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Abstract 

 Relaxation in nuclear magnetic resonance (NMR) results from stochastic motions that 

modulate anisotropic NMR interactions. Therefore, measurement of relaxation-rate constants 

can be used to characterize molecular-dynamic processes. The motion is often characterized 

by Markov processes using an auto-correlation function, which is assumed to be a sum of 

multiple decaying exponentials. We have recently shown that such a model can lead to severe 

misrepresentation of the real motion, when the real correlation function is more complex than 

the model. Furthermore, multiple distributions of motion may yield the same set of dynamics 

data. Therefore, we introduce optimized dynamics ‘detectors’ to characterize motions which 

are linear combinations of relaxation-rate constants. A detector estimates the average or total 

amplitude of motion for a range of motional correlation times. The information obtained through 

the detectors is less specific than information obtained using an explicit model, but this is 

necessary because the information contained in the relaxation data is ambiguous, if one does 

not know the correct motional model. On the other hand, if one has a molecular dynamics 

trajectory, one may calculate the corresponding detector responses, allowing direct 

comparison to experimental NMR dynamics analysis. We describe how to construct a set of 

optimized detectors for a given set of relaxation measurements. We then investigate the 

properties of detectors for a number of different data sets, thus gaining insight into the actual 

information content of the NMR data. Finally, we show an example analysis of Ubiquitin 

dynamics data using detectors, using the DIFRATE software. 

http://dx.doi.org/10.1063/1.5013316
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I. Introduction 

 Nuclear Magnetic Resonance (NMR) is a powerful method for characterizing both 

molecular structure and dynamics. The latter application is often used to determine local 

dynamics of molecules, especially proteins, via measurement of multiple relaxation-rate 

constants. Those relaxation-rate constants depend on the internal motion, as well as rigid-body 

motion of the protein1 and in the case of solution-state NMR, the overall tumbling of the 

protein.2,3 Analysis of relaxation-rate constants in solid-state NMR typically relies on modeling 

the correlation function using a sum of multiple exponential functions each characterized by a 

correlation time and an amplitude. This was inspired by the success of the Lipari-Szabo model-

free approach 4 or extensions of that approach 5-7 in solution-state NMR, achieved by setting 

the correlation time of the overall tumbling in solids to infinity. While the validity of the Lipari-

Szabo model-free approach in solution-state NMR was justified in detail (similar correlation 

functions are derived by Halle and Wennerström,8 with the validity of this and the model-free 

approach discussed in detail9), studies in solid-state NMR have investigated primarily the 

effects that the model selection10-12 and the data included13 have on the analysis of the 

experimental data. Although there are indications that modeling the correlation function with a 

sum of exponential functions is not always reliable, these studies do not directly consider 

modeling behavior in the case that the real motion is too complex to be fully characterized by 

the experimental data. In a theoretical study, we have recently shown that dynamics analysis 

can deviate significantly from the real characteristics of the motion if the real internal 

correlation function is more complex (i.e., if it has more correlation times) than the model 

used.14 For example, if one uses a model correlation function with two exponential functions, 

and the real motion is described by a tri-exponential correlation function, the resulting 

amplitudes and correlation times from the analysis may deviate significantly from the real 

motion. Furthermore, we have shown that many different distributions of motion can result in 

identical sets of relaxation data, so that dynamics data acquired with NMR is inherently 

ambiguous in its description of dynamics.  

 These problems lead us to consider an alternative approach to analyze relaxation data, 

which takes into consideration only the information actually contained in the experimental data. 

We introduce the concept of a dynamics detector, which reports the average or total amplitude 

of motion within a range of correlation times that is defined by the sensitivity of that detector. A 

dynamics analysis would then report responses of multiple detectors, which contain 

http://dx.doi.org/10.1063/1.5013316
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information about the amplitude of the dynamics in different ranges of correlation times. 

Detectors are particularly powerful when comparing dynamics information obtained from NMR 

relaxation experiments to other methods, both because the sensitivity of the detectors clearly 

communicates the available information from the NMR experiments, and the detector 

responses are well-defined quantities; that is, they may be calculated if one has a distribution 

of the motion, which may be obtained from a trajectory of molecular motion (e.g. molecular-

dynamics simulation). Thus, detector analysis provides the natural link between experimental 

NMR data and computational methods. Note that the analysis method presented here was in 

part inspired by the theory of color vision.15,16 

 In the following, we describe how one designs dynamics detectors for a given set of 

solid-state NMR relaxation data, and investigate the properties of those detectors for several 

types of data sets, concluding with a dynamics analysis of the model protein Ubiquitin. Similar 

procedures can also be implemented for solution-state NMR. Since there are, however, 

important differences in the way the detectors are constructed, we will discuss the solution-

state NMR approach in a separate publication. 

II. Relaxation Formalism 

 In this study, we will treat relaxation that is the result of the stochastic re-orientational 

motion of molecules that modulate anisotropic NMR interactions. This motion can be described 

by a correlation function, which we assume to be a sum of decaying exponentials. For an 

arbitrary number of exponentials, the correlation function can be represented by 
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where the factor 1/5 comes from the term 1/(2ℓ+1) in the correlation function, where ℓ is the 

rank of the interaction tensor (in our case rank-2).17,18 Note that in this form, we assume the 

motions are independent, and the total correlation function is a product of the correlation 

functions for each motion. Then, if the τn are not well-separated, they should be replaced by 

effective correlation times.17 In a more compact form, Eq. (1) can be written as 

  

C(t) =
1

5
S2 + (1-S2) A

i
exp(-t / t

i
)

i=1

å
é

ë
ê

ù

û
ú
,
 (2) 

where 

http://dx.doi.org/10.1063/1.5013316


 4 

  

(1- S2)A
1

= (1- S
1

2),

(1- S2)A
2

= S
1

2(1- S
2

2),

(1- S2)A
3

= S
1

2S
2

2(1- S
3

2),...

A
i

i=1

å = 1

S
i

2

i=1

Õ = S2

.
 (3) 

Eq. (2) is general, even in the case that the τi in Eq. (1) are not well-separated, although the 

values of the τi will be replaced by effective correlation times in both equations. We note that 

Eq. (2) allows for an infinite number of exponentials, so that we can also express the 

correlation function as a distribution of correlation times. If we take (1–S2)θ(z) to be our 

distribution of motion, then 
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where we describe the distribution on a logarithmic scale,19 with 
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The spectral density function, J(ω), can be obtained by Fourier transformation of the 

correlation function, yielding 
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 The various relaxation-rate constants can be calculated from the spectral-density 

function as linear combinations sampled at different frequencies.2,3 We give the analytical 

expressions for R1 and R1ρ as examples – see 20 for a more comprehensive discussion. The 

longitudinal relaxation, R1 is given by 

  

R
1
=

d
IS

4

æ

è
ç

ö

ø
÷

2

J(w
I
-w

S
) + 3J(w

I
) + 6J(w

I
+w

S
)( ) +

3

4
w

I
s

zz( )
2

J(w
I
), 

(7) 

where relaxation is measured on spin I, and is induced by a dipolar coupling to spin S 

(characterized by the anisotropy δIS) and the chemical-shift anisotropy (CSA) of spin I 

(characterized by ωIσzz). Here, ωI and ωS are the nuclear Larmor frequencies of the I and S 

spins, respectively, in angular units. 

 In solid-state NMR, on-resonance rotating-frame relaxation for a heteronuclear spin pair 

under magic-angle spinning (MAS) is given by  
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where ωr and ω1 are the MAS frequency and the spin-lock field-strength, in angular-frequency 

units21,22 (for a homonuclear spin-pair see 23). Although other relaxation experiments are 

possible, only R1 and R1ρ data will be used as examples in this study.  

 For convenience, we define a functional form of the relaxation-rate constants, denoted 

Rζ(z), where ζ indicates the particular experiment and conditions (for example, R1 at an 

external field of 500 MHz would be denoted R1,500(z)). Then, Rζ(z) is the relaxation-rate 

constant calculated for a mono-exponential correlation function, having a correlation time τc = 

10z s, and an order parameter 1–S2 = 1. Using this functional form of the relaxation-rate 

constants, it is possible to calculate the rate constant for any arbitrary distribution, given by (1–

S2)θ(z), as  

  

R
z

(q ,S) = (1-S2) q(z)R
z
(z)dz

-¥

¥

ò . (9) 

We will refer to Rζ(z) as the sensitivity of the rate constant, while 
  
R

z

(q ,S)  is the relaxation-rate 

constant resulting from a distribution of motion characterized by θ(z) and 1–S2.  

III. Detectors in Solid-State NMR Relaxation 

 Fig. 1(a) plots sensitivities of the 15N R1 relaxation-rate constant at 1H Larmor 

frequencies of 400 and 850 MHz. Each rate constant provides some information on the internal 

motion, but the sensitivities of both relaxation-rate constants (R1,400(z), R1,850(z)) are rather 

broad and overlapping so that one does not get very precise information which range of 

correlation times is being detected. Furthermore, the sensitivities of the two rate constants 

cover a similar range of correlation times, so that without further processing, the additional 

information provided by the second rate constant is convoluted with the information already 

obtained from the first rate constant. 
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Fig. 1. 15N R1 relaxation rate constants at 400 MHz and 850 MHz. The R1 sensitivities plotted in (a) are calculated 
for motions having a single correlation time, plotted on the x-axis, and an amplitude of 1–S2=1. In (b), the 
sensitivity of two detectors, ρn(z), are plotted that have been constructed by linear combinations of the R1 rate 
constants. The coefficients used to obtain the ρn(z) are a = -0.2017 s, b = 0.6189 s, c = 0.4607 s, d = -0.3917 s. 

 Although the rate constants have a similar range of sensitivity, they do not have the 

same functional form, so that it is possible to separate information obtained from different 

timescales. To achieve this, we define a detector response, which is obtained from a linear 

combination of rate constants. In this example the detector responses are given by 

  

r
1

(q ,S) = aR
1,400

(q ,S) + bR
1,850

(q ,S)

r
2

(q ,S) = cR
1,400

(q ,S) + dR
1,850

(q ,S)
. (10) 

We may similarly define a detector sensitivity, which is obtained using the same linear 

combination, but now for the sensitivities of the two rate constants.  

  

r
1
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r
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Note that we define the factors a-d to have units of seconds, so that the resulting detector 

responses and detector sensitivities are unitless. Because of the linearity, we can also 

calculate the detector responses according to 

  

r
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(q ,S) = (1-S2) q(z)r
n
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ò , (12) 
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so that the detector responses measure the overlap of the distribution of motion, (1–S2)θ(z), 

with the sensitivity of each detector, ρn(z). The SI has a glossary of all the different quantities 

defined in this section. 

 One then optimizes a, b, c, and d so that the sensitivities of the two detectors, ρ1(z) and 

ρ2(z) are as separated as possible, without having any negative values for each ρn(z). The 

latter is an important requirement because we want to avoid the situation where motion at a 

correlation time with negative sensitivity and motion at a correlation time with positive 

sensitivity could cancel out. We achieve this by requiring the ratio of -b/a to be given by 

  
max(R

1,400
(z) / R

1,850
(z)), and –d/c to be 

  
min(R

1,400
(z) / R

1,850
(z)), and scaling such that the ρn(z) 

have maxima of 1. Our optimized detectors, ρn(z) are shown in Fig. 1(b) with ρ1(z) covering the 

fast motions, ρ2(z) covering the slower motions, and some overlap in the center around τc = 

10‑8.5 s. Then, a protein motion with a large 
  
r

1

(q ,S) and a small 
  
r

2

(q ,S) value would be indicative 

of a distribution that has most motion with correlation times shorter than ~10-9 s. The converse 

would indicate that most motion has correlation times longer than ~10-8 s. Similar values of 

  
r

1

(q ,S) and 
  
r

2

(q ,S) indicate either motion in between these correlation times, or similar amounts of 

motion above and below the two correlation times.  

 Without additional information or making assumptions, the responses of the two 

detectors summarize the actual information content of the data without bias, whereas an 

explicit model may be biased towards particular correlation times. In the following discussion, 

we will present a general strategy for constructing detectors in the case of many relaxation 

measurements and investigate the properties of those detectors. Note that linear combinations 

of rate constants have already been used to characterize motion in the spectral-density 

mapping approach to dynamics analysis.24-27 However, the method presented here is a more 

general approach, with the intended goal of characterizing the distribution of motional 

timescales, (1–S2)θ(z), as opposed to the spectral density, J(ω). The relationship of the two 

methods is discussed below (see section III.D). 

A. Two Relaxation Rate Constants 

 We further develop the idea of detectors for analysis of NMR relaxation data, continuing 

with the example of two 15N R1 relaxation-rate constants since for such an example a graphical 

representation of the space of allowed relaxation data is a simple two-dimensional plot. To 

understand the ambiguity in relaxation-rate measurements, and how careful detector 

http://dx.doi.org/10.1063/1.5013316


 8 

construction can maximize information about the timescale of motions without making 

assumptions about the model of motion, we introduce the allowed region of relaxation-rate 

constants.  

 The allowed region of rate constants for 15N R1 at 400 and 850 MHz is shown in Fig. 2 

highlighted in light blue. This allowed region is defined as any pair of rate constants that can be 

produced by some arbitrary distribution of motion, (1–S2)θ(z). Because the two rate constants 

are both dependent on the same distribution of correlation times, θ(z), and total amplitude, 1–

S2, only certain combinations of the rate constants are possible, so that only part of the space 

is covered. If two distributions of motions (given by (1–S2)θ(z)) are experimentally 

distinguishable, they fall on different points in the allowed region, whereas if they are not, they 

fall on the same point. The distance between two points indicates how easily they can be 

distinguished which might depend on the available precision of the experimental 

measurements. It is easy to see that two different distributions of motions may yield the same 

point in the space, i.e., lead to the same pair of relaxation-rate constants. For example, colored 

traces in the allowed region plot out pairs of 
  
R

1,400

(q ,S)  and 
  
R

1,850

(q ,S)  values for motions with only a 

single correlation time (θ(z) is a δ-function), for several values of 1–S2. Every point in the 

allowed region can be the result of such a motion having only a single correlation time.  

 

Fig. 2. Allowed region for 15N R1 acquired at 400 MHz and 850 MHz. All possible combinations for 
  
R

1,400

(q ,S)  and 

  
R

1,850

(q ,S)  are highlighted in light blue. Colored lines trace 
  
R

1,400

(q ,S)  and 
  
R

1,850

(q ,S)  for different S2 values as a function of τc, 

for a mono-exponential correlation function. Colored arrows show how multiple correlation times (represented by 

http://dx.doi.org/10.1063/1.5013316
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blue or red solid arrows) add together and may be fitted with a single correlation time (represented by the dashed 
lines in the same color).  

 By definition, distributions of correlation times (1–S2)θ(z) with more than one non-zero 

point (multi-exponential correlation functions) must also fall in the allowed range of pairs of 

relaxation-rate constants. Since the contributions of different correlation times to the relaxation-

rate constants are additive (see Eqs. (5)-(9)), multi-exponential correlation functions are 

described by a point in the space of allowed rate constants that is the vector sum of the 

positions in the space for each individual correlation time and amplitude. Two examples for a 

bi-exponential correlation function are shown in Fig. 2. The first example considers a motion 

characterized by two correlation times, the first with a value of τc = 10-8.5
 s, and corresponding 

amplitude of (1–S2)θ(-8.5)dz = 0.25, and a second with τc = 10-7.5 s and (1–S2)θ(-7.5)dz = 0.5 

(so that 1–S2 = 0.75). The blue vectors indicate the contributions of the two motions, with the 

longer vector corresponding to τc = 10-8.5 s. The vector sum of the two motions (blue dashed 

line) corresponds to a final position in the plot that is also characteristic for a motion with a 

single exponential correlation function with τc = 10-8.41 s, and (1–S2)θ(-8.41)dz = 0.34. This 

illustrates the ambiguity of relaxation data that can be the result of very different motional 

models and the fact that too simple models lead to results that have a bias towards the 

sensitive correlation times. Similarly, the red vectors illustrate a case for two motions, with τc = 

10-7.5 and 10-10 s, and (1–S2)θ(z)dz = 0.5 for the two exponentials (so that 1–S2 = 1). This point 

in space also corresponds to a motion with a single correlation time of τc = 10-8.63 s, and an 

amplitude of (1–S2)θ(-8.63)dz = 0.14. In this case, R1 is similarly sensitive to the two 

correlation times and the simple one-correlation time model leads to a correlation time that is 

roughly in the middle of the two correlation times. 

 The space of possible relaxation rate constants, for a given set of measurements, helps 

to visualize the information available to describe the distribution of motion, (1–S2)θ(z), including 

the ambiguity in the experimental data as discussed above. One may also use this space to 

optimize the separation of information for different ranges of correlation times. As shown in Fig. 

1, it is possible to take a linear combination of the sensitivities of the R1 rate constants (R1,ζ(z)) 

to obtain two detectors with optimally separated sensitivities without either sensitivity becoming 

negative. This linear combination, defined in Eq. (10), is basically a coordinate transformation 

from the black coordinate system in Fig. 3(a) to the coordinate system defined by the red and 

blue axes (Fig 3a and b) which are vectors tangential to the allowed region (blue area). We 

see that requiring the detector sensitivities to be optimally separated but non-negative, results 

http://dx.doi.org/10.1063/1.5013316
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in a modified allowed region for the detector responses, 
  
r

n

(q ,S), (Fig. 3(b)) which spans most of 

the range for which 
  
0 £ r

1

(q ,S) £ 1 and 
  
0 £ r

2

(q ,S) £ 1, i.e., the first quadrant for a two-dimensional 

problem, but does not become negative for either 
  
r

n

(q ,S). 

 

Fig. 3. Linear transformation of the allowed space and selection of detection vectors. Part (a) shows the allowed 

region of 15N rate constants in blue (for 400, 850 MHz 1H frequency), with κ850 values plotted as grey, dashed 

lines through the space. (b) shows the transformation of the allowed region, defined by Eq. (10), resulting in the 

allowed region of detector responses, 
  
r

n

(q ,S) . Red and blue detection vectors in (a) and (b) are tangential to the 

space, and after the transformation in (b), these become unit vectors in the x and y directions ( , ). (c) is the 

1D reduced space, defined by κ850, where the allowed region is again shown in blue. The red and blue circles in 

the reduced space can be used to determine the optimal direction (although not the length) of the detection 

vectors.  

 

 The coordinate system in Fig. 3(b), is spanned by the blue and red unit vectors 

 and , respectively. These vectors can be transformed back from the 

space of detector responses into the space of relaxation-rate constants, by inverting Eq. (10), 

with the resulting vectors ( , ) shown in Fig. 3(a). We refer to the  as detection vectors. 

Here, we have obtained the detection vectors by inverting the transformation from the space of 

http://dx.doi.org/10.1063/1.5013316
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relaxation-rate constants to the space of detector responses. However, we can also do the 

reverse: place vectors in the space of relaxation rate constants, in order to define the 

transformation from relaxation rate constants to detector responses. This can be done as 

follows, resulting in values for a-d: 

.

 (13) 

An alternative way to understand this transformation is to note that the detector responses can 

be considered to be weights, such that the observed relaxation rate constants are given by a 

linear combination of the detection vectors. 

.

 (14) 

Inversion leads to the following formula for obtaining detector responses from experimental 

data: 

.

 (15) 

Similarly, the detection vectors may be used to obtain the sensitivities of each detector. 

.

 (16) 

 If we take the approach of placing detection vectors in the space of relaxation-rate 

constants, then a good strategy is to place them tangential to the allowed region. Then, the 

transformation leads to the stretched space of Fig.3(b) that covers as much of the range as 

possible for which 
  
0 £ r

1

(q ,S) £ 1 and 
  
0 £ r

2

(q ,S) £ 1, without becoming negative. This leads to well-

separated and non-negative detector sensitivities, ρn(z) as discussed above. Note that in some 

cases, we may want to define our detectors such that it is possible to have 
  
r

n

(q ,S) > 1, where the 

maximum value of the 
  
r

n

(q ,S) is determined by the detection vector lengths.  

 In the case of two relaxation-rate constants, it is relatively straightforward to place the 

two detection vectors tangentially. As we add rate constants, however, the problem becomes 

higher-dimensional so that it becomes helpful to be able to visualize at least three rate 

http://dx.doi.org/10.1063/1.5013316
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constants in a single two-dimensional (2D) plot, or four rate constants in a three-dimensional 

(3D) plot. Therefore, in order to reduce the dimensionality of the problem we introduce the 

reduced space of rate constants.  

 The first step in defining the reduced space is to normalize the rate constants by their 

maximum possible value, arriving at the normalized rate constant, 
  
Â

z

(q ,S) . 

  

Â
z

(q ,S) =
R

z

(q ,S )

c
z

c
z

= max(R
z
(z)) ,

 (17) 

This step is not critical in the case of rate constants that have similar maximum values, but we 

will always include it for consistency. It is convenient for subsequent visualization of the 

reduced space, for example, when one combines R1 and R1ρ measurements in a dynamics 

analysis since the maximum possible R1ρ rate constants are potentially several orders of 

magnitude larger than those for R1. The second step is to divide all normalized rate constants 

by the sum of all normalized rate constants, such that one obtains 

  

k
850

=
Â

1,850

(q ,S )

S
z
Â

z

(q ,S )

S
z
Â

z

(q ,S ) = Â
1,400

(q ,S) + Â
1,850

(q ,S) .

 (18) 

We refer to the result, κ850, as the ratio of normalized rate constants (later shortened to the 

ratio of rates). 

 We could just as well define the space with κ400 (given by 
  
Â

1,400

(q ,S) / S
z
Â

z

(q ,S)), but using 

both is redundant because we define them in such a way that they are not independent since 

their sum is always one. The divisor is chosen to factor out the absolute size of the rate 

constants, so that the information is stored in their ratios. In other words, we factor out the 

dependence on 1–S2, and only retain information on the relative distribution over the 

correlation times, θ(z). We want to avoid having the divisor approach zero faster than the 

numerator, so that the sum of all normalized rate constants is a good choice for any set of 

relaxation rate constants in solid-state NMR. Note that in the case of three or more relaxation 

rate constants, there will be multiple κζ to specify the location in the reduced space. Each ratio 

of rates, κζ, must then be divided by the same 
  
S

z
Â

z

(q ,S), and the set of κζ values will be denoted 

as a vector, , which we refer to as the reduced vector. In Fig. 3(a), several values of κ850 are 

indicated in the space (dotted lines), where we can see that κ850 defines the ratio of the two 
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rate constants, but not their absolute magnitude. Fig. 3(c) then plots the reduced space, now a 

one-dimensional (1D) space, with the allowed region of the reduced space highlighted in blue. 

 In the reduced space, defined by κ850, it becomes simple to select vectors tangential to 

the space. One simply places a point at the maximum and minimum values in the allowed 

region. These points can be used to define the direction of the detection vectors as follows: 

.

 (19) 

First, note that the length is not defined by κ850, such that an must be determined separately. 

The length of each detection vector, , is inversely proportional to the magnitude of the 

sensitivity of that detector, ρn(z) (see eq. (14)). For the moment, we will choose an so that ρn(z) 

has a maximum of one (normalization will be discussed in section III.G). Second, we note that 

one of the κζ must always be calculated from the other κζ values since the dimensionality of the 

space has been reduced by 1, but this is straightforward since all κζ sum to 1.  

 When one includes more relaxation-rate constants, ideally one wants to place reduced 

vectors in the reduced space that exactly surround the allowed region. However, this is only 

possible if the allowed region forms a polytope with exactly N corners, where N is the number 

of experiments included. For a one-dimensional reduced space, one always obtains a line, so 

that we have two ‘corners’, but for more experiments only special cases will result in such a 

space (for example, a triangle for three experiments, a tetrahedron for four experiments). The 

different cases will be further discussed in the following sections. 

 First, however, we want to better understand how detector responses are related to 

distributions of motion. To understand what information we obtain from the detectors, we 

consider several distributions of motion, plotted in Fig. 4(a) (solid lines), each taking the form of 

a log-Gaussian distribution28 

  

q(z) =
1

2ps 2
exp -

(z - z
0
)2

2s 2

æ

è
ç

ö

ø
÷

.

 (20) 

The detector sensitivities are also plotted (dashed lines). Then, the overlap of the distribution 

((1–S2)θ(z)) and the sensitivity (ρn(z)) give the response of each detector, 
  
r

n

(q ,S),  as shown in 

Fig. 4(b) (see Eq. (12)). One observes the following behavior: if most of the motion has 

correlation times shorter than ~10-10 s then fitting of experimental data yields nonzero values 
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for 
  
r

1

(q ,S) but approximately zero for 
  
r

2

(q ,S) (Fig. 4(b), left). Conversely, if most of the motion has 

correlation times longer than 10-8 s, then 
  
r

1

(q ,S) is approximately zero, but 
  
r

2

(q ,S) is not (Fig. 4(b), 

right). If the motion falls in between the detector sensitivities, then both detectors are non-zero 

(Fig. 4(b), center). This is, however, the same response that one obtains if there are larger 

motions with one correlation time shorter than 10-10 s and one longer than 10-8 s, so that these 

cases are not distinguishable with only two relaxation-rate measurements. Then, with several 

detectors, one can compare motion in different ranges of correlation times, and can compare 

motion within the sensitivity range of each detector to other residues. Without further 

assumptions, one cannot get quantitative measurement of the motional amplitudes. However, 

it is possible to the get the average value of 1–S2 under certain conditions, or to estimate the 

amplitude of the distribution function, (1–S2)θ(z), at particular correlation times (see section 

III.G). 

  

Fig. 4. Response of 
  
r

n

(q ,S)  detectors to distributions of motion. (a) shows five distributions of motion, (1–S2)θ(z) 

(solid lines, left axis), and their overlap with the sensitivities of two detectors, ρn(z) (dashed lines, right axis). The 
distributions of motion are log-Gaussian distributions, with 1–S2=0.2, and σ=0.25, and the center of each 

distribution, τc,0 indicated above each distribution.19,28 (b) shows the response of the two detectors, 
  
r

n

(q ,S) , to each 

distribution of motion given by eq. (12). The center of each distribution (τc,0) is indicated above each Gaussian and 
bar plot. The distributions (a) and resulting detector responses (b) are given in the same color, and the responses 
are positioned approximately below the corresponding distribution. 
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B. Three Relaxation Rate Constants 

 In the previous section, a method for visualizing the ambiguity of a set of two relaxation 

measurements was presented, and a procedure for fitting experimental data without 

assumptions about the complexity of the correlation function was demonstrated. This approach 

needs to be generalized for larger data sets with more than two relaxation measurements. To 

demonstrate the general approach, we add an additional relaxation-rate constant, 15N R1 

measured at 600 MHz.  

 The full space of normalized rate constants is shown as a 3D plot in Fig. 5(a). Now, the 

allowed region is represented as a volume, albeit with a rather thin extension in one direction. 

Red and blue traces show positions in the space resulting from a mono-exponential correlation 

time as a function of τc, for two values of 1–S2. One sees that distributions having only a mono-

exponential correlation function no longer span all points in the allowed region. The thin 

extension essentially tells us that the additional relaxation measurement did not significantly 

increase our ability to further characterize the distribution of motion, (1–S2)θ(z). With this in 

mind, we discuss the procedure to determine the detectors, 
  
r

n

(q ,S) , as we did with two 

relaxation-rate constants. 

 

 

Fig. 5. Observable values for 15N R1 acquired at external fields of 400, 600 and 850 MHz. (a) shows two views of 

the 3D space, where blue regions highlight possible combinations of 
  
Â

1,400

(q ,S) , 
  
Â

1,600

(q ,S) , and 
  
Â

1,850

(q ,S) . Colored lines trace 

  
Â

1,400

(q ,S) , 
  
Â

1,600

(q ,S) , and 
  
Â

1,850

(q ,S)  for different S2 values as a function of τc (τc runs from –∞ to +∞, although ticks are not 

shown beyond 10-11 and 10-6 s). (b) shows physically possible values of κ850 and κ600 in blue, and plots τc against 

κ850 and κ600, while encoding 
  
S

z
Â

z

(q ,S) for each τc with color, assuming 1–S2=1 (blue: slow relaxation, red: fast 

relaxation).  

 As before, we use a representation that removes the dependence of the rate constants 

on 1–S2. Here, we use the axes κ850 and κ600, defined as 
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Â

1,850
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1,600

(q ,S)

S
z
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S
z
Â

z

(q ,S ) = Â
1,400

(q ,S) + Â
1,600

(q ,S) + Â
1,850

(q ,S )

.

 
(21) 

This two-dimensional plot of the allowed space is shown in Fig. 5(b). Note that, now a position 

in the space is represented by two κ values, given by the reduced vector, , representing a 

set of ratios of all relaxation rate constants. If we plot the positions in the space for a mono-

exponential correlation function, as a function of the correlation time, τc, we can see that this 

trace only covers the upper border of the allowed region of the reduced space (plus a loop 

through the space). This is in contrast to the discussion in the previous section with two 

relaxation rate constants where all points in the reduced space can be characterized by a 

mono-exponential correlation function. For three relaxation rate constants we need two 

correlation times to cover the allowed region completely. The trace of mono-exponential 

correlation functions is color coded with the value of 
  
S

z
Â

z

(q ,S), where 1–S2 = 1 (denoted 
 
S

z
Â

z

(q ,0)

).  

 If we want to fit three relaxation rate constants, the most convenient way is by picking 

values for three reduced vectors, , and calculating the corresponding detection vectors, . 

Fig. 6(a) shows the result of picking three reduced vectors within the allowed region of the 

reduced space, the fit of the relaxation rate constants for mono-exponential correlation 

functions, and the resulting sensitivities, ρn(z). As will always be the case if we have three rate 

constants and three fit parameters, the rate constants are exactly fit unless the three  are 

not linearly independent. The solution of Fig. 6(a) corresponds to one of the solutions where 

the three vectors are tangential to the allowed space. However, we note that, in contrast to the 

example with two relaxation rate constants, the triangle of the three reduced vectors does not 

surround the complete allowed region leading to negative values for one or more of the ρn(z). 

When fitting a distribution of motion, this is not ideal, because one correlation time in the 

distribution may yield a positive contribution to one of the responses, 
  
r

n

(q ,S) , whereas that 

contribution can be partially or fully cancelled by a negative contribution at another correlation 

time. An alternate solution with only positive sensitivities is obtained by placing the three 

reduced vectors further outside of the allowed region, as seen in Fig. 6(b), so that the complete 
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allowed region is within the resulting triangle. There are many possible such solutions but we 

require the points to be placed as close as possible around the allowed region minimizing the 

forbidden area inside the possible positive linear combinations. This is similar to the two 

relaxation-rate example where the tangential vectors ensure that the complete allowed area 

can be represented by positive linear combinations while at the same time minimizing the 

forbidden area inside the space of positive linear combinations. In Fig. 6(b), the three reduced 

vectors were placed at the ends of the space, but we can no longer do this perfectly with three 

rate constants unless the space is perfectly triangular. In this case, measured rate constants 

that have shifted outside of the allowed region due to experimental noise will be forced into the 

space, therefore reducing noise in the fit parameters- assuming that a fit is performed using 

the criteria that all 
  
r

n

(q ,S) ³ 0 . Second, the functions ρn(z) are better separated from each other if 

the reduced vectors are near the extrema of the allowed region.  

 

 

Fig. 6. Fitting options for measurement of 15N R1 at 400, 600, and 850 MHz. Four methods of fitting are shown: 

three  within the allowed region (a), three  surrounding the allowed region (b), two 
 
within the allowed 

region (c), and two  outside the allowed region to improve fitting (d). In (a)-(d) (top), the 2D space, defined by 

κ850 and κ600 is shown, with positions of the reduced vectors,  shown (colored circles). The middle plot shows 

the R1 rate constants resulting from a single correlation time, with 1–S2 = 1 (
  
R

z
(z) , colored lines), and the fit 

quality using detection vectors, , corresponding to the  shown at top (black dots). The bottom plot shows the 

sensitivities, ρn(z), for each detection vector, . 

 The allowed region in the reduced space of Fig. 5(b) is rather narrow and can 

reasonably well be covered by selecting only two reduced vectors, . Such a selection of 

detectors forces the fit of the experimental rate constants to collapse onto a line crossing 

through the allowed region. The fit of the experimental data is no longer perfect but it would not 
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lead to large deviations in the data fitting and would not require negative intensities. This is 

shown in Fig. 6(c) where reduced vectors have been placed at the two ends of the allowed 

region, although one notes that near τc = 10-8.5 s, there are some deviations visible in the fit of 

the relaxation rate constants. To improve this, the positions of the  can be shifted slightly 

upward, to better cover the middle of the allowed region. In this case, shown in Fig. 6(d), the fit 

of all rate constants is very good. Only with very high signal-to-noise experiments, would it 

possible to distinguish the fits of rate constants in Fig. 6(a)/(b) from those in Fig. 6(d). 

Therefore, we conclude that for such a data set, one should usually only use two reduced 

vectors, otherwise the errors of the resulting detector responses, 
  
r

n

(q ,S) , could be high. In 

practice, it may be helpful to try fitting more or fewer vectors to experimental data, to determine 

if over-fitting or under-fitting occurs via statistical analysis of the fitted data, using a method 

such as reduced-χ2 or bias-corrected versions of the Akaike information criterion (AIC).29-31 

Note that acquiring more than two R1 rate constants still provides considerable value to 

experimental data, as it is a good means of verifying the data quality and improves the overall 

experimental signal to noise, although it will not usually add much information that could not be 

extracted from the first two rate constants alone. Higher or lower fields than the example here 

with 400 and 850 MHz may also allow additional detection vectors, as would more (4-5) R1 

measurements, or inclusion of different nuclei, for example backbone 15N relaxation with 13CO 

relaxation,13 and inclusion of other experiments such as NOE measurement.32 

 

C. Different Sensitivity Ranges: Longitudinal and Transverse Relaxation 

 Now that we have described the analysis of multiple rate constants using multiple 

detectors to characterize distributions of motions, we consider a few categories of data sets. 

First, we consider what happens when we combine longitudinal (R1) and transverse relaxation 

(R1ρ) data in the case of solid-state NMR. We take as an example two 15N R1 measurements at 

400 and 850 MHz, and two R1ρ measurements at an external field of 850 MHz, MAS of 60 kHz, 

and spin-lock strengths of 15 and 45 kHz. The resulting space is plotted in Fig. 7(a), where 

only the reduced space is shown, since the 4D space cannot be plotted. In this case, selecting 

the  is straightforward, since the allowed region is broad, and nearly a tetrahedron. This is a 

result of the nearly separate sensitivity ranges of the R1 and R1ρ rate constants (Fig. 7(b)) 
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Therefore, one simply places one  near each corner of the tetrahedron. The resulting fit of 

rate constants and sensitivities, ρn(z), are plotted in Fig. 7(b) and (c).  

 By selecting the  only slightly away from the corners of the tetrahedron, one can force 

the matrix of the  to be exactly block-diagonal: 

.

 (22) 

In this case, we see that there is almost no advantage to fitting the R1 and R1ρ rate constants 

simultaneously, since the block diagonal matrix shows that 
  
r

1

(q ,S) and 
  
r

2

(q ,S) will be fit only to the 

R1 data, and 
  
r

3

(q ,S) and 
  
r

4

(q ,S) will only be fit to the R1ρ data. This is not too surprising, seeing 

that the sensitive ranges of the R1 and R1ρ have only a small overlap, as shown in Fig. 7(b), so 

that information from these two data types is nearly independent. It is worth noting, however, 

that correlation between dynamics obtained with R1 and with R1ρ can imply either a broad 

distribution of correlation times, or motion in between the R1 and R1ρ sensitive ranges. Note 

that a number of studies have found similar trends in longitudinal (R1) and transverse 

relaxation (R1ρ or CSA-dipole cross correlated relaxation), and have, therefore, successfully 

combined those data sets and fit with a single relaxation model, which implies that one of 

these cases is likely.6,7,10,13,33,34 
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Fig. 7. Fitting of four measured rate constants (15N R1 at 400 and 850 MHz, and R1ρ at a field of 850 MHz, MAS of 

60 kHz, and field strength of 15 and 25 kHz. (a) shows the positions of the reduced vectors, , in the space 

(colored circles), and black lines surround the allowed region that can be fitted with positive 
  
r

n

(q ,S) . (b) shows the 

fitting of the measured rate constants using these . (c) shows the sensitivities, ρn(z). 

D. Relation to Spectral-Density Mapping (and Related Methods) 

 Spectral-density mapping is a strategy for NMR dynamics analysis that takes a linear 

combination of the relaxation-rate constants in order to calculate the value of the spectral-

density functions at a few selected frequencies.24 Since it takes a linear combination of the rate 

constants, it is a special case of the detectors method presented here. For 15N R1, R2, and σNH 

measured at a single static magnetic field, these combinations approximate with high accuracy 

the following spectral densities. 
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Therefore, J(0), J(ωN), and J(0.870 ωΗ) are proportional to detectors 
  
r

1

(q ,S) , 
  
r

2

(q ,S) , and 
  
r

3

(q ,S) 

obtained via 
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 (24) 

This is analogous to Eq. (15). Similarly, the sensitivity of these detectors is approximately 

given by the functional form of the spectral density at the given frequencies 

  

r
1
(z) µ10-z

r
2
(z) µ

10-z

1+ w
N
10-z( )

2

r
3
(z) µ
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2
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(25) 

The reduced space defined by the ratio of rates for R1, R2, and σNH acquired at 850 MHz is 

shown in Fig. 8(a). The positions of the reduced vectors, , corresponding to the matrix in Eq. 

(24) are shown in Fig. 8(a) and the resulting sensitivities, which are approximately proportional 

to the spectral densities (Eq. (25)), are shown in Fig. 8(b). Therefore, we see that spectral 

density mapping is a special case of the detectors method introduced here. However, one also 

notes that the separation of the sensitivities is suboptimal. If the positions of the  are moved 

to fall at the corners of the nearly triangular allowed region, then new sensitivities are obtained, 

shown in Fig. 8(c), where the separation of the detectors is improved. Of course, these no 

longer correspond to the spectral densities, but they are optimum for the characterization of 

the distribution of motion, (1–S2)θ(z).  
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Fig. 8. Space defined by R1, R2, and σΝΗ at 850 MHz. (a) shows the reduced space, along with positions of the 

 defined by the spectral density mapping approach. (b) shows the sensitivities of corresponding detectors, 

which are approximately proportional to J(0), J(ωN), and J(0.870ωH). (c) shows sensitivities corresponding to 

reduced vectors placed at corners of the allowed region (see inset for positions of the ), yielding better 

separation of the sensitivities (the spectral density mapping sensitivities are plotted in grey for comparison.  

 We also note that LeMaster used R1, R2, and NOE at the same magnetic field in a 

similar methodology,35,36 in which he fitted the data to a correlation function of the form: 
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 (26) 

Here, τc is the rotational correlation time of the molecule in solution, and τH and τN are fixed 

where the experiments are sensitive. Fixing the correlation times results in a fit that is 

essentially a linear combination, as in the detectors approach. This approach has the 
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advantage that it accounts for the overall tumbling in solution, but is limited to a specific data 

set (R1, R2, NOE) and the sensitivities of each term in the correlation function are not explicitly 

defined. More recently, Ferrage and coworkers also introduced the IMPACT method of 

dynamics analysis,37 where the correlation function was taken to have the form 

  

C(t) =
1

5
A

i
exp(-t / t

i
)

i=1

n

å

A
i

i=1

n

å = 1 .

 (27) 

Again, the correlation times were fixed (the Ai are then fitted), but so that they were 

logarithmically spaced. This contrasts with the LeMaster method, where the correlation times 

were specifically chosen to occur where experiments are sensitive, and contrasts with the 

detectors method where detection vectors are specifically placed in the reduced space.  

E. Information Content 

 When deciding on the number of required detection vectors, , and deciding on placing 

them, it is helpful to have an idea how much information is accessible from the experimental 

data. This will depend both on the set of experiments used and the signal-to-noise ratio of 

those experiments. To investigate how much information can be obtained from a set of 

experiments, we take three data sets and determine how accurately each data set may be fit 

as a function of the number of detection vectors. Accuracy is determined first by calculating 

and fitting 
  
R

1,z

(q ,S)  that result from a uniform distribution of motion, and reporting the average over 

the fit error of each of the rate constants (the error is normalized by the magnitude of the 

resulting rate constant). A second measure of the accuracy is to calculate 
  
R

1,z

(q ,S)  for 

distributions of motions having only a single correlation time and determine the fit error, again 

reporting the average over the fit error for each of the rate constants. In the latter case, we 

report the largest error for all correlation times that were used. 

 This is done for three sets of rate constants, the first for 15N R1 acquired at five magnetic 

fields, spaced logarithmically between 500 and 1000 MHz (Fig. 9(a)). The second, we use 

13CO R1, at the same fields (Fig. 9(b)). This is done to test the importance of the width of the 

sensitivity of each R1 rate constants, where 13CO R1 relaxation has a narrower sensitivity, 

R1,ζ(z), because 13CO relaxation is dominated by CSA relaxation and depends mostly on J(ωI) 

(see Eq. (7)). Finally, we use 15N R1 relaxation spaced logarithmically between 100 and 

1000 MHz, to test the importance of the spacing of the measured rate constants. 
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Fig. 9: Fitting error of relaxation rate constants as a function of the number of detectors used for fitting. The top 
plots show R1(z) for five rate constants. The bottom plots show the average error of the five rate constants, as a 
percentage of the rate constants. The average error is shown for a uniform distribution of motion (blue crosses) 
and the error resulting for a mono-exponential correlation function, for which the τc is taken to be that which gives 
the maximum error. (a) uses five 15N R1 rate constants with magnetic fields distributed logarithmically between 
500 and 1000 MHz. (b) uses 5 13CO rate constants distributed logarithmically between 500 and 1000 MHz. (c) 
uses five 15N R1 rate constants distributed logarithmically between 100 and 1000 MHz. 

 The results are shown in Fig. 9, bottom, where the averaged error is plotted on a 

logarithmic scale, as a percentage of the total rate constant. For a real distribution, we expect 

the average error to fall somewhere between the results for the mono-exponential and uniform 

distributions. Then, in Fig. 9(a), we see that we expect the error of the fit to be between ~2% 

and 25% if using a single detection vector, . Note that this is the average error, so that some 

of the individual experiments will have higher error. Then, if experiments are accurate enough 

to distinguish this error, we can introduce a second detection vector. The requirements for 

experimental accuracy are exponentially increasing for each additional detector, as one sees 

that in the logarithmic plot in Fig. 9(a), the error decreases approximately linearly for each new 

detector. This trend is reproduced in Fig. 9(b) and (c). In Fig. 9(b), we see almost the same 

level of error, so that there is no additional information resulting from the fact that we use a rate 

constant with a narrower sensitivity, R1,ζ(z). In Fig. 9(c), we do increase the error for each 

number of detection vectors, so that by having a broader range of magnetic fields for R1 

measurements, we are able to fit more detection vectors, thereby obtaining more information 

on the internal dynamics. 
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F. Scaled Anisotropic Interactions 

 Scaled anisotropic interactions characterized by an order parameter S2 are used in 

solid-state NMR dynamics measurements to characterize the total amplitude of motion.7,38 

Because of their very broad range of sensitivity (~10 fs – ~1 ms), they can be used here to 

give information about the amplitude of motion where the measured relaxation rate constants 

are not sensitive. We can define an additional detector, 
  
r

0

(q ,S), whose sensitivity is given by 

  

r
0
(z) =

1

a
0

1- b
n
r

n
(z)

n=1

å
æ

èç
ö

ø÷ .

 (28) 

The values of the bn and a0 depend on the normalization scheme to be used, which is 

discussed below (section III.G). A simple case where a0 and the bn are all set to 1 is shown in 

Fig. 10, with the same 
  
r

n

(q ,S)  as were shown in Fig. 7(c). Note that to obtain 
  
r

0

(q ,S)  from 

measured rate constants, one must modify the formula given in Eq. (16)

 

to include fitting of 1–

S2, as follows 

,

 (29) 

where the  are as defined before and  is a vector of zeros the same length as the . 

Possible definitions of a0 and the bn are discussed in the following section. Note that if ρ0(z) is 

negative at some points, then the response, 
  
r

0

(q ,S), may also be negative for some distributions 

of motion. The negative values of ρ0(z) occur at locations where other detectors overlap and 

will be discussed in more detail in the next section. 

 

Fig. 10: Sensitivity, ρ0(z), when including an RDC measurement. Experiments are the same as those in Fig. 7, 
plus an additional direct measurement of 1–S2.  
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G. Normalization Schemes 

 So far, we have discussed how detection vectors, , may be selected to fit NMR 

relaxation data, and how this selection results in sensitivities, ρn(z). The overlap of these 

sensitivities, with the distribution function, (1–S2)θ(z), yields the response of each detector, 

  
r

n

(q ,S) (Eq(12)). A residue specific detector response 
  
r

n

(q ,S) can be used to compare motions in 

different regions of the protein for a particular timescale of motion. However, there is also 

information contained in the relative responses of the different 
  
r

n

(q ,S), and in the absolute value 

of those responses, although without making assumptions about the motional model, it is not 

possible to obtain the exact amplitude of motion in a particular range of correlation times. 

 The normalization scheme we have used so far sets the maximum of each sensitivity, 

ρn(z), to 1.  

  
max(r

n
(z)) = 1, (30) 

We refer to this scheme as equal-maximum normalization. This scheme is a good choice for 

characterizing the contribution of each detector to the total amplitude of motion (1–S2). First, 

we note that if direct measurement of 1–S2 is included in the experimental data set, then the 

responses of all detectors add to yield 1–S2, in other words 

  
r

n

(q ,S)

n=0

å = (1-S2) q(z)r
n
(z)dz =ò

n=0

å 1–S2

,

 (31) 

which is the case because 

  
r

n
(z)

n=0

å = 1 (32) 

for all z.  

 Furthermore, for a uniform distribution of motion, each detector response is then 

proportional to the effective width of that detector, with the width defined as the detector 

integral (area under curve) divided by its maximum 

  

Dz
n

=

r
n
(z)dz

-14

-3

ò

max(r
n
(z)) .

 
(33) 

Note that normalization of ρ0(z) is truncated at 10-14 s, since it does not approach zero at short 

correlation times. This lower limit corresponds approximately to the frequency of the H–N 

stretch (3300 cm-1);39 this vibration yields approximately the averaged H–N bond length of 

1.02 Å,40 from which the anisotropy of the 1H–15N dipole coupling is typically calculated (δΗΝ/2π 
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= -22.945 kHz). The upper limit estimates where the REDOR experiment is no longer sensitive 

to motion, although its exact value depends on the experimental settings. The limits are not 

relevant for the other detectors, since their sensitivities approach zero for both long and short 

correlation times. 

 In addition to calculating the effective width, Δzn, for each detector, it is also useful to 

calculate the center of each detector, defined to be 

  

z
n

0 =

zr
n
(z)dz

-14

-3

ò

r
n
(z)dz

-14

-3

ò .

 (34) 

Then, for a detector analysis, the response of a detector, 
  
r

n

(q ,S), approximates its contribution to 

the total 1–S2, around the correlation time given by 
  
z

n

0 , for a range of correlation times given 

by 
 
Dz

n
. Note this is an exact relationship for a uniform distribution of motion, but as the 

distribution becomes more irregular, then 
  
r

n

(q ,S)  may deviate significantly from the total 

amplitude of motion in a range 
 
Dz

n
 around 

  
z

n

0 . 

 A caveat in this approach is that in order for all detectors to have a maximum of one, 

and for the sensitivities to sum to one, the sensitivity of the ρ0(z) detector must become 

negative at some points. This occurs where two (or more) of the other detector sensitivities 

strongly overlap, so they essentially detect some of the same motions twice. In order for the 

total amplitude of motion to then be correctly predicted (i.e., in order for the 
  
r

n

(q ,S) to sum to 1–

S2), the sensitivity, ρ0(z), must compensate this with negative values at these points. This 

could be avoided by decreasing the amplitudes of the overlapping detector sensitivities, but 

then we would instead underestimate the amplitude of motion where the detectors do not 

overlap. Note that in special cases, the experimental 
  
r

0

(q ,S)
 may be negative, which then is a 

clear indication of motion in a region of overlapping sensitivities (often, negative contributions 

to 
  
r

0

(q ,S)
 are canceled by positive contributions, so that we cannot easily identify such 

behavior). 
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Fig. 11: Normalization schemes for detectors. The sets of experiments are the same as those shown in Fig. 7. 
The top plot in (a) shows ρn(z), where the ρn(z) (excluding ρ0(z)) has been normalized so that they have equal 
maxima, and their average response in the sensitive region is 1–S2 (sensitive region highlighted in grey). The top 
plot in (b) shows the ρn(z) where all ρn(z) have been normalized to have an integral of one. Lower plots show the 
response of the ρn to several different distributions of motion, with the distribution of motion given as an orange 
line, and bars giving the value of each ρn (color coded to match the ρn(z) at the top). Bars are placed at the center 
of the sensitivity range for each detector. Bars corresponding to ρ0(z) in (b) are also shown as dotted lines, where 
the sensitivity range has been split into three parts, and the detector response is shown at the center of each of 
the three ranges. 

 The first approach tries to approximate the total amplitude of motion each detector sees, 

with its response both proportional to the amplitude of motion and the width of the detector. It 

is also possible, however, to directly estimate the amplitude of the distribution function, (1–

S2)θ(z), at several correlation times (z=log10(τc)). To do this, we first define a new normalization 

scheme, referred to as the equal-integral normalization, which requires for the 
  
r

n

(q ,S)  

  

r
n
(z)dz

-14

-3

ò = 1

.

 (35) 

  
r

0

(q ,S) is also set to satisfy this integral by adjustment of a0 in Eq. (28), but first we adjust the bn 

in eq. (28) to minimize the sensitivity, ρ0(z), without any point in ρ0(z) going below zero. This 

allows optimal separation of the sensitivity of ρ0(z) from the other detectors, without yielding 

any negative sensitivities. The resulting sensitivities are shown in Fig. 11(b) (top).  

 This scheme is useful due to the following relationships. If we take the center of the 

sensitivity for each detector, 
  
z

n

0 , then the ρn(z) are approximately symmetric around the 
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corresponding 
  
z

n

0  (this is not the case for ρ0(z), which will be discussed below). Furthermore, if 

θ(z) is almost linear around 
  
z

n

0 , then it may be approximated by 
  
q(z) = q

0
+q

1
×(z - z

n

0), where 

  
q

0
= q(z

n

0)  and θ1 is the slope of the distribution function near 
  
z

n

0 . In this case, we may 

calculate the response of the detector, 
  
r

n

(q ,S), as follows 

  

r
n

= 1- S2( ) q(z)r
n
(z)dzò

= 1- S2( ) q
0

+q
1
×(z - z

n

0)( )r
n
(z)dzò

= 1- S2( )q0
+ q

1
×(z - z

n

0)r
n
(z)dzò

= 1- S2( )q0

.

 (36) 

The integral is zero in the last step, since we assumed ρn(z) is symmetric about 
  
z

n

0  and 

  
q

1
×(z - z

n

0) is anti-symmetric about 
  
z

n

0 , thus yielding an overall anti-symmetric function which 

then integrates to zero. Then the amplitude of the distribution, 
  
(1–S2)q(z

n

0), may be estimated 

for distribution functions where θ(z) is approximately linear (i.e. has a small second derivative). 

Relaxation rate constants are calculated for several distributions, and fitted with the 
  
r

n

(q ,S) 

shown in Fig. 11(b) (bottom). One sees that when the distribution function is approximately 

linear, the 
  
r

n

(q ,S)  estimate the distribution function, 
  
(1–S2)q(z

n

0)  very well. However, for the 

discrete distribution, this is no longer the case. Because ρ0(z) for solid-state NMR is not very 

symmetric about its center, 
  
z

n

0 , we have split the function into three parts, separated by the 

positions where ρ0(z) is 0. For each region, a separate center (z0) was calculated. Then, the 

resulting ρn is a weighted average of these three regions, with the weighting proportional to the 

width of each region (the two additional centers are shown as additional bars with dotted 

edges in Fig. 11(b)). Accuracy is still subject to how symmetric ρ0(z) is in each region and how 

well θ(z) can be approximated by 
  
q

0
+q

1
×(z - z

n

0) .  

IV. Example Analysis with the Detectors Approach 

 We have implemented the detectors approach described so far in a numerical software 

package developed in MATLAB41 called DIstortion Free Relaxation Analysis TEchnique 

(DIFRATE),42 distributed as open-source software under the terms of the GNU General Public 

License. In order to better understand the detectors approach, we present an example analysis 

based on solid-state NMR relaxation data previously published for Ubiquitin dynamics using 

http://dx.doi.org/10.1063/1.5013316


 30 

the DIFRATE software package. R1 rate constants have been measured by Schanda et al.,7 

order parameters, S2, have been measured by Haller and Schanda,11 and R1ρ rate constants 

have been measured by Lakomek et al.43 For each residue, the data set consists of up to three 

15N R1 rate constants at fields of 500, 600, and 850 MHz, three R1ρ measurements acquired at 

850 MHz, with a spin-lock strength of 13 kHz and MAS frequencies of 60, 90, and 110 kHz, 

and S2 values acquired via REDOR.  

 We do not further discuss selection of the detectors here, although a brief tutorial on 

detector optimization using the DIFRATE software is provided in the manual of the software 

package.42 Note that for sake of reproducibility, it is important to clearly define the detectors 

used in an analysis, which can be done by providing the values found in the detection vectors. 

Furthermore, it is important to give all parameters required for calculating relaxation-rate 

constant sensitivity as a function of correlation time. These may be found in which has a 

similar form as Eq. (28) (in this case with a0 = 1 and the bn = 1). Thus, one obtains a simplified 

problem with smaller matrices to solve. 

Table I. Detector sensitivity as a function of correlation time should usually be provided as a 

figure (see Fig. 12(a)), where exact values can be obtained from the information in which has a 

similar form as Eq. (28) (in this case with a0 = 1 and the bn = 1). Thus, one obtains a simplified 

problem with smaller matrices to solve. 

Table I, using the DIFRATE software. Note that, as was discussed in section III.C, 
  
r

1

(q ,S) and 

  
r

2

(q ,S)  are determined from R1 rate constants and detectors 
  
r

3

(q ,S)  and 
  
r

4

(q ,S)  are determined 

from R1ρ rate constants. However, the matrix is not entirely block diagonal since 
  
r

0

(q ,S) depends 

on the values of all other detectors. Nonetheless, one may solve the problem for 
  
r

1

(q ,S), 
  
r

2

(q ,S) 

and then 
  
r

3

(q ,S), 
  
r

4

(q ,S) separately, and later calculate 
  
r

0

(q ,S) according to 

  

r
0

(q ,S) =
1

a
0

(1-S2) - b
n
r

n

(q ,S)

n=1

å
æ

èç
ö

ø÷ ,

 (37) 

which has a similar form as Eq. (28) (in this case with a0 = 1 and the bn = 1). Thus, one obtains 

a simplified problem with smaller matrices to solve. 

Table I: Detection vectors and parameters 

 /s-1 /s-1 /s-1 /s-1 /s-1 B0/T ω1/2π/kHz ωr/2π/kHz 

R1ρ,(13/110) 0 0 0 919.8 435.0 19.96 13 110 

R1ρ,(13/90) 0 0 0 1070.5 705.7 19.96 13 90 

R1ρ,(13/60) 0 0 0 956.0 1625.1 19.96 13 60 
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R1,500 0 1.941 2.410 0 0 11.74 – – 

R1,600 0 1.992 1.869 0 0 14.09 – – 

R1,850 0 2.194 1.138 0 0 19.96 – – 

S2 1.000 1.000 1.000 1.000 1.000 – – – 

Other parameters: δΗΝ/2π = -22945 Hz, ΔσN = 169.5 ppm 

 Once one has a set of optimized detection vectors for a given data set, it is then 

necessary to solve Eq. (29) (if we did not include S2, then we eliminate the first column and 

last row from the matrix). Because our real data includes noise, we also want to account for 

signal-to-noise of each measurement (fitting by minimizing χ2). Then, our matrix takes on the 

following form: 

.

 (38) 

The  indicate the ith element of detection vector . As one can see, each relaxation rate 

constant, and 1–S2 have been divided by their standard deviation. In this example, if data was 

missing, the rate was set to 0, and σ was set to 1010 to effectively remove that data from the fit. 

Similarly, the corresponding row of the matrix containing the detection vectors, , has also 

been divided by the same standard deviation (elements have been omitted to save space). 

Instead of finding the inverse of the matrix, we use a linear solver (‘lsqlin’ as implemented in 

MATLAB 41,44) to additionally enforce that the resulting responses, 
  
r

n

(q ,S), are non-negative (we 

do allow r0

(q ,S )
 to be negative since it has significant regions of negative sensitivity, see Fig. 

12(a)). This forces the fitted data within the region allowed by the detection vectors (otherwise, 

noise pushing experimental data outside the allowed region is sometimes fitted with negative 

  
r

n

(q ,S), so that the 
  
r

n

(q ,S)
 are noisier). 

 We may also obtain confidence intervals for the responses, 
  
r

n

(q ,S), using a Monte-Carlo 

approach.45 Once the initial responses are obtained, we back calculate relaxation-rate 

constants. For each calculated rate constant, we then add pseudo-random noise selected from 

a normal distribution with the experimentally determined standard deviation for that rate 

constant. The modified set of rate constants can be re-fit as before, and the process is 

repeated (200 times in this example). Then, one may obtain a desired confidence interval, C, 

http://dx.doi.org/10.1063/1.5013316


 32 

by sorting each set of 
  
r

n

(q ,S), and finding the (1/2–C/2) Nth and (1/2+C/2) Nth elements where N 

is the number of repetitions taken, yielding the lower and upper bounds for the confidence 

interval (we take C = 0.95 in our example). Note that this approach to error analysis assumes 

that the error on the experimental data is normally distributed, but makes no assumption on the 

distribution on the error of the detector responses, so that error bars are not necessarily 

symmetric and the relationships between confidence intervals for the normal distribution will 

not hold (for example, the 95% confidence interval is not twice as wide as the 68% confidence 

interval).  

 The results of our analysis of Ubiquitin dynamics are shown in Fig. 12, where the 

sensitivities of the five detectors used for dynamics analysis are shown in (a), and the residue 

specific responses of the detectors, 
  
r

n

(q ,S), are shown in (b). 
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Fig. 12. Fit of detection vectors to Ubiquitin dynamics data. Experimental data taken from refs. [7,11,43]. (a) shows 
the sensitivities of the five detectors, normalized according to the equal-max scheme, where the sensitive region 
is highlighted (defined in Eq. (12)). (b) shows the residue specific response to each of the five detectors. Error 
bars give the 95% confidence interval for each detector response. 

 The amplitudes of each residue-specific detector response are indicative of the total 

amplitude of motion in the sensitive range of that detector (see Eq. (12)). However, this 

relationship does not allow exact quantification of the amplitude of motion. If motion is 

concentrated where the detector is most sensitive, then one obtains a higher detector 

response, than if most motion occurs where the detector is less sensitive. However, if there is 

a uniform distribution of motion, then the response of each detector gives the total amplitude of 
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motion for a range of correlation times having width of 
 
Dz

n
, the effective detector width, and 

the sum of all detectors (if 
  
r

0

(q ,S)
 is included) yields the total amplitude of motion, 1–S2. 

 An important property of the detectors is that they allow analysis of motion without 

making any assumptions about the number of exponential terms in the correlation function 

describing that motion. This means that detector responses, 
  
r

n

(q ,S)
, should be consistent with 

any dynamics analysis that uses an explicit model of motion, in other words, an analysis with a 

fixed number of exponential terms, as long as that model yields a good fit of the experimental 

data. For example, R1 and S2 data was previously fit to a bi-exponential correlation function.11 

This is equivalent to having a distribution of motion that is the sum of two δ-functions, so that 

we may calculate the detector response corresponding to this explicit model of motion as 

follows (see Eq. (12)): 

  

(1–S2)q(z) = (1–S
f

2) *d (z = log
10

(t
f
/ s)) + S

f

2(1–S
s

2) *d (z = log
10

(t
s

/ s))

r
n

(q ,S) = (1–S
f

2)r
n

log
10

(t
f
/ s)( ) +S

f

2(1- S
s

2)r
n

log
10

(t
s

/ s)( )
.

 (39) 

Similarly, R1ρ data was previously fit to a mono-exponential function,43 so that from this model, 

the following detector response can be calculated: 

  
r

n

(q ,S) = S
f

2(1-S
s

2)r
n

log
10

(t
c

/ s)( ). (40) 

Fig. 13 shows the detector analysis of experimental data, and detector responses calculated 

from explicit models using Eqs. (39) and (40). Very good agreement is obtained, with only 

small deviations arising in the detector responses. In some cases, the relative error on 
  
r

1

(q ,S) 

and 
  
r

2

(q ,S) is notably higher than that for (1–Sf
2) and (1–Ss

2) previously reported.11 This is in part 

because direct measurement of S2 via REDOR stabilizes the model-free fit parameters (see 

Haller and Schanda, Fig. 811), whereas in the detectors approach, direct measurement of S2 

only contributes to the determination of 
  
r

0

(q ,S)  (also, we report a 95% confidence interval, 

versus one standard deviation, i.e. 68% confidence interval, reported by Haller and Schanda). 
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Fig. 13. Comparison of detector responses calculated directly from data (colored lines with error bars) and 
calculated from explicit models (black lines). (a) shows detectors calculated from a bi-exponential model from ref. 
[11] using eq. (39). (b) shows detectors calculated from a mono-exponential model from ref. [43] using Eq. (40). 
Note that in (a) and (b), data is only shown for residues that had both explicit model results and detector results 
available. 

 

 Although a detector analysis alone will be consistent with an explicit model that leads to 

good fits of experimental data, one may use the detectors as a way to identify alternative 

interpretations of the dynamics behavior. For example, where R1ρ data was modeled using one 

correlation time,43 we see from detector responses, 
  
r

3

(q ,S)
 and 

  
r

4

(q ,S)
, that alternative models 

could have a distribution of motion that covers a wide range of correlation times (including the 

1-2 μs range that was identified, near where 
  
r

3

(q ,S)
 and 

  
r

4

(q ,S)
 overlap), or could even have a 

distribution of motion that covers parts of each of the ranges where 
  
r

3

(q ,S)
 and 

  
r

4

(q ,S)
 are 

sensitive, while having no motion in the 1-2 μs range. Similarly, the R1 and S2 data used here 

was previously modeled with two correlation times, one usually being shorter than 100 ps, and 

one being longer than 10 ns. However, from the responses of 
  
r

1

(q ,S)
 and 

  
r

2

(q ,S)
, we can clearly 

see that another reasonable model could include significant motion in the ~1 ns to ~10 ns 

range.  
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 If we interpret the dynamics response under the assumption that one finds some motion 

at all ranges of correlation times, then the detector responses are primarily due to motion 

where the detectors are most sensitive. With this in mind, one may identify potential artifacts of 

the explicit model. For example, if we consider residue 11Thr which exhibits the fastest R1 

relaxation in the protein, we notice that (1–S2) is 0.4, compared to a median (1–S2) of 0.15,11 

whereas R1 at 850 MHz is 0.90 s-1 compared to a median of 0.033 s-1.7 Since R1 is proportional 

to (1–S2) (Eqs. (6), (7)), one expects these ratios to be similar, but in fact the (1–S2) ratio is 

2.7:1 and the R1 ratio is 27:1 (similar behavior was also observed for HET-s(218-289) at turns 

between β-sheets 33). The detector analysis indicates that a significant portion of (1–S2) can be 

due to a somewhat uniform motion at short correlation times where the R1 experiments are not 

sensitive, whereas the large change in the R1 rate constant can be the result of more motion 

specifically where the R1 experiments are sensitive (as exhibited by relatively uniform values of 

  
r

0

(q ,S), whereas the ratio of 
  
r

1

(q ,S) at residue 11Thr to the median value of 
  
r

1

(q ,S) is 23:1). On the 

other hand, the explicit model explains the inconsistency in these ratios by fitting 11Thr to a 

much longer correlation time (τf) than most other residues (760 ps versus a median of the log 

of τf of 39 ps).11 As shown in Fig. 13, this interpretation is still consistent with the detector 

analysis, but in this interpretation residues fitted to short correlation times must have virtually 

no motion where R1 experiments (and 
  
r

1

(q ,S) , 
  
r

2

(q ,S) ) are most sensitive, otherwise these 

motions would significantly change the R1 rate constants. A complete lack of motion for this 

range in most of the protein is an unlikely situation, and so is likely to be an artifact of the 

analysis method (as was also previously shown14). 

V. Conclusions 

 In this study, we introduce a method for visualization of the dynamic information in a set 

of NMR experiments, and develop the detectors method for dynamics analysis: linear 

combinations of NMR dynamics data that can be used to characterize motion. This allows us 

to quantify how much motion occurs for a range of correlation times, where that range is 

defined by the sensitivity of each detector. We introduced a reduced space of relaxation rate 

constants, which may be used for selecting detection vectors that can optimally fit relaxation 

rate constants, while yielding well-separated and non-negative sensitivities. We also find that 

using different normalization schemes (section III.G), we can estimate total amplitude of 

motion for a range of correlation times, or the amplitude of the distribution function (with the 
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accuracy depending on how motion is distributed). We have furthermore developed the 

DIFRATE software to aid in the application of our proposed method, and demonstrated its 

usage on Ubiquitin dynamics data. We show that previous models of the Ubiquitin data are 

consistent with the detector analysis presented here; however, the new analysis can be 

interpreted much more broadly than the explicit models.  

 An important advantage to the methodology presented here is that it allows direct 

comparison to other dynamics methods, especially computational methods. Detector 

responses have a clear definition, given by Eq. (12), so that if one obtains a trajectory, for 

example from molecular dynamics simulation (MD), it is possible to estimate the motional 

distribution to determine the quality of the simulation by comparing the simulated and 

experimental detector responses. Furthermore, the sensitivity of the detectors clearly defines 

what ranges of timescales on which one obtains dynamics information. Then, one can 

determine in what regions of a protein, and on what timescales the MD trajectory is accurate. 

Not only can one accept or reject a trajectory based on such an analysis, but it may be further 

possible to optimize force fields, using the NMR detectors as target data.46-48 

 Furthermore, one may be able to develop a model of motion from the MD trajectory, if 

detector responses are at least somewhat similar, and apply this model to interpret the 

experimental detector response. On the other hand, if an oversimplified model of the 

correlation function, such as the extended model-free approach, is used to fit the NMR data 

and to fit the MD trajectory, the biasing of the two methods may result in very different behavior 

in the fitted parameters, leading to disagreement even when the MD is accurate. 

 Although the proposed method avoids artifacts resulting from incorrect models of 

motion,14 the responses of the detectors, 
  
r

n

(q ,S) , do not directly give us a specific model of 

motion, or quantitative measurement of either correlation times or amplitudes. This is because 

this information is not contained in the experimental data. To obtain a quantitative description 

of the internal protein motion, one must take further assumptions about the type of motion (and 

justify those assumptions). Consider how one may do this– if the same residue-correlated 

trends are found in several detectors, one could assume that this describes a distribution of 

motion that covers the range of all of those detectors. Then, one may use the equal-integral 

normalization method, and quantify the distribution function, (1–S2)θ(z0) at the centers of each 

detector (z0). At this point, one may consider possible distribution functions which are 

consistent with the detector responses (a number of models are described elsewhere19). 

Similarly, a strong response of one or two detectors, where the other detectors are clearly not 
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responding, can be indicative of motion that may be described by a single correlation time, in 

which case it may make sense to re-introduce the simple model free approach to obtain a 

more exact correlation time and amplitude of motion. Still, one should be careful in this case, 

and ideally have physical justification for such a model.  

 Note that, in this paper, we primarily discuss designing a set of detectors using a pre-

determined set of experiments. However, if one is interested in characterizing a particular 

range of correlation times, then one should select the set of experiments in order to obtain 

detectors that are sensitive in the desired range. In this way, one may be more experimentally 

efficient. One also sees that detectors tend to fall on certain ranges of correlation times, based 

on what experiments are common (e.g. R1 and R1ρ), so that one is motivated to develop new 

experiments for different detector ranges; for example, high-resolution relaxometry, introduced 

recently in solution-state NMR,49 could add new detectors for different ranges of correlation 

times. 

 By eliminating assumptions about the model complexity, we obtain a description of the 

internal protein dynamics that may be broadly interpreted. After initial results are obtained, it 

may be possible to make further assumptions about the model of motion. However, initially 

assuming a particular model without physical justification may cripple ones ability to properly 

interpret results. Therefore, we conclude that the approach presented here can be the basis of 

an unbiased dynamics analysis of NMR relaxation data. 

 

SUPPLEMENTARY MATERIAL 

See supplementary material for a glossary of terms introduced here, and for tables of the 

results shown in Fig. 12 and Fig. 13. 
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