein data had much

higher sensitivity than the bromide data, for the remainder of the

analysis the focus will be primarily on fluorescein as the species of

interest. The governing balance equations are given by 

velocity field, η − phase v η = −K η

ε η
·
(∇p η − ρg 

)
(7)

velocity field, ω − phase v ω = −K ω 

ε ω 
· ( ∇p ω − ρg ) (8)

velocity B.C.1 n ηω · v η = n ηω · v ω at internal boundaries (9)

velocity B.C.2 v η| x =0 = v 0 , at flow cell inlet (10)

tracer transport, η − phase 
∂c η

∂t 
+ ∇ · (c ηv η) = ∇ · ( D 

∗
η · ∇c η) 

(11)

tracer transport, ω − phase 
∂c ω 

∂t 
+ ∇ · (c ω v ω ) = ∇ · ( D 

∗
ω · ∇c ω ) 

(12)

I.C. c η| t=0 = c ω | t=0 = c 0 , f (13)
nterfacial B.C. c ω = c η at internal boundaries (14)

nlet B.C. c η| x =0 = 0 at flow cell inlet (15)

utlet B.C. 
∂c η

∂x 
| x = L = 0 at flow cell outlet (16)

ere v , p, c η , and c ω are the Darcy-scale pointwise velocity, pres-

ure, and the scalar concentrations in each region, respectively, and

 is gravitational acceleration. 

This system of equations is valid in both regions and provides

 complete description of the system at all the scales involved in

he experiments. The corresponding hydraulic conductivity at the

arcy scale is specified by K η = I K η, K ω = I K ω . For the effective

ispersion tensors D 

∗
η and D 

∗
ω , the following relations hold 

 

∗
η = I D η + αL,η||〈 v η〉 η|| 

[ 

1 0 0 

0 0 0 

0 0 0 

] 

+ αT,η||〈 v η〉 η|| 
[ 

0 0 0 

0 1 0 

0 0 1 

] 

(17)

 

∗
ω = I D ω + αL,η||〈 v ω 〉 η|| 

[ 

1 0 0 

0 0 0 

0 0 0 

] 

+ αT,ω ||〈 v ω 〉 ω || 
[ 

0 0 0 

0 1 0 

0 0 1 

] 

(18)

ote that the materials are assumed to be structurally isotropic,

o the tensors take particularly simple forms. The inlet and out-

et plates on the flow cell extended the effective length of the do-

ain. Although the actual amount of additional dispersion added

y these flow structures was not measured, we made a model-

ng choice to represent them as adding an additional 5 cm to the

ength at both the inlet and the outlet; this is consistent with the

hysical size of the inlet and outlet structures. The dispersivity as-

ociated with the inlet and outlet plates was assumed to be the

ame as the coarse medium. A full listing of the flow cell dimen-

ions and properties are provided in Table 2 . 

.1. Numerical models 

Two different direct numerical simulations of the experimen-

al system were constructed. The first employed a full represen-

ation of the complete geometry as it was set up in the experi-

ents (the hexahedral volume of the flow cell plus each of the

03 inclusions– 20 cm × 50 cm × 100 cm). The second numerical

odel was constructed as a similarly resolved model, but with a

ubstantially-reduced domain size (10 cm × 10 cm × 100 cm). 

The finite elements package COMSOL Multiphysics 5.3 was used

o numerically solve Eqs. (7) –(16) on this geometry. An illustration

f the geometry is given in Fig. 2 . Direct numerical simulations of

he system were conducted by meshing volumes (the coarse ma-

rix and inclusions) using a tetrahedral mesh; the matrix and in-

lusions were separated by a boundary-fitted mesh. The interfacial

oundary condition indicated by Eq. (14) was applied at this inter-

acial boundary. 

Convergence of the numerical model was determined by con-

ucting a conventional grid convergence analysis. In short, a se-

uence of simulations with decreasing mesh size were computed,

nd a global error metric was computed for each increasingly re-

olved mesh. The simulations were considered converged when the
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Fig. 3. (a) The domain associated with the complete representation of the geometry 

for the flow cell DNS computations. (b) The domain associated with the reduced 

domain representation of the flow cell. The color scale illustrates the normalized 

concentrations for t = 10 hours. Flow is from left to right. 
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rror metric was below a pre-determined target value. Details of

he convergence analysis are provided in the Appendix . 

Model I. Fully-resolved direct numerical simulation of the

ntire flow cell. The most resolved model that can be adopted

or this particular system on the Darcy scale is a fully-converged

umerical simulation that solves Eqs. (7) –( 16 ) over a domain that

epresents the entire experimental system (to within our abilities

o measure the system parameters). For reference, the domain for

he complete representation of the geometry of the experimental

ystem is illustrated in Fig. 3 (a). The advantage of such a model is

hat, assuming that Eqs. (7) –( 16 ) are correct, there is no upscaling

nvolved in the representation of the system. The primary disad-

antage, however, is that such a model is maximal in terms of the

mount of degrees of freedom required to represent the system.

lthough this is possible for an experimental system such as this,

t unlikely to be possible for actual porous materials encountered

n the environment (or, even, in engineered applications). Thus, the

ully-resolved DNS is not a parsimonious model, and it may pro-

ide more information than is technically required. As an example,

he DNS model presumably provides an accurate time history of

he concentration at each point in the flow cell. This kind of infor-

ation is of interest if the pointwise concentration in the medium

ere of relevance. However, in many cases (including these ex-

eriments) the breakthrough curve is the only measured data that

s available. Hence, although one may predict good estimates of

he concentration for each point in the domain, these are of little

alue if the goal of the model is to predict the breakthrough curve.

herefore, the fully-resolved DNS model is an accurate model, but

ne that generates ancillary data that is not of direct relevance to

he goal of computing an accurate breakthrough curve. 

Model II. Fully-resolved direct numerical simulation of a

educed-domain. In model I, a fully-resolved representation of the

ull experimental system was developed. For model II, we exam-

ned options for replacing the actual domain by a reduced-size re-

lization of the domain. The idea for this model was to roughly

etermine what might constitute a representative volume (REV) for

he simulation of breakthrough curves. As a guiding principle, we

ssumed that the volume should at least have the correct spatial

tatistics, which would define an REV with some quantifiable error

 Wood and Valdés-Parada 2013 ). In practice, however, uniquely de-

ermining an REV is a difficult task, and it depends in part upon

he processes modeled and the required fidelity of the results. Our

pproach was to make a sequence of reasonable assumptions re-

arding the required size; these were based, in part, on previous

xperience with such systems. Thus, our process was to (1) make

easonable assumptions, and then (2) check to assure that the re-

uced model was an REV (although it may not be the smallest such

olume) as measured by fidelity with the breakthrough curves. 

For this model, we chose a domain with the full domain length

length = 100 cm), but where the width and height of the domain
ere set to 10 cm each. This reduction decreases the volume of

omain by a factor of 10 in comparison to the fully-resolved do-

ain. The width and height of the reduced-domain were chosen

uch that they were at least the size of two times the inclusion di-

meter. This choice was made as a compromise between increas-

ng fidelity for the derived effective parameters, and reducing the

ize of the simulated domain. Although further size decreases in

he transverse directions could be explored, increased uncertainty

n the value of the effective parameters would result. Our results

ndicate that our particular choice for reduction was, in fact, a rea-

onable compromise. 

The volumetric ratio of inclusions to the total domain size

as kept the same as in the experimental setup and the fully-

esolved domain ( V ω /V total = 0 . 133 ). Inclusions were randomly

laced throughout the reduced-domain with a script generated

ith MATLAB ( Vogler, 2012 ). As in the experiment and the fully-

esolved model, no inclusions were placed within 5 cm of the inlet

r outlet. For reference, the domain for the complete representa-

ion of the geometry of the experimental system is illustrated in

ig. 3 (b). Our reduced domain size was selected on the basis of

revious experience Golfier et al. (2007) ; no effort was made to

etermine if this was a minimal REV. Note that for both models

 and II, we computed the value of c̄ η at the effluent plane. This

omputed concentration is in principle equivalent to that measured

xperimentally. 

.2. Upscaled models 

We considered two additional reduced models for describing

he bimodal system behavior. Each of these models has been spa-

ially averaged to develop upscaled balance equations. Spatially-

veraged models of mass transfer in two-region media have pre-

iously been developed in several studies ( Chastanet and Wood,

008; Cherblanc et al., 2003; Quintard, 1993; Whitaker, 1999;

ood et al., 2003 ). We apply the development by Chastanet and

ood (2008) ; interested readers are referred to that work for de-

ails of the upscaling process. Chastanet and Wood (2008) de-

elop three upscaled models where the functional form of the ef-

ective mass transfer terms represent different levels of coupling

etween micro- and macroscales. The models in decreasing order

f complexity are: (1) A fully-coupled model with a non-local-in-

ime mass transfer term, (2) A decoupled transient model with

inear mass transfer that depends upon a time-varying effective

ass transfer coefficient, and (3) A quasi-steady model with a con-

tant (asymptotic) mass transfer coefficient. The uncoupled and the

uasi-steady models (III and IV below) are both investigated in the

resent study; we discuss the fully-coupled model for complete-

ess. Note that in all of these models, it is assumed that con-

ection in the inclusions can be neglected relative to diffusion.

his is not due to a limitation of the averaging method; rather,

his approximation is required for one to develop an explicit se-

ies solution for the effective mass transfer coefficient. Upscaled

odels that include convection in the inclusions are available

 Ahmadi et al., 1998 ), but they require much more computation

o develop solutions. Ultimately, the approach of Chastanet and

ood (2008) was selected as a modeling choice that appeared to

e consistent with the physical system being analyzed while also

roviding substantial reduction in model complexity. 

The fully coupled model of Chastanet and Wood (2008) is

tated as 

− phase: ε ηϕ η
∂〈 c η〉 η

∂t 
= ∇ ·

(
ε ηϕ ηD 

∗∗
ηη · ∇〈 c η〉 η

)
− ε ηϕ η〈 v η〉 η · ∇〈 c η〉 η − W (t) (19) 

 -phase: ε ω ϕ ω 
∂〈 c ω 〉 ω 

∂t 
= ∇ · (ε ω ϕ ω D ω · ∇〈 c ω 〉 ω ) + W (t) (20) 
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Fig. 4. Mass transfer coefficient as computed using the uncoupled ( Eq. (26) ) and 

quasi-steady ( Eq. (28) ) models. 
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where 

 (t) = ε ηϕ ω 
d 

dt 

(∫ t 

0 

B (t − τ ) C ηω (τ ) dτ

)
(21)

 ηω = 

(
< c η > 

η − < c ω > 

ω 
)

(22)

Here, the intrinsic averaged macroscale concentrations for the η-

and ω-regions are given by < c η > 

η and < c ω > 

ω , respectively; the

intrinsic averaged macroscale velocity is given by 〈 v η〉 η; D 

∗∗
ηη is the

effective total dispersion tensor for the η-phase; D ω is the effec-

tive diffusion tensor for the ω-phase ( D ω = I D ω ); and W ( t ) is the

effective mass transfer function ( Chastanet and Wood, 2008 ). The

quantity B ( t ) is a kernel function depending on the geometry, ini-

tial conditions, and physical parameters describing the system. For

clarification, we note that for the case examined here (zero convec-

tion in the ω-phase), we have the condition that D 

∗
ω = D ω = I D ω ;

thus, we have used the symbol D ω in Eq. (20) . 

For this model, the functional form of the mass transfer

source/sink term depends on the convolution of a kernel function

B , which carries information about the physics and geometry of the

problem at the Darcy scale ( Eq. (21) ), with the macroscale mass

transfer driving force ( Eq. (22) ). This general form is technically

necessary only for conditions where the time scale for solute trans-

port out of the inclusions is on the order of the one for transport

through the coarse material. Under many reasonable sets of con-

ditions, this general model can be somewhat simplified while still

maintaining accuracy. In the following, we describe two of these

models. These two simplified representations were used to model

the breakthrough curve of the effluent concentration from the flow

cell. Note that because of the large Péclet number associated with

the η-phase, for this mathematical model under the experimental

conditions there is essentially no difference between the concen-

trations < c η > 

η and c̄ η . For convenience in presentation, we will

use the symbol c̄ η when comparing experimental concentrations

with those developed from Models III and IV with the understand-

ing that they are equivalent. 

Model III. Two-equation, time-local model (decoupled

model). The first simplification arises under conditions where the

timescales of variations of C ηω are large compared to the time

scale associated with the kernel B . When this is true the averaged

concentration term, C ηω , can be carried outside the integral. Under

these conditions, the macroscale concentrations are then decoupled

from the Darcy-scale physics (represented by the kernel B ), and

the expression in Eq. (21) simplified to the familiar linear form

with a time-varying mass transfer coefficient 

 (t) ≈ ε ηϕ ω B (t) ︸ ︷︷ ︸ 
α(t) 

C ηω (23)

Eq. (23) transforms the macroscale balance laws into the more fa-

miliar form 

η − phase: ε ηϕ η
∂〈 c η〉 η

∂t 
= ∇ ·

(
ε ηϕ ηD 

∗∗
ηη · ∇〈 c η〉 η

)
− ε ηϕ η〈 v η〉 η

·∇〈 c η〉 η − α(t) 
(〈 c η〉 η − 〈 c ω 〉 ω 

)
(24)

ω − phase: ε ω ϕ ω 
∂〈 c ω 〉 ω 

∂t 
= ∇ · ( ε ω ϕ ω D ω · ∇〈 c ω 〉 ω ) 

+ α(t) 
(〈 c η〉 η − 〈 c ω 〉 ω 

)
(25)

Chastanet and Wood (2008) provide a closed-form expression

for α by solving the closure problems associated with Eq. (24) over

a representative elementary volume (REV) using Fourier trans-

forms. The time-dependent solution is 

α(t) = 15 

D ω ε ω ϕ ω 

a 2 
+ 6 

D ω ε ω ϕ ω 

a 2 

∞ ∑ 

n =1 

exp 

(
−q 2 n D ω 

a 2 
t 

)
(26)
here q n are the non-zero positive roots of 

an q n = 

3 q n 

3 − q 2 n 

(27)

or reference, a normalized plot of the transient value of α( t ) ap-

ears in Fig. 4 . 

Model IV. Two-equation, quasi-steady model. This model is a

implification of Model III where the time asymptotic solution (the

eading term in Eq. (26) ) is considered. For these conditions, the

ass transfer coefficient is given by the constant 

(t) ≈ 15 

D ω ε ω ϕ ω 

a 2 
(28)

he value of this constant is also plotted in Fig. 4 . 

Solutions for the breakthrough curves were generated using

odels III and IV by treating each as a coupled (mobile-immobile)

ystem of 1-dimensional advection-dispersion equations. The val-

es for model parameters are listed in Table 2 . The transport prop-

rties reported in Table 2 were determined a priori and indepen-

ent of the experimental results. The hydraulic conductivity of the

ow-conductivity region was obtained from measurements with

he material used to construct the inclusion, which was tightly

acked ( K ω = 6 . 67 × 10 −7 m/s ) ( Harrington, 2010; Vogler, 2012 ). 

For both models III and IV, the effective dispersion tensor, D 

∗∗
ηη,

s an upscaled parameter representing the dispersion in the coarse

aterial as it is influenced by the presence of the inclusions. We

etermined the effective dispersion tensor by numerically comput-

ng the solution to a closure problem posed for a single (simple)

nit cell following Whitaker (1999 , Chp. 3); 

 

∗∗
ηη = D η

(
I + 

1 

V η

∫ 
A ηω 

n ηω � b ηdA 

)
− 〈 ̃ v η � b η〉 η (29)

ere, the ancillary vector field b η is related to the deviation con-

entration ˜ c η = b η · 〈 c η〉 η; additional information about the partic-

lar balance equations met by b η are available in Whitaker (1999 ,

hp. 3). Our particular computation had explicitly made the ap-

roximation that the ω-phase may be treated as being imperme-

ble for the purposes of determining the effective dispersion tensor

or the η-phase. The geometry of the unit cell ( Fig. 5 ) consisted
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Fig. 5. Geometry used in the closure problem to compute the effective dispersivity 

tensor. A 2D representation is depicted for simplicity, while the closure problem 

was computed on a 3D geometry. 

Table 3 

Summary of macroscale system properties. 

Parameter Value Units 

|| 〈 v η〉 η || 8 . 62 × 10 −6 [m/s] 

|| 〈 v ω 〉 ω || 3 . 21 × 10 −8 [m/s] 

D ∗∗
L,ηη 2 . 5 × 10 −7 [m 

2 /s] 

D ∗∗
T,ηη 2 . 5 × 10 −8 [m 

2 /s] 

Pe ωω 2.2 [ – ] 

Pe ηω 14.8 [ – ] 

Pe ηη 23925 [ – ] 
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Fig. 6. Tracer breakthrough curves using (a) linear scaling, and (b) log-log scaling. 

The × symbol on the time axis mark the times for which the concentrations in the 

system are visualized in Fig. 7 . 
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f a sphere centered in a cube, with the volume of the sphere

eflecting the total volume of the inclusions in the experimental

ystem ( Table 2 , ϕ ω = 0 . 133 ). Subsequently, the closure variable b η

as calculated using COMSOL Multiphysics ®; the resulting values

or the dispersion tensor components, the dispersivities, and other

erived parameters are reported in Table 3 . A detailed derivation

f b η can be found in Ahmadi et al. (1998) . This approach does

equire that one knows something about the geometry of the low-

onductivity heterogeneities, and that this geometry be consid-

red to be representative. However, this approach is not limited

o spherical or ellipsoidal inclusions; essentially any geometry for

ow-conductivity heterogeneities can be accounted for in the clo-

ure. The primary restriction is that the low-conductivity hetero-

eneities be approximately spatially stationary in distribution (i.e.,

hat some notion of a representative structure can be established). 

. Results 

Early- and late-time experimental breakthrough curves for bro-

ide and flourescein are illustrated in Fig. 6 . Tracer concentra-

ions are normalized with respect to the initial (saturated) con-

entration, c 0, f or c 0, b , and time is non-dimensionalized using the

haracteristic timescale of diffusion in the inclusions ( τD = a 2 /D 

∗
ω ).

ere, early time refers to the period of time where the bulk of the

olute is being flushed out of the matrix (0 < t ∗ < 0.04); late time

efers to the period where solute is being transported primarily

ut of the inclusions and the outlet concentration is decreasing

symptotically (0.04 < t ∗ < 0.4). The observed breakthrough curve

ehavior thereby resembles previous studies on high-conductivity

ontrast domains ( Haggerty and Gorelick, 1995; Zinn et al., 2004 ),

here a sharp, initial decline in concentration after the flushing

f the high-conductivity domain is followed by slower concen-

ration decay while the solute leaves the low-conductivity inclu-

ions. As Fig. 6 (b) shows, the experiment using flourescein pro-

ided more data for late-time behavior; due to the sensitivity of
he method, concentrations up to ∼ 3 orders of magnitude smaller

han the inlet concentration could be measured. For bromide mea-

urements, the accuracy of the measurement technique allowed

easurements only to within ∼ 2 orders of magnitude smaller

han the inlet concentration. Fig. 6 also illustrates that the two

racers follow very similar trends but show several small devia-

ions from one another at both early and late times. However, both

arly- and late-time deviations of bromide from fluorescein are

ithin a 95% confidence interval for bromide; thus, they are not

tatistically significant. The late-time deviations are most likely ad-

itionally influenced by approaching the noise floor for measure-

ents using the HPLC. The spatial distribution of the simulated

racer concentrations in the system are illustrated in Fig. 7 . This

lot is useful to get a sense for the disparity in time scales for

ransport in the matrix versus the inclusions. 

The magnitude of the intrinsic velocities || 〈 v ω 〉 ω || and || 〈 v η〉 η||

ere computed numerically from the DNS models ( Table 3 ). The

alues for the Péclet numbers and other important parameters

equired to simulate the particular initial, boundary, and derived

onditions in the flow cell are summarized in Table 3 . The value

f Pe ωω is slightly larger than unity, indicating that convective

ransport and diffusive transport were both important in the inclu-

ions. Although the intrinsic velocity in the inclusions (|| 〈 v ω 〉 ω ||)
s two orders of magnitude smaller than the intrinsic velocity

n the matrix (|| 〈 v η〉 η||), the ω-region is characterized as mobile

values reported in Table 3 ). However, as mentioned previously,

n Fig. 2 , this experiment plots near the boundary between the

obile-mobile and mobile-immobile regimes. Thus, for this case,
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Fig. 7. Visualization of DNS results of the fluorescein concentration field for both 

the fully-resolved and reduced-domain systems. The image planes and color scale 

are defined in Fig. 3 . Flow is from left to right. 
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either model is likely to give acceptable results for simulating the

breakthrough curve behavior; however, one might expect a mobile-

mobile model to be somewhat more accurate (although at a higher

computational cost). 

Superimposed on Fig. 6 are the results from the fully-resolved

DNS (model I), the reduced-domain DNS (model II), and the two

upscaled models (models III and IV). For this particular set of con-

ditions, models III (two-equation, time-local) and IV (two-equation,

quasi-steady) models produced results that were indistinguishable.

Root-mean square (RMS) errors were computed for the differ-

ence between each of the four models and the experimental data

for fluorescein as follows 

εRMS = 

( ∑ 

i 

[ ̄c η,meas (t i ) − c̄ η,model (t i )] 2 

) 

1 
2 

(30)

For comparison purposes, we consider the ratio of RMS errors

compared with the maximal-information model (model I) errors;

for this metric, we refer to the RMS error associated with model I

as ε0, RMS . 

6. Discussion 

6.1. Model quality 

The results show reasonable agreement between the experi-

ment and each of the four models investigated. Each of the mod-

els explored predicted the trend of tracer breakthrough reason-

ably accurately. It should be emphasized here that no numerical

or parameter fitting was performed for any of the models; all hy-

draulic parameters were either measured or computed for a unit
ell model. The fully-resolved DNS and reduced-domain DNS pro-

uce almost identical breakthrough curves. This result also pro-

ides some validation that the measured parameters and geomet-

ical representation for the flow cell are reasonably accurate, as ev-

denced by the very small RMS error associated with these simu-

ations ( Table 4 ). An additional interesting feature of this model-

ng effort is that a purely Fickian-type constitutive equation was

ble to reproduce the system behavior accurately. This is consis-

ent with other recent work on inclusion-type laboratory systems

e.g., Heidari and Li, 2014 ). 

Of all of the models, the fully-resolved DNS imposes the least

eduction of complexity of the modeled problem. The model per-

ormance of reduced complexity domains (models II-IV) should

herefore be compared to the fully-resolved DNS as well as the ex-

erimental data, since the early time behavior of the experimental

ata is not captured perfectly by any of the presented models (the

ost likely reason for this is experimental uncertainty rather than

ailure of any of the models; this is discussed below). The reduced-

omain DNS captured the physics of the full system nearly as ac-

urately as the fully-resolved DNS. The only notable deviations to

he fully resolved DNS are very small; again this is reflected in the

ery similar RMS error values presented in Table 4 . The increase in

he RMS error was on the order of 5% using the reduced-domain

odel; however, the domain size was only 1 / 10 th of the size of

he fully-resolved DNS domain. 

In comparison, the results obtained using the upscaled models

how slightly larger deviations from the experiments than do the

wo DNS models. While the DNS correctly represents the time that

he tailing begins (visible in Fig. 6 (b)), the volume averaged mod-

ls predict a shift to the diffusive-dominated tailing regime slightly

arlier. Subsequently, transport of solute from the inclusions to the

atrix leads to higher concentrations at the outlet at the begin-

ing of tailing, and a slight under-prediction of the solute con-

entration at the outlet at the end of the experiment. Note that

odels III and IV are essentially indistinguishable for these par-

icular conditions. This observation is corroborated by noting that

he mass transfer coefficient relaxes (i.e., where the two curves in

ig. 4 are close enough to be considered indistinguishable) to its

symptotic value near about t ∗ = 10 −2 . In terms of non-normalized

ariables, complete relaxation occurs after about 5 h. This is a

mall fraction of the observed time, and thus transience in the

alue for the mass-transfer coefficient was not important for these

onditions. 

Another factor in the accuracy of models III and IV is the ne-

lect of convection in the inclusions. Analytical results such as

hose reported in Haggerty and Gorelick (1995) and Chastanet and

ood (2008) require that convection be neglected so that a sim-

le analytical solution can be derived. Reference to Fig. 1 shows

hat the experiment took place in the mobile-mobile region; thus,

onvection within the low-conductivity inclusions was not entirely

egligible. However, the plot in Fig. 1 is intended to be primar-

ly qualitative, especially near the regime boundaries; our data

lots near such a boundary. Thus, it is difficult to predict a pri-

ri whether or not our experiments are significantly affected by

onvection. 

For early times, each of the four models considered under-

redicts the initial dispersion in concentration as compared to the

xperimental results. There are a number of possibilities here, but

he most likely one is that the experimentally realized dispersion

ear the inlet of the flow cell is higher than it is in the remain-

er of the medium. The most likely explanation is that there was

 non-uniform distribution of flow into the flow cell. Although sig-

ificant effort was taken to make the inlet as uniform as possible,

nlet boundaries are notoriously difficult to control in porous me-

ia experiments. Because we have no method to measure a poste-

iori the uniformity of the initial experimental injection, we have
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Table 4 

Computational demand for DNS and averaged models. The value for the relative computational time (CPU 

%) is calculated by normalizing to the time for Model I (fully-resolved DNS); the realtive RMS error is 

computed analogously. Simulations were run on Intel(R) Xeon(R) CPU E5-2680 v3 processors. 

Model DOF Time Steps CPU Time f t I CPU εRMS 

εRMS 

ε0 ,RMS 

[ −] [ −] [ s ] [ −] [ −] [ −] 

Model I 1,383,630 310 36,248 1.0 × 10 0 0 0.0223 1.00 

Model II 152,596 297 2352 6 . 5 × 10 −2 1 0.0212 1.05 

Models III/IV 194 73 4 1 . 0 × 10 −4 4 0.0254 1.14 
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ade no effort to account for this hypothesized early spreading

n the models. Regardless, the absolute difference for each of the

odels with the experimental data in this early part of the break-

hrough curve is, at most, 5% of the total concentration. 

.2. Model complexity 

It is clear from the model results that using reduced-

nformation models was effective for this experimental system,

uggesting that the particular type and extent of heterogeneities

n the system lends itself to upscaling. It is interesting to consider

he question of how much information reduction was realized by

he various models employed. 

One of the problems with computing information reduction in

odels is a fundamental one: what elements of a system can

e considered to contribute to information for a model? Because

n this case, all four models are, ultimately, solved by numerical

ethods that require discretization of a set of partial differential

quations, we might consider some of the tools that are used in

easuring information content for algorithmic systems. For exam-

le, one can consider computing the algorithmic complexity of a

articular discrete algorithm (note that in the literature, both in-

ormation and complexity are used to indicate roughly the same

oncept). The algorithmic complexity has a specific meaning in

omputing theory that can be well defined for particular problems

 Cook, 1983; Cover and Thomas, 2012; Savage, 1976; Zvonkin and

evin, 1970 ); however, it is neither easy to determine the algorith-

ic complexity for something as complicated as a finite element

cheme ( Farmaga et al., 2011 ), nor does such a metric represent

he only component of information that is of interest. For exam-

le, the amount of memory required to solve a particular finite el-

ment problem is a relevant part of the complexity of a problem

n applications ( Farmaga et al., 2011 ) because memory limitations

ften define how well a particular problem can be resolved. How-

ver, algorithmic complexity does not always directly account for

his facet of the problem ( Cook, 1983 ). Algorithmic complexity also

oes not directly account for the amount of time it takes for a par-

icular algorithm to run, although it is frequently proportional to

t. Concepts such as Levin complexity ( Ming and Vitányi, 1997 ) ad-

ress some of these problems, but it is still a tool that is best for

ore theoretical analyses. 

In many applications, it is more reasonable to develop a proxy

or information content. For iterative numerical methods, it has be-

ome common to use floating point operations or computational

ime or some filtered version of these metrics (e.g., Karlsson et al.,

005 ) as a measure of complexity. For our results, because we

ere using the same code and methods to solve all four models,

e used a naive metric of computational time (CPU time) as a

easure of information content. We did not make any attempts to

ccount for overhead functions such as caching or inter-processor

ommunications; however, a comparison of the data suggests that

his metric scales linearly ( R 2 = 0 . 998 ) with the number of degrees

f freedom (DOF), suggesting that overhead functions were not sig-

ificant for our particular problem. Our results for processing times

re summarized on Table 4 . Note that because models III and IV
re essentially identical for our particular experimental conditions,

hey are not independently distinguished in the table. In the re-

ainder of this section, the terms complexity and information are

sed interchangeably; these terms are intended to be interpreted

y the heuristic definitions discussed in the following rather than

n the more formal definitions (associated with, for example, Shan-

on information or Kolmogorov complexity) that can be defined in

he context of information theory. 

Information metrics are inherently difficult to compute, and it

s conventional to examine changes in terms of powers of the base

nit. First, we define the relative time for computation compared

o the model with the maximal use of information by 

f t = 

t m 

t 0 
(31) 

here t 0 is the time for the maximum-information model to run,

nd t m 

is the time for any particular reduced-information model

o run. For our normalized metric, we can define the powers of 10

eduction in CPU time by 

 CPU = −log 

(
t m 

t 0 

)
(32) 

his measure, then, provides the number of powers of 10 reduction

n computation time. We have computed these values, and listed

hem (rounding to the nearest log unit) in Table 4 . Because our

nformation reduction is taken as a measure relative to the fully-

esolved DNS, the fully resolved DNS model offers zero information

eduction. In other words, this model, when fully converged, rep-

esents the maximal use of information that we have regarding the

xperimental system, including the explicit details of its geometry,

he boundary and initial conditions, and independent measures of

he associated physical properties ( Table 2 ). 

In our effort s, employing models of reduced complexity is mo-

ivated by reducing the computational costs associated with sys-

ems of high variability of hydraulic parameters and complex ge-

metries. The results presented in Table 4 provide some results

bout the relative computational costs of each of the four models.

irst, we note that the fraction of computing time compared to the

aximal-information model (model I) is substantially decreased in

ur hierarchy of reduced-complexity models. Model II, which re-

uced the simulation domain by a factor of 10, correspondingly

akes about a factor of 10 less time ( I cPU = 1 ) to compute compared

o model I. This comes at a cost in that the RMS error for model

I is about 5% higher than for model I; however, the reduction in

omputational burden may well make this trade off an acceptable

ne. 

The results for models III and IV show a substantially greater

conomy in computational costs. The computational time for these

odels is on the order of 10,0 0 0 times less than for model I ( I cPU =
 ). Although the upscaled models show lower accuracy in respect

o the experimental data than the fully-resolved and reduced-

omain DNS (the RMS value for these models is about 14% more

han for model I), the results are still quite compelling when mea-

ured by the absolute RMS error, which is still quite small. 

As a final comment, it is interesting to note that the question

f reduction of complexity for models is incomplete without some



160 D. Vogler et al. / Advances in Water Resources 114 (2018) 149–163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

m  

m  

d  

s  

i  

o

 

m  

T  

fi  

s  

s  

t  

e  

R  

a  

i

 

d  

s  

d  

C  

c  

t  

a  

w  

f  

p  

t  

a  

t  

a  

t  

A  

d  

a  

t

8

notion of assigning utility to the various possible models. With-

out a notion of utility, it is impossible to make choices that weight

the relative strengths of the models examined (in this case, the

trade off is between computational size versus solution accuracy).

This can be done by establishing a utility function that weights the

various features of each model to provide an overall sense of its

value (the review article by Tartakovsky, 2013 provides an excellent

overview on this question). For the cases explored here, the utility

function would represent a trade-off between accuracy of the so-

lution and the computational resources needed to obtain the solu-

tion. Such issues become more acute when uncertainty is higher,

and solutions may consist, for example, of large suites of Monte

Carlo simulations in order to account for the uncertainty in the

data. 

Even the understanding of what is meant by accuracy of the so-

lution may have to be further quantified in a utility function. For

example, if one is primarily concerned about mean breakthrough

time, then the arithmetic concentration, as plotted in Fig. 6 (a)

might be relevant. However, if one were more concerned about

long-term behavior of small concentrations (this would be the case

for some kinds of contaminants in the environment), then it may

be the tailing of the breakthrough curves illustrated in Fig. 6 (b)

that might be of more relevance. The RMS values computed in

this work were computed for the arithmetic concentrations, and

would not be the most useful metrics of error if one wanted to

emphasize the late-time tailing of the breakthrough curve. Instead,

comparisons of the various models might be best done on the log-

transformed data, which would give increased weight to the late

time data. Thus, model simplification is one part of a larger analy-

sis that must also consider how to place specific value (via a utility

function or other method to assign value to outcomes) on the re-

sults that are obtained. 

7. Conclusion 

A sequence of models with decreasing complexity was ex-

amined for modeling the breakthrough curves of a conservative

tracer in a highly-heterogeneous, bimodal porous medium. The

experimentally-observed late-time breakthrough was modeled us-

ing a two-region time non-local mass transfer model developed us-

ing the method of volume averaging that was cross-validated with

direct numerical simulations at the Darcy scale. DNS with the full
Table 5 

Nomenclature. 

Roman symbols 

a inclusion radius [ m ] 

A ηω area of the interface between η- and ω-reg

B kernel function defined by Eq. (23) 

b η closure variable for determining the effecti

c η Darcy-scale scalar concentration field, η-ph

c ω Darcy-scale scalar concentration field, ω-ph

< c η > 

ω ω-region averaged concentration field for u

< c ω > 

η η-region averaged concentration field for u

c̄ η flux-averaged (over flow cell effluent plane

D m molecular diffusion coefficient for fluoresce

D η Darcy-scale effective diffusivity tensor, coar

D ω Darcy-scale effective diffusivity tensor, fine

D 

∗
η Darcy-scale effective total dispersion tensor

D 

∗
ω Darcy-scale effective total dispersion tensor

D 

∗∗
ηη upscaled effective total dispersion tensor fo

D ∗∗
L,ηη lateral upscaled total dispersion tensor com

D ∗∗
T,ηη transverse upscaled total dispersion tensor 

f t fraction of time for a model to run to comp

I second-order identity tensor [–] 

I CPU number of (base 10) log units of difference

used as a heuristic measure of model comp
ystem geometry and a simplified geometry with identical volu-

etric fractions of two regions yielded very accurate results (as

easured by RMS error) when compared with the experimental

ata for the entire time period examined experimentally. The DNS

imulations included convective transport in the low-conductivity

nclusions, and this proved to have a small, but measurable, impact

n the accuracy of the results. 

Breakthrough curves predicted by the two volume averaged

odels show only small differences from the two DNS results.

hese differences appear to arise almost entirely from the simpli-

cation in those models that neglects convection within the inclu-

ions. Overall, the volume averaged models succeed in providing

olutions which require 4 orders of magnitude less computational

ime than the fully-resolved DNS, while only increasing the RMS

rror by a factor of 1.14. For these particular cases, the absolute

MS error is already quite small for all of the models tested; thus

 14% increase in the RMS error may not be of any practical signif-

cance. 

An interesting facet that the comparison of model complexity

oes raise is the question of how to decide what model is in,

ome sense, best. Often in studies of this type, the stated goal is to

evelop reduced models that are computationally more efficient.

onsiderations of model accuracy are usually relegated to not ex-

eeding some (often arbitrary) standard of error. In some sense,

his does provide a de facto utility function for which a decision

mong models may be made. However, in actual applications, one

ould have to attempt to assign value to the various costs involved

or each of the models in order to make a selection. In this exam-

le, the costs are primarily the interplay between computational

ime and model accuracy. However, the specific objectives for the

pplication of model predictions would potentially weight these

wo costs differently, and may even require different metrics (e.g,

 maximum concentration difference not to be exceeded at a con-

rol plane instead of the global RMS error) for measuring accuracy.

lthough these questions are being increasingly recognized in hy-

rology ( Tartakovsky, 2013 ), the development of concrete tools for

ssigning value to outcomes is clearly an important area for con-

inued research. 

. Nomenclature 

See Table 5 . 
ion within an averaging volume V [ m 

2 ] 

ve dispersion tensor for the η-phase [ m ] 

ase [ kg/m 

3 
] 

ase [ kg/m 

3 
] 

se in models III and IV [ kg/m 

3 
] 

se in models III and IV [ kg/m 

3 
] 

) concentration field, η-phase [ kg/m 

3 
] 

in [ m 

2 / s ] 

se medium [ m 

2 / s ] 

 medium [ m 

2 / s ] 

, coarse medium [ m 

2 / s ] 

, fine medium [ m 

2 / s ] 

r the η-region [ m 

2 / s ] 

ponent (the 1-1 component) [ m 

2 / s ] 

component (the 2-2 component) [ m 

2 / s ] 

letion compared to the maximal-information model [–] 

 in f t among models; 

lexity [–] 

( continued on next page ) 
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Table 5 ( continued ) 

Roman symbols 

K η effective hydraulic conductivity tensor, coarse medium [ m/s ] 

K ω effective hydraulic conductivity tensor, fine medium [ m/s ] 

K η isotropic hydraulic conductivity of the η-region [ m/s ] 

K ω isotropic hydraulic conductivity of the ω-region [ m/s ] 

L m length of the porous material in the flow cell [ m ] 

L length of the flow cell (including inlet structures) [ m ] 

n ηω normal vector for the η − ω interface, pointing from the η phase toward the ω phase [–] 

n ηe outward directed normal vector for the interface between the η phase 

and the exit of the flow cell [–] 

Pe ωω Péclet number for the fine material (inclusions) [–] 

Pe ηη Péclet number for the coarse material (matrix) [–] 

Pe ηω mixed Péclet number comparing convection in matrix to diffusion in inclusions [-] 

t 0 time taken for the maximum-information model to run [ s ] 

t m time taken for a reduced-information model to run [ s ] 

v 0 inlet boundary intrinsic velocity for the η-phase [ m/s ] 

v η Darcy-scale intrinsic velocity field, η-phase [ m/s ] 

v ω Darcy-scale velocity field, ω-phase [ m/s ] 

〈 v η〉 η η-region intrinsic averaged velocity field for use in models III and IV [ m / s ] 

v ω Darcy-scale velocity field, ω-phase [ m/s ] 

|| 〈 v η〉 η || magnitude of the intrinsic velocity in the η-region [ m/s ] 

|| 〈 v ω 〉 ω || magnitude of the intrinsic velocity in the ω-region [ m/s ] 

V η volume of η-region within an averaging volume V. [ m 

3 ] 

V ω volume of ω-region within an averaging volume V. [ m 

3 ] 

W effective mass transfer function [ kg/m 

3 
/ s ] 

Subscripts 

η denotes the region associated with the high-conductivity matrix 

ω denotes the region associated with the low-conductivity inclusions 

Greek symbols 

α mass transfer coefficient [ 1 / s ] 

αL, η longitudinal dispersivity in the η-region [m] 

αT, η transverse dispersivity in the η-region [m] 

ε relative root mean square error computed for the grid convergence study 

εRMS root mean square error computed for the difference between 

the normalized concentration data and models [–] 

εω ω-region porosity [–] 

εη η-region porosity [–] 

ϕω total volume fraction of the ω-region [–] 

ϕη total volume fraction of the η-region [–] 

ρη density of the η-region [ g/cm 

3 
] 

ρω density of the ω-region [ g/cm 

3 
] 

τ D characteristic timescale of diffusion in the inclusions [–] 

Abbreviations 

DNS direct numerical simulation 

DOF degrees of freedom 

REV representative elementary volume 

RMS root mean square 
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ppendix. Convergence analysis 

A convergence analysis of the model was performed to ensure

ufficient accuracy of the numerical scheme. Convergence for both

ime and space was quantified by computing the area integral of

he resident concentration at breakthrough plane. Breakthrough

urves were calculated for time steps ranging from 5 × 10 2 seconds

o 1 × 10 5 seconds and various pre-defined and user-defined mesh

arameters. A root mean square (RMS) error was then computed

o quantify convergence behavior for the time step and mesh size.
he RMS error was defined by 

= 

√ 

t= n ∑ 

t=0 

( C 0 − C test ) 
2 (33) 

here n is the number of time steps in the simulation, C 0 is the

oncentration data of the breakthrough curve calculated with the

mallest mesh and time step computed, and C test is the concentra-

ion data of the breakthrough curve for the mesh and time step in

hich convergence is being evaluated. The size of the RMS and the

un time required to compute results for the model were the basis

or choosing a sufficiently small mesh size and time step. The sys-

em was assumed to be converged when reducing the mesh size or

ime step did not significantly lower the RMS value. Variations of

he time step had a small influence on the accuracy of the solution

 Fig. 8 (a)), and a time step of 1 × 10 4 seconds was subsequently

hosen. Convergence was defined by achieving an RMS value less

han ε = 0 . 0025 ; this value was met for mesh edge lengths in the

atrix around 0.02 m ( Fig. 8 (b)). A maximum mesh edge length of

.0212 m was used for the direct numerical simulations presented

n the results ( Section 5 ). 

https://doi.org/10.7267/N99S1P7N
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Fig. 8. Relative RMS error in breakthrough concentrations for; a) the time step; and b) maximum mesh edge length. Convergence analysis for the time step was performed 

on the simplified system and convergence analysis for the mesh size was performed on the full system. 
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