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Abstract

Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that

modulate anisotropic NMR interactiong«Ihereiore, measurement of relaxation-rate constants

can be used to characterize molecular-dynamic processes. The motion is often characterized

by Markov processes using an{auto*correlation function, which is assumed to be a sum of

multiple decaying exponentials. We'have recently shown that such a model can lead to severe

misrepresentation of the w¢al metion, when the real correlation function is more complex than

the model. Furthermore, multiple’distributions of motion may yield the same set of dynamics

data. Therefore, wefintroduce’ optimized dynamics ‘detectors’ to characterize motions which

are linear combipations*ef relaxation-rate constants. A detector estimates the average or total

amplitude of motienfor a range of motional correlation times. The information obtained through

the detectors_isfless “specific than information obtained using an explicit model, but this is

necessary because the information contained in the relaxation data is ambiguous, if one does

not know the correct motional model. On the other hand, if one has a molecular dynamics

trajectory, ene may calculate the corresponding detector responses, allowing direct

comparison to experimental NMR dynamics analysis. We describe how to construct a set of

optimized detectors for a given set of relaxation measurements. We then investigate the

properties of detectors for a number of different data sets, thus gaining insight into the actual

information content of the NMR data. Finally, we show an example analysis of Ubiquitin

dynamics data using detectors, using the DIFRATE software.
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Publishing
Nuclear Magnetic Resonance (NMR) is a powerful method for characterizing both

molecular structure and dynamics. The latter application is often used to determine local
dynamics of molecules, especially proteins, via measurement of multiple relaxation-rate
constants. Those relaxation-rate constants depend on the internal metion, as well as rigid-body
motion of the protein® and in the case of solution-state NMR, the “eyerall tumbling of the
protein.22 Analysis of relaxation-rate constants in solid-state NMR typically relies on modeling
the correlation function using a sum of multiple exponential-funetions«each characterized by a
correlation time and an amplitude. This was inspired by the.suceess of the Lipari-Szabo model-
free approach # or extensions of that approach 57 in golution-state NMR, achieved by setting
the correlation time of the overall tumbling in solids-io miinity. While the validity of the Lipari-
Szabo model-free approach in solution-state NMRowasjustified in detail (similar correlation
functions are derived by Halle and Wennerstiom,®with the validity of this and the model-free
approach discussed in detail®), studies in ‘sglidsstate NMR have investigated primarily the
effects that the model selection'®*? and“the “data included'® have on the analysis of the
experimental data. Although there are ipdieations that modeling the correlation function with a
sum of exponential functions is nol“always reliable, these studies do not directly consider
modeling behavior in the case thatthe real motion is too complex to be fully characterized by
the experimental data. In a.theoretical study, we have recently shown that dynamics analysis
can deviate significantly “ftom the real characteristics of the motion if the real internal
correlation function is€more complex (i.e., if it has more correlation times) than the model
used.'* For exampléy.if onedses a model correlation function with two exponential functions,
and the real miotion is“described by a tri-exponential correlation function, the resulting
amplitudes and correlation times from the analysis may deviate significantly from the real
motion. Furthegmore we have shown that many different distributions of motion can result in
identical \sets af relaxation data, so that dynamics data acquired with NMR is inherently
ambiguous in«its description of dynamics.

These problems lead us to consider an alternative approach to analyze relaxation data,
which/takes into consideration only the information actually contained in the experimental data.
We introduce the concept of a dynamics detector, which reports the average or total amplitude
of motion within a range of correlation times that is defined by the sensitivity of that detector. A

dynamics analysis would then report responses of multiple detectors, which contain
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Publipatgétors are particularly powerful when comparing dynamics information obtained from NMR
relaxation experiments to other methods, both because the sensitivity of the detectors clearly
communicates the available information from the NMR experiments, and the detector
responses are well-defined quantities; that is, they may be calculated if one has a distribution
of the motion, which may be obtained from a trajectory of molecular motion (e.g. molecular-
dynamics simulation). Thus, detector analysis provides the naturaklink between experimental
NMR data and computational methods. Note that the analysis method presented here was in
part inspired by the theory of color vision.1516

In the following, we describe how one designs.dynamics detectors for a given set of
solid-state NMR relaxation data, and investigate the properties of those detectors for several
types of data sets, concluding with a dynamics analysis of‘the model protein Ubiquitin. Similar
procedures can also be implemented for solution-state NMR. Since there are, however,
important differences in the way the detectors are constructed, we will discuss the solution-

state NMR approach in a separate publication.

Il. Relaxation Formalism

In this study, we will treat relaxatign that is the result of the stochastic re-orientational
motion of molecules that modulate ‘apisotropic NMR interactions. This motion can be described
by a correlation function,/which, we assume to be a sum of decaying exponentials. For an

arbitrary number of exponentials,the correlation function can be represented by

C(tys %[(1- S?)exp(-t/ t)+S?(1- S?)exp(-t/ t,)

(@)
¥S7S2(1- S))exp(-t/ t,)+..+ SIS?S!... |

L<BEE <. ’

d 2 3
where the facter 1/3 comes from the term 1/(2¢+1) in the correlation function, where £ is the
rank of the intefaction tensor (in our case rank-2).17:18 Note that in this form, we assume the
motigns are independent, and the total correlation function is a product of the correlation
functions_for each motion. Then, if the 1, are not well-separated, they should be replaced by
effectiveeorrelation times.’ In a more compact form, Eg. (1) can be written as

1
C(t) = 5{82 +(1- S Aexp(-t/t) @)
i=1 ,

where
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Eq. (2) is general, even in the case that the 1 in Eqg. (1) are not-well-separated, although the
values of the 1 will be replaced by effective correlation times_ in«poth equations. We note that
Eq. (2) allows for an infinite number of exponentials, so that we can also express the
correlation function as a distribution of correlation timés, If we take (1-S2)6(z) to be our

distribution of motion, then

C(t) = 32 +(1- S?) j g(z)exp(-t 1(10%:1.s))dz |, )
where we describe the distribution on a logarithmic‘scale,® with
=log,,(Z, /1s)
¥ ®)
0 9(2)dz=1

-¥
The spectral density function, J(w), can be obtained by Fourier transformation of the

correlation function, yielding

¥

J(W)——(1 S)( q()

10*x1s dz (6)
1+ (wx107 11 s)
The various relaxationsrate constants can be calculated from the spectral-density

function as linear combinatiods sampled at different frequencies.>® We give the analytical
expressions for Ry and“R1, as examples — see ?° for a more comprehensive discussion. The

longitudinal relaxation, R1 is given by

Re= [%j (W, - wy) + 3U(w,) + BJ(w, + w)) + ( ws,,) Jw), 0

wherg uelaxation is measured on spin I, and is induced by a dipolar coupling to spin S
(characterized by the anisotropy dis) and the chemical-shift anisotropy (CSA) of spin |
(Characterized by w\0z;). Here, w and ws are the nuclear Larmor frequencies of the | and S
spinsy respectively, in angular units.

In solid-state NMR, on-resonance rotating-frame relaxation for a heteronuclear spin pair

under magic-angle spinning (MAS) is given by
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X (SJ(WS) + %J(W1 -2w )+ %J(W1 -w)+ %J(W1 +w)+ %J(W1 + ZWr)) , 8)

+<(ws.,

where wr and w1 are the MAS frequency and the spin-lock field-strength, in angular-frequency

)2 (%J(Wl - 2Wr) + J(W1 - Wr) + J(W1 + Wr) + %J(W1 + 2Wr)]

units???2 (for a homonuclear spin-pair see 23). Although other_relaxation experiments are
possible, only R1 and R1, data will be used as examples in this study.

For convenience, we define a functional form of the_relaxation-rate constants, denoted
R{Az), where ¢ indicates the particular experiment and conditions (for example, R1 at an
external field of 500 MHz would be denoted Raseo(Z)). Then, R¢(z) is the relaxation-rate
constant calculated for a mono-exponential correlation function, having a correlation time 1c =
10?s, and an order parameter 1-S? = 1. Wsing ‘this functional form of the relaxation-rate
constants, it is possible to calculate the rate censtant'for any arbitrary distribution, given by (1—
S$2)6(z), as

¢
RS = (=S O(2)R, (2)dz. ®)

_y
We will refer to R(z) as the sensitivity of the rate constant, while R“ is the relaxation-rate

constant resulting from a distrilution of motion characterized by 6(z) and 1-S2.

[1l. Detectors in Solid-State NMR Relaxation

Fig. 1(a) plots«gensitivities of the N R:1 relaxation-rate constant at *H Larmor
frequencies of 400 ahd 850 MHz. Each rate constant provides some information on the internal
motion, but{the sensitivities of both relaxation-rate constants (Rui,400(z), R1ss0(z)) are rather
broad ant-everlapping so that one does not get very precise information which range of
correlation times is being detected. Furthermore, the sensitivities of the two rate constants
cover._a similar range of correlation times, so that without further processing, the additional
infexmation-provided by the second rate constant is convoluted with the information already

obtained from the first rate constant.
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Fig. 1. >N R: relaxation rate constants at 400 MHz and 850, MHz T e R1 sensitivities plotted in (a) are calculated
for motions having a single correlation time, plotte on th -aX|s and an amplitude of 1-S?=1. In (b), the
sensitivity of two detectors, pn(z), are plotted that nstructed by linear combinations of the Ri rate
constants. The coefficients used to obtain the on( ) are 17 s, b=0.6189s,¢c=0.4607s,d =-0.3917 s.

Although the rate constants have a 'mllar range of sensitivity, they do not have the
same functional form, so that it is po me-to separate information obtained from different

timescales. To achieve this, we. de \E\{ etector response, which is obtained from a linear

\sexample the detector responses are given by
(4.S) bR(qS)

combination of rate constants. In

79) = g

h Wk
q q
CRZI.,400 + de.SSO

£
We may S|m|IarIy ef|n a detector sensitivity, which is obtained using the same linear

combination, bu he sensitivities of the two rate constants.
r(2) = aR, ,,(2) + bR g (2)

r,(z2)=cR,_,,,(2)+dR

(11)

1,400 1,850 ( )

ﬂ
Note that we defl e the factors a-d to have units of seconds, so that the resulting detector
respénses detector sensitivities are unitless. Because of the linearity, we can also

calcu ) detector responses according to

5\

res = (1-8%) g2) r (2) oz, (12)


http://dx.doi.org/10.1063/1.5013316

| This manuscript was accepted by J. Chem. Phys. Click to see the version of record. |
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Publigitinghe sensitivity of each detector, pn(z). The Sl has a glossary of all the different quantities
defined in this section.

One then optimizes a, b, ¢, and d so that the sensitivities of the two detectors, p1(z) and
p2(z) are as separated as possible, without having any negative values for each pn(z). The
latter is an important requirement because we want to avoid the gituation where motion at a
correlation time with negative sensitivity and motion at a gorrelation time with positive
sensitivity could cancel out. We achieve this by requiring the ratio of -b/a to be given by

Max(R, ,4,(2)/ R 4,(2)), and —d/c to be min(R,,,(2)/ R . (2))yandsscaling such that the pn(z)

850 85Q

have maxima of 1. Our optimized detectors, pn(z) are shewn i Fig. 1(b) with p1(z) covering the

fast motions, p2(z) covering the slower motions, and some oyerlap in the center around 7¢ =

1085 s. Then, a protein motion with a large r% and a small r\"® value would be indicative

of a distribution that has most motion with correlationitimes shorter than ~10° s. The converse

would indicate that most motion has cofrelation times longer than ~10® s. Similar values of
r7% and r% indicate either motion if-etween these correlation times, or similar amounts of

motion above and below the two corgrelation times.

Without additional inforfmationy or« making assumptions, the responses of the two
detectors summarize the actual infgrmation content of the data without bias, whereas an
explicit model may be biaSed towards particular correlation times. In the following discussion,
we will present a general strategy for constructing detectors in the case of many relaxation
measurements andnvestigate the properties of those detectors. Note that linear combinations
of rate constants-have“already been used to characterize motion in the spectral-density
mapping approach to dynamics analysis.?*?” However, the method presented here is a more
general appreach, with the intended goal of characterizing the distribution of motional
timescalés, (1-S%)0(z), as opposed to the spectral density, J(w). The relationship of the two

metheds is‘discussed below (see section 111.D).

A.Jwoe.Relaxation Rate Constants

We further develop the idea of detectors for analysis of NMR relaxation data, continuing
with the example of two **N R1 relaxation-rate constants since for such an example a graphical
representation of the space of allowed relaxation data is a simple two-dimensional plot. To

understand the ambiguity in relaxation-rate measurements, and how careful detector

7
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Publigbddfotions about the model of motion, we introduce the allowed region of relaxation-rate
constants.
The allowed region of rate constants for **®N R1 at 400 and 850 MHz is shown in Fig. 2

highlighted in light blue. This allowed region is defined as any pair of rate constants that can be

produced by some arbitrary distribution of motion, (1-S2)6(z). Bec(f/ e the two rate constants

are both dependent on the same distribution of correlation times; Q)xnd

S?, only certain combinations of the rate constants are possihle, S@_that only part of the space
yXQG z)) are experimentally

, total amplitude, 1—

is covered. If two distributions of motions (given

distinguishable, they fall on different points in the alloweg_\r ion,“whereas if they are not, they

fall on the same point. The distance between two peints isdi ates how easily they can be

distinguished which might depend on the qailab precision of the experimental
[

measurements. It is easy to see that two differ stﬂ@tions of motions may yield the same
point in the space, i.e., lead to the same pa® ion-rate constants. For example, colored
(g,

. . - ( 'S) . .
traces in the allowed region plot out pa&.nj?:ioo and ngso values for motions with only a
single correlation time (6(z) is a 5—fx’xc&3:1), r several values of 1-S2. Every point in the

~
allowed region can be the result of&{‘ otion having only a single correlation time.
1}

—1~§=1_00
- 1-82=0.75
3.2F 1-% = 0.50
1-8% =0.25
109
— 24
w
22
T T
Tqs
08

0

1 1 s

20 25

70

0 Y 0. 1.5
k 0.5 R(_G.S) Pl
~ 1,850

Fig. 2.

llowed region for **N Ry acquired at 400 MHz and 850 MHz. All possible combinations for R{%> and

(@5) ighli in i i (@9) (@5 i 2 i
R4, are highlighted in light blue. Colored lines trace R/ and R;{ ;] for different S* values as a function of rc,

for a mono-exponential correlation function. Colored arrows show how multiple correlation times (represented by
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r red solid arrows) add together and may be fitted with a single correlation time (represented by the dashed

.ines in the same color).
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By definition, distributions of correlation times (1-S2)6(z) with more than one non-zero
point (multi-exponential correlation functions) must also fall in the allowed range of pairs of
relaxation-rate constants. Since the contributions of different correlation times to the relaxation-
rate constants are additive (see Eqgs. (5)-(9)), multi-exponential /correlation functions are
described by a point in the space of allowed rate constants that iSsthe vector sum of the
positions in the space for each individual correlation time and amplitude. Two examples for a
bi-exponential correlation function are shown in Fig. 2. The first example considers a motion
characterized by two correlation times, the first with a vafue of.uec= 108°s, and corresponding
amplitude of (1-S?)6(-8.5)dz = 0.25, and a second with 7c= 10> s and (1-S?)6(-7.5)dz = 0.5
(so that 1-S?= 0.75). The blue vectors indicate the.contiibutions of the two motions, with the
longer vector corresponding to 7c = 108° s, The vector sum of the two motions (blue dashed
line) corresponds to a final position in the plot that is also characteristic for a motion with a
single exponential correlation function with“i =<10®4' s, and (1-S?)6(-8.41)dz = 0.34. This
illustrates the ambiguity of relaxation data that<ean be the result of very different motional
models and the fact that too simple ‘\nodels fead to results that have a bias towards the
sensitive correlation times. Similarly, the red vectors illustrate a case for two motions, with 7c=
1075 and 101 s, and (1-S?)6(z)dz=.0.5 for the two exponentials (so that 1-S? = 1). This point
in space also corresponds,tg.a motion with a single correlation time of 7. = 10883 s, and an
amplitude of (1-S?)6(-8.63)dz = 0.14. In this case, Ri is similarly sensitive to the two
correlation times and, the simple<one-correlation time model leads to a correlation time that is
roughly in the middleef the*two correlation times.

The spacé of'possible relaxation rate constants, for a given set of measurements, helps
to visualize the information available to describe the distribution of motion, (1-S?)6(z), including
the ambiguity ‘i thefexperimental data as discussed above. One may also use this space to
optimize the separation of information for different ranges of correlation times. As shown in Fig.
1, it is possible-to take a linear combination of the sensitivities of the R1 rate constants (R1,¢(z))
to obtain twe detectors with optimally separated sensitivities without either sensitivity becoming
negativexThis linear combination, defined in Eq. (10), is basically a coordinate transformation
from the black coordinate system in Fig. 3(a) to the coordinate system defined by the red and
blue axes (Fig 3a and b) which are vectors tangential to the allowed region (blue area). We

see that requiring the detector sensitivities to be optimally separated but non-negative, results

9
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Aler ydified allowed region for the detector responses, rff's), (Fig. 3(b)) which spans most of

Publishing
thie vange for which O£ % £1and 0£ ri7¥ £1, i.e,, the first quadrant for a two-dimensional

problem, but does not become negative for either r7%).

(a) Kggn=0 Kgso=0-25 1085 (b)‘ ol
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Fig. 3. Linear transformation of the allowe ace and selection of detection vectors. Part (a) shows the allowed

region of °N rate constants intblue (for 400, 850 MHz *H frequency), with ksso values plotted as grey, dashed
ansformation of the allowed region, defined by Eq. (10), resulting in the

lines through the space. ( shtyvs
allowed region of detezrér re nsgé, rfﬁvs). Red and blue detection vectors in (a) and (b) are tangential to the

space, and after th trassfor tion in (b), these become unit vectors in the x and y directions (é1, éz). (c) is the

1D reduced space, defined by ksso, where the allowed region is again shown in blue. The red and blue circles in
the reduced ce/cary) used to determine the optimal direction (although not the length) of the detection
-ﬁ

vectors.
U

The ?oordinate system in Fig. 3(b), is spanned by the blue and red unit vectors

e 560 and éZ=(0,1)T, respectively. These vectors can be transformed back from the

space,of detector responses into the space of relaxation-rate constants, by inverting Eq. (10),

with the resulting vectors (r, I,) shown in Fig. 3(a). We refer to the r as detection vectors.

Here, we have obtained the detection vectors by inverting the transformation from the space of

10
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PubligdVéie: place vectors in the space of relaxation rate constants, in order to define the

transformation from relaxation rate constants to detector responses. This can be done as

) (s
SRR

An alternative way to understand this transformation is to g/iotejthatthe detector responses can

follows, resulting in values for a-d:

o QO

ul

-

be considered to be weights, such that the observed relaxatign rate constants are given by a

linear combination of the detection vectors.
(6.5) ©.5)
R1,400 . P,
(6,S) = 1’1 r2 6,S)
R1,850 p2

(14)

Inversion leads to the following formulasfor ofataining detector responses from experimental

data:
6,5) (6,5)
Py . ¥\’ R1,400
(6.S) - I’1 f'2 (6.5) (15)
o) R1,850

Similarly, the detection vectors may be.used to obtain the sensitivities of each detector.

- V4
p1(Z) :( F1 Fz )1 R14oo( ) (16)

pz(z) 1'350(2)
If we take«the approach of placing detection vectors in the space of relaxation-rate

constants, then ‘a,good strategy is to place them tangential to the allowed region. Then, the

transformation lgads to the stretched space of Fig.3(b) that covers as much of the range as
possible for which0 £ r#® £1and 0 £ r"¥ £1, without becoming negative. This leads to well-
separated and.non-negative detector sensitivities, pn(z) as discussed above. Note that in some

cases,we may want to define our detectors such that it is possible to have r\%* >1, where the

maxifium value of the r\*% is determined by the detection vector lengths.

In the case of two relaxation-rate constants, it is relatively straightforward to place the
two detection vectors tangentially. As we add rate constants, however, the problem becomes

higher-dimensional so that it becomes helpful to be able to visualize at least three rate

11
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PUb”@’Jbe‘& ot. Therefore, in order to reduce the dimensionality of the problem we introduce the
reduced space of rate constants.

The first step in defining the reduced space is to normalize the rate constants by their

maximum possible value, arriving at the normalized rate constant, Aﬁj’s).

@5)
AES = R,
‘ c (17)

¢, =max(R (2))

This step is not critical in the case of rate constants that haye/similar maximum values, but we
will always include it for consistency. It is conveniént for, Subsequent visualization of the
reduced space, for example, when one combines’R1 and Ri, measurements in a dynamics
analysis since the maximum possible Ri, rate censtants are potentially several orders of
magnitude larger than those for R1. The secand step is to divide all normalized rate constants
by the sum of all normalized rate constants, such that one obtains

k R Y Y
850 g RS (18)
AG@S)L = A (@) 4 A@S)
SzAz . Al,400 + AL850'

We refer to the result, ksso, as the rati@ of normalized rate constants (later shortened to the
ratio of rates).

We could just as welldefine the space with ka0 (given by A% /S A), but using

both is redundant bhécause wg' define them in such a way that they are not independent since
their sum is always one, The divisor is chosen to factor out the absolute size of the rate
constants, so/that the information is stored in their ratios. In other words, we factor out the
dependencé«on’ 1-S%, and only retain information on the relative distribution over the
correlatian times,“6(z). We want to avoid having the divisor approach zero faster than the
numerator,“so that the sum of all normalized rate constants is a good choice for any set of
relaxation rate constants in solid-state NMR. Note that in the case of three or more relaxation
rate censtants, there will be multiple k; to specify the location in the reduced space. Each ratio

of rates, kz, must then be divided by the same S A%, and the set of k; values will be denoted

as a vector, kK, which we refer to as the reduced vector. In Fig. 3(a), several values of ksso are

indicated in the space (dotted lines), where we can see that ksso defines the ratio of the two

12
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Publighéodinensional (1D) space, with the allowed region of the reduced space highlighted in blue.
In the reduced space, defined by ksso, it becomes simple to select vectors tangential to
the space. One simply places a point at the maximum and minimum values in the allowed

region. These points can be used to define the direction of the detection vectors as follows:

| KgC (19)

a0 = 1= Kaso
First, note that the length is not defined by ksso, such that an, inust“be determined separately.

The length of each detection vector, Fn , IS inversely proporiional to the magnitude of the

sensitivity of that detector, pn(z) (see eq. (14)). Forthe mament, we will choose an so that pn(z)
has a maximum of one (normalization will be digcussed in section I1I.G). Second, we note that
one of the k; must always be calculated from ¢he other K; values since the dimensionality of the
space has been reduced by 1, but this is straightforward since all k; sum to 1.

When one includes more relaxationsgate “censtants, ideally one wants to place reduced
vectors in the reduced space that exaetly“surround the allowed region. However, this is only
possible if the allowed region forms\asolyiope with exactly N corners, where N is the number
of experiments included. For a one=dimensional reduced space, one always obtains a line, so
that we have two ‘corners’,.but for mere experiments only special cases will result in such a
space (for example, a triangle for three experiments, a tetrahedron for four experiments). The
different cases will be further discussed in the following sections.

First, however, we ‘want to better understand how detector responses are related to
distributions of y/motion. T@ understand what information we obtain from the detectors, we
consider sevgral distributions of motion, plotted in Fig. 4(a) (solid lines), each taking the form of

a log-Gaussian distribution?®

1 ( (z—zo)z\
q(Z):\/zp?expL_TSzJ (20)

The.detector sensitivities are also plotted (dashed lines). Then, the overlap of the distribution
((1-82)6(z)) and the sensitivity (on(z)) give the response of each detector, rff’s), as shown in

Fig. 4(b) (see Eg. (12)). One observes the following behavior: if most of the motion has

correlation times shorter than ~101° s then fitting of experimental data yields nonzero values

13
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AINPH;’ ) but approximately zero for ri7 (Fig. 4(b), left). Conversely, if most of the motion has

Publishing
correlation times longer than 10 s, then %% is approximately zero, but % is not (Fig. 4(b),

right). If the motion falls in between the detector sensitivities, then both detectors are non-zero
(Fig. 4(b), center). This is, however, the same response that one obtains if there are larger
motions with one correlation time shorter than 10° s and one longer than 10¢ s, so that these
cases are not distinguishable with only two relaxation-rate measuZ ts. Then, with several

detectors, one can compare motion in different ranges of corr @a times, and can compare

motion within the sensitivity range of each detector to. other idues. Without further
assumptions, one cannot get quantitative measurement Q;moti nal amplitudes. However,
ertat

conditions, or to estimate the

it is possible to the get the average value of 1-S2 under ¢
amplitude of the distribution function, (1-S?)6(z), 4at. p 'cuhr correlation times (see section
l.G).

(a) T.o/5: 10705 1095 1085 1075 1085 \\L—
0.3F ~FLs M\
) 214 )
§ 0.2F - )
o) -
U
= 01}
10" 10
(b)
Too/s: 107105 1095

motion given by eq. (12). The center of each distribution (7c0) is indicated above each Gaussian and
|ot. The distributions (a) and resulting detector responses (b) are given in the same color, and the responses
itioned approximately below the corresponding distribution.
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AIEPTF ree Relaxation Rate Constants

Publishing In the previous section, a method for visualizing the ambiguity of a set of two relaxation
measurements was presented, and a procedure for fitting experimental data without
assumptions about the complexity of the correlation function was demonstrated. This approach
needs to be generalized for larger data sets with more than two relaxation measurements. To
demonstrate the general approach, we add an additional relaxg n-rate constant, >N Ri
measured at 600 MHz. 3\

The full space of normalized rate constants is shown as a plot in Fig. 5(a). Now, the
allowed region is represented as a volume, albeit with a r, ta}v\extension in one direction.

Red and blue traces show positions in the space resulting, 37nono-exponential correlation

time as a function of rc, for two values of 1-S2. One sees thalﬂfiistributions having only a mono-

exponential correlation function no longer span@ points”in the allowed region. The thin
extension essentially tells us that the additiona elaxign measurement did not significantly
increase our ability to further characterize ;jh \%ution of motion, (1-S?)6(z). With this in

mind, we discuss the procedure to défermine the detectors, r7%, as we did with two

relaxation-rate constants. S
~
(a) o (b)
0.42;‘»
i
0.38¢
2 l /s 1095 o
Kw : | 10 ‘0-10.5
034 108 e 10693 ke
& 1107 5%, 104
I3 0.30!
=2 0 |
e | Pl e e
L | 0.00 288
I — - .
0.2 03 0.4
Kaso

the 3 spaceSWhere blue regions highlight possible combinations of A%, A% and Al%). Colored lines trace

Goas Al Zand A7 for different S? values as a function of 7 (rc runs from —co to +oo, although ticks are not

showndeyend 101 and 10 s). (b) shows physically possible values of ksso and ksoo in blue, and plots 7. against
Keoo, While encoding s _A“* for each 7. with color, assuming 1-S%=1 (blue: slow relaxation, red: fast

relaxation).

As before, we use a representation that removes the dependence of the rate constants
on 1-S2. Here, we use the axes ksso and Keoo, defined as
15
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1,850

Publishing Keso = 5 AwS
A(tIYS) (21)
A (GS) — A@QS) A (9.5) A (9.S)
SzAzq - Ajfiloo + Ajjaoo + ALqBSO

This two-dimensional plot of the allowed space is shown in Fig. 5(b)«Note that, now a position
in the space is represented by two « values, given by the reduCed\vector, ¥ _, representing a

set of ratios of all relaxation rate constants. If we plot the positions«n the space for a mono-
exponential correlation function, as a function of the corrglation time, 7., we can see that this
trace only covers the upper border of the allowed region of‘the reduced space (plus a loop
through the space). This is in contrast to the discussion in the previous section with two
relaxation rate constants where all points in the'redueed space can be characterized by a
mono-exponential correlation function. For  three_relaxation rate constants we need two

correlation times to cover the allowed région«completely. The trace of mono-exponential
correlation functions is color coded with the Value.of S A", where 1-S? = 1 (denoted S A
).

If we want to fit three relaxationrate constants, the most convenient way is by picking
values for three reduced vectorsi S<and calculating the corresponding detection vectors, Fn
Fig. 6(a) shows the resultfofpicking three reduced vectors within the allowed region of the

reduced space, the fitf of the relaxation rate constants for mono-exponential correlation
functions, and the resulting sensitivities, pn(z). As will always be the case if we have three rate
constants and three fitigarameters, the rate constants are exactly fit unless the three x_are
not linearly independent. The solution of Fig. 6(a) corresponds to one of the solutions where
the three ve€iors are tangential to the allowed space. However, we note that, in contrast to the
examplefwith twowelaxation rate constants, the triangle of the three reduced vectors does not
surround the complete allowed region leading to negative values for one or more of the pn(z).
When, fitting, a distribution of motion, this is not ideal, because one correlation time in the
distribution may yield a positive contribution to one of the responses, rff's’, whereas that
contribution can be partially or fully cancelled by a negative contribution at another correlation
time. An alternate solution with only positive sensitivities is obtained by placing the three

reduced vectors further outside of the allowed region, as seen in Fig. 6(b), so that the complete

16
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AIane i reglon Is within the resulting triangle. There are many possible such solutions but we

PUb“l&JHtﬂlge the points to be placed as close as possible around the allowed region minimizing the
forbidden area inside the possible positive linear combinations. This is similar to the two
relaxation-rate example where the tangential vectors ensure that the complete allowed area
can be represented by positive linear combinations while at the same time minimizing the
forbidden area inside the space of positive linear combinations. In(P-/ 6(b), the three reduced
vectors were placed at the ends of the space, but we can no lo o this perfectly with three

oise will be forced into the

rate constants unless the space is perfectly triangular. In this_ca measured rate constants
that have shifted outside of the allowed region due to exp XH»Q

space, therefore reducing noise in the fit parameters- ass ing“that a fit is performed using
the criteria that all H"S) 3 0. Second, the functions pn(2z). are bytter separated from each other if

the reduced vectors are near the extrema of the alk d,%aglon

(b . \"K (d)
. . R, 10-10 T./s 10105 | 1. /s 10-105

10" 109 1 ’ 109 107 o™ 10% 107 o 10® 107
AR \ ar T./s
Fig. 6. Fitting opti D measurement of N Ri at 400, 600, and 850 MHz. Four methods of fitting are shown:
three En within the allewed region (a), three Kn surrounding the allowed region (b), two Kn within the allowed

region (c), an o/rZ outside the allowed region to improve fitting (d). In (a)-(d) (top), the 2D space, defined by

Kksso and kdoo is sho with positions of the reduced vectors, K‘ shown (colored circles). The middle plot shows
the Ri_rate onsta)ts resulting from a single correlation time, with 1-S2= 1 (R _(z), colored lines), and the fit

quality using detection vectors, rn, corresponding to the K‘n shown at top (black dots). The bottom plot shows the

, pi(z), for each detection vector, Fn .

The allowed region in the reduced space of Fig. 5(b) is rather narrow and can
reasonably well be covered by selecting only two reduced vectors, K . Such a selection of

detectors forces the fit of the experimental rate constants to collapse onto a line crossing

through the allowed region. The fit of the experimental data is no longer perfect but it would not
17
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AII( to large deviations in the data fitting and would not require negative intensities. This is

Publishdng in Fig. 6(c) where reduced vectors have been placed at the two ends of the allowed

region, although one notes that near 7. = 1085 s, there are some deviations visible in the fit of

the relaxation rate constants. To improve this, the positions of the K can be shifted slightly

upward, to better cover the middle of the allowed region. In this case, shown in Fig. 6(d), the fit
of all rate constants is very good. Only with very high signal-to-00ise experiments, would it
possible to distinguish the fits of rate constants in Fig. 6(&)/(b)}from*“those in Fig. 6(d).

Therefore, we conclude that for such a data set, one should ustally only use two reduced
vectors, otherwise the errors of the resulting detector £esponses; 1f7‘7'3), could be high. In

practice, it may be helpful to try fitting more or fewer vectors to‘experimental data, to determine
if over-fitting or under-fitting occurs via statistical analysis of the fitted data, using a method
such as reduced-x? or bias-corrected versions, ofuthe Akaike information criterion (AIC).29-31
Note that acquiring more than two Ri rate constants still provides considerable value to
experimental data, as it is a good means of verifying‘the data quality and improves the overall
experimental signal to noise, although it will not'usually add much information that could not be
extracted from the first two rate constagts-alone. Higher or lower fields than the example here
with 400 and 850 MHz may also alleyw additional detection vectors, as would more (4-5) R
measurements, or inclusion of different nuclei, for example backbone °N relaxation with 13CO

relaxation,'® and inclusion of other experiments such as NOE measurement.3?

C. Different Sensitivity Ranges: Longitudinal and Transverse Relaxation

Now that we haye described the analysis of multiple rate constants using multiple
detectors to characterize distributions of motions, we consider a few categories of data sets.
First, we consider what happens when we combine longitudinal (R1) and transverse relaxation
(R1p) datd in‘the‘ease of solid-state NMR. We take as an example two °*N R1 measurements at
400 and 850 MHz, and two R1p measurements at an external field of 850 MHz, MAS of 60 kHz,
and spin-lo¢k strengths of 15 and 45 kHz. The resulting space is plotted in Fig. 7(a), where

onlythe reduced space is shown, since the 4D space cannot be plotted. In this case, selecting

the K, is straightforward, since the allowed region is broad, and nearly a tetrahedron. This is a

result of the nearly separate sensitivity ranges of the Ri1 and Ri, rate constants (Fig. 7(b))
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efore, one simply places one K near each corner of the tetrahedron. The resulting fit of
Publishin
SINg nstants and sensitivities, pn(z), are plotted in Fig. 7(b) and (c).

By selecting the k= only slightly away from the corners of the tetrahedron, one can force

the matrix of the Fn to be exactly block-diagonal:

(1) (2)
C1 4OOKR1 400 C1,4OOKR1,4OO 0 0
(1) (2)
- - - - C1 850KR1 850 C1,850KR1,850 O O
rr,orro|= (22)
0 0 C, KO . e K
1p15 R1p 15 1p,15" Rip,15
(3) ()
0 0 C1p,45KR1p,45 C1p 45KR1p 45

In this case, we see that there is almost no advantage to fittingthe R1 and Ri, rate constants

simultaneously, since the block diagonal matrix shéws that<#*> and r{* will be fit only to the

R: data, and r%* and r\7 will only be fit to the.Rueuddta. This is not too surprising, seeing

that the sensitive ranges of the R1 and Ri1, have“enlya small overlap, as shown in Fig. 7(b), so
that information from these two data types_is-nearly independent. It is worth noting, however,
that correlation between dynamics obtamed with R1 and with Rip can imply either a broad
distribution of correlation times, orymotion in between the R1 and Rip sensitive ranges. Note
that a number of studies have<found “similar trends in longitudinal (R1) and transverse
relaxation (Rip or CSA-dipole cross«correlated relaxation), and have, therefore, successfully
combined those data set§_and it with a single relaxation model, which implies that one of

these cases is likely.5 7#40.13,33.34

19


http://dx.doi.org/10.1063/1.5013316

| This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.

Alp | mm—

Publishing! /

LBy
V.U 7

06-

KRrip.1s

0.4+

60 kHz, and field strength of 15_.and 25 k (a) shows the positions of the reduced vectors, Kk, in the space

0 . —
1012 1010 10® 106 \\o\
/s
Fig. 7. Fitting of four measured rate C%&N R1 at 400 and 850 MHz, and R, at a field of 850 MHz, MAS of

(colored circles), and black lines_surround the allowed region that can be fitted with positive rf)"-s). (b) shows the

fitting of the measured rate ons}an ng these En. (c) shows the sensitivities, pn(2).

D. Relation to S{eﬂp nsity Mapping (and Related Methods)

Spectral;, e@ty ping is a strategy for NMR dynamics analysis that takes a linear

combination ,0f the«ielaxation-rate constants in order to calculate the value of the spectral-

density fu _c.'Ei at & few selected frequencies.? Since it takes a linear combination of the rate
constants, it is 55 ecial case of the detectors method presented here. For °N R1, R2, and onH
meagured a ingle static magnetic field, these combinations approximate with high accuracy
the follewing spectral densities.

~
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(23)

J(w,) »

J(0.870w,,) »

Therefore, J(0), J(wn), and J(0.870 ww) are proportional to detectors«/ %, r"® and ri"®

obtained via
(a8 )
n (1 05 -04s4) Rl
ry® OCL 0 1 -1.249J R, (24)
o) 0 0 1 s,

This is analogous to Eq. (15). Similarly, the sengitivity, of these detectors is approximately
given by the functional form of the spectral densityat the“given frequencies
r(z)pn10*
10%
2
1+(WN10‘Z) . (25)
107

2

14(0.870w,,10°%)

r,(z) p

r,(z),u

The reduced space defined: by the ratio of rates for R1, Rz, and onn acquired at 850 MHz is
shown in Fig. 8(a). The positigns of the reduced vectors, k , corresponding to the matrix in Eq.
(24) are shown in Fig. 8(@) and the resulting sensitivities, which are approximately proportional

to the spectral densities (EQ. (25)), are shown in Fig. 8(b). Therefore, we see that spectral
density mappin@.s a special case of the detectors method introduced here. However, one also
notes that thg separation of the sensitivities is suboptimal. If the positions of the k¥ are moved
to fall at the corne«s of the nearly triangular allowed region, then new sensitivities are obtained,
shownuin Fig. 8(c), where the separation of the detectors is improved. Of course, these no

longer,_correspond to the spectral densities, but they are optimum for the characterization of
the distribution of motion, (1-S?)6(z).

21


http://dx.doi.org/10.1063/1.5013316

I | This manuscript was accepted by J. Chem. Phys. Click here to see the version of record.
Ale

Pubhs'h g .
1

o8f 107 IRt Riaso* Ry o

O.Q 3:?3

1012 ?'6';’1'0‘ =

T,/

Fig. 8. Space defined by, R{ ay nH at 850 MHz. (a) shows the reduced space, along with positions of the
K defined by the spectral de mapping approach. (b) shows the sensitivities of corresponding detectors,
which are approxi INtional to J(0), J(wn), and J(0.870ww). (c) shows sensitivities corresponding to
reduced vectors L%at corners of the allowed region (see inset for positions of the k), yielding better
separation of t

sensitivities (the spectral density mapping sensitivities are plotted in grey for comparison.

£
W _qu note’ that LeMaster used Ri, Rz, and NOE at the same magnetic field in a

similar thoddiog ,3538 in which he fitted the data to a correlation function of the form:

c( %[:32 +S?(S2S2exp(~t/ ,)+(L- S?)exp(-t/ 1,) + SA(1- S2)exp(-t / tN))}
%L/\WH tw). L, = -1 w,

Here,\7: is the rotational correlation time of the molecule in solution, and = and ™ are fixed

(26)

where the experiments are sensitive. Fixing the correlation times results in a fit that is

essentially a linear combination, as in the detectors approach. This approach has the
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Alapam age that it accounts for the overall tumbling in solution, but is limited to a specific data

PUb”§Lhti|(|I81, R2, NOE) and the sensitivities of each term in the correlation function are not explicitly
defined. More recently, Ferrage and coworkers also introduced the IMPACT method of
dynamics analysis,3” where the correlation function was taken to have the form

Ct= 1 éAI. exp(-t/t)
S 27)

aA=1

1
=1

Again, the correlation times were fixed (the A; are then fitted),“but so that they were
logarithmically spaced. This contrasts with the LeMaster“methed, where the correlation times
were specifically chosen to occur where experiments are sénsitive, and contrasts with the

detectors method where detection vectors are specificallyplaced in the reduced space.

E. Information Content
When deciding on the number of requiret.detection vectors, Fn and deciding on placing

them, it is helpful to have an idea how much-aiarmation is accessible from the experimental
data. This will depend both on the sel ei experiments used and the signal-to-noise ratio of
those experiments. To investigate, fiow\much information can be obtained from a set of
experiments, we take three data _sets ‘and determine how accurately each data set may be fit

as a function of the number of detéetion vectors. Accuracy is determined first by calculating

and fitting RY* that resyltgom awniform distribution of motion, and reporting the average over

the fit error of each ,Ofthé rate* constants (the error is normalized by the magnitude of the

resulting rate constant). A« second measure of the accuracy is to calculate R](Z'S) for

distributions of mgtiens having only a single correlation time and determine the fit error, again
reporting thé_average«over the fit error for each of the rate constants. In the latter case, we
report the largesterror for all correlation times that were used.

This.s done for three sets of rate constants, the first for 1N R1 acquired at five magnetic
fields, spaced logarithmically between 500 and 1000 MHz (Fig. 9(a)). The second, we use
3CO.R1, at the same fields (Fig. 9(b)). This is done to test the importance of the width of the
sensitivity of each Ri rate constants, where 3CO R: relaxation has a narrower sensitivity,
R1z(z), because 3CO relaxation is dominated by CSA relaxation and depends mostly on J(w)
(see Eq. (7)). Finally, we use '®N R: relaxation spaced logarithmically between 100 and

1000 MHz, to test the importance of the spacing of the measured rate constants.
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Fig. 9: Fitting error of relaxation rate constants as a function of thesnumber of detectors used for fitting. The top
plots show Ra(z) for five rate constants. The bottom plots‘show the average error of the five rate constants, as a
percentage of the rate constants. The average error Rs‘::h-n:or uniform distribution of motion (blue crosses)
tio
wi

and the error resulting for a mono-exponential corre unctign, for which the rc is taken to be that which gives
the maximum error. (a) uses five °N R rate consta agnetic fields distributed logarithmically between
500 and 1000 MHz. (b) uses 5 CO rate consrﬁK'buted logarithmically between 500 and 1000 MHz. (c)

uses five N R rate constants distributed logarithmically between 100 and 1000 MHz.

The results are shown in ig\oﬂom, where the averaged error is plotted on a
logarithmic scale, as a percentage total rate constant. For a real distribution, we expect
the average error to fall somewh \Detween the results for the mono-exponential and uniform

distributions. Then, in Fig. @)\év"e see that we expect the error of the fit to be between ~2%
ct

and 25% if using a single d ign vector, F1 Note that this is the average error, so that some

£
of the individual expéri ts will have higher error. Then, if experiments are accurate enough

to distinguish thi eNe can introduce a second detection vector. The requirements for

experimental aceuracy are exponentially increasing for each additional detector, as one sees
that in the lagarithmic'plot in Fig. 9(a), the error decreases approximately linearly for each new
detector.(This tr c(is reproduced in Fig. 9(b) and (c). In Fig. 9(b), we see almost the same
level of errey, séthat there is no additional information resulting from the fact that we use a rate
constant wlsh a narrower sensitivity, R1,z(z). In Fig. 9(c), we do increase the error for each
n mbsr\ detection vectors, so that by having a broader range of magnetic fields for Ri1
measurements, we are able to fit more detection vectors, thereby obtaining more information

on the internal dynamics.
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AIFPSC aled Amsotroplc Interactions

Publishing Scaled anisotropic interactions characterized by an order parameter S? are used in
solid-state NMR dynamics measurements to characterize the total amplitude of motion.”38
Because of their very broad range of sensitivity (~10 fs — ~1 ms), they can be used here to

give information about the amplitude of motion where the measured relaxation rate constants

are not sensitive. We can define an additional detector, rf)"'s), who e*&sitivity is given by
r.(z)= ai[l- dbr (z)j 3 (28)
0 n=1 .

The values of the bn and ao depend on the normaliz i@&he e to be used, which is

discussed below (section IlI.G). A simple case where @o and bn are all set to 1 is shown in
Fig. 10, with the same r%® as were shown irngig. c).3 Note that to obtain r> from

measured rate constants, one must modify the formula @/en in EQ. (16) to include fitting of 1—
o
S?, as follows

Po LR
Pr|= : (29)
Pn 1-8?
where the r are as defined b 0 is a vector of zeros the same length as the r.

Possible definitions of ao and the b, are discussed in the following section. Note that if po(z) is
negative at some point§, then the response, 7."*, may also be negative for some distributions

of motion. The ne WQ; gs of po(z) occur at locations where other detectors overlap and
will be discusse irﬁTore etail in the next section.

10" 10 10 10® 10° 10°
T./8

Fig. 10: Sensitivity, po(z), when including an RDC measurement. Experiments are the same as those in Fig. 7,
plus an additional direct measurement of 1-S2.
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Publishing So far, we have discussed how detection vectors, r , may be selected to fit NMR
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relaxation data, and how this selection results in sensitivities, pn(z). The overlap of these

sensitivities, with the distribution function, (1-S2)6(z), yields the response of each detector,
r® (Eq(12)). A residue specific detector response r\’® can be used to compare motions in
different regions of the protein for a particular timescale of motion. “*However, there is also
information contained in the relative responses of the different rr(f"s), and in the absolute value

of those responses, although without making assumptionsfalkout«he motional model, it is not
possible to obtain the exact amplitude of motion in a particular range of correlation times.

The normalization scheme we have used so far sets4he maximum of each sensitivity,
pon(z), to 1.

max(r (2)) =1, (30)

We refer to this scheme as equal-maximum nogmalization. This scheme is a good choice for
characterizing the contribution of each detectorito the total amplitude of motion (1-S?). First,
we note that if direct measurement of, 1=S? is.included in the experimental data set, then the

responses of all detectors add to yiéld 1-§?, in other words

ar’ = d@=S%))e2)r (z)dz =1-S? (31)

n=0 n=0 ,

which is the case because

o
ar,(z=1 (32)
n=0
for all z.
Furthermere,\for a« uniform distribution of motion, each detector response is then
proportional 40 the«effective width of that detector, with the width defined as the detector

integral (areaunder curve) divided by its maximum
-3
J. r(2)dz
= =14
max(r,(z))

(33)
Note that.normalization of po(z) is truncated at 1014 s, since it does not approach zero at short
correlation times. This lower limit corresponds approximately to the frequency of the H-N
stretch (3300 cm™);3° this vibration yields approximately the averaged H-N bond length of
1.02 A,%° from which the anisotropy of the *H-'°N dipole coupling is typically calculated (/2T
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Publighimét on, although its exact value depends on the experimental settings. The limits are not
relevant for the other detectors, since their sensitivities approach zero for both long and short
correlation times.

In addition to calculating the effective width, Az, for each detector, it is also useful to
calculate the center of each detector, defined to be

-3

0 zr,(2)dz
R (e4)
0 r,(2)dz -

-14

Then, for a detector analysis, the response of a detectar, rff"s), approximates its contribution to
the total 1-S?, around the correlation time given Ry ZS’ for a range of correlation times given
by Dz . Note this is an exact relationship for a“uniform distribution of motion, but as the
distribution becomes more irregular, then “£7“may deviate significantly from the total

amplitude of motion in a range Dz, ardund z%

A caveat in this approach is that i order for all detectors to have a maximum of one,
and for the sensitivities to sum {0 One€;«the sensitivity of the po(z) detector must become
negative at some points. This occuxs where two (or more) of the other detector sensitivities

strongly overlap, so they €ssentiglly detect some of the same motions twice. In order for the
total amplitude of motion to thern be correctly predicted (i.e., in order for the ,4;7,3) to sum to 1—-

S?), the sensitivity# po(z), madst compensate this with negative values at these points. This
could be avoided by decCreasing the amplitudes of the overlapping detector sensitivities, but

then we would instead underestimate the amplitude of motion where the detectors do not
overlap. Note that in special cases, the experimental 140‘7‘3) may be negative, which then is a
clear indieation ‘©f motion in a region of overlapping sensitivities (often, negative contributions
to 140‘7'3) aré canceled by positive contributions, so that we cannot easily identify such

bebavior).
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Fig. 11: Normalization schemes for detectors. The \g; riments are the same as those shown in Fig. 7.
The top plot in (a) shows pn(z), where the pon(z) e;f:?ﬁﬁ@ z)) has been normalized so that they have equal
maxima, and their average response in the sensitive regien.is 1-S? (sensitive region highlighted in grey). The top
plot in (b) shows the pn(z) where all pn(z) have beenngrmalized to have an integral of one. Lower plots show the
response of the pn to several different distributio f motion, with the distribution of motion given as an orange
line, and bars giving the value of each pn (€olor ed to match the Pn(z) at the top). Bars are placed at the center
of the sensitivity range for each detector. orresponding to po(z) in (b) are also shown as dotted lines, where
the sensitivity range has been split in re , and the detector response is shown at the center of each of
the three ranges. K

'eeﬂippr imate the total amplitude of motion each detector sees,

The first approach t

with its response both pfopostional to the amplitude of motion and the width of the detector. It
is also possible, h?r r/tO/.il ectly estimate the amplitude of the distribution function, (1—

S2)6(z), at several lation-times (z=logio(7c)). To do this, we first define a new normalization

scheme, referr s the equal integral normalization, which requires for the ﬂ"s)

-3
_& 0 r,(2dz=1 (35)
-14

A

IS als to satisfy this integral by adjustment of ao in Eq. (28), but first we adjust the bn

0 minimize the sensitivity, po(z), without any point in po(z) going below zero. This
allo o\tlmal separation of the sensitivity of po(z) from the other detectors, without yielding
any negative sensitivities. The resulting sensitivities are shown in Fig. 11(b) (top).

This scheme is useful due to the following relationships. If we take the center of the
sensitivity for each detector, zfq’, then the pn(z) are approximately symmetric around the
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S| >ond|ng z (this is not the case for po(z), which will be discussed below). Furthermore, if

Publishing
8(zj is almost linear around z , then it may be approximated by g(z) =g, +q1X(z—zS), where

:q(z,?) and 61 is the slope of the distribution function near zg. In this case, we may
calculate the response of the detector, r\%®), as follows
_ (1- 32) )9(2)r (2)dz
= (1-5%)5(q, + 9,12~ 20)) (@) 0z
=(1-8%)g, + 99,1z~ ), (2)dz
= (1-5%)a,

The integral is zero in the last step, since we asstimed Bn(z) is symmetric about zf,’ and

(36)

g,*(z- z)) is anti-symmetric about z’, thus yieldigg-ah-gverall anti-symmetric function which

then integrates to zero. Then the amplitude of the distribution, (1—S*)g(z°), may be estimated
for distribution functions where 6(z) is approximately-linear (i.e. has a small second derivative).
Relaxation rate constants are calculated for_several distributions, and fitted with the ﬂn"*s)
shown in Fig. 11(b) (bottom). One’ sees, that*when the distribution function is approximately
linear, the r\% estimate the distribttion, function, (1—S?)g(z’) very well. However, for the
discrete distribution, this is no longexrthe case. Because po(z) for solid-state NMR is not very
symmetric about its centér, z’?, we have split the function into three parts, separated by the

positions where po(z) 4s 0/For each region, a separate center (zo) was calculated. Then, the
resulting pn is a weighted average of these three regions, with the weighting proportional to the
width of each pégion (the«two additional centers are shown as additional bars with dotted

edges in Fig/11(b)). Accuracy is still subject to how symmetric po(z) is in each region and how

well 6(z) gan be.appfoximated by g, +g,%(z-Zz)).

V. Exampte Analysis with the Detectors Approach

We have implemented the detectors approach described so far in a numerical software
package developed in MATLAB* called Dlstortion Free Relaxation Analysis TEchnique
(DIFRATE),* distributed as open-source software under the terms of the GNU General Public
License. In order to better understand the detectors approach, we present an example analysis
based on solid-state NMR relaxation data previously published for Ubiquitin dynamics using
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PUb”éttH@r& )arameters, S?, have been measured by Haller and Schanda,!! and Rip rate constants
have been measured by Lakomek et al.*® For each residue, the data set consists of up to three
5N R1 rate constants at fields of 500, 600, and 850 MHz, three R1p, measurements acquired at
850 MHz, with a spin-lock strength of 13 kHz and MAS frequencies of 60, 90, and 110 kHz,
and S? values acquired via REDOR.

We do not further discuss selection of the detectors here,“although a brief tutorial on
detector optimization using the DIFRATE software is provided insthe manual of the software
package.*? Note that for sake of reproducibility, it is impoftant to«clearly define the detectors
used in an analysis, which can be done by providing the values found in the detection vectors.
Furthermore, it is important to give all parameters ‘requiréd for calculating relaxation-rate
constant sensitivity as a function of correlation fime.. These may be found in which has a
similar form as Eq. (28) (in this case with a0 = 1*and the bn = 1). Thus, one obtains a simplified
problem with smaller matrices to solve.

Table I. Detector sensitivity as a functiom of cecrelation time should usually be provided as a
figure (see Fig. 12(a)), where exact values caq be obtained from the information in which has a
similar form as Eq. (28) (in this case with\a0 =<1 and the bn = 1). Thus, one obtains a simplified

problem with smaller matrices ta.solve.

Table I, using the DIFRATE softwaie. Note that, as was discussed in section IIl.C, r%® and
r7°) are determined frof R: fate constants and detectors ri"® and r%® are determined
from Ri, rate constants, Hewever, the matrix is not entirely block diagonal since réq’s’ depends
on the values of all other deétectors. Nonetheless, one may solve the problem for r\%, r%®

and then ri"%), FZ> separately, and later calculate r?* according to

r(()q,S) = ai((l_ S?) - an rr(;z,S)] (37)
n=1

0

which has a‘similar form as Eq. (28) (in this case with ao= 1 and the b, = 1). Thus, one obtains
a simplified problem with smaller matrices to solve.

Table I7 Detection vectors and parameters

| 7ist FIst gist Fist Fist | BdT  wy2mkHz  wd2m/kHz

Ri,,(131110) 0 0 0 919.8 4350 | 19.96 13 110
Rip,(13/90) 0 0 0 10705 7057 | 19.96 13 90
Rip,(13/60) 0 0 0 956.0 1625.1 | 19.96 13 60
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0 1.941 2.410 0 0 11.74 - -

PUbllghPﬁ% 0 1.992 1.869 0 0 14.09 - -
Ri 850 0 2.194 1.138 0 0 19.96 - -

S? 1.000 1.000 1.000 1.000 1.000 - - -

Other parameters: oun/21 = -22945 Hz, Aon = 169.5 ppm
Once one has a set of optimized detection vectors for a given data set, it is then

necessary to solve Eq. (29) (if we did not include S?, then we eliminate the first column and
last row from the matrix). Because our real data includes noise, We ‘also want to account for
signal-to-noise of each measurement (fitting by minimizing x?)&ITheh, our matrix takes on the
following form:

0.5) 4

Po [Fo]1 /GR1p,60 ['71]1 /GR1p,60 R’Ip,GO /GR1p,60
(0.S) . .
P : _ :
PéayS) = [Fo]4 /6R1,500 ['71]4 /GR1,500 R1,500 /O-R‘I,SOO (38)
plos) : : D :
- - . )
P [Fllo, [Fllog o (1-8°)/0,

The [r ], indicate the i element of deteétien.vector r . As one can see, each relaxation rate

constant, and 1-S? have been divided\by.theirstandard deviation. In this example, if data was

missing, the rate was set to 0, and ‘@uwas'set to 10'° to effectively remove that data from the fit.
Similarly, the corresponding roWw ef_the matrix containing the detection vectors, Fn has also

been divided by the same_standard“deviation (elements have been omitted to save space).

Instead of finding the inyerse of the matrix, we use a linear solver (‘Isglin’ as implemented in

MATLAB “144) to addifignally enforce that the resulting responses, r\%, are non-negative (we

do allow ré"'s) to be negative since it has significant regions of negative sensitivity, see Fig.
12(a)). This forces the fitted data within the region allowed by the detection vectors (otherwise,

noise pushing experimental data outside the allowed region is sometimes fitted with negative

r79), softhat the I‘;‘"S) are noisier).

We may-also obtain confidence intervals for the responses, rf)"'s), using a Monte-Carlo

approach,*> Once the initial responses are obtained, we back calculate relaxation-rate
constants. For each calculated rate constant, we then add pseudo-random noise selected from
a normal distribution with the experimentally determined standard deviation for that rate
constant. The modified set of rate constants can be re-fit as before, and the process is

repeated (200 times in this example). Then, one may obtain a desired confidence interval, C,
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ring each set of %, and finding the (1/2-C/2) N and (1/2+C/2) N" elements where N

Publishing - - .
is tha number of repetitions taken, yielding the lower and upper bounds for the confidence

interval (we take C = 0.95 in our example). Note that this approach to error analysis assumes
that the error on the experimental data is normally distributed, but makes no assumption on the
distribution on the error of the detector responses, so that error bars are not necessarily
symmetric and the relationships between confidence intervals fo( normal distribution will
not hold (for example, the 95% confidence interval is not twice as gthe 68% confidence

interval). \W
The results of our analysis of Ubiquitin dynami é?; shown in Fig. 12, where the
-~

sensitivities of the five detectors used for dynamics analysis are shown in (a), and the residue

specific responses of the detectors, r%*, are shown in'(Q). 3
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£

\eagres‘to biquitin dynamics data. Experimental data taken from refs. [*143]. (a) shows
the sensitivities of e'f’e deteetors, normalized according to the equal-max scheme, where the sensitive region
is highlighted (defi in Eqg. (12)). (b) shows the residue specific response to each of the five detectors. Error
bars give the 95% confidence interval for each detector response.

Fig. 12. Fit of detec

The.am itudés of each residue-specific detector response are indicative of the total
amplitude, of rrfytion in the sensitive range of that detector (see Eq. (12)). However, this
relat rT;hi es not allow exact quantification of the amplitude of motion. If motion is

ce where the detector is most sensitive, then one obtains a higher detector
respofise; than if most motion occurs where the detector is less sensitive. However, if there is

a uniform distribution of motion, then the response of each detector gives the total amplitude of
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n for a range of correlation times having width of Dz , the effective detector width, and

Publishing S
iiie suin of all detectors (if r‘" Vis included) yields the total amplitude of motion, 1-S?2.

An important property of the detectors is that they allow analysis of motion without
making any assumptions about the number of exponential terms in the correlation function
describing that motion. This means that detector responses, rf,"’s), should be consistent with

any dynamics analysis that uses an explicit model of motion, in ether words, an analysis with a
fixed number of exponential terms, as long as that model yields asgood fit of the experimental
data. For example, R1 and S? data was previously fit to a i<exponential correlation function.t
This is equivalent to having a distribution of motion that is thé sum of two &-functions, so that
we may calculate the detector response corresponding to<this explicit model of motion as
follows (see Eg. (12)):

(1-S*)q(z) = 1-S?)*d(z =log,,(Z, | s)) + SHL— S3) *d/(z = log, (L, | S))

ro® = (1-8?)r, (log, (¢, / s)) + S*(1- §2)rlog, (2, / 5)) (59)

Similarly, R1, data was previously fit to a“mone-exponential function,*® so that from this model,

the following detector response can beicalculated:

ro® = S* (18 K (log, (¢, 1 5)). (40)
Fig. 13 shows the detector analysis“ef _experimental data, and detector responses calculated
from explicit models using<Egs. (39)"and (40). Very good agreement is obtained, with only

small deviations arising/in the detector responses. In some cases, the relative error on 141‘7’3)

and r% is notably Highe than that for (1-S¢) and (1-Ss?) previously reported.* This is in part

because direct measurément of S? via REDOR stabilizes the model-free fit parameters (see

Haller and Schanda, Fig. 8'%), whereas in the detectors approach, direct measurement of S?
only contributes to the determination of HO"'S) (also, we report a 95% confidence interval,

versus oRe standard deviation, i.e. 68% confidence interval, reported by Haller and Schanda).
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Fig. 13. Comparison of detector responses calc mqu from data (colored lines with error bars) and
calculated from explicit models (black lines). hows'detectors calculated from a bi-exponential model from ref.
[11] using eq. (39). (b) shows detectors calcu %(ro(n a mono-exponential model from ref. [*3] using Eqg. (40).
Note that in (a) and (b), data is only sho or residues that had both explicit model results and detector results

available. \

sis alone will be consistent with an explicit model that leads to
a, one may use the detectors as a way to identify alternative

Although a detector,

good fits of experimental
interpretations of the ﬁic;,behavior. For example, where R1, data was modeled using one

correlation time,*3 w&.e{ from detector responses, 143‘7'3) and I‘i”’s), that alternative models
could have a distribttion of motion that covers a wide range of correlation times (including the

1-2 us range“thét was identified, near where ri and ri overlap), or could even have a
ﬁ

distributiog_of fotion that covers parts of each of the ranges where r*® and r"® are
ﬁ

sensitive, \Mswile having no motion in the 1-2 ys range. Similarly, the R1 and S? data used here

re sly modeled with two correlation times, one usually being shorter than 100 ps, and

.
one heing longer than 10 ns. However, from the responses of ri"'s) and r;"’s), we can clearly

see that another reasonable model could include significant motion in the ~1 ns to ~10 ns

range.
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PUb”éLhEﬂ&anges of correlation times, then the detector responses are primarily due to motion
where the detectors are most sensitive. With this in mind, one may identify potential artifacts of
the explicit model. For example, if we consider residue 11Thr which exhibits the fastest Ri1
relaxation in the protein, we notice that (1-S?) is 0.4, compared to a median (1-S?) of 0.15,1
whereas R1 at 850 MHz is 0.90 s'! compared to a median of 0.033 s%.” Since R1 is proportional
to (1-S?) (Egs. (6), (7)), one expects these ratios to be similar/but in fact the (1-S?) ratio is
2.7:1 and the R ratio is 27:1 (similar behavior was also obsetved«or HET-s(218-289) at turns
between B-sheets 33). The detector analysis indicates that & signifieant portion of (1-S?) can be
due to a somewhat uniform motion at short correlation timeswhere the R1 experiments are not
sensitive, whereas the large change in the Ri1 rate constantan be the result of more motion

specifically where the R1 experiments are sensitivé (as_exhibited by relatively uniform values of
r7¥, whereas the ratio of 7% at residue 11Thrio the median value of {7 is 23:1). On the

other hand, the explicit model explains thetincoegsisténcy in these ratios by fitting 11Thr to a
much longer correlation time (rr) than most-ether residues (760 ps versus a median of the log
of rr of 39 ps).!! As shown in Fig. 18,«this interpretation is still consistent with the detector

analysis, but in this interpretation residues fitted to short correlation times must have virtually
no motion where R: experimépts. (and“«r?®, r?®) are most sensitive, otherwise these

motions would significantly_change the Ri rate constants. A complete lack of motion for this
range in most of the protein is an unlikely situation, and so is likely to be an artifact of the

analysis method (as was also previously shown'4).

V. Conclusions

In thisfstudy,“we introduce a method for visualization of the dynamic information in a set
of NMR .experimepnts, and develop the detectors method for dynamics analysis: linear
combinations off NMR dynamics data that can be used to characterize motion. This allows us
to quantify how much motion occurs for a range of correlation times, where that range is
defined-by the sensitivity of each detector. We introduced a reduced space of relaxation rate
constants, which may be used for selecting detection vectors that can optimally fit relaxation
rate constants, while yielding well-separated and non-negative sensitivities. We also find that
using different normalization schemes (section III.G), we can estimate total amplitude of

motion for a range of correlation times, or the amplitude of the distribution function (with the
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PubligheRATE software to aid in the application of our proposed method, and demonstrated its
usage on Ubiquitin dynamics data. We show that previous models of the Ubiquitin data are
consistent with the detector analysis presented here; however, the new analysis can be
interpreted much more broadly than the explicit models.

An important advantage to the methodology presented héte is that it allows direct
comparison to other dynamics methods, especially compttational methods. Detector
responses have a clear definition, given by Eq. (12), so that if ‘ene obtains a trajectory, for
example from molecular dynamics simulation (MD), it isfpessible to estimate the motional
distribution to determine the quality of the simulation By comparing the simulated and
experimental detector responses. Furthermore, the sensitivity of the detectors clearly defines
what ranges of timescales on which one obtains dynamics information. Then, one can
determine in what regions of a protein, and on Wwhat timeScales the MD trajectory is accurate.
Not only can one accept or reject a trajectory based @n such an analysis, but it may be further
possible to optimize force fields, using the NMR.detectors as target data.*6-48

Furthermore, one may be ablegdo develop a model of motion from the MD trajectory, if
detector responses are at least somewhatsimilar, and apply this model to interpret the
experimental detector response. Og “the" other hand, if an oversimplified model of the
correlation function, such as the extended model-free approach, is used to fit the NMR data
and to fit the MD trajectorysthe-biasing of the two methods may result in very different behavior
in the fitted parameters deading to disagreement even when the MD is accurate.

Although the /preposed:« method avoids artifacts resulting from incorrect models of
motion,* the responses_of the detectors, rfﬂ's), do not directly give us a specific model of

motion, or quantitative measurement of either correlation times or amplitudes. This is because
this informatign 45 not*contained in the experimental data. To obtain a quantitative description
of the intérnal protein motion, one must take further assumptions about the type of motion (and
justify-those_assumptions). Consider how one may do this— if the same residue-correlated
trends_are found in several detectors, one could assume that this describes a distribution of
mefien that covers the range of all of those detectors. Then, one may use the equal-integral
normalization method, and quantify the distribution function, (1-S?)6(zo) at the centers of each
detector (zo). At this point, one may consider possible distribution functions which are
consistent with the detector responses (a number of models are described elsewhere'®).
Similarly, a strong response of one or two detectors, where the other detectors are clearly not
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PublighisE case it may make sense to re-introduce the simple model free approach to obtain a
more exact correlation time and amplitude of motion. Still, one should be careful in this case,
and ideally have physical justification for such a model.

Note that, in this paper, we primarily discuss designing a set of detectors using a pre-
determined set of experiments. However, if one is interested in/characterizing a particular
range of correlation times, then one should select the set of experimenis in order to obtain
detectors that are sensitive in the desired range. In this way, ©ne*may be more experimentally
efficient. One also sees that detectors tend to fall on certain ranges_of correlation times, based
on what experiments are common (e.g. R1 and Rip), so that_.oneis motivated to develop new
experiments for different detector ranges; for examplej high-resolution relaxometry, introduced
recently in solution-state NMR,*°® could add new (detectors-for different ranges of correlation
times.

By eliminating assumptions about the model complexity, we obtain a description of the
internal protein dynamics that may be broadly«interpreted. After initial results are obtained, it
may be possible to make further assumptions about the model of motion. However, initially
assuming a particular model without physical+justification may cripple ones ability to properly
interpret results. Therefore, we conclude that the approach presented here can be the basis of
an unbiased dynamics analysis of'NMR«elaxation data.

SUPPLEMENTARY/MATERIAL

See supplementarymaterial for a glossary of terms introduced here, and for tables of the

results shown in Fig. 12«and Fig. 13.
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