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1 Introduction

It has long been known that probing the shape and structure of high-pT jets is potentially

of great value in searches for new particles at collider experiments [3]. With the advent of

the LHC and much activity in improving and developing jet algorithms [4]–[9], studies of

this nature have received considerable impetus. In particular, much recent attention has

been focused on using jet studies for the identification of boosted massive particles which

decay to hadrons forming a collimated jet, see for instance refs. [10]–[29].

In the same context a method has been recently suggested to study the shapes of one

or more jets produced in multi-jet events at fixed jet multiplicity [1, 2]. The precise details

of the observable suggested in those references involve defining a jet-shape energy-flow

correlation similar to that introduced in ref. [30]. Specifically the proposal was to measure

the shapes of one or more jets in an event leaving other jets unmeasured and introducing a

cut on hadronic activity outside high-pT (hard) jets, to hold the hard-jet multiplicity fixed.

This is in contrast to for instance hadronic event shapes [31–34] which by construction are

sensitive to the shape of the overall event rather than an isolated jet.

In the present paper we wish to use this observable as a case study to make several

points that we believe will be useful both within and outside the specific context. The

main points that we wish to address concern the resummation of soft gluon effects that

become important in describing the observable distribution for small values of the shape

variable ρ and the energy cut E0.
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In particular in this paper we shall address the structure of non-global logarithms [35,

36] as well as compute them in the large-Nc limit for jets defined in the anti-kt algorithm.

We remind the reader that observables that are sensitive to radiation in a limited phase-

space region such as the interior of a particular jet are non-global in the sense that they

receive logarithmic contributions from correlated soft emission, which are highly non-trivial

to treat to all-orders. Existing resummations of non-global logarithms have been confined

to a few special cases [35–39] and to the large-Nc limit. Given that the observable we study

in the current paper is non-global, it is worth examining in detail the precise structure of

non-global logarithms, which by definition start at O(α2
s) in the soft function and are of

the same size as the logarithms resummed in refs. [1, 2] and thus need to be considered as

well in order to achieve NLL accuracy. In the current paper we find non-global logarithms

arise both in the ratio of the the energy cut-off E0 and the shape variable ρ as well as in

E0/Q where Q is the hard scale of the process, which is naturally of the order of the hard

jet pT .1 More to the point we argue that in the limit of narrow well-separated jets a simple

picture emerges for non-global logarithms. The simplicity in the non-global structure is to

do with the fact of QCD coherence. Narrow well separated jets do not affect each others

evolution even in the non-global component which arises individually as an edge effect

from the boundary of each jet, precisely as the non-global logs in the case of a hemisphere

mass in e+e− annihilation arise from the edge separating the observed and unobserved

hemispheres [35]. Hence the resummation of non-global logarithms arising at each jet

boundary can simply be taken from the existing result for a hemisphere2 up to corrections

that vanish as powers of the jet radius. The simple structure of non-global effects in turn

provides us with an ansatz that can be used for any jet event of arbitrary jet multiplicity.

We also assess here the numerical contribution of the non-global logarithms and find

that while limiting the value of E0 is of some use in diminishing their size the effect is still

of order twenty percent as far as the peak height of shape distributions is concerned. In

fact we find that changing the value of E0 is not particularly useful as a means of reducing

the non-global contribution. Specifically following the original proposal in ref. [30] it was

suggested in ref. [2] that one may take the value of E0/Q to be of the same order as the jet

shape variable ρ, which we agree eliminates the non-global contribution from the measured

jet. However in this case the contribution from the unmeasured jet becomes as significant as

the contribution we are attempting to eliminate and hence the overall effect of this choice

turns out to actually increase the overall non-global component. With the resummed

results of the current article however one does not have to be too concerned about the

precise choice of E0 as the non-global terms should be accounted for, at least within the

large-Nc approximation and up to corrections vanishing as powers of the jet radius.3

Another point we wish to make is concerning the role of the jet algorithms. The

computation of non-global logs in the leading Nc limit can actually be carried out in any

1The potential presence of such logarithms was also mentioned in [1, 2].
2This statement should be qualified as it is correct only for the case of the anti-kt jet algorithm [8],

which is the one we recommend for study of such observables.
3These effects would amount to perhaps a ten percent change in the non-global term which we do not

expect to be of significant phenomenological consequence.
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jet algorithm by means of the numerical codes developed for instance in [35, 39, 40]. Indeed

it was found [40] that the use of certain sequential recombination algorithms (such as the kt

or Cambridge-Aachen (C-A)) can significantly reduce the non-global logarithms due to the

soft gluon clustering inherent in such algorithms. It was however later demonstrated [42, 43]

that one pays a price for this reduction in the non-global component in the form of a more

complicated result for the independent emission terms. While independent emission is

commonly associated with the exponentiation of the single-gluon result, this association

is spoiled by the application of sequential recombination algorithms other than the anti-

kt algorithm. As we shall show in this paper the result of soft gluon clustering in the

kt and C-A algorithms modifies the independent emission (global term) which deviates

from the naive exponentiation of a single gluon at a relevant single logarithmic accuracy.

Moreover the effect of the clustering near the boundary of a collinear jet no longer produces

logarithms suppressed in the jet radius R as was the case for small central rapidity gaps

discussed in refs. [42, 43] but rather pure single-logarithms independent of R. These effects

are absent for the anti-kt algorithm as already pointed out in ref. [8], since that algorithm

clusters soft gluons independently to the hard parton and hence produces circular jets in

the soft limit, i.e. it can be regarded in this limit as a rigid cone. Hence for the present

moment and pending a resummation of the clustering logarithms along the lines of that

carried out for gaps between jets [43] we confine our studies to the anti-kt algorithm. We do

however provide an explicit fixed-order computation of the single-logarithmic corrections

in the independent emission piece, that arise in other algorithms as we believe this point

deserves some stress.

The paper is organised as follows. In section 2 we define our observable, choosing the

jet mass in dijet events as an example of a jet-shape observable, while imposing a cut E0

in the inter-jet energy flow. In section 3 we perform the leading and next-to leading order

calculation of such observable in the soft limit, which elucidates the structure of the loga-

rithms arising from independent soft gluon emissions as well as non-global logarithms from

correlated emissions. We use these results to construct an argument which culminates with

the resummation of these logarithms in section 4. We also present a study which assesses

the numerical significance of the non-global logarithms as a function of the parameters

ρ and E0. In section 5 we highlight the fact that for algorithms other than the anti-kt

exponentiation of the single gluon result is not sufficient to capture the next-to-leading

logarithms even in the independent emission piece, let alone the non-global terms. Finally

we draw our conclusions in section 6.

2 High-pT jet shapes and inter-jet energy flow

We wish to examine a situation where one studies the shapes of one or more high-pT jets in

jet events with definite multiplicity. From the results we shall obtain below for such events

one can draw conclusions also about the single inclusive jet mass distribution for instance

for the process pp → j +X, where one can demand the production of a jet j setting a value

for a particular jet-shape, while summing over everything else denoted by X.
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For the points we wish to make in this paper we can for illustrative purposes and with-

out loss of generality consider high-pT dijet events. In order to restrict the jet multiplicity

we can place a cut E0 whereby we veto the inter-jet activity such that the sum of transverse

energies of emissions outside the two high-pT jets is less than this value. This was also the

definition adopted in refs. [1, 2] where the parameter Λ indicated a cut on additional jet

activity along the above lines.

Moreover, in this paper we are interested in physics at the boundary of the triggered

hard jets and specifically in the non-global logarithms that arise at these boundaries. Hence

we can for our discussion ignore the effects of initial state radiation which can simply be

accommodated once the structure of the results is understood. Since it is this structure

we wish to focus on, it proves advantageous to consider as an analogy the production of

dijets in e+e− annihilation which enables us to ignore the detail of initial state radiation.

Hence all our points can be made in full generality by considering two hard jets in e+e−

processes where one measures the shape of one of the jets leaving the other jet unmeasured

as prescribed in refs. [1, 2]. Our results should also then be directly comparable to those

obtained by other authors using soft-collinear effective theory [1, 2].

2.1 Observable definition

We shall pick the jet mass as a specific simple example of a jet-shape variable though one

can consider also, for instance, the angularities first studied in [30, 44]. The observable we

study has the same logarithmic structure as the distribution in the angularity corresponding

to a = 0. We study the shape cross-section

Σ (ρ,E0) =
1

σ0

∫

dσ

dρ′1dE′
0d

3P1d3P2

dρ′dE′
0Θ(ρ − ρ′1)Θ(E0 − E′

0) , (2.1)

where σ0 is the Born cross-section and ρ′1 denotes the normalised jet-mass of the jet with

momentum P1. The above equation indicates that we are restricting the mass of the

jet with three momentum P1 to be less than ρ leaving the shape of the other jet with

momentum P2 unmeasured. We have also restricted the inter-jet energy flow E′
0 to be less

than E0 as discussed and hence our observable definition above is in precise accordance

with the definition in refs. [1, 2]. We shall in future leave the dependence on jet momenta

P1,P2 unspecified and to be understood.

We wish to carry out a calculation for the above observable which includes a re-

summation of large logarithms in R2/ρ to next-to-leading logarithmic (equivalently single

logarithmic) accuracy in the exponent. We include a description of non-global single loga-

rithms in the leading Nc limit. Additionally we wish to resum the logarithmic dependence

on Q/E0,where Q is the hard scale of the process, to single logarithmic accuracy again

accounting for the non-global contributions. Our main aim is to study the effect of the

non-global logarithms neglected for instance in previous calculations of jet shapes [1, 2, 13]

on the cross-section eq. (2.1). While resumming logarithms in ρ and E0 we shall neglect

those logarithms that are suppressed by powers of the jet radius R which shall enable
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us to treat non-global logarithms straightforwardly.4 Hence our calculation addresses the

range of study where E0/Q ≫ ρ and is valid in the limit of relatively small jet radius

R. We shall not however resum terms varying purely as αs lnR which for the values of

R we consider can safely be ignored from a phenomenological viewpoint. We thus aim to

resum large logarithms in ρ and E0/Q in what one may call the approximation of narrow

well separated jets. According to our estimates this approximation and our consequent

resummation should enable relatively accurate phenomenological studies of jet shapes.

We shall begin by carrying out a calculation of the logarithmic structure that emerges

at the one and two gluon levels, in the limit of soft gluon emission. These calculations will

help us to identify the full logarithmic structure and point the way towards a resummed

treatment. We start below with a leading order calculation in the soft limit.

3 Soft limit calculations

We start by considering the effect of a single soft emission by a hard qq̄ pair, produced in

e+e− annihilation. At this level all infrared and collinear (IRC) safe jet algorithms will

yield the same result. We can write the parton momenta as

p1 =
Q

2
(1, 0, 0, 1) (3.1)

p2 =
Q

2
(1, 0, 0,−1) (3.2)

k = ω (1, sin θ cos φ, sin θ sin φ, cos θ) (3.3)

where p1 and p2 are the hard partons and we have neglected recoil against the soft gluon

emission k, which is irrelevant at the logarithmic accuracy we seek. Let us take the momen-

tum p1 to correspond to the measured jet direction. Hence if the gluon is combined with

the parton p1 one restricts the mass of the resulting jet to be below ρ while if combined

with p2 the mass is unrestricted. Likewise one can consider the parton p2 to be in the

measured jet direction, which will give an identical result.

Introducing the jet mass variable ρ = M2
j /E2

j , where one normalises the squared

invariant mass M2
j to the jet energy E2

j one can write

Θ

(

ρ −
4M2

j1

Q2

)

Θk∈j1 + Θ (E0 − ω)Θk/∈j1,j2 , (3.4)

where in our soft approximation the jet energy is set at Q/2. Note that there is no constrain

on the gluon energy when it is combined with the jet j2.

In all the commonly used IRC safe jet algorithms the soft gluon k will form a jet with

a hard parton if it is within a specified distance R of the hard parton. The distance is

measured for hadron collider processes in the (η, φ) plane as ∆η2 + ∆φ2 where ∆η is the

separation in rapidity and ∆φ is the separation in φ between the hard parton and the gluon

4More specifically we shall neglect corrections varying as R2/∆ij where ∆ij = 1− cos θij is a measure of

the angular separation between the hard jets. This parameter emerges naturally in fixed-order computation

of non-global logarithms for energy flow outside jets [45] and it was also treated as negligible in [1, 2].
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k. In the limit of small angles, relevant for small R values R ≪ 1, which we shall consider

here, the distance measure reduces to θ2
pk where θpk is the angle between the gluon k and

hard parton p. Thus k and p1 form a jet if θ2
p1k < R2. Otherwise the gluon is outside the

jet formed by p1 which at this order remains massless. If the gluon does not also combine

with hard parton p2 to form a jet, one restricts its energy to be less than E0 as required by

the definition of the observable. Differences between the various algorithms shall emerge

in the following section where we examine the emission of two soft gluons.

Thus we can write for the contribution of the real soft gluon k with θ2
p1k < R2

Σr =
CF αs

π

∫

dω

ω

dθ2

θ2
Θ
(

ρ − 4M2
j1/Q

2
)

. (3.5)

where we restricted the jet-mass to be less than the specified value ρQ2/4 and the super-

script r denotes the real emission piece. In this same soft region virtual corrections are

exactly minus the real contributions, but unconstrained; therefore we can cancel the real

emission result above entirely against the virtual piece and we are left with

Σin = −
CF αs

π

∫ Q/2

0

dω

ω

∫ R2

0

dθ2

θ2
Θ

(

2ωθ2

Q
− ρ

)

, (3.6)

where we constructed the jet mass ρ = 4 ω
Q(1 − cos θ) ≈

2ωθ2

Q , and where we used the

small-angle approximation since θ2 < R2 ≪ 1. The suffix “in” denotes the contribution

to Σ from the region where the gluon is in the measured jet. Performing the integral over

angle with the specified constraint results in

Σin = −
CF αs

π

∫ Q/2

ρQ/2R2

dω

ω
ln

(

2
ωR2

Qρ

)

= −
CF αs

2π
ln2 R2

ρ
Θ
(

R2
− ρ
)

. (3.7)

Next we consider the region where the soft emission flies outside either hard jets, with

the corresponding contribution Σout. Since here we are no longer confined to the small

angle approximation we use kt and η with respect to the jet axis as integration variables

where η is the gluon rapidity. In these terms one can represent the contribution of the

gluon k after real-virtual cancellation as

Σout = −
2CF αs

π

∫

dkt

kt

∫ ln 2/R

− ln 2/R
dη Θ (kt cosh η − E0) . (3.8)

where the limits on the rapidity integral reflect the out of jet region. Performing the

integrals we get to the required single-logarithmic accuracy

Σout = −2CF
αs

π
ln (Q/E0)

(

2 ln
2

R

)

. (3.9)

The full soft result at leading order is Σ1 = Σin + Σout. As is well known the jet-

mass distribution receives double logarithmic corrections which in the present case are in

the ratio R2/ρ. Taking account of hard collinear emissions one would obtain also single

logarithms in R2/ρ, which we shall account for in our final results.

The above calculation having set the scene we shall now move to considering two-gluon

emission and the structure of the non-global logarithms that arise at this level.

– 6 –
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3.1 Two-gluon calculation and non-global logarithms

Going beyond a single soft emission to the two gluon emission case the precise details of

the jet algorithm start to become important. In what follows below we shall consider only

the anti-kt algorithm since in the soft limit the algorithm functions essentially as a perfect

cone algorithm [8]. In particular this implies that soft gluons are recombined with the hard

partons independently of one another (one can neglect soft gluon clustering effects) which

considerably eases the path to a resummed prediction. The logarithmic structure for other

jet algorithms is also interesting and we shall discuss it in a later section.

Here we carry out an explicit two-gluon calculation to obtain the structure of non-

global logarithms for the observable at hand. Referring to the non-global contribution to

Σ as S, we compute below S2 the first non-trivial term of S. Our results shall indicate a way

forward towards a resummed result incorporating these effects. As in refs. [35, 36] we shall

consider the emission of gluons k1 and k2 such that ω1 ≫ ω2, i.e. strong energy ordering.

In this limit the squared matrix element can be split into an independent emission term

∝ C2
F and a correlated emission term ∝ CF CA The former is incorporated in the standard

resummed results based on exponentiation of a single gluon, which we discuss later.

Let us concentrate on the CF CA term missed by the single gluon exponentiation, and

which generates the non-global logarithms we wish to study and resum. We now consider

the following kinematics:

p1 =
Q

2
(1, 0, 0, 1) (3.10)

p2 =
Q

2
(1, 0, 0,−1)

k1 = ω1 (1, sin θ1, 0, cos θ1)

k2 = ω2 (1, sin θ2 cos φ, sin θ2 sin φ, cos θ2)

with ω1 ≫ ω2.

Let us consider the situation where the harder gluon k1 is not recombined with either

jet but the softest emission k2 is recombined with p1. This situation corresponds to the

diagram of the left in figure 1. In the small-angle limit, which applies for the case R ≪ 1,

the condition for k2 to be recombined with p1 is simply θ2
2 < R2 or equivalently 1−R2/2 <

cos θ2 < 1 while one has −1 + R2/2 < cos θ1 < 1 − R2/2 which ensures that k1 is outside

the jets. We integrate the squared matrix element for ordered soft emission [41] over the

azimuth of gluon k2 to get the angular function [35]

Ω =
2

(cos θ2 − cos θ1) (1 − cos θ1) (1 + cos θ2)
. (3.11)

Then defining the energy fractions xi = 2ωi

Q , the required integral for the non-global logs

reads

S2 = −4CF CA

(αs

2π

)2
∫ 1

0

dx1

x1

∫ 1

0

dx2

x2

Θ

(

2E0

Q
− x1

)

Θ (x1 − x2)

∫ 1

1−R2/2

d cos θ2

∫ 1−R2/2

−1+R2/2

d cos θ1 Ω Θ (2x2(1 − cos θ2) − ρ) , (3.12)

– 7 –
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where we note the constraints on k1 and k2 imposed by the observable definition. Note that

as in ref. [35] the constraint on k2 emerges after including the term where k2 is a virtual

gluon such that the divergence of real emission is cancelled and the piece we retain above

is the virtual leftover. Integrating over x1, x2 we obtain

S2 = −2CF CA

(αs

2π

)2
∫ 1

1−R2/2

d cos θ2

∫ 1−R2/2

−1+R2/2

d cos θ1

ln2 ρQ

4E0(1 − cos θ2)
Θ

(

1 −
ρQ

4E0(1 − cos θ2)

)

Ω . (3.13)

The angular integrations over θ1, θ2 gives the number π2/6 provided we neglect terms

of order R2 and those varying as ρQ/(2E0R
2). We recall that as stated before we neglect

logarithms suppressed by powers of R and also that our resummation will be valid when

ρ/R2 ≪ E0/Q and hence can ignore the corrections to π2/6.

Thus in the small R limit the result for the leading non-global piece is

S2 = −CF CA

(αs

2π

)2 π2

3
ln2 2E0R

2

ρQ
Θ

(

2E0R
2

Q
− ρ

)

. (3.14)

We note that one also can receive a contribution to the non-global logs from the case

where k1 is part of the unmeasured jet but this configuration produces a coefficient that

varies as R2 and hence can be ignored, consistently with our approximation. Lastly carrying

out the integration with the harder gluon k1 inside the measured jet and the softest one k2

outside does not give us large logarithms in the region we are interested in, hence eq. (3.14)

is our final result for the first non-global piece affecting the ρ distribution.

Next we consider the case that the harder gluon k1 is in the unobserved jet and emits k2

outside both jets, as depicted in figure 1, on the right. In this case repeating the calculation

in the same way produces to our accuracy

S2 = −CF CA

(αs

2π

)2 π2

3
ln2 Q

2E0

. (3.15)

The above results are noteworthy in many respects. Note that the result eq. (3.14)

corresponds to the result already obtained for the hemisphere jet mass in ref. [35] provided

one replaces 1/ρ in that result by 2E0
Q / ρ

R2 . This is because the non-global evolution takes

place from energies of order Qρ/R2 up to those of order E0, whereas for the hemisphere

mass the relevant energy for the harder gluon was of order Q. More interestingly the

coefficient of S2, π2/3, is the same as was obtained there. The origin of this is the fact

that the collinear singularity between k1 and k2 dominates the angular integral. As has

been noted before [36] as one separates the gluons in rapidity the contribution to the non-

global term, which represents correlated gluon emission, falls exponentially as gluons widely

separated in rapidity are emitted essentially independently. Thus in our present case, up

to corrections suppressed by R2 the results for the ρ distribution arise from the edge of

the measured jet independently of the evolution of the unobserved jet. Likewise there are

non-global logarithms given by eq. (3.15) which affect purely the inter-jet energy flow E0

– 8 –
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k1
k2

p1

p2

k2

k1

p2

p1

Figure 1. Diagrams representing the correlated emissions which give rise to the lowest-order non-

global logarithms. On the left: the harder gluon k1 lies outside both jets and the softest one k2

is recombined with the measured jet and contributes to the jet-mass distribution. On the right:

the harder gluon is inside the unmeasured jet and emits a softer gluon outside both jets, which

contributes to the E0-distribution.

distribution. These arise purely from the edge of the unmeasured jets and are independent

of the evolution of the measured jet which is well separated in rapidity (similar results were

obtained in the work of refs. [39, 45]).

Thus a simple picture arises for non-global logarithms where each jet evolves indepen-

dently and the effects arise from the edges of the jet with logarithms involving the ratio

of the shape variable ρ/R2 to the energy flow variable E0/Q coming from measured jets

and unmeasured jets independently contributing logarithms in Q/E0. The coefficients of

the non-global logarithms will be identical within our accuracy to those computed for the

hemisphere mass (where the effect is again an edge effect coming from the hemisphere

boundary) and hence the resummation of the non-global effects from each jet can simply

be taken from the resummation carried out in ref. [35] simply modifying the evolution

variable. This will be done in the next section.

To conclude we wish to draw attention to the fact that we have determined, with a fixed

order calculation, the precise non-global structure which was not included in refs. [1, 2]

and knowledge of the nature of these logarithms should pave the way for more accurate

phenomenological studies. We remind the reader that our study above is valid only for the

case of the anti-kt algorithm. Other jet algorithms will give different non-global pieces as

discussed in refs. [40, 42, 43]. In fact even the resummation of independent emission terms

will be different in other algorithms, a fact that is not widely appreciated and that we shall

stress in a later section.

In the following section we turn to resummed results and provide a simple ansatz which

will be valid for arbitrarily complex processes involving jet production.

4 Resummation

Having observed the key feature of the non-global logarithms (independent contributions

from each jet) that allow us to write a resummed result we shall now focus on the resum-
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mation in more detail. The main point to note is that the non-global logarithms provide a

factor that corrects straightforward single-gluon exponentiation [35]:

Σ

(

R2

ρ
,

Q

E0

)

= Σind

(

R2

ρ
,

Q

E0

)

Sng

(

E0R
2

Qρ
,

Q

E0

)

. (4.1)

Thus we shall first provide the result for the single-gluon exponentiation taking account

of hard-collinear emission and the running coupling, which contains leading and next-to-

leading logarithms in R2/ρ as well as leading logarithms in Q/E0.

4.1 Independent emission contribution

The resummation of independent emission contributions based on a squared matrix element

that has a factorized structure for multi-gluon emission is by now a standard procedure

and we shall avoid listing these details (see for instance [46] for a detailed study of these

techniques). We shall provide here only details of the final result for independent emission

valid for the anti-kt algorithm only. We stress once again that even the independent

emission piece will differ at next-to-leading logarithmic accuracy from that reported below

if using another jet algorithm.

The result for the independent emission contribution can be written in the usual

form [47]

Σind

(

R2

ρ
,

Q

E0

)

=
exp

[

−Rρ − γER
′
ρ

]

Γ
(

1 + R′
ρ

) exp [−RE0] . (4.2)

Here Rρ and RE0 are functions of R2/ρ and Q/E0 respectively, representing the expo-

nentiation of the one gluon result. They describe the resummation of large logarithms to

next-to-leading logarithmic accuracy in R2/ρ and leading logarithmic accuracy in Q/E0

except for the inclusion of non-global logarithms not described by independent emission of

soft gluons.

With inclusion of running coupling effects and the effects of hard collinear emission

the function Rρ can be written as

Rρ =
CF

π

∫

dk2
t

k2
t

αs(kt)F(k2
t ) , (4.3)

where we defined

F(k2
t ) = ln

(

QRe−
3
2

2kt

)

Θ

(

QR

2
− kt

)

Θ

(

k2
t

Q2
−

ρ

4

)

+ ln

(

2Rkt

ρQ

)

Θ

(

ρ

4
−

k2
t

Q2

)

Θ

(

k2
t

Q2
−

ρ2

4R2

)

, (4.4)

where the factor e−3/2 in the argument of the logarithm in the first term above takes

account of the hard collinear region 2ω/Q → 1.5

5In order to obtain this one replaces as usual dx
x

→ dx 1+(1−x)2

2x
where x = 2ω/Q in the integral over

gluon energy, which is essentially introducing the full splitting function instead of its soft singular term.
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Carrying out the integral over kt one obtains the familiar result for Rρ as follows

Rρ = −Lf1(λ) − f2(λ) , (4.5)

and

R
′
ρ = −

∂

∂L
(Lf1(λ)) . (4.6)

The functions f1 and f2 are listed below

f1(λ) = −
CF

2πβ0λ
[(1 − 2λ) ln (1 − 2λ) − 2 (1 − λ) ln (1 − λ)] , (4.7)

and

f2(λ) = −
CF K

4π2β2
0

[2 ln (1 − λ) − ln (1 − 2λ)] −
3CF

4πβ0

ln (1 − λ)

−
CF β1

2πβ3
0

[

ln (1 − 2λ) − 2 ln (1 − λ) +
1

2
ln2 (1 − 2λ) − ln2 (1 − λ)

]

, (4.8)

λ = β0αsL, L = ln R2

ρ and αs = αs (QR/2) is the MS strong coupling. In the above

results the β function coefficients β0 and β1 are defined as

β0 =
11CA − 2nf

12π
, β1 =

17C2
A − 5CAnf − 3CF nf

24π2
, (4.9)

and the constant K is given by [48]

K = CA

(

67

18
−

π2

6

)

−
5

9
nf . (4.10)

Likewise for the function RE0 we have

RE0 = −
2CF

πβ0

ln
2

R
ln(1 − 2λ) , (4.11)

where here λ = β0αsL, L = ln Q
2E0

and αs = αs (Q/2). Note that the function Rρ

contains both a leading logarithmic term Lf1(λ) and a next-to-leading or single logarithmic

term f2(λ) while the leading logarithms in RE0 are single logarithms and next-to-leading

logarithms in this piece are beyond our control. The term Γ
(

1 + R′
ρ

)

arises as a result

of multiple emissions contributing to a given value of the jet-mass and is purely single-

logarithmic. The corresponding function for the E0 resummation would be beyond our

accuracy and hence is not included. We note the results presented here for Rρ are identical

to the ones for the e+e− hemisphere jet-mass [47], with the replacement ρ → ρ/R2 and

αs(Q) → αs(QR/2).

4.2 Non-global component

The non-global terms arise independently from the boundary of individual jets in the

approximation of narrow well-separated jets. The result for an individual jet is the same
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as that for energy flow into a semi-infinite rapidity interval which was computed in the

large-Nc limit in ref. [35].

In our two-jet example the contribution of non-global logarithms can be thus be writ-

ten as

Sng
(

E0R
2/(Qρ), Q/E0

)

= S (tmeasured)S (tunmeasured) , (4.12)

where the function S(t) was computed in ref. [35]. From that reference one notes that

S(t) = exp

(

−CF CA
π2

3

(

1 + (at)2

1 + (bt)c

)

t2
)

, (4.13)

where a = 0.85CA, b = 0.86CA, c = 1.33.

The single logarithmic evolution variables for the measured and unmeasured jet con-

tributions read

tmeasured =
1

2π

∫ 1

ρQ

2E0R2

dx

x
αs(xE0) , (4.14)

tunmeasured =
1

2π

∫ 1

2E0
Q

dx

x
αs (xQ/2) , (4.15)

which represent the evolution of the softest gluon with a running coupling that depends

on the gluon energy. For the measured jet the softest gluon evolves between scales of or-

der Qρ/R2 and E0 while for the unmeasured jet the evolution is from E0 up to the jet

energy Q/2.

Carrying out the integrals (one-loop running coupling is sufficient here) gives

tmeasured = −
1

4πβ0

ln

(

1 − β0αs (E0) ln
2E0R

2

Qρ

)

, (4.16)

tunmeasured = −
1

4πβ0

ln

(

1 − β0αs (Q/2) ln
Q

2E0

)

. (4.17)

In the following sub-section we shall illustrate the effects of the non-global logarithms on

the shape-variable distributions for different values of E0.

4.3 Numerical studies

Let us examine the impact of non-global logarithms on the differential jet mass distribution,

divided by the inclusive rate; at our level of accuracy we have:

1

σ

dσ

dρ
=

dΣ

dρ
, (4.18)

with Σ given by eq. (4.1). From figure 2 one can see that non-global logarithms do not

change significantly the position of the peak of the distribution. However, their inclusion

leads to a reduction in the peak height of fifteen percent or so for E0 = 15GeV and about

twenty percent or so for E0 = 60GeV. Increasing E0 further one will observe that the

effect of non-global logarithms on the peak height can be as significant as about 30%. The
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Figure 2. The jet mass distribution 1

σ
dσ
dρ

for Q = 500 GeV, R = 0.4 and E0 = 15 GeV (left) and

60 GeV (right). The curve in dotted red corresponds to neglecting non-global effects while that in

solid blue takes them into account.

plots above are for Q = 500GeV which may be translated into a jet pT of about 250GeV

or so at a hadron collider.

On the other hand it has been suggested [2] that one may eliminate non-global logs by

choosing E0/Q of order ρ. In our case (small R) this prescription amounts to the choice

2E0R
2 = Qρ. While this rids us of non-global logarithms from the observed jet boundary

the contribution from the unobserved jet boundary becomes increasingly important. This

is reflected in figure 3 which plots separately the factors 1−S(tmeasured) (dotted red curve),

1−S(tunmeasured) (dashed blue curve) and 1−Sng (solid green curve), where Sng is defined

in eq. (4.12) as the product of the S factors . The plots are presented as functions of E0 for

the illustrative value of ρ = 5 × 10−4. Other parameters are the same as for the previous

plots. As one can readily observe increasing the value of E0 leads to a growth of the non-

global contribution from the measured jet while the contribution from the unmeasured jet

is somewhat diminished. Lowering E0 leads to the opposite effect and the unmeasured jet

contributions become increasingly significant. It is noteworthy that changing the value of

E0 in the range indicated has no significant effect on the size of the non-global effect overall.

Also worth noting however is that the choice E0 = ρQ/(2R2) (the lowest value of E0 shown

in the above mentioned plot) which eliminates the contribution from the measured jet (i.e.

the red curve goes to zero) is not very helpful as the overall contribution stemming from

the unmeasured jet entirely is more significant than for the higher values of E0 discussed

before. From this one realises that progressively decreasing the value of E0 is not a way to

eliminate the non-global contribution, for the observable at hand.

In the following section we shall show that for algorithms other than the anti-kt even

the independent emission resummed result is not equivalent at next-to-leading logarithmic

level to the exponentiation of the single-gluon result.
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Figure 3. Non global contribution 1 − S(t) from the measured jet (dotted red), the unmeasured

jet (dashed blue) and overall (solid green) as a function of E0 for ρ = 5 × 10−4, R = 0.4.

5 Other jet algorithms

Let us now consider the situation in other jet algorithms where the clustering or recombina-

tion of soft gluons amongst themselves may be an important effect. One such algorithm is

the inclusive kt algorithm discussed for the case of central gaps between jets in refs. [42, 43].

For such algorithms, starting from the two-gluon level, we need to revisit the independent

emission calculations and correct the naive exponentiation of a single gluon. Note that in

refs. [42, 43] the single logarithms obtained as a result of clustering were proportional to

powers of the jet radius which would make them beyond our control here. However, as

we shall see, in the collinear region we are concerned with here, this power suppression

does not emerge, making these logarithms relevant to our study. To illustrate the role of

soft gluon clustering and recombination we focus on the on the single inclusive jet-mass

distribution and we ignore the cut corresponding to E0. Placing this cut does not affect

the conclusions we draw here.

To set the scene let us first carry out the independent emission calculation correspond-

ing to two-gluon emission in the anti-kt algorithm which in the soft limit works like a

perfect cone. At the two-gluon level we have four terms corresponding to the independent

emission of soft gluons in the energy ordered regime x1 ≫ x2. These contributions are

depicted in figure 4. The contribution to the squared matrix element for ordered two-gluon

emission is the same for each of the diagrams in figure 4, up to a sign. The double real

(labelled (a)) and double virtual contributions (labelled (d)) can be expressed as

W (k1, k2) = 4C2
F g4 (p1.p2)

2

(p1.k1)(p1.k2)(p2.k1)(p2.k2)
, (5.1)

which in terms of the energy fractions x1 and x2 introduced in section 3.1 becomes simply

W (k1, k2) = 256g4 C2
F

Q4

1

x2
1x

2
2

1

(1 − cos2 θ1) (1 − cos2 θ2)
. (5.2)
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(d)

Figure 4. Diagrams contributing to independent two-gluon emission from a hard parton line.

Since the calculation that follows below is intended for highly collimated jets, R ≪ 1, we

shall take the small angle limit of the above result, θ1, θ2 ≪ 1. A similar result holds for the

one-real one-virtual terms (b) and (c) in figure 4 with a relative minus sign. We are now in

a position to compute the jet mass distribution at the two gluon level for the independent

emission C2
F term.

We start by noting that the integration region for all graphs can be divided according

to whether the real gluons k1 and k2 are inside or outside the triggered jet. We have four

distinct regions: k1, k2 both outside the triggered jet, k1, k2 both inside the triggered jet or

either of the gluons inside and the other outside the jet. The condition for a given gluon

to end up inside or outside the triggered jet depends on the jet algorithm we choose to

employ. In the anti-kt algorithm the condition is particularly simple when considering only

soft emissions; such an emission k is inside the jet if it is within an angle R of the hard

parton initiating the jet, else it is outside.

Given this fact let us consider how the various diagrams (a)–(d) in figure 4 combine in

the different regions mentioned above. Since we are computing the jet-mass distribution

dΣ/dρ for a fixed jet-mass ρ, the pure virtual diagram (d) makes no contribution and hence

we shall omit all reference to it in what follows. In the region where both emissions are in

the jet we shall treat the sum of graphs (a)–(c). Where the harder emission k1 is in the

jet and k2 is out, graphs (a) and (c) cancel since the real k2 does not contribute to the jet

– 15 –



J
H
E
P
0
8
(
2
0
1
0
)
0
6
4

mass exactly like the virtual k2. This leaves diagram (b) which gives zero since the in-jet

gluon k1 is virtual and hence does not generate a jet mass. Hence the region with k1 in

and k2 out gives no contribution.

Now we consider k2 in and k1 out. The contributions with k2 real (a) and (b) cancel

as the graphs contribute in the same way to the jet mass. The diagram with k2 virtual (c)

cannot contribute to the jet mass as the real emission k1 lies outside the jet.

Hence we only need to treat the region with both gluons in and we shall show that

this calculation correctly reproduces the result based on exponentiation of the single gluon

result. The summed contribution of graphs (a) to (c) can be represented as

dΣ2

dρ
∼

∫

dΦ W
[

δ
(

ρ − x1θ
2
1 − x2θ

2
2

)

− δ
(

ρ − x1θ
2
1

)

− δ
(

ρ − x2θ
2
2

)]

, (5.3)

where we wrote the contribution to the jet mass from an emission with energy fraction x

and angle θ with respect to the hard parton as 2x (1 − cos θ) ≈ xθ2.

To compute the leading double-logarithmic contribution and show that it corre-

sponds to the exponentiation of the order αs double-logarithmic term one can write

δ
(

ρ − x1θ
2
1 − x2θ

2
2

)

as ∂
∂ρΘ

(

ρ − x1θ
2
1 − x2θ

2
2

)

and make the leading-logarithmic approxi-

mation

Θ
(

ρ − x1θ
2
1 − x2θ

2
2

)

→ Θ
(

ρ − x1θ
2
1

)

Θ
(

ρ − x2θ
2
2

)

, (5.4)

which allows us to make the replacement

δ
(

ρ − x1θ
2
1 − x2θ

2
2

)

→ δ
(

ρ − x1θ
2
1

)

Θ
(

ρ − x2θ
2
2

)

+ 1 ↔ 2 . (5.5)

Doing so and using the explicit forms of W and the phase space dΦ in the small angle limit

we get

dΣ2

dρ
= −4C2

F

(αs

2π

)2
∫

dθ2
1

θ2
1

dθ2
2

θ2
2

dφ

2π

dx1

x1

dx2

x2

[

δ
(

ρ − x1θ
2
1

)

Θ
(

x2θ
2
2 − ρ

)

+ 1 ↔ 2
]

Θ
(

R2
− θ2

1

)

Θ
(

R2
− θ2

2

)

Θ (x1 − x2) Θ(1 − x1). (5.6)

Carrying out the integrals we straightforwardly obtain

dΣ2

dρ
= −2

(

CF αs

2π

)2 1

ρ
ln3

(

R2

ρ

)

, (5.7)

which is precisely the result obtained by expanding the exponentiated double-logarithmic

one-gluon result to order α2
s and differentiating with respect to ρ. Thus the standard

double-logarithmic result for the jet-mass distribution arises entirely from the region with

both gluons in the jet. Contributions from soft emission arising from the other regions

cancel in the sense that they produce no relevant logarithms.

We shall now argue that for algorithms other than the anti-kt relevant single-

logarithmic contributions shall appear from the regions which cancelled in the argument

above, although of course the leading double-logarithms are still precisely the same as for

the anti-kt case. An analysis of such miscancelling contributions is therefore necessary
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for a resummation aiming at next-to-leading logarithmic accuracy in the jet-mass. The

logarithms we compute below correct the one-gluon exponentiated result for the jet-mass

distribution at the single-logarithmic level starting from order α2
s.

Let us consider the situation in, for instance, the kt algorithm. When both k1 and k2

are within an angle R of the hard parton both soft gluons get combined into the hard jet

and this region produces precisely the same result as the anti-kt algorithm, corresponding

to exponentiation of the one-gluon result. Moreover, when both k1 and k2 are beyond an

angle R with respect to the hard parton there is no contribution from either to the jet-mass.

However, when k1 is beyond an angle R and k2 is inside an angle R the situation changes

from the anti-kt case. This is because in the kt algorithm when the two soft partons are

separated by less than R in angle they can be clustered together. The resulting soft jet has

four-momentum k1 + k2, when we use the four-momentum recombination scheme, and lies

essentially along the harder gluon k1. Thus when k1 is beyond an angle R it can pull k2 out

of the hard jet since the soft jet k1+k2 which replaces k2 lies outside an angle R of the hard

parton. This results in a massless jet and hence such a configuration gives no contribution

to the jet-mass distribution. In precisely the same angular region the virtual k1, real k2

diagram (b) (obviously unaffected by clustering) does however give a contribution whereas

in the anti-kt case it had cancelled the double real contribution (a). The graph with k1

real and k2 virtual gives no contribution as before. Thus a new uncancelled contribution

arises for the kt (and indeed the Cambridge-Aachen) algorithm from the region where the

two real gluons k1 and k2 are clustered, which can be given by computing the k1 virtual

k2 real graph in the same angular region.

We now carry out this calculation explicitly. We consider the angles θ2
1, θ2

2 and θ2
12

as the angles between k1 and the hard parton, k2 and the hard parton and k1 and k2

respectively. Applying the kt algorithm in inclusive mode means constructing the distances

ω2
1θ

2
1, ω2

2θ
2
2 and ω2

2θ
2
12 along with the distances (from the “beam”) ω2

1R
2, ω2

2R
2, where, for

the e+e− case we consider here, the energy ω plays the role of the kt with respect to the

beam in a hadron collider event. Now since θ2
1 > R2, θ2

2 < R2 the only quantities that can

be a candidate for the smallest distance are ω2
2θ

2
2 and ω2

2θ
2
12. Thus the gluons are clustered

and k2 is pulled out of the jet if θ12 < θ2 < R. Otherwise k2 is in the jet and cancels

against virtual corrections.

We can then write the contribution of graph (b) of figure 4 in the clustering region

d

dρ
Σcluster

2 = −4C2
F

(αs

2π

)2
∫

dθ2
1

θ2
1

dθ2
2

θ2
2

dφ

2π

dx1

x1

dx2

x2

δ
(

ρ − x2θ
2
2

)

Θ(x1 − x2)

Θ
(

θ2
1 − R2

)

Θ
(

θ2
2 − θ2

12

)

Θ
(

R2
− θ2

2

)

. (5.8)

Using the fact that in the small-angle approximation relevant to our study

θ2
12 = θ2

1 + θ2
2 − 2θ1θ2 cos φ , (5.9)
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integrating over x1 and x2 and using t =
θ2
2
ρ one obtains

d

dρ
Σcluster

2 = −4C2
F

(αs

2π

)2 1

ρ

∫

dθ2
1

θ2
1

dt

t

dφ

2π
ln t

Θ (t − 1) Θ
(

θ2
1 − R2

)

Θ
(

4ρt cos2 φ − θ2
1

)

Θ
(

R2/ρ − t
)

. (5.10)

Carrying out the integral over θ2
1 results in

d

dρ
Σcluster

2 = −4C2
F

(αs

2π

)2 1

ρ

∫

dt

t

dφ

2π
ln

(

4ρt cos2 φ

R2

)

ln t

Θ (t − 1) Θ
(

4ρt cos2 φ − R2
)

Θ
(

R2/ρ − t
)

. (5.11)

Now we need to carry out the t integral for which we note t > max
(

1, R2

4ρ cos2 φ

)

. In

the region of large logarithms which we resum one has however that R2 ≫ ρ and hence
R2

4ρ cos2 φ
> 1. This condition is reversed only when ρ ∼ R2 a region not enhanced by large

logarithms and hence beyond our accuracy.

It is then straightforward to carry out the t integral and doing so and extracting the

leading singular behaviour in ρ produces the result

d

dρ
Σcluster

2 = −4C2
F

(αs

2π

)2 1

ρ
ln

1

ρ

∫

dφ

π
ln2 (2 cos φ)Θ

(

cos φ −
1

2

)

= −0.728C2
F

(αs

2π

)2 1

ρ
ln

1

ρ
. (5.12)

This behaviour in the distribution translates into an next-to-leading logarithmic α2
s ln2 1

ρ

behaviour in the integrated cross-section, which is relevant for resummations aiming at

this accuracy. As we mentioned before the above finding of single logarithmic corrections

generated by clustering has also been reported before for the case of gaps between jets

studies [42]. Note however that the logarithms found there had coefficients that depended

on the jet radius as a power of the jet radius starting at the R3 level. In the present case

however the presence of collinear singularities near the boundary of a jet of small radius

R ensures that there is no power suppression in R and hence the logarithms generated

are formally comparable to those we aim to control here and indeed those resummed in

refs. [1, 2]. Likewise the clustering will also generate leading logarithms in the E0 variable,

which are again unsuppressed by any powers of R and hence ought to be controlled. Lastly

we point out that the logarithms generated by independent emission and subsequent kt

clustering were actually resummed in ref. [43] and that possibility also exists here.

6 Conclusions

We would like to conclude by emphasising the main points of our study. Given the current

interest in the study of jet shapes and substructure for the purposes of discovering new

physics at the LHC, it is worth examining the theoretical state of the art when it comes

to looking at individual jet profiles in a multi-jet event. A step in this direction was taken

for instance in refs. [1, 2]. In the present paper we have noted
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• Observables where one picks out for study one or more jets in multi-jet events are

in principle non-global. The non-global logarithms will arise at next-to-leading or

single-logarithmic accuracy in the jet-shape distributions. If one studies jet events

with a fixed multiplicity by imposing a cut E0 on hadronic activity outside the high-

pT jets, there are non-global logarithms involving the ratio of the shape variable ρ

and the energy flow E0, as was first anticipated in [30]. Moreover, there are also non-

global logarithms in E0/Q where Q is the hard scale of the process. These logarithms

are leading as far as the distribution in E0 for a fixed ρ is concerned.

• In the limit of narrow jets R → 0, one may naively expect the non-global contributions

to the jet-shape distributions to vanish with R due to the apparently limited phase-

space available for soft emission inside the jet. Here we have pointed out that the

non-global logarithms do not vanish in the small cone approximation as mentioned

for instance in ref. [49]. One finds instead at small R an effect that is independent of

R and arises from the edge of the jet. However, in the limit of narrow well-separated

jets R2 ≪ (1 − cos θij), where θij is the inter-jet separation, one can simplify the

non-global contribution. In this limit, owing to QCD coherence and the nature

of correlated multiple soft emissions, one can regard the non-global logarithms to

arise independently from the boundary of each jet up to corrections that vanish as

R2/ (1 − cos θij). For a measured jet one picks up logarithms in 2E0R
2/(Qρ) while

for each unmeasured jet one has logarithms in 2E0/Q. The resummation of these

logarithms yields a factor Sj for each jet j, which is the factor computed, in the

large-Nc limit, for the hemisphere jet-mass in e+e− annihilation in ref. [35], again up

to corrections vanishing as R2/ (1 − cos θij).

• The overall size of non-global logarithms depends on the precise values one chooses

for E0/Q, R and ρ. However, broadly speaking, we find the contribution not to

vary significantly with E0 and to yield corrections of order 15 − 20% in the peak

region of the ρ distribution. Choosing E0/Q of order ρ/R2 eliminates the non-global

contributions from the measured jet but steeply enhances the contributions from the

unmeasured jet and it is not an optimal choice for reducing the overall non-global

contribution to this observable.

• We emphasise that the above observations are valid for the anti-kt algorithm in which

our ansatz for resummation of jet shapes in an arbitrarily complex event is to correct

the one-gluon exponentiation with a product of independent non-global factors from

each jet. We further have emphasised that switching to algorithms other than the

anti-kt gives relevant next-to-leading logarithms in the shape distribution as well

as leading logarithms in the E0 distribution, even within the independent emission

approximation. Thus predictions for observables such as the one discussed in this

paper, in those algorithms are prone to more uncertainty than our current study in

the anti-kt algorithm at least until such logarithms are also resummed.

We would like to stress that the general observations in this paper are of applicability

in a variety of other contexts. For instance, the issue of threshold resummation addresses
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limited energy flow outside hard jets, along the lines of the E0 distribution here. The

consequent non-global logarithms and the issue of the jet algorithm have not been

addressed to any extent in the existing literature. The same issues crop up in the case of

resummation in the central jet veto scale for the important study of Higgs production in

association with two jets.

We hope that an awareness of the nature and size of the non-global contributions, the

simplification that occurs in the small R limit and our comments about the situation in

other jet algorithms will help to generate more accurate phenomenological studies for these

important observables at the LHC. In particular in future work we shall address in more

detail the role of soft gluon effects and especially non-global logarithms on QCD predictions

relevant to new physics searches at the LHC. As an existing example of such studies in

the context of Higgs physics and the filtering analysis we can refer the reader to ref. [39].

We shall aim to provide similar studies in the context of other shape variables in the near

future. We also note that a study of resummed jet shapes and profiles would constitute an

interesting test of QCD with early LHC data and we shall also generalise the present work

with this aim in mind.
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