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Tendon is an intricately organized connective tissue that efficiently transfers muscle force to the bony
skeleton. Its structure, function, and physiology reflect the extreme, repetitive mechanical stresses that
tendon tissues bear. These mechanical demands also lie beneath high clinical rates of tendon disorders,
and present daunting challenges for clinical treatment of these ailments. This article aims to provide per-
spective on the most urgent frontiers of tendon research and therapeutic development. We start by
broadly introducing essential elements of current understanding about tendon structure, function, phys-
iology, damage, and repair. We then introduce and describe a novel paradigm explaining tendon disease
progression from initial accumulation of damage in the tendon core to eventual vascular recruitment
from the surrounding synovial tissues. We conclude with a perspective on the important role that bioma-
terials will play in translating research discoveries to the patient.

Statement of Significance

Tendon and ligament problems represent the most frequent musculoskeletal complaints for which
patients seek medical attention. Current therapeutic options for addressing tendon disorders are often
ineffective, and the need for improved understanding of tendon physiology is urgent. This perspective
article summarizes essential elements of our current knowledge on tendon structure, function, physiol-
ogy, damage, and repair. It also describes a novel framework to understand tendon physiology and patho-
physiology that may be useful in pushing the field forward.
� 2017 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CCBY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Tendon and ligament problems represent the number one mus-
culoskeletal complaint for which a patient seeks medical attention
[1,2]. Tendon disorders bring an extremely high personal burden to
the individual patient by reducing quality of life, and collectively
place enormous economic burden on society [3]. The most com-
mon clinical tendon condition is tendinopathy, related to overuse
and characterized by an underlying state of tissue degeneration
that is often painful. Until now clinical treatment of tendinopathy
focuses on physiotherapy (passive [4,5] or active motion [4,6]) or
anti-inflammatory drugs, e.g. corticosteroid injections (which are
largely ineffective and potentially harmful to the patient [7]). The
net outcome however, typically results in prolonged suffering of
the patient with a substantial loss of personal productivity [8],
reflecting the fact that tendons play a central role in normal human
movement.

Tendons enable effective skeletal force transmission and
energy-efficient locomotion [9]. In this function, tendons are
exposed to some of the most extreme mechanical demands in
the human body. The foot flexor tendons of healthy humans, for
instance, are able to withstand up to eight times body weight
and store up to 40% of deformation energy during gait [10]. The
ability of tendon tissues to bear these loads originates from a
unique structural organization and adaptability of the tendon tis-
sue in adjusting its load-bearing capacity [11]. Although tendon
cells can reinforce tissue upon increased loading demand, net
extracellular matrix synthesis in healthy tendons is low compared
to other connective tissues [12,13]. Sudden exposure to elevated
mechanical stresses can put tendon tissues at risk of damage,
and overloading is widely considered to be a causative factor in
the onset of tendinopathy [14–16]. Mechanical loading can thus
Tendon is a complex physiological system. Tendon fascicles represent the ba
ment of collagen assemblies). The ‘‘extrinsic tendon compartment” represents s
24]. The possible synergism between the intrinsic and extrinsic compartment, an
the initiation, progression and healing of tendinopathy, remains poorly understo
be viewed as a delicate ‘‘state switch” between functional tissue
remodeling and the development of chronic tendon disease.

At first glance, tendon may seem to be a relatively simple tissue
with a straightforward function, adapting to mechanical loads and
self-repairing after damage [17]. However, a closer look into the
repair capacity of tendon reveals that it is actually a complex phys-
iological system, with tightly coordinated interplay between an
‘‘intrinsic compartment” that comprises the fibrous collagen core
(tendon cells and the multiscale arrangement of collagen assem-
blies), and an ‘‘extrinsic tendon compartment” that consists of
synovium-like tissues connecting the immune, vascular, and ner-
vous systems [18–20] (Fig. 1). The extent of intrinsic and extrinsic
compartment coordination in functional repair, and discord in
degenerative processes, is still poorly understood [20–24].

It is important to note that tendon represents an under-
researched tissue. Unlike muscle, it is generally not possible to
biopsy healthy tendon tissues from patients or volunteers. Almost
all existing data regarding basic mechanisms of tissue physiology,
or detailed investigations of tendon damage and repair stem from
non-primate animal studies. In the sections below, we attempted
to stitch together the relatively sparse evidence that is available
into a still emerging picture. While many features of tendon struc-
ture and biology are conserved across species, it must be acknowl-
edged that aspects of tendon physiology gleaned from animal
studies, or from in vitro experiments on isolated human cells
may not validly reflect the human system. For instance, experi-
ments on rodents (mice, rats) and rabbits form the basis of much
of our controlled experimental knowledge on healing response to
injury, yet heal in an accelerated manner that deviates from
humans [25,26]. Further, genetic and epigenetic variations
between individuals and epigenetic differences between the many
tendons within a single individual, further cloud efforts to inter-
sic unit comprising the ‘‘intrinsic compartment” (tendon cells and a multiscale
ynovium-like tissues that connect to the immune, vascular, and nervous systems
d the role that individual compartments play in the maintenance of healthy tissue
od [20–24].



20 J.G. Snedeker, J. Foolen / Acta Biomaterialia 63 (2017) 18–36
pret research findings with respect to clinical reality. That said, the
studies we highlight in this article are collectively coherent with
clinical evidence from humans, and we interpreted them in the
spirit of adding clarity to a still quite diffuse picture.

Ultimately, we wrote this perspective article with the aim to
introduce a few essential elements of our own understanding of
tendon structure, function, physiology, damage, and repair. We
also aimed to provide a novel view on mechanically driven physi-
ological mechanisms that may steer the balance between func-
tional remodeling and chronic tendon disorders, and give a
glimpse of how biomaterials could play a central role in future
treatment strategies.
2. Muscle and tendon – An intricate, multiscale, multi-tissue
handshake

This article focuses almost exclusively on the ‘‘tendon proper”,
and leaves aside a detailed consideration of the highly specialized
muscle-tendon [27–29] and tendon-bone junctions [30–34].
Nonetheless, the structure of tendon proper is tightly coupled to
the architecture and function of the muscle to which it is attached.
The muscle-tendon unit is an exquisitely tuned viscoelastic struc-
ture with active and passive elements that both contribute to
biomechanical function [35,36]. At the muscle-tendon junction,
tendon fibers fan out like a river delta. Although the mechanical
and physiological interactions between tendon and muscle remain
poorly understood [27], the junction provides a mechanically
stable transition with large contact surface between both tissues.

Collagen structures in healthy tendon tend to be highly-aligned
[37] when compared to collagen structures in fascia, skin, joint
capsules, and other tissues that bear more heterogeneous mechan-
ical loads. Nonetheless there is a wide range of structural configu-
rations that a tendon can adopt, in direct accordance with the
diverse functional range of muscles to which they attach [37]. Ten-
dons transferring muscle forces over longer distances generally
Fig. 2. Multi-scale tendon hierarchy. Cross-linked collagen molecules assembled into
tendon core. The core consists of densely packed type-I collagen matrix and the fibrobla
lowest level extrinsic compartment) to form fascicles, i.e. ‘‘intrinsic tendon core structu
linked to various degrees, assemble into tissue level constructs, surrounded by the epite
organization of tendon tissue reflects the organ that may or may not be surrounded by
extrinsic tendon compartments is possible.
display more aligned collagen structures (e.g. the digital flexor ten-
dons, or rodent tail tendon) [38,39]. Tendons spanning shorter dis-
tances, or with broad insertions to the bone, may adopt a more
distributed array of collagen structures (e.g. the rotator cuff ten-
dons) [40]. In a similar vein, tendons emanating from ‘‘simple”
muscles that generate torque around a single joint axis (e.g. the
distal biceps tendon; the soleus tendon) are more likely to be
highly crosslinked – reflecting the fact that collagen structures
within these tendons are generally loaded in unison and toward
a unified purpose [41,42]. Tendons that function over large ranges
of motion or provide torque around multiple joint axes, feature
anatomical subdivisions that are loaded depending on the current
state of joint position and muscle activation (e.g. the deltoid; the
gastrocnemius). Here a large degree of lateral sliding between col-
lagen fascicles enables such joint motions [43–49].
3. The tendon proper, its composition and structure

One may consider the tendon proper (or midsubstance between
the muscle and bone insertions) as being roughly composed of two,
not always physically distinct, tissue compartments. The first
(extrinsic) compartment is a family of synovium-like fascias that
comprise the paratenon (tendon sheath), epitenon (subtendon
sheath), and endotenon (fascicular sheath) [19]. These tissues
include differentiated and progenitor cell populations related to
the mesenchyme as well as the nervous, immune, and vascular sys-
tems [19]. The extrinsic compartment envelops the second (intrin-
sic) compartment, which is often referred to as the ‘‘tendon core”.
The tendon core consists of densely packed Type-I collagen matrix
and the fibroblastic cells that maintain it [50]. Although increas-
ingly realized to have distinct functions in the context of tendon
disease and repair, the physiological roles of many of the cells
within both compartments and possible communication between
the compartments is still poorly understood [50–54]. We proceed
by outlining what is known about the intrinsic compartment that
collagen fibrils make up the minimal structural/functional mechanical unit of the
stic cells that maintain it [17,55]. The tendon core is wrapped with endotenon (the
res” that form the basic functional unit of the tendon [19]. In turn, fascicles, cross-
non (mid-level extrinsic compartment) [50,52]. Finally, the highest level structural
paratenon [19]. At three levels, interface ‘‘handshaking” between the intrinsic and
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gives the tissue its mechanical strength, and later return to the
involvement of the extrinsic system in tendon maintenance, dam-
age, and repair.
4. Tendon core – Multiscale structure and function

Our current understanding is that the tendon core is occupied
by tendon fibroblasts (also widely referred to as tenocytes), with
more diverse cell populations found in the tissue barriers that
comprise the extrinsic compartment of the tendon [50,52]. Within
a healthy tendon core, tenocytes attach to a highly ordered fibrillar
collagen matrix (ECM) (Fig. 2) that is primarily composed of type-I
collagen (65–80% of its dry mass), and small leucine-rich proteo-
Table 1
Extracellular Matrix Components of Interest in Tendon Disease and Healing – Fibrillar Colla
Rotator Cuff; ‘‘AC”: Achilles tendon; ‘‘LHB”: Long head of biceps tendon; ‘‘PT”: Pate
upregulation/downregulation; ‘‘+++/���”: Highly significant upregulation/downregulatio
spectrometry; ‘‘IHC/IF”: Immunohistochemistry/Immunofluorescence; ‘‘WB”: Western
Hybridization; ‘‘FTIR”: Fourier transform infrared spectroscopy; ‘‘SDS-PAGE”: Sodium Dod

ECM
Component

Healthy Tendon Tendinopathy

Model Species Ph

Collagen
Type I

-60–80% by dry weight
-Highly ordered

Often disordered, may be elevated, or
Patient tissues Human,

ruptured AC
++

Patient and
cadaveric
tissues

Human, AC ++

Patient and
cadaveric
tissues

Human,
different
tendons

++

Patient tissues Human, AC ++
Patient tissues Human, PT �
In vivo Equine, SDFT +
Patient tissues Human, RC

tears
�

Collagen
Type II

Typically, not present in
healthy ‘‘mid-portion” tissue

Can be present in degenerated tissue,
In vitro Human, AT +

Patient tissues Human, PT UC
Tendon biopsies Human, AC N
Patient tissues Human, RC

tears
�

Collagen
Type III

�3–5% of total collagen
Limited to sheaths

- May be elevated in pathological t
tendon

- Associated with decreased strengt
Patient and
cadaveric
tissues

Human ++

Patient and
cadaveric
tissues

Human, AC ++

In vitro Human, AC ++
Patient and
cadaveric
tissues

Human, AC ++

In vivo Rat, PT ++

Patient tissues Human,
different
tendons

++

In vivo Equine, SDFT ++

Patient tissues Human, RC
tears

�

Patient tissues Human, AC ++
Patient tissues Human, PT �

Collagen
Type V

Limited quantities Patient tissues Human, PST +

Collagen
Type VI

Patient tissues Human, RC ++

Patient tissues Human, RC
tears

++
glycans that regulate collagen self-assembly into collagen fibrils,
which in turn are ordered by the cell into collagen fibers [17,55].
The structural terminology distinction is important – as fibrils
are the basic subcellular collagen building blocks, whereas fibers
are the relevant cell-scale structural units with which cells physi-
cally interact. The core tendon fibers are ultimately encompassed
within ‘‘fascicles”. A fascicle can be considered as the fundamental
functional unit within the intrinsic tendon, embodying tenocytes
and their collagen fibers within a structure that is delineated by
the first synovial tissue barrier (endotenon). This tissue barrier rep-
resents the first interface of ‘‘handshaking” between the intrinsic
and extrinsic tendon compartments. Higher level structural organi-
zation of tendon tissue reflects the function of the muscle-tendon
gens: Key: ‘‘T”: Transcriptome; ‘‘P”: Proteins; ‘‘Both”: Transcriptome & proteins; ‘‘RC”:
llar tendon; ‘‘PTT”: Posterior tibialis tendon; ‘‘+/�”: Trend; ‘‘++/��”: Significant
n; ‘‘NC”: No change; ‘‘ND”: Not detected ‘‘LC-MS/MS”: Liquid chromatography–mass
blot; ‘‘RT-PCR”: Reverse transcription polymerase chain reaction; ‘‘ISH”: In Situ
ecyl Sulfate - Polyacrylamide Gel Electrophoresis.

Comments Refs

enotype Method

diminished.
T: RT-PCR [277]

T: cDNA array and
RT-PCR

[278]

+ T: RT-PCR [279]

T: RT-PCR Total collagen was unchanged [280]
T: RT-PCR [281]
Both: ISH & IHC [282]
P: FTIR [283]

near zones of bony impingement or fibrocartilage
P: IHC/ICC Cells from Chondral Metaplasia of

Calcific Insertional Tendinopathy
[284]

T: RT-PCR [281]
D P: IHC [285]

P: FTIR [283]

issue; Associated with collagen I fibers in the tendon enthesis and degenerated

h and stiffness
+ P: SDS-PAGE & WB [286]

+ P: Reverse phase-
HPLC

[287]

P: ICC [193]
T: cDNA array and
RT-PCR

[278]

+ Both: RT-PCR and
IHC

[288]

+ T: GeneChip�

microarray
[289]

P: SDS-PAGE & IHC [290]
[291]

P: FTIR [283]

T: RT-PCR Unchanged total collagen [280]
T: RT-PCR [281]
P: IHC/ICC [292]

P: Label-free
quantitative LC-MS/
MS

[293]

Both: RT-PCT & IF [294]



Table 2
Extracellular Matrix Components of Interest in Tendon Disease and Healing – Glycoproteins: Key: ‘‘T”: Transcriptome; ‘‘P”: Proteins; ‘‘Both”: Transcriptome & proteins; ‘‘RC”:
Rotator Cuff; ‘‘AC”: Achilles tendon; ‘‘LHB”: Long head of biceps tendon; ‘‘PT”: Patellar tendon; ‘‘PTT”: Posterior tibialis tendon; ‘‘+/�”: Trend; ‘‘++/��”: Significant
upregulation/downregulation; ‘‘+++/���”: Highly significant upregulation/downregulation; ‘‘NC”: No change; ‘‘ND”: Not detected ‘‘LC-MS/MS”: Liquid chromatography–mass
spectrometry; ‘‘IHC/IF”: Immunohistochemistry/Immunofluorescence; ‘‘WB”: Western blot; ‘‘RT-PCR”: Reverse transcription polymerase chain reaction; ‘‘ISH”: In Situ
Hybridization; ‘‘FTIR”: Fourier transform infrared spectroscopy; ‘‘SDS-PAGE”: Sodium Dodecyl Sulfate - Polyacrylamide Gel Electrophoresis.

ECM Component Healthy Tendon Tendinopathy Comments Refs

Model Species Phenotype Method

Fibronectin - Present in small quantities
- Associated to vascular walls,

myotendinous junction, and
sheaths

Patient tissues Human,
AC

+ P: IHC [295]

In vivo Equine,
SDFT

+ P: IHC Acute healing model of
tendon injury

[296]

Patient tissues Human,
RC

+++ P: IHC/IF [297]

Tendon
biopsies

Human,
AC

++ T: RT-PCR [298]

Patient tissues Human,
RC

+ P: Label-free
quantitative LC-
MS/MS

Fibronectin type III domains [293]

Cartilage oligomeric
matrix protein
(COMP)

- Associated with collagens
- Abundant in flexor tendons

compared to extensors

Patient tissues Human,
RC

� P: Label-free
quantitative LC-
MS/MS

[293]

In vivo Equine,
SDFT

++ TP: ISH & IHC Co-localized with collagen
type III

[282]

Explant model Equine,
SDFT

++ P: LC-MS & WB Evidence of COMP
fragmentation in response
to IL-1b

[299]

Elastin - Present in small quantities
- Enriched in pericellular matrix

Patient tissues Human,
RC tears

NC Both: RT-PCT & IF [294]

Patient and
cadaveric
tissues

Human,
LHB

��� P: WB [300]

Patient tissues Human,
RC

ND P: Label-free
quantitative LC-
MS/MS

[293]

Patient tissues Human,
RC tears

� P: FTIR [283]

Fibrilin-1 - Present in small quantities
- Enriched in pericellular matrix

Patient tissues Human,
RC tears

++ Both: RT-PCT & IF [294]

Patient tissues Human,
RC

� P: Label-free
quantitative LC-
MS/MS

[293]

Fibulin-1 Patient tissues Human,
RC

� P: Label-free
quantitative LC-
MS/MS

[293]
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unit, with fascicle-fascicle kinematics (sliding and stretching) that
dictate the mechanical behavior of the tendon [12,17,55–60].

The fibrillar collagen matrix also includes collagen III in various
quantities. Collagen III synthesis is understood to be involved in
early stages of wound repair, following on fibronectin matrix tem-
plating by tendon fibroblasts [61]. Increased presence of collagen
III is considered to be a hallmark of degeneration, with adverse
effects reflected in tissue disorder and reduced mechanical proper-
ties [62]. In lesser quantities, collagen V is another fibrillar protein
present in tendon that plays a key role in ordering and stabilizing
type-I collagen structures during collagen I self-assembly [63]. Pro-
teomic screening studies have suggested that collagen Type VI may
be an important component of the tendon ECM [64], being a peri-
cellular matrix protein that plays a role in collagen fibrillogenesis
[65]. Beyond the fibrillar collagens, elastin is a fibrillar glycoprotein
contributing 1–2% of tendon dry mass that plays a role in recoil of
the matrix after repetitive mechanical loading [66]. Binding the fib-
rillar matrix are numerous FACITs (fibril-associated collagens with
interrupted triple helices) that regulate interactions between the
fibrillar matrix and other ECMmolecules. Surrounding the bundled
components of the fibrillar matrix is a proteoglycan-rich matrix
that is well hydrated, contributes to resistance against compressive
mechanical stresses, and facilitates nutrient and metabolite diffu-
sion. Among the important proteoglycans are the fibril bound
small leucine-rich repeat proteoglycans (SLRPs) decorin and bigly-
can, whose core proteins are covalently bound to the ‘‘D-period”
striations of type-I collagen fibrils at 67 nm intervals. The SLRPs
are known to bind growth factors and a range of matrix proteins
such as tenascin. They also play a pivotal role in fibrillogenesis,
in both the formation and assembly of collagen fibrils [67].

It is known that diseased and poorly healed tendons often fea-
ture substantial structural and compositional ECM derangement
[2]. Structural alterations that occur in the diseased tendon extra-
cellular matrix are diverse and complex (Tables 1–3), with many
open questions regarding the mechanisms that underlie the
dysfunctional tendon ECM assembly [68]. Ultimately, tissue
function requires cellular control over mechanical properties, with
coordination of matrix assembly not only at the level of fibril and
fiber, but also across higher size scales. In principle, there are many
potential mechanisms that cells might exploit to regulate tendon
mechanics and/or tune tendon tissue structure toward an opti-
mized organ level function (Table 4). Which of these dominates tis-
sue adaptation and repair remains only partly understood. Among
long-standing questions are the relative contributions of the ten-
don synovial tissues (peritenon, endotenon) versus the tendon core
in adaptation to increased mechanical demands or after traumatic
injury [69,70]. How intrinsic and extrinsic healing mechanisms act,
interact, and are regulated in diverse physiological contexts (devel-
opment, homeostasis, repair) will require substantial research
efforts to elucidate.



Table 3
Extracellular Matrix Components of Interest in Tendon Disease and Healing – Proteoglycans: Key: ‘‘T”: Transcriptome; ‘‘P”: Proteins; ‘‘Both”: Transcriptome & proteins; ‘‘RC”:
Rotator Cuff; ‘‘AC”: Achilles tendon; ‘‘LHB”: Long head of biceps tendon; ‘‘PT”: Patellar tendon; ‘‘PTT”: Posterior tibialis tendon; ‘‘+/�”: Trend; ‘‘++/��”: Significant
upregulation/downregulation; ‘‘+++/���”: Highly significant upregulation/downregulation; ‘‘NC”: No change; ‘‘ND”: Not detected ‘‘LC-MS/MS”: Liquid chromatography–mass
spectrometry; ‘‘IHC/IF”: Immunohistochemistry/Immunofluorescence; ‘‘WB”: Western blot; ‘‘RT-PCR”: Reverse transcription polymerase chain reaction; ‘‘ISH”: In Situ
Hybridization; ‘‘FTIR”: Fourier transform infrared spectroscopy; ‘‘SDS-PAGE”: Sodium Dodecyl Sulfate – Polyacrylamide Gel Electrophoresis.

ECM
Component

Healthy Tendon Tendinopathy Comments Refs

Model Species Phenotype Method

Decorin - Most dominant PG
- Found associated with dermatan sulfate in tendons

Patient tissues Human, AC � T: cDNA
arrays

[301]

Patient tissues Human,
ruptured AC

++ T: RT-PCR [277]

Patient tissues Human, LHB NC Both: RT-PCR
and IHC

[302]

Patient tissues Human, PT NC T: RT-PCR [281]
Patient and
cadaveric tissues

Human, AC - NC (pain-
ful AC)

- (ruptured
AC)

T: RT-PCR [303]

Biglycan - Thought to contribute to growth factor and cytokine
sequestration

- Main ECM component of TSPCs niche [304]

Patient tissues Human, PT + T: RT-PCR [281]
Patient and
cadaveric tissues

Human, AC + (painful AC) T: RT-PCR [303]

Patient tissues Human, PTT + T: RT-PCR [305]
Tendon biopsies Human, AC +++ P: IHC [285]

Aggrecan - Enriched in areas subjected to compressive load (e.g.
fibrocartilaginous zones in tendon)

Patient and
cadaveric tissues

Human, AC + (painful AC) T: RT-PCR [303]

Patient tissues Human, PTT + T: RT-PCR [305]
Tendon biopsies Human, AC +++ P: IHC [285]

Fibromodulin - Main ECM component of TSPCs niche [304] Patient tissues Human, PT � T: RT-PCR [281]
Tendon biopsies Human, AC ++ T: RT-PCR [298]

Versican Patient and
cadaveric tissues

Human,
different
tendons

��� T: RT-PCR [279]

Table 4
Structural Biology & Regulation of Collagen Matrix, Tissue, and Organ Mechanics.

Primary mechanisms to regulate mechanical properties
Molecular

scale
Mediators of collagen fibril assembly: Types of fibrillar collagen (Col-I vs Col III); Assembly mediators (e.g. FACITS, SLRPs), and relative content of
other ECM molecules (e.g. elastin and GAGs)
Crosslinking: Covalent bonds between collagen monomers (high cross-linking = stiff collagen fibrils, the basic tissue building blocks)

Cellular scale Fiber-Fiber Coupling: May be covalent cross-linking, or physical entanglement between collagen fibers
Tissue scale Fascicle-Fascicle Coupling: May be covalent cross-linking, and/or physical entanglement between collagen fascicles.
Organ scale Fascicle kinematics: Higher order partitioning of fascicles or groups of fascicles that enable/prevent large kinematic movements between such

structures

Secondary mechanisms to regulate mechanical properties
Subcellular

scale
Collagen packing: (length, diameter, directionality, tortuosity) of collagen fibrils

Across scales Collagen hydration: (e.g. mediated by proteoglycan content; osmotic and hydrostatic force balance)
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While the structural biology of tendon tissue is complex and
thorough understanding is elusive, the emergent mechanical prop-
erties of tissue substructures across size scales have been heavily
investigated in both animals and humans [59,71]. At the organ
level, an enormous body of literature provides a highly variable
range of reported mechanical properties [72]. The variability of
reported mechanical properties reflects the manifold technical dif-
ficulties of characterization outside the body: precise dissection,
robust mechanical clamping that avoids artefactual stresses in
the tendon tissue, accurate measurement of tissue dimensions
including cross-sections, limited visualization of tissue stretch ver-
sus kinematic movements within the tissue, and limitations on the
application of theoretical engineering frameworks to describe the
material properties of biological specimens. As such, in vivo mea-
surements relying on non-invasive measurement of human tendon
lengthening under voluntary muscle contraction provide some-
thing like a gold standard, with elastic moduli of the gastrocnemius
tendon having been estimated within the range of 1–2 GPa under
maximal stresses of 50–100 MPa, with tissue strains on the order
of 10–15% [73]. These in vivo measurements well correspond to
ex vivo experiments on the Achilles tendons [72] (Fig. 3).
At the level of the tendon fascicle – which, as mentioned, one
may view as the ‘‘basic functional unit of tendon” – experiments
on rat and mouse tail tendon form the basis of most of our knowl-
edge. Rodent tail tendon fascicles can be isolated with minimal
mechanical or biological damage, in contrast to more highly
cross-linked tendons (e.g. the bovine Achilles tendon) that are dif-
ficult to isolate. Rat and mouse tail tendons thus have historically
played an important role in studies of tendon structure-function
[74]. Tail tendon explant models arguably provide the most repro-
ducible and human-relevant in vitro models of tendon physiology
that are available [75–79]. Regarding mechanical properties,
rodent fascicles range in elastic modulus from several hundred
MPa to over 1 GPa, depending on the anatomical location of tissue
harvest, as well as the age, breed, sex, and/or diet of the animal
[80–84]. The failure properties of isolated tail tendon fascicles
reflect those of whole tendon, with failure stresses on the order
of 80 MPa and failure strains of approximately 10% [72]. Mechani-
cal properties at the fascicle level depend highly on the structural
organization of the collagen fibers and the degree of cross-linking
within and between fibers [85,86]. It is at the level of the fiber
where biologically relevant cell-level mechanical stimuli emerge,



Fig. 3. The commonly measured ‘‘ex vivo” material curve of an isolated tendon or explant typically depicts the elastic modulus (Emod), stress ðrÞ at failure, and strain ðeÞ at
failure of the tendon midsubstance. In vivo ultrasound imaging has revealed that the nonlinear ‘‘toe region” corresponds to lower physiological loading by active muscle
stresses, while maximal muscle contraction coincides with the upper physiological limit, i.e. the transition to a ‘‘linear region” in the tendon material curve [203]. This upper
physiological tissue stiffness is generally representative for ex vivo measurements on tissue stiffness [72,73]. Numerous ex vivo experiments have shown that tendon tissue
loads in the lower physiological ‘‘toe region” manifest as a progressive recruitment of higher-order collagen structures (fascicles, fibers) that increasingly align to the direction
of applied loading, thus increasing tissue stiffness [59,71,87]. Although widely underappreciated, capturing physiological nonlinearity of the tissue is likely to be an important
design goal of any effective biomaterial based therapy.

Fig. 4. Multi-scale architecture and molecular-scale biochemistry lie behind the overall mechanical function of the tendon. The mechanical properties of tendon emerge both
from higher-level structures (grouped fascicles) and also from the basic building blocks (grouped fibrils) [12,17,55–60]. The passive mechanical properties of the entire organ
(muscle-tendon-bone unit) reflect a highly deformable structure that is difficult to characterize ex vivo [10]. Isolation of tendon midsubstances facilitates characterization,
and these range from moderately to extremely stiff with apparent elastic moduli (Emod) on the order of 0.1 to 2 GPa [72,73]. Isolated tendon fascicles also demonstrate
mechanical properties in this range, with elastic modulus and the tensile stress ðrÞ and strain ðeÞ at failure depending upon cellular-and molecular-scale factors such as
collagen packing and cross-linking [90,105]. Lastly, mechanical properties of collagen fibrils are highly dominated by cross-link density, which explains their wide mechanical
variability [56,57,85,101].
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since the fiber comprises the structural unit with which tendon
cells directly interact.

Finally, the properties of the individual collagen fibrils
(submicron-scale) that comprise the collagen fiber (cell-scale) are
increasingly well described [87–90]. These supramolecular colla-
gen structures range in diameter from tens to hundreds of
nanometers, with lengths that can span centimeters [91]. The col-
lagen fibril is an exquisite example of cellular mediated protein
self-assembly [92,93] – with emergent mechanical properties that
depend on the diameter of the collagen fibril [88], as regulated by
small leucine-rich proteoglycans [60,94–100]. The properties are
also highly dependent on the extent of covalent collagen molecule
cross-linking as regulated by the enzyme lysyl-oxidase [85,86,101–
104]. Consequently, depending on the degree of collagen packing
and extent of collagen crosslinking, collagen fibrils have elastic
moduli on the order of several GPa, and failure properties on the
order of 0.5–1 GPa [90,105].

The multi-scale assembly of tendon tissue, for which each scale
is equipped with its own mechanical properties (Fig. 4), results in a
tissue that is highly tunable towards its function [106]. Tendons
that require an ability to respond to muscle contraction without
much energy dissipation can be highly cross-linked to allow for
minimal gliding (e.g. Achilles tendon), whereas others that are
designed for more precise movements (e.g. the digital tendons)
are low in cross-links [42]. Aging tendons are increasingly cross-
linked resulting in altered viscoelastic properties, with potentially
increased risk for micro-damage accumulation and onset of tendon
disease [56,57,85,101].



Fig. 5. Tendon tissue remodeling is driven by cell-level mechanical stresses, i.e.
shear stresses from fluid flow and fascicle sliding, tensile stresses from direct
elongation of collagen structures and hydrostatic stresses from the volumetric
changes with external loading [116,138,139]. These mechanical stresses are
responsible for the activation of candidate ‘‘vectors” by which tendon cells can
potentially ‘‘transduce” mechanical forces within the tissue to regulate cell
signaling and behavior: 1) stretch activated ion channels (SACs) as mechanosen-
sitive ion channels, 2) focal adhesion-mediated mechanical signal transduction, 3)
the primary cilium and 4) nuclear deformations [109–113,116].
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4.1. The tendon cell as a mechanical sensor and arbiter of tendon
structure

The paradigm that cell-level mechanical stresses drive tissue
remodeling is a central tenet of mechanoregulation in bone, tendon
and other tissues. The relationship between mechanical forces and
functionally optimized tissue structure has been recognized for
well over a century [107]. Tendon cells feature various cellular
machineries for sensing a range of distinct mechanical stimuli
within their matrix (Fig. 5) [108–110]. A cell can rapidly respond
to tension and shear by adjusting its physical coupling to its local
matrix [111,112], or by remodeling its cytoskeleton [113]. Such
adjustments affect not only the loading of mechanosensory ele-
ments of the cell, but also affect sensory proteins within the cell
membrane and nucleus that are mechanically coupled [114]. In
the longer term, cells cope with transient mechanical perturba-
tions by coordinating the structure and composition of the extra-
Fig. 6. The candidate ‘‘vectors” by which tendon cells can potentially transduce mech
resulting in a cellular response [116]. Howmechanically activated downstream pathways
undoubtedly result in more targeted treatment of tendon disorders. For details on the p
cellular matrix until their mechanical environment reaches
homeostasis [75]. In connective tissues like tendon this is primarily
achieved by modulating the filamentous composition and struc-
ture of collagen networks [115]. In tendon tissue there are four
candidate ‘‘vectors” by which tendon cells can potentially ‘‘trans-
duce” mechanical forces within the tissue to regulate cell signaling
and behavior (Fig. 6) [116].
4.1.1. Stretch activated ion channels (SACs) or other mechanosensitive
channels

Due to their implication in muscle function and pathologies,
particularly cardiac muscle, SACs are among the best characterized
vectors for mechanical signal transduction in mammalian cells
[117]. Mechanosensitive ion channels fall into three distinct fami-
lies with the so-called Transient Receptor Potential (TRP) family
representing a class of (non-specific) ion channels that has implica-
tions in mechanosensitivity of the musculoskeletal system
[118,119]. Stretch-activated channels are triggered in response to
local membrane tensions across the channel, and may be activated
not only by tissue elongation, but also during tissue shearing, com-
pression, and/or intra/extracellular osmotic pressure gradients
[120–122].
4.1.2. Focal adhesion-mediated mechanical signal transduction
Because quiescent cells in healthy tendon tissue (tenocytes) are

physically coupled to a collagen fiber, collagen fiber stretch is likely
to play a role in biological response of the tissue to functional
mechanical loading. Loss of collagen fiber tension has been shown
to trigger downstream consequences including tenocyte apoptosis,
collagen matrix protease secretion [123,124], and TGFb1 signaling
[125]. As such, it is reasonable to hypothesize that focal adhesion-
mediated signaling may play a key role in tendon mechanotrans-
duction [116]. While focal adhesion signaling has been shown to
be important in tendon cell migration [126] and differentiation
in models of tendon healing [127] – a specific role of focal
adhesion-mediated mechanotransduction in tendon tissue home-
ostasis has not been clearly established. Age-related changes in
extracellular matrix mechanics, particularly changes in elastic
properties (i.e. fiber stretch), would be likely to affect cell-
collagen binding and related focal adhesion mediated signaling
anical forces within the tissue to activate typical mechanotransduction pathways,
potentially flip the balance between functional remodeling and fibrotic scarring will
athways implicated in tendon mechanotransduction see [17,116,271–274].
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[57], thus potentially playing a role in age-related tendon
disorders.

4.1.3. The primary cilium
The primary cilium is a microtubular, mechanosensitive struc-

ture that extends like an antenna from the surface of most mam-
malian cell types [128]. The primary cilium has been established
to be mechanosensory in epithelial cells, cartilage, and bone. In
the latter, it has recently been linked to specific stretch-activated
ion channel function [129]. Mechanosensory function of the pri-
mary cilium is tightly linked to SAC (e.g. Transient Receptor Poten-
tial Vanilloid 4) [130]. Little is actually known regarding the
function of the primary cilia in tendon tissue mechanotransduc-
tion, however they have been identified in tendon cells [131], have
been shown to deflect in response to applied mechanical tissue
loads [132], and their length is apparently affected by mechanical
signaling from the ECM [77,133]. Assuming that primary cilia play
a central role as mechanosensory elements for tendon cells, we
have hypothesized that age-related changes in the extracellular
matrix, particularly loss of viscoelastic relative fiber movements
(i.e. fiber shear), may have potentially adverse consequences for
cell-mediated tissue homeostasis and repair [57,85].

4.1.4. Nuclear deformations
Accumulating evidence increasingly suggests that the cell

nucleus is an important mechanosensitive element [134], with a
mechanistic link between tissue-specific mechanical stresses and
the structural composition of the cell’s nuclear envelope. It has
been demonstrated that mechanical distortion of the cell nucleus
provokes a relative shift in nuclear envelope composition [109].
This change is not only associated with very direct modulation of
several important cell signaling pathways [135], but may more
generally regulate gene expression by physically modulating chro-
matin accessibility - potentially acting as a molecular ‘‘state
switch” [110]. While tendon nuclei have been established to
deform under tissue loading [136], a current challenge is to unravel
the implications of these deformations. Again, age-related changes
in the extracellular matrix, particularly loss of viscoelastic relative
fiber movements (i.e. fiber shear) or diminished tissue hydration
(i.e. matrix compression) are likely to potentially affect the manner
in which the nucleus deforms under mechanical stress [85,136].
5. The fundamental role of mechanical forces in regulating
tendon homeostasis and repair

Scarce data on mechanical regulation of tissue repair, leaves
many open questions related to the role of external loading in heal-
ing outcomes. On one hand, sub-regions of weakened or otherwise
damaged tissue likely create a cellular niche that may mechani-
cally stimulate a tendon cell from normal quiescence into an
active, reparative mode [43,69,137]. On the other hand, localized
damage can also induce high stress concentrations and strains
[137] that potentially overload sensory vectors to drive an adverse
remodeling response [125] (Fig. 7). Important questions to be
resolved here include ‘‘How does the intrinsic compartment deal
with such (localized) damage and (locally) high matrix stresses?”,
‘‘How is the extrinsic compartment activated?”, and ‘‘How does
cross-talk between both compartments contribute to repair
quality?”.

Although we remain far from full understanding, numerous
interacting cellular and inter-cellular signaling pathways have
been shown to be directly regulated by mechanical load
[116,138] and play a role in the adaptive response towards new
homeostasis [139]. We suspect that tendon cell sensitivity and
downstream signaling response to these mechanical triggers is
modulated by the overall state of health of both the intrinsic
(matrix structure & composition) and extrinsic compartments
(tissue vascularity, state of inflammation, pain) [24,140,141].
When loaded above a certain threshold, functional adaptation is
a likely result. Convincing support from models of partial tissue
dissection, where loads are shunted to intact tissue, show resulting
anabolic net synthesis of functional collagen matrix, probably in
direct response to increased mechanical stresses and strains in
the tissue [43,69,137]. Additionally, mechanical loading has been
observed to upregulate collagen synthesis of tendon fascicles
[142] and whole tendons [143]. Although net collagen synthesis
is generally viewed as a positive sign of functional healing, how
these collagens are structured is also important (highly aligned
vs. more randomly distributed). Conversely, much evidence
suggests that both overload and underload (e.g. post-rupture) of
tendon tissues can trigger net catabolic matrix remodeling
pathways [123,124,144,145]. However, the complexity of tissue
response to mechanical loading viewed in terms of associated col-
lagen turnover [146] is exacerbated by the multi-faceted role that
remodeling enzymes play in tissue remodeling.

The breakdown of damaged tendon collagen matrix, and the
initiation of various tissue repair events, centrally involves matrix
metalloproteinases (MMPs) [147–149]. In tendon, there is a close
but still poorly understood relationship between mechanically
mediated MMP activity/inhibition, and how MMP-regulated sig-
naling may govern collagen matrix modeling and remodeling
[150]. In tendon, triggering of MMP activity is thought to be driven
both by increased mechanical stimulus (tissue overload) as well as
removal of mechanical stimulus (e.g. breakage of elastic matrix
fibers; loss of cellular pre-tension) [123,124,144,145]. Also impor-
tant in this frame are tissue inhibitors of metalloproteinases
(TIMPs) known to regulate MMP activity and ECM turnover [12].
TIMPs act as endogenous inhibitors of MMPs by binding to the
active site of the MMP catalytic domain [151]. Four TIMPs have
so far been identified, with all being expressed in tendon tissue
[151]. Similar to MMPs, mechanical regulation of TIMP activity is
central among a wider range of signaling pathways, with many
of these still being poorly understood [2,147–149,152–154]. Since
the interplay between MMPs and TIMPs drives tissue remodeling
outcome [147–149,153–158], the role of both MMPs and TIMPs
are highly contextual, both spatially and temporally [147,148,158].

The matrix metalloproteinases most likely to play central roles
in immediate tendon tissue response to mechanical loading/dam-
age include the ‘‘collagenase” MMPs that degrade fibrillar assem-
blies of triple helix collagen molecules (MMP-1, MMP-8, and
MMP-13), the ‘‘gelatinase” MMPs that target Type-III collagen
and Type-I collagen fragments (MMP-2 and MMP-9), and finally
the so-called membrane-type 1 MMP (MT1-MMP, also known as
MMP-14) that has been shown to play an essential role in enabling
fibroblast motility within tightly packed ECM of many connective
tissues [152,159]. An immense body of scientific work has shown
that connective tissue MMP gene expression is regulated by vari-
ous cytokines and signaling molecules (most importantly TGF-b,
IL-1b, TNF-a, and Wnt) [160–165] but it is only vaguely under-
stood how these signal transduction pathways are initiated and
then coordinated toward a successful tissue repair [152]. Substan-
tial scientific research effort is required to enable better under-
standing of how these aspects contribute to tissue repair outcome.

Aside from local mechanical regulation of MMP expression,
apoptotic pathways have been shown to be initiated by mechanical
overload/matrix damage [125]. The acute disruption of the tendon
collagen matrix has been shown to trigger release/activation of
transforming growth factor (TGF)-b (perhaps secondary to MMP-
mediated breakdown of the ECM) that subsequently has been tied
to apoptosis in tenocytes (as demonstrated by prevention of apop-
tosis by the small molecule TGF-b receptor inhibitor SD208 [125]).



Fig. 7. (Left) We extend Arnoczky’s paradigm of damage-mediated tissue remodeling to consider in detail how tendon damage leads to shunting of mechanical loads to the
remaining intact tissues that may provoke a (dys)functional cellular response [43,275,276]. (Right) Our own experiments have shown that resection of the medial
gastrocnemius leads to reduced nominal stress (upper image) but elevated cell-level strains in the remaining tendons (lower image)[43]. In intact murine tendon, such cell-
level strains remain consistently below 3% – a threshold that is dramatically exceeded after tendon injury. These data support that ‘‘mechanical overload” could be an
important factor in the onset of cell-induced tissue remodeling.
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Although this sequence of events (acute matrix disruption, TGF-b
activation, apoptosis) has been demonstrated to occur in vivo,
important mechanistic details are still lacking on how this process
is mediated by mechanical forces [166].

6. Tendon damage and Repair: Intrinsic microdamage vs.
Damage crossing tissue compartments

We consider tendon damage as being conceptually dividable
into two subclasses: acute damage (traumatic damage of previ-
ously healthy tissue), and chronic (degenerative) damage. Acute
injuries (e.g. laceration of the finger flexor tendons) involve a sud-
den external disruption of originally healthy tendon. Although
such injuries often heal with acceptable recovery of function, the
tissue quality of biological and/or surgical repair rarely returns to
preinjury levels [5,167]. Tendon ruptures may also occur sponta-
neously during activities of daily living. It is now widely viewed
that such tendon ruptures can be attributed to underlying accumu-
lated tissue damage associated with degenerative tissue remodel-
ing processes [168].

Tendon matrix damage can stem from many sources including
acute tearing or cutting, oxidative damage [169], accumulation of
micro-tears [170–174], or de novo generation of aberrant matrix
within the tendon (e.g. ectopic calcification) [175,176]. Damage
may ultimately result in the mechanical and biological propagation
of a tendon lesion until catastrophic structural disruption at the
organ level (Fig. 8). Strikingly little is known regarding the actual
mechanisms by which originally healthy tendon accumulates
damage, and then how the intrinsic and extrinsic compartments
activate and coordinate tissue remodeling [18,21–23]. Only
slightly more is known about this process after acute injury, how-
ever studies using animal models of acute injury and repair are
beginning to shed some light [53,54].

Consistent with the classic view of wound healing, tendon inju-
ries first repair with an initial matrix that provides both stop-gap
mechanical integrity and a tissue template to guide later matrix
remodeling [177–179]. The cells that participate in this early repair
are thought to originate primarily from the extrinsic compart-
ments, as resident cells of the intrinsic tendon core are understood
to be limited in their reparative capacity, with low numbers and a
low metabolic rate [180–182]. As such, repair of larger tissue
defects likely involves cells from the epitenon and endotenon that
migrate into the wound [23,183]. The coordinated activities of cells
from these two compartments has been suggested to promote
optimal healing [184], and extrinsic compartment involvement in
healing is often demonstrated as extensive vascular and nerve out-
growth from the peritenon into the tendon proper [19,184–188].
Here the tissue barriers between the intrinsic and extrinsic com-
partments are violated, following a classic wound healing para-
digm that includes bleeding, clot formation, recruitment of
immune and progenitor cells to an assembly of granulation tissue,
early tissue remodeling, and finally late tissue remodeling that
should ideally involve resolution and retreat of neo-vasculature
and neo-innervation (Fig. 9) [9,18,187]. Inflammation plays a key
role in the early stages of healing, with intricate coordination
and cross-talk between the tendon core and the vascular, nervous,



Fig. 8. (Left) A schematic representation of ‘‘ideal” tendon healing after which a tendon recovers its pre-injury strength, dimensions, and material quality. (Right) The typical
course of tissue healing by scar formation leads to near-full recovery of tissue strength, but with non-efficiently packaged collagen structures and an accordingly diminished
‘‘material quality” as reflected by lower elastic modulus.

Fig. 9. An acute injury crosses from the intrinsic tendon core into the extrinsic (synovial) tissue compartment. Thus, tendon healing after rupture involves complex
coordination between the tendon proper and the vascular, nervous, and immune systems [18,21–23]. Healing after such injuries generally results in a scar tissue that fails to
re-establish tissue boundaries to appropriately compartmentalize the tissue [189,190]. This lack of compartmentalization may adversely affect tendon function (multi-scale
structure-function) and may prevent a return to homeostasis of the tendon.
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and immune systems [24,52]. The complexity of these interactions
is potentially immense, and elucidation of them will be a major
area of research focus in the coming years.

An important consequence of the involvement of the extrinsic
compartment is the formation of a fibrotic scar [189,190]. Tendon
scar tissue is generally characterized by resident cell phenotypes
that differ from healthy tenocytes in morphology and function
[139,191]. The matrix surrounding these cells is typically less
well-structured, with inadequate hierarchical compartmentaliza-
tion at the level of fascicles and above, and relatively disordered
collagen structures at the level of fibers and below [192]. Addition-
ally, the associated biochemical composition of the tissue may pro-
mote a chronic state of tissue inflammation, since among others
pathological levels of collagen III with fewer cross links and
increased presence of fragmented fibronectin are detected
[191,193–199]. At the levels of the tissue and organ, the effect of
this aberrant tissue remodeling is an increased tendon cross-
section that can provide adequate overall strength, but with subop-
timal stiffness and function [8,200–203]. In synovial tendons such
as the digital flexors of the hand, the scar tissue may become
entwined with the tendon sheath [204–206]. Such adhesions can
severely limit joint function, and are a common complication fol-
lowing surgical tendon repair [204–206]. However, the manner
in which injury is initiated remains a poor predictor of whether
the affected tissue will proceed to functional healing, chronic scar-
ring or adhesion formation.



Fig. 10. A proposed mechanism for development of painful tendinopathy. Damage
accumulates in the tendon until ‘‘intrinsic repair mechanisms” are overwhelmed. At
this point, the metabolic cost of extracellular matrix remodeling exceeds the locally
available nutrient supply. At this ‘‘Metabolic Tipping Point”, the vascular system is
recruited along with accompanying nerve supply (and pain) and the tissue enters
into a chronic disease state characterized by high matrix turnover and increasingly
poor tissue quality.
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Many key details of the repair response remain unclear: Which
are the cell-level stimuli that trigger central aspects of matrix syn-
thesis and remodeling? Do tenocytes modulate intrinsic tendon
matrix repair, or is the process coordinated by cells from the
extrinsic tendon compartment? If any individual tendon cell
becomes activated, what is its role in the repair process, and what
becomes of these cells after the repair is achieved? What are the
interactions between the intrinsic compartment, and neurovascu-
lar and immune components of the extrinsic compartment?
7. A suggested paradigm to explain the onset and propagation
of degenerative tendon disease

Poor clinical outcome in both acute and chronic tendon disor-
ders is multi-factorial, and not only due to limited intrinsic regen-
erative capacity of the tendon core [180–182]. Complex
interactions between the tendon core and the vascular, nervous,
and immune system components of the extrinsic (synovial) com-
partment of the tendon play a major, but poorly understood role
Fig. 11. (Left): Acute tendon injury typically manifests as either a laceration of originally
case of a laceration, the tissue ideally returns to pre-injury quality and function. Howev
function, particularly in torn tendons with pre-existing tissue degeneration [5,167]. (Ri
immune system) is heavily involved in early stages of wound healing [19,184–188]. Id
suppression perhaps being tightly coordinated by the intrinsic tendon compartment. A
tendon proper, as the organ returns to levels of pre-injury function.
[18,21–23]. In chronic tendon disorders we propose that a progres-
sive accumulation of intrinsic tissue damage occurs until the ten-
don core reaches a ‘‘metabolic tipping point” (Fig. 10). Based on
our own collective experiences in the laboratory, we speculate that
this tipping point is reached when the metabolic demands of the
tendon core (activated by mechanical stimulus) exceed the avail-
able nutrient supply of the normally avascular core [140]. Beyond
this tipping point, we suspect that the extrinsic tissue compart-
ment is recruited by the tendon core to participate in organ/tissue
remodelling (Fig. 11). This could be a chemotactic process whereby
low oxygen levels and high lactate levels stimulate angiogenesis
[186], mediated by the release of TGF-b1 and VEGF [184,207]. This
paradigm resonates with studies using animal models that report
mechanical overload triggers appositional tendon growth at the
organ perimeter [69]. We suspect that mechanically driven recruit-
ment of vasculature and associated nerve supply to the tendon
core may lie at the cause of tendon disease and the tendon pain
that often accompanies chronic tendon disease [208]. Relatedly,
we speculate that tissue vascularity and innervation that fail to
fully resolve after a tendon disruption may lie behind perpetuation
of chronic tendon disease. While the importance of cross-talk
between the nervous system the vascular supply is increasingly
appreciated [209], how this signaling may be dysregulated is rela-
tively unexplored [20], providing substantial ground for fruitful
future study, and potential therapeutic exploitation.

8. Unmet clinical needs, and the role of biomaterials in
addressing tendon disorders

In our view, the application of biomaterials to the clinical treat-
ment of tendon disorders falls into three potentially overlapping
categories: drug delivery, mechanical augmentation, and re-
establishment of appropriate tissue compartmentalization.
Although any biomaterial-based therapy will likely aim to address
several of these aspects, the functional needs are distinct and
should be explicitly considered.

- Mechanical augmentation is important for short- and
medium-term survival of a surgical repair. This demand reflects
the immediate need to restore functional continuity (‘‘primary
healthy and intact tissue, or as a rupture of already degenerated tissue [168]. In the
er, injured tendon often does not fully attain ‘‘normal” levels of tissue quality and
ght): Following acute injury, the extrinsic healing system (vasculature, nerve, and
eally, the involvement of these systems resolves over time, with vascular system
successful tissue repair process should thus conclude with ‘‘fine tuning” within the
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stability”) of the muscle-tendon-bone unit. Augmentation
should aim to facilitate optimal tissue templating and initial tis-
sue remodeling – setting the longer-term repair process onto a
good track.

- Guiding appropriate tissue compartmentalization is well
appreciated in the context of preventing formation of adhesions
between the tendon sheath and surrounding tissues
[204–206,210]. However, the subtler need for appropriate
‘‘internal compartmentalization” is less well recognized
(Fig. 9). As we have discussed in previous sections, individual
tendon architecture is exquisitely tuned for optimal function,
and scar-like healing generally fails to return to its pre-injury
structure. Biomaterials that can guide fine tuning of tendon
structure may play an important role in longer term recovery
of tissue structure and biomechanical function.

- Bioactive biomaterials and drug delivery: As a poorly
vascularized tissue, without identified tissue specific surface
receptors, systemic delivery of pharmacologic agents to treat
tendons is not likely to be efficient or effective. Appropriately
timed, locally targeted delivery of pharmacological agents from
biomaterial carriers will continue to be a major topic in tendon
research for the foreseeable future.

In the section below, we very briefly summarize the main
subfields of biomaterial development in the context of tendon
disease, and tendon repair. This review is far from comprehensive,
and we refer the interested reader to excellent focused reviews
[187,211–213].

8.1. Injectable gels for drug delivery (tendinopathy, tendon repair)

Injection of biopolymers, such as collagen or fibrin gels
[214,215], provides a potential minimally-invasive technique to
locally administer a combination of structural proteins and a
plethora of bioactive molecules that can potentially favorably
assist in the healing process [187]. Collagen type I is ‘‘tissue-
mimetic” and may eventually integrate to the host, whereas fibrin
should predominantly function as a provisional scaffold and a car-
rier for bioactive molecules [216,217]. Both collagen [200,218–
220] and fibrin [221–223] have been used for tendon healing and
ligament fusion with occasionally promising results, however
restoring native mechanical properties remains an open challenge
[221,223]. One possible hurdle to overcome is the fact that once
injected, the materials polymerize into randomly organized scaf-
folds that may provide a suboptimal, or even scar-inducing, tissue
template. Tendon cells from the intrinsic compartment, as well as
migrated progenitors from the extrinsic compartment show poorer
tenogenic expression when exposed to a randomly organized
niche, compared to an aligned niche [224–229,306]. A promising
development therefore is the fabrication of aligned collagen con-
structs [230], which recently have been produced with properties
that resemble native tendon tissue [231,232]. A potentially
promising future direction may be to engineer injectable gels that
adopt an aligned configuration upon administration, providing a
tissue template for re-establishing a native tissue multi-scale
architecture. Additionally, drugs delivered via such scaffolds may
aid in pushing the resident and recruited cells to remodel the
ECM into a native-like structure.

8.2. Tissue grafts (tendon repair)

In the case that inadequate native tissue exists to bridge a torn
tendon or ligament autografts, allografts or xenografts can be used
to bridge such defects [187]. Surgical reconstruction of tendons
using grafts often result in suboptimal clinical outcome for various
reasons, including donor site morbidity [233,234], immunological
rejection [235] and poor graft integration [236,237]. These draw-
backs accompany re-tears in 35 to 95% of cases [238,239], although
these rates depend highly on the clinical indication and the indi-
vidual case. Autografts remain the gold-standard, despite inevita-
ble short- and medium-term donor site morbidity that manifests
as muscle weakness. Although autograft material immediately pro-
vides a well-structured tissue with potentially appropriate mate-
rial properties, cell-matrix remodeling typically resets the
structure of the graft, and can resemble healing stages after tendon
injury or even tendinopathy. The result is diminished mechanical
properties compared to the initial graft, decreased structural qual-
ity of the tissue [240] and occasional adhesion formation [210].

We speculate that graft remodeling involves a high metabolic
demand on the resident cells, and may cross the metabolic tipping
point - then driving the graft into a potentially adverse response.
Excised grafts, irrespective of the source, are completely cut off
from an already limited blood supply. Still viable resident cells in
an autograft will be exposed to a low-nutrient environment may
then potentially recruit participation from the extrinsic compart-
ment. This may plausibly explain why autografts do not generally
perform superiorly better than allografts [210,241–243]. A promis-
ing approach to promote beneficial graft remodeling may be to
functionalize the graft with bioactive molecules [244], however
such approaches are still in their very early stages and lack clinical
evidence of efficacy.

8.3. Synthetic (Non)-Degradable materials (tendon repair)

In view of the drawbacks associated with tissue grafts, the
development of novel biomaterial implants will play an important
future role, and the potential range of biomaterials that could be
usefully employed is immense. However, the functional require-
ments on a synthetic tendon graft may provide unifying themes
to guide the design of next generation implants: 1) A graft must
provide adequate mechanical strength and resistance to mechani-
cal damage until host tissue is able to compensate for degrading
implant function over time 2) An implant should provide strong
contextual cues (structure, biochemical, mechanical) to guide graft
integration in an aggressive biophysical environment (limited
baseline regenerative capacity, aberrant mechanical cues, inflam-
mation, predisposition of host tissue toward a net catabolic
turnover).

Synthetic grafts have therefore been exploited for repair, as
reviewed recently [187,245,246], ranging from grafts based on
e.g. polyester [247–251], polypropylene [252,253], polyethelene(-
terephthalate) [254–258] and carbon [259,260]. Despite the suc-
cess reported for these non-degradable scaffold materials, the high
mechanical demands on a tendon (or ligament) graft have not
resulted in long-term, functional repair [187]. Among the many
materials that may potentially bridge between short- and
medium-term mechanical stability and longer-term tissue integra-
tion – silk has emerged as a potentially interesting candidate mate-
rial. Because of negligible loss of tensile strength in vivo, silk is
considered by many as a non-degradable material. In practice
however, silk is enzymatically degradable in vivo, but over an
extended period of time [261]. Silk has been used extensively in
the repair of tendon ruptures, primarily as suture material
[262,263], and has shown tenogenic potential [229,264] and ten-
don regenerative potential [265,266]. Silk scaffolds have shown
promising results when tested in large animal models as candi-
dates for ACL replacement [267]. Silks fibers also are amenable to
manufacture in various structures that can capture a range of tis-
sue level mechanical properties. Using various wiring methods,
mechanical properties in the range of the native ACL could be
attained [268]. Silk grafts have also been successfully combined
with osteoconductive biomaterials in large animal models to
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achieve native-like histological integration in a bone tunnel
[269,270] with adequate mechanical stability up to 6 months after
reconstruction [269]. Still, it should be recognized that synthetic
grafts for tendon and ligament repair face an uphill climb in terms
of convincing clinicians to adopt them into daily practice.
9. Concluding statement

Tendon tissue repair involves a complex coordination between
the intrinsic tendon core tissue, and the extrinsic synovial tissues
that surround it. In this perspective article, we suggest that meta-
bolic demands on resident tendon cells may play a key role in reg-
ulating the interplay between these tissue compartments. We
describe a threshold we dub the ”metabolic tipping point”, which
delineates a balance between recruitment and suppression of the
extrinsic vascular-nervous system. This in turn may differentially
steer tendon towards either functional remodeling or degenerative
disease. We believe that future research must focus on better
understanding the handshaking between the intrinsic and extrinsic
tendon compartments in the disease and repair processes. These
efforts will be challenging, but may open paths to better address-
ing tendon disorders in the clinic.
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