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Learning to Optimize: Training Deep Neural
Networks for Interference Management

Haoran Sun∗, Xiangyi Chen∗, Qingjiang Shi, Mingyi Hong, Xiao Fu, and Nicholas D. Sidiropoulos

I. INTRODUCTION

We consider an interference management problem for an in-
terference channel consisting of K single-antenna transceiver
pairs. Let hkk ∈ C denote the direct channel between trans-
mitter k and receiver k, and hkj ∈ C denote the interference
channel from transmitter j to receiver k. Furthermore, we
assume that the transmitted symbol of each transmitter k is
an independent Gaussian random variable with zero mean and
variance pk (which is also referred to as the transmission
power of transmitter k). Then the signal to interference-plus-
noise ratio (SINR) for each receiver k is given by

sinrk , |hkk|2pk∑
j 6=k |hkj |2pj + σ2

k

,

where σ2
k denotes the noise power at receiver k.

To optimally allocate power for each transmitter so that the
weighted system throughput is maximized, the problem can
be formulated as the following nonconvex problem

max
p:={p1,...,pK}

K∑

k=1

αk log

(
1 +

|hkk|2pk∑
j 6=k |hkj |2pj + σ2

k

)

s.t. 0 ≤ pk ≤ Pmax, ∀ k = 1, 2, . . . ,K,

(1)

where Pmax denotes the power budget of each transmitter and
αk denotes the nonnegative weight. Problem (1) is known to be
NP-hard [1]. To obtain a good solution for problem (1), many
transceiver design algorithms developed in the literature, such
as WMMSE [2], SCALE [3], and the pricing algorithm [4]. A
particular version of the WMMSE [5, Figure 1] also applied
to solve the power control problem (1). However, optimization
algorithms often entail considerable complexity, which creates
a serious gap between theoretical design/analysis and real-time
processing.

II. THE LEARNING TO OPTIMIZE APPROACH

To resolve the computational issues arisen on the above
interference management problem with stringent real-time
requirements, we design a new ‘learning to optimize’ based
framework as shown in Figure 1. The main idea is to treat
a given algorithm as a “black box”, and try to learn its
input/output relation by using a deep neural network (DNN)
[6]. If the nonlinear mapping can be learned accurately by
a DNN of moderate size, then the interference management
tasks can be performed in almost real time – since passing
the input through a DNN only requires a small number of
simple operations.
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Fig. 1: The Proposed Method. The key idea is to treat the input and
output of an algorithm as an unknown nonlinear mapping and use a DNN
to approximate it. In the figure τ(·, θ) represent a DNN parameterized by θ.

Unlike all existing works on approximating optimization
algorithms such as those using unfolding [7]–[10] , our ap-
proach is justified by rigorous theoretical analysis. We show
that there are conditions under which an algorithm is learnable
by a DNN [5], and indicate that it is possible to learn a well-
defined optimization algorithm very well by using finite-sized
deep neural networks. To concisely state the result, let us
make the following definitions. Given an input channel vector
h := {hij} ∈ RK

2

, let us use v(h)ti to denote the variable
vi at tth iteration generated by WMMSE [5] (which basically
represents

√
pi at tth iteration). Also let Hmin, Hmax > 0

denote the minimum and maximum channel strength and
let Vmin > 0 be a given positive number. Let NET (x, z)
represent a neural network with (x, z) as input.

Theorem 1 Suppose that WMMSE is randomly initialized
with (v0k)

2 ≤ Pmax,
∑K
i=1 v(h)

0
i ≥ Vmin, and it is executed

for T iterations. Define the following set of ‘admissible’
channel realizations

H :=

{
h | Hmin ≤ |hjk| ≤ Hmax,∀j, k,

K∑

i=1

v(h)ti ≥ Vmin,∀t
}
.

Given ε > 0, there exists a neural network with h ∈ RK2

and
v0 ∈ RK+ as input and NET (h, v0) ∈ RK+ as output, with the
following number of layers

O

(
T 2 log

(
max

(
K,Pmax, Hmax,

1

σ
,

1

Hmin
,

1

Pmin

))
+ T log

(
1

ε

))

and the following number of ReLUs and binary units

O

(
T 2K2 log

(
max

(
K,Pmax, Hmax,

1

σ
,

1

Hmin
,

1

Pmin

))

+TK2 log

(
1

ε

))
,
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TABLE I: Sum-Rate and Computational Performance for IMAC
# of base stations average sum-rate (bit/sec.) total CPU time (sec.)
and users (N,K) DNN WMMSE DNN/WMMSE DNN WMMSE (MATLAB) WMMSE(C) DNN/WMMSE (C)

(3, 12) 17.722 18.028 98.30% 0.021 22.33 0.27 7.78%
(3, 18) 20.080 20.606 97.45% 0.022 42.77 0.48 4.58%
(3, 24) 21.928 22.648 96.82% 0.025 67.59 0.89 2.81%
(7, 28) 33.513 35.453 94.53% 0.038 140.44 2.41 1.58%
(20, 80) 79.357 87.820 90.36% 0.141 890.19 23.0 0.61%

such that the relation below holds true

max
h∈H

max
i
|(v(h)Ti )2 −NET (h, v0)i| ≤ ε (2)

Remark 1 The bounds in Theorem 1 provide an intuitive
understanding of how the size of the network should be
dependent on various system parameters. A key observation is
that having a neural network with multiple layers is essential
in achieving our rate bounds. Another observation is that the
effect of the approximation error on the size of the network is
rather minor [the dependency is in the order of O(log(1/ε))].
However, we do want to point out that the numbers predicted
by Theorem 1 represent some upper bounds on the size of the
network. In practice, much smaller networks are often used
to achieve the best tradeoff between computational speed and
solution accuracy.

III. NUMERICAL RESULTS

To demonstrate the achievable performance of the proposed
approach, a multi-cell interfering multiple Access Channel
(IMAC) model is considered with a total of N cells and K
users. In each cell, one BS is placed at the center of the cell
and the users are randomly and uniformly distributed in the
area; The channel between each user and each BS is randomly
generated according to a Rayleigh fading distribution; see [5]
for more detail. We perform the training and testing following
the procedures outlined in Figure 1 and summarize the testing
results in TABLE I. It can be seen that the proposed DNN
approach can be trained to well-approximate the behavior of
the state-of-the-art algorithm WMMSE [2], and achieve rela-
tively high sum-rate performance. It is also shown that DNNs
can achieve orders of magnitude speedup in computational
time compared to state-of-the-art power allocation algorithms
based on optimization.

Note that in the table, WMMSE (C)/(MATLAB) represents
the WMMSE algorithm implemented using either C or MAT-
LAB. The proposed DNN approach is implemented in Python
3.6.0 with TensorFlow 1.0.0 on one computer node with two
8-core Intel Haswell processors, two Nvidia K20 Graphical
Processing Units (GPUs), and 128 GB of memory. The GPUs
are used in the training stage to reduce the training time, but
are not used in the testing stage.
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