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Abstract We consider matrix eigenvalue problems that are nonlinear in the
eigenvalue parameter. One of the most fundamental differences from the linear case
is that distinct eigenvalues may have linearly dependent eigenvectors or even share
the same eigenvector. This has been a severe hindrance in the development of gen-
eral numerical schemes for computing several eigenvalues of a nonlinear eigenvalue
problem, either simultaneously or subsequently. The purpose of this work is to show
that the concept of invariant pairs offers a way of representing eigenvalues and eigen-
vectors that is insensitive to this phenomenon. To demonstrate the use of this concept
in the development of numerical methods, we have developed a novel block Newton
method for computing such invariant pairs. Algorithmic aspects of this method are
considered and a few academic examples demonstrate its viability.

Mathematics Subject Classification (2000) Primary 65F15; Secondary 15A18 ·
47A56

1 Introduction

Given a function T : �→ C
n×n holomorphic on an open set � ⊆ C, we consider the

nonlinear eigenvalue problem of finding pairs (x, λ) ∈ C
n ×� with x �= 0 such that

T (λ)x = 0. (1)

For any such pair (x, λ), we call x an eigenvector and λ an eigenvalue. This formula-
tion includes linear eigenvalue problems, for which T (λ) = A − λI with A ∈ C

n×n ,
as well as polynomial eigenvalue problems, for which T is a matrix polynomial in λ.
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356 D. Kressner

To avoid degenerate situations, we assume that T is regular, i.e., det (T (·)) �≡ 0 on any
of the components of �, throughout this paper. For a recent overview on the numerics
and numerous applications of such nonlinear eigenvalue problems, we refer to [20].

In contrast to the linear case, there may be eigenvector/eigenvalue pairs (λ1,x1),
. . ., (λk,xk) of (1), for which the eigenvalues λ1, . . . , λk are pairwise distinct but
{x1, . . . ,xk} is linearly dependent. This possibility is already evident from the fact
that k can be larger than n. Another example [12] is given by

T (λ) =
[

0 12
−2 14

]
+ λ

[−1 −6
2 −9

]
+ λ2

[
1 0
0 1

]
, (2)

for which the eigenvalues 3 and 4 share the same eigenvector
[

1
1

]
. The occurrence

of such linear dependencies is an annoyance when attempting to develop numeri-
cal methods for computing more than one eigenvalue of (1). For example, standard
Newton methods [10,11] for the simultaneous computation of several eigenvalues
crucially depend on the existence of a basis for the invariant subspace belonging
to the eigenvalues of interest. In methods that determine several eigenvalues sub-
sequently, such as Krylov subspace or Jacobi-Davidson methods [2], repeated con-
vergence towards an eigenvalue is usually avoided by reorthogonalization against
converged eigenvectors. If such an idea was directly applied to nonlinear eigen-
value problems, eigenvalues could be missed due to linear dependencies among eigen-
vectors.

In the case that the nonlinear eigenvalue problem admits a minimum–maximum
characterization [26,31], its eigenvalues can be ordered and numbered. Voss and his
co-authors [4,5,7,27–30] have developed Arnoldi-type and Jacobi-Davidson-type
methods that employ this numbering as a safety scheme for avoiding repeated con-
vergence towards the same eigenvalue. Unfortunately, for many applications such
minimum–maximum characterizations do not exist or are difficult to verify.

In this work, we will propose a different approach for dealing with several eigen-
values, very much inspired by the work of Beyn and Thümmler [9] on continuation
methods for quadratic eigenvalue problems. For this purpose, it will be more conve-
nient to assume that the nonlinear eigenvalue problem (1) takes the form

( f1(λ)A1 + f2(λ)A2 + · · · + fm(λ)Am)x = 0. (3)

for holomorphic functions f1, . . . , fm : �→ C and constant matrices A1, . . . , Am ∈
C

n×n . This is no restriction as we could turn (1) into (3) by choosing m = n2,
f(i−1)n+ j (λ) = ti j (λ) and A(i−1)n+ j = ei eT

j , with ei and e j denoting the i th and j th
unit vectors of length n, respectively. However, many applications of nonlinear eigen-
value problems already come in the form (3) and such a reformulation is not needed.
For example, in eigenvalue problems related to the stability of time-delay systems [21],
the functions f j are exponentials or polynomials. In applications related to vibrating
mechanical structures [30], the functions f j are rational and model different material
properties.

The rest of this paper is organized as follows. In “Invariant pairs”, the concept of
invariant pairs for the nonlinear eigenvalue Problem (3) is introduced. We believe this
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A block Newton method for nonlinear eigenvalue problems 357

to be the most suitable extension of an eigenvalue/eigenvector pair to several eigen-
values. Several useful properties are shown to substantiate this belief. In “A Newton
method for simple invariant pairs”, a Newton method for computing such invariant
pairs is developed, along with some algorithmic details and numerical experiments.

2 Invariant pairs

Definition 1 Let the eigenvalues of S ∈ C
k×k be contained in � and let X ∈ C

n×k .
Then (X, S) ∈ C

n×k × C
k×k is called an invariant pair of the nonlinear eigenvalue

problem (3) if

A1 X f1(S)+ A2 X f2(S)+ · · · + Am X fm(S) = 0. (4)

Note that the matrix functions f1(S), . . . , fm(S) are well defined under the given
assumptions [16]. As an example, let (x1, λ1) and (x2, λ2) be eigenvector/eigenvalue
pairs of (3). Then (X, S) with X = [x1,x2] and S = diag(λ1, λ2) is an invariant pair.

To avoid trivial invariant pairs, such as X = 0, an additional property needs to be
imposed. However, we have already seen that requiring X to have full column rank is
not reasonable in the context of nonlinear eigenvalue problems. Instead, we use the
concept of minimal invariant pairs from [6,9].

Definition 2 A pair (X, S) ∈ C
n×k × C

k×k is called minimal if there is l ∈ N such
that the matrix

Vl(X, S) =

⎡
⎢⎢⎢⎣

X
X S
...

X Sl−1

⎤
⎥⎥⎥⎦ (5)

has rank k. The smallest such l is called the minimality index of (X, S).

Example 3 For the example (2), the pair (X, S) with X =
[

1 1
1 1

]
and S = diag(3, 4)

is invariant and minimal with minimality index 2.

It has been shown in [6, Theorem 3] that any non-minimal pair can be turned into
a minimal one in the following sense. If Vl(X, S) has rank k̃ < k then there is a
minimal pair (X̃ , S̃) ∈ C

n×k̃ ×C
k̃×k̃ such that span X̃ = span X and span Vl(X̃ , S̃) =

span Vl(X, S). The following Lemma reveals the connection of minimal invariant pairs
to the nonlinear eigenvalue problem (3).

Lemma 4 Let (X, S) ∈ C
n×k × C

k×k be a minimal invariant pair of (3). Then the
following statements hold.

1. For any invertible matrix Z ∈ C
k×k , (X Z , Z−1SZ) is also a minimal invariant

pair of (3).
2. The eigenvalues of S are eigenvalues of (3).
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358 D. Kressner

Proof 1. Using f j (Z−1SZ) = Z−1 f j (S)Z , the relation (4) can be written as

A1 X Z f1(Z−1SZ)Z−1 + A2 X Z f2(Z−1SZ)Z−1 + · · ·
+ Am X Z fm(Z−1SZ)Z−1 = 0,

which is equivalent to

A1 X Z f1(Z−1SZ)+ A2 X Z f2(Z−1SZ)+ · · · + Am X Z fm(Z−1SZ) = 0, (6)

and shows that (X Z , Z−1SZ) is an invariant pair. Its minimality follows from

Vl(X Z , Z−1SZ) = Vl(X, S)Z .

2. By the Schur decomposition, we can choose Z orthogonal such that S̃ = Z−1SZ
is upper triangular with any eigenvalue λ of S appearing in the (1, 1) position
of S̃. Setting x = X Ze1, the first column of Vl(Z−1SZ , X Z) has the entries
x,xλ, . . . ,xλl−1. Hence, x �= 0 since otherwise Vl(Z−1SZ , X Z) would be rank
deficient for any l. Moreover,

X Z f j (Z−1SZ)e1 = f j (λ)x

and thus the first column of (6) implies that (x, λ) is an eigenvector/eigenvalue
pair. ��

Let us briefly discuss the practical consequences of Lemma 4. Once a minimal invariant
pair is computed we can extract the corresponding eigenvalues of T (·) by computing
the eigenvalues of S. Moreover, if S admits a diagonalization Z−1SZ then the columns
of X Z contain the corresponding eigenvectors.

The following lemma shows that for checking minimality, it is sufficient to check
the rank of Vk(X, S).

Lemma 5 If a pair (X, S) ∈ C
n×k×C

k×k is minimal then its minimality index cannot
exceed k.

Proof Since (X, S) is minimal, there is l ∈ N such that rank (Vl(X, S)) = k. For
l ≤ k there is nothing to prove. For l > k, the Cayley-Hamilton theorem yields the
existence of coefficients αi j ∈ C such that

X Sk+i = αi0 X + αi1 X S + · · · + αi,k−1 X Sk−1, i ≥ 0.

Hence, there is a square invertible matrix W such that

W Vl(X, S) =
[

Vk(X, S)

0

]
,

implying rank (Vk(X, S)) = k. ��
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A block Newton method for nonlinear eigenvalue problems 359

2.1 Relation to polynomial eigenvalue problems

Given a minimal invariant pair (X, S) ∈ C
n×k × C

k×k , the nonlinear eigenvalue
problem (3) can be locally transformed into a polynomial eigenvalue problem. To see
this, we choose p j ∈ �k , where �k denotes all polynomials of degree at most k, as the
Hermite interpolating polynomial of f j at the spectrum of S [16]. Then f j (S) = p j (S)

and (4) can be written as

A1 X p1(S)+ A2 X p2(S)+ · · · + Am X pm(S) = 0.

Hence, (X, S) is a minimal invariant pair for the polynomial eigenvalue problem

(p1(λ)A1 + p2(λ)A2 + · · · + pm(λ)Am)x = 0. (7)

In particular, Lemma 4.2 implies that the eigenvalues of S are eigenvalues of (7).
Note, however, that the converse is not true: from the kn eigenvalues of (7) only k
can be expected to solve the original nonlinear eigenvalue problem. Nevertheless, (7)
allows us to show that minimal invariant pairs can be easily constructed in the case of
pairwise distinct eigenvalues.

Lemma 6 Let (x1, λ1), . . . , (xk, λk) be eigenvector/eigenvalue pairs for the nonlin-
ear eigenvalue problem (3), with λi �= λ j for i �= j . Then the invariant pair

(X, S) = ([x1, . . . ,xk], diag(λ1, . . . , λk))

is minimal.

Proof The construction above shows that (X, S) is an invariant pair for the polynomial
eigenvalue problem (7). Without loss of generality, we may assume that (7) is regular.
If this is not the case, (7) can always be replaced by a regular higher order interpolation
that also incorporates derivative of f j , see the proof of Theorem 10.

By the companion linearization [14] of (7), there is a matrix pencil CA − λCB ∈
C

kn×kn such that (v1, λ1), . . . , (vk, λk) with v j = [xT
j , λ jx

T
j , . . . , λk−1

j xT
j ]T are

eigenvector/eigenvalue pairs of CA − λCB. Eigenvectors belonging to pairwise dis-
tinct eigenvalues of matrix pencils are linearly independent and hence Vk(X, S) =
[v1, . . . , vk] has rank k, concluding the proof. ��

2.2 Simple invariant pairs

Relation (1) immediately implies that λ is an eigenvalue if and only if det(T (λ)) = 0.
The algebraic multiplicity of λ is defined as usual.

Definition 7 Let λ be an eigenvalue of a holomorphic function T : �→ C
n×n . Then

the algebraic multiplicity of λ, denoted by algT (λ), is the smallest integer j such that
∂ j

∂λ j det(T (λ)) �= 0.
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360 D. Kressner

Note that det(T (·)) is also holomorphic in the open set � and thus – by basic
complex analysis results – the algebraic multiplicity of λ is finite unless det(T (·)) ≡ 0
in some component of �. However, in the latter case T is not regular, contradicting
the assumption made in the introduction.

The following definition defines an invariant pair to be simple if it includes eigen-
values in their full multiplicity.

Definition 8 An invariant pair (X, S) for a regular, holomorphic function T : � →
C

n×n is called simple if (X, S) is minimal and the algebraic multiplicities of the eigen-
values of S are identical to the algebraic multiplicities of the corresponding eigenvalues
of T .

In the following, it will be shown that simple invariant pairs are well posed objects in
the sense of being regular solutions to a nonlinear matrix equation. For this purpose,
we introduce the nonlinear matrix operator

T : Cn×k × C
k×k
� → C

n×k,

(X, S) 
→ A1 X f1(S)+ A2 X f2(S)+ · · · + Am X fm(S),
(8)

associated with T (λ) = f1(λ)A1 + f2(λ)A2 + · · · + fm(λ)Am . Here, C
k×k
� denotes

the set of k×k matrices with eigenvalues in �. By definition, see (4), an invariant pair
(X, S) satisfies T(X, S) = 0. But this relation is clearly not sufficient to characterize
(X, S) and we need to add some normalization. For this purpose, choose l such that
the matrix Vl(X, S), see (5), has rank k. Define and partition the matrix

W =

⎡
⎢⎢⎢⎣

W0
W1
...

Wl−1

⎤
⎥⎥⎥⎦ := Vl(X, S)

(
Vl(X, S)H Vl(X, S)

)−1 ∈ C
nk×k,

with W j ∈ C
n×k . Thus, V(X, S) = 0 for the operator

V : Cn×k × C
k×k
� → C

k×k,

(X, S) 
→ W H Vl(X, S)− Ik .
(9)

Note that W is considered constant and not treated as a function of X and S.
In the following it will be investigated whether the two conditions T(X, S) = 0,

V(X, S) = 0 are sufficient to characterize (X, S), at least locally. For this purpose,
we compute the Fréchet derivatives of T and V at (X, S):

DT : (�X,�S) 
→ T(�X, S)+
m∑

j=1

A j X [D f j (S)](�S), (10)

DV : (�X,�S) 
→ W H
0 �X +

l−1∑
j=1

W H
j (�X S j + X DS j (�S)). (11)
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A block Newton method for nonlinear eigenvalue problems 361

Here, [D f j (S)] denotes the Fréchet derivative of f j at S. Note that the Fréchet
derivative DS j of the map S 
→ S j can be written as

DS j : �S 
→
j∑

i=0

Si�S S j−i−1.

The following example illustrates the definitions above.

Example 9 Consider T (λ) = λI − A0 − A1e−λτ with A0, A1 ∈ C
n×n and τ ∈ R.

The associated nonlinear eigenvalue problem arises from the stability study of a lin-
ear delay differential equation (DDE) with a single delay [21]. For k = l = 2, the
operators T and V take the form

T(X, S) = X S − A0 X − A1 Xe−τ S,

V(X, S) = W H
0 X +W H

1 X S − I2.

The corresponding Fréchet derivatives at (X, S) are given by

DT(�X,�S) = T(�X, S)+ X �S − A1 X De−τ S(�S),

DV(�X,�S) = W H
0 �X +W H

1 (�X S + X �S).

Note that De−τ S , the Fréchet derivative of the exponential matrix function, can be
computed using methods described in [16,18,22], see also “A Newton method for
simple invariant pairs” below.

The following theorem is the main result of this section and proves that simple
invariant pairs are well posed.

Theorem 10 Let (X, S) be a minimal invariant pair for the nonlinear eigenvalue
problem (3). Then (X, S) is simple if and only if the associated linear matrix operator

L : Cn×k × C
k×k → C

n×k × C
k×k

(�X,�S)→ (DT(�X,�S), DV(�X,�S)) ,

with DT and DV defined in (10)–(11), is invertible.

Proof The basic idea of the proof is to replace the holomorphic functions f1, . . . , fm

by polynomials and apply results from [6]. Complex interpolation theory [13] shows
that there are polynomials pi , i = 1, . . . , m, of degree not larger than �, with some
integer � > k, such that

p( j)
i (λs) = f ( j)

i (λs), j = 0, . . . , 2k − 1,

for every eigenvalue λs of S. In particular, this implies fi (S) = pi (S) for i = 1, . . . , m
and hence (X, S) is a minimal invariant pair for P(λ) = A1 p1(λ)+ · · · + Am pm(λ).
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362 D. Kressner

Moreover,

∂ j

∂λ j
det(T (λs)) = ∂ j

∂λ j
det(P(λs)), j = 0, . . . , 2k − 1, (12)

showing that the algebraic multiplicities of T for the eigenvalues of S match those of
P , unless the algebraic multiplicity exceeds 2k − 1 (in which case (X, S) cannot be
simple, neither for T nor for P). By definition, (12) thus proves that (X, S) is a simple
invariant pair for T if and only if it is a simple invariant pair for P . In [6, Theorem 7],
the latter condition is shown to be equivalent to the condition that (X, S) is a regular
solution to the matrix equations

P(X, S)= A1 X p1(S)+ · · · + Am X p1(S)=0, T(X, S)= W̃ H V�(X, S)=0. (13)

A minor complication is that in general � > l, but this can be easily fixed by defining
W̃ as the matrix obtained from appending W with (�− l)n zero rows. In turn, (X, S)

is a simple invariant pair if and only if the linear matrix operator

L̃ : Cn×k × C
k×k → C

n×k × C
k×k

(�X,�S)→ (DP(�X,�S), DV(�X,�S)) ,

is invertible, where

DP : (�X,�S) 
→ T(�X, S)+
m∑

j=1

A j X [Dp j (S)](�S).

Using (12) we obtain from the results in [18] that

[
f j (S) [D f j (S)](�S)

0 f j (S)

]
= f j

([
S �S
0 S

])
= p j

([
S �S
0 S

])

=
[

p j (S) [Dp j (S)](�S)

0 p j (S)

]

for j = 1, . . . , m. Thus [D f j (S)](�S) = [Dp j (S)](�S), which implies L̃ = L and
concludes the proof. ��

By the implicit function theorem for holomorphic functions [17], Theorem 10
reveals that the entries of a simple invariant pair (X, S) vary analytically under ana-
lytic changes of T . This shows that (X, S) is well posed and reasonable to compute
numerically.

3 A Newton method for simple invariant pairs

In this section, we show how the theoretical framework developed in the previous
section can be turned into a numerical algorithm for computing simple invariant pairs.
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The aim is to compute a solution (X, S) ∈ C
n×k × C

k×k to the nonlinear matrix
equations

T(X, S) = 0, V(X, S) = 0. (14)

with T(X, S) = A1 X f1(S)+ · · · + Am X fm(S) and V(X, S) = W H Vl(X, S)− Ik for
some fixed W ∈ C

ln×k of full column rank. By Lemma 4, the eigenvalues of S are
eigenvalues of T (·) and if there is an invertible Z such that Z−1SZ is diagonal then
X Z contains the corresponding eigenvectors.

Formally, the Newton method for solving (14) can be written as

(X p+1, Sp+1) = (X p, Sp)− L
−1
p

(
T(X p, Sp), V(X p, Sp)

)
(15)

where Lp is the Jacobian of (14) at (X p, Sp). We have

Lp(�X,�S) = (
DTp(�X,�S), DVp(�X,�S)

)

with DTp and DVp defined as in (10)–(11) but with X, S replaced by X p, Sp. The-
orem 10 implies that the iteration (15) converges locally quadratically to a simple
invariant pair.

Remark 11 In principle, W can be chosen arbitrarily as long as W H V is invertible
for any basis V of span (Vl(X, S)). Equivalently, the largest principal angle between
span(W ) and span (V (X, S)) must be less than π/2 [25]. To avoid an ill-conditioned
basis in the course of the iteration, it is common practice in Newton methods for eigen-
value computation [1] to choose an orthonormal basis for W in each iteration. In our set-
ting, this corresponds to computing a compact QR decomposition Vl(X p, Sp) = W R
with W H W = Ik and R ∈ C

k×k invertible. To preserve the relation W H Vl(X p, Sp) =
Ik , we then have to replace X p ← X p R−1 and Sp ← RSp R−1 accordingly.

Algorithm 1 Newton method for computing invariant pairs
Input: Initial pair (X0, S0) ∈ C

n×k × C
k×k such that Vl(X0, S0)

H Vl(X0, S0) = Ik .
Output: Approximate solution (X p+1, Sp+1) to (14).
1: p← 0, W ← Vl(X0, S0)

2: repeat
3: Res← T(X p, Sp)

4: Solve linear matrix equation Lp(�X,�S) = (Res, 0).
5: X̃ p+1 ← X p −�X, S̃p+1 ← Sp −�S
6: Compute compact QR decomposition Vl

(
X̃ p+1, S̃p+1

) = W R.
7: X p+1 ← X̃ p+1 R−1, Sp+1 ← RS̃p+1 R−1

8: until convergence

3.1 Setting up the initial pair (X0, S0)

In many applications the approximate location of the eigenvalues of interest might
be known, but usually little or no information is available for the eigenvectors. To
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364 D. Kressner

compensate for this imbalance, a variant of inverse iteration should be applied before
starting Algorithm 1.

Algorithm 2 Inverse iteration for stetting up initial pair (X0, S0)

Input: An initial matrix S0 ∈ C
k×k .

Output: An initial matrix X0 ∈ C
n×k .

1: Choose random matrix X0 ∈ C
n×k .

2: for p← 1, 2, 3 do
3: Compute solution Y to linear matrix equation T(Y, S0) = X0.
4: Compute compact QR decomposition Vl(Y, S0) = W R.
5: Update X0 ← Yk R−1, S0 ← RS0 R−1

6: end for

The linear matrix equation to be solved in Step 2 is a special case of the matrix equa-
tion in Step 1 of Algorithm 1, whose efficient solution is discussed in the next section.
Note that choosing 3 as the number of loops to be performed in Algorithm 2 is a
heuristics; for the examples reported below we did not observe any significant benefit
from iterating further.

3.2 Solving the linear system

The most expensive part of Algorithm 1 is certainly the solution of the linear matrix
equation in Step 1. In principal, by using Kronecker products to replace the involved
matrix products, this is equivalent to a linear system of order (nk+k2). However, even
if this system can be cheaply set up, its solution still requires O(k3(n + k)3) flops,
which is only acceptable as long as k is not significantly larger than 1. Fortunately,
ideas from [8,9] can be extended to reduce the cost significantly. For notational con-
venience, we drop the index p and consider the solution of a linear system of matrix
equations

T(�X, S)+
m∑

j=1

A j X [D f j (S)](�S) = RT , (16)

W H
0 �X +

l−1∑
j=1

W H
j (�X S j + X DS j (�S)) = RV , (17)

where (�X,�S) is unknown. Moreover, by a suitable normalization of X, S, W we
can assume w.l.o.g. that S is in (complex) Schur form. Because of the triangular struc-
ture of S, the equations (16)–(17) simplify considerably for the first columns of �X
and �S. To see this, we will make use of the following technical result.

Lemma 12 Let f be holomorphic on an open set � ⊆ C containing the spectrum
of the upper triangular matrix S ∈ C

k×k . Then there is an upper triangular matrix
[D f (S)]11 ∈ C

k×k such that

[D f (S)]11 Ce1 = [D f (S)](C) e1 (18)
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A block Newton method for nonlinear eigenvalue problems 365

for any matrix C ∈ C
k×k . Moreover, we have the relation

f

([
S Ik

0 s11 Ik

])
=

[
f (S) [D f (S)]11

0 f (s11)Ik

]
. (19)

Proof Since f : �→ C and its derivative are considered for a fixed matrix S, we can
assume w.l.o.g. (e.g., by replacing f by a Hermite interpolant) that � is connected.
Let 	 be a closed contour that is contained in � and encircles the eigenvalues of S.
Then [16],

[D f (S)](C) e1 = 1

2π i

∫
	

f (z)(z I − S)−1C(z I − S)−1e1 dz

= 1

2π i

∫
	

f (z)

z − s11
(z I − S)−1Ce1 dz,

where we used that S is upper triangular. Hence,

[D f (S)]11 = 1

2π i

∫
	

f (z)

z − s11
(z I − S)−1 dz,

which is clearly upper triangular. The equality (19) follows from

f

([
S Ik

0 s11 Ik

])
= 1

2π i

∫
	

f (z)

[
z I − S −Ik

0 (z − s11)Ik

]−1

dz

= 1

2π i

∫
	

f (z)

[
(z I − S)−1 (z − S)−1(z − s11)

−1

0 (z − s11)
−1 Ik

]
dz

=
[

f (S) [D f (S)]11
0 f (s11)Ik

]
,

which concludes the proof. ��
Using Lemma 12, post-multiplying (16)–(17) by e1 yields the following linear system
of order nk:

⎡
⎢⎢⎢⎣

T (s11)
m∑

j=1
A j X [D f j (S)]11

l−1∑
j=0

s j
11W H

j

l−1∑
j=1

W H
j X [DS j ]11

⎤
⎥⎥⎥⎦

[�x1
�s1

]
=

[
RT e1
RV e1

]
, (20)

where�x1 = �X e1 and�s1 = �S e1. While (19) offers an appropriate way to com-
pute [D f j (S)]11, the matrices [DS j ]11 can be computed more efficiently by making
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use of the recursion

DS1(�S) = �S, DS j (�S) = (DS j−1(�S))S + S j−1�S, j ≥ 2,

implying

[DS1]11 = Ik, [DS j ]11 = s11[DS j−1]11 + S j−1, j ≥ 2.

Before continuing this process for the next columns of �X and �S, we need
to update the right hand sides of (16)–(17) after �x1 and �s1 have been computed
from (20) (this bears resemblance to the forward substitution process for solving lower
triangular systems). For this purpose, partition

�X=[�x1,�X2], �S=[�s1,�S2], RT =[RT e1, RT 2], RV = [RV e1, RV 2],

and

S =
[

s11 s12
0 S22

]
, f (S) =

[
f (s11) [ f (S)]12

0 f (S22)

]

for some function f . Inserted into (16)–(17), we obtain the following linear matrix
equation for the pair (�X2,�S2) ∈ C

n×(k−1) × C
k×(k−1):

T(�X2, S22)+
m∑

j=1

A j X [D f j (S)] ([0,�S2])
[

0
Ik−1

]
= R̃T 2, (21)

W H
0 �X2 +

l−1∑
j=1

W H
j

(
�X2S j

22 + X DS j ([0,�S2])
[

0
Ik−1

])
= R̃V 2, (22)

with updated right-hand sides

R̃T 2 = RT 2 −
m∑

j=1

A j

(
�x1[ f j (S)]12 + X [D f j (S)]([�s1, 0])

[
0

Ik−1

])
,

R̃V 2 = RV 2 −
l−1∑
j=1

W H
j

(
�x1[S j ]12 + X DS j ([�s1, 0])

[
0

Ik−1

])
.

The first columns of the solutions to (21)–(22) can be computed similarly as for the
original transformed equations (16)–(17). We refrain from providing the algorithmic
details here and refer to Appendix 4 for a Matlab implementation of the sketched
forward substitution process. If k 
 n and l 
 n then the cost of the overall algorithm
is dominated by the solution of k linear systems of the form (20). Since each of these
systems has order n + k, the overall cost is O(k(n + k)3) flops, which compares well
with the O(k3(n+k)3) flops needed by the Kronecker product formulation. Moreover,
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if the matrices A j are sparse then (20) is a bordered sparse system and a sparse direct
solver, possibly adapted to such bordered matrices [3], could be used.

3.3 Improving global convergence

In an attempt to improve the global convergence of Algorithm 1, we have implemented
a simple Armijo rule based on the residual norm

‖T(X, S)‖F = ‖A1 X f1(S)+ · · · + Am X fm(S)‖F . (23)

More specifically from a discrete set {2−3, 2−2, 2−1, 1} of step sizes we choose the
largest step size τ such that

‖T(Xτ , Sτ )‖F ≤ (1− 10−4τ)‖T(X p, Sp)‖F , (24)

where (Xτ , Sτ ) is obtained from applying the orthogonalization steps 1–1 of
Algorithm 1 to (X p+τ�X, Sp+τ�X). If (24) cannot be fulfilled we choose τ as small
as possible, i.e., τ = 2−3. The next iterate is obtained as (X p+1, Sp+1)← (Xτ , Sτ ).

3.4 Application 1

We continue Example 3; computing eigenvalues for

T (λ) = λI − A0 − A1e−λτ (25)

with A0, A1 ∈ C
n×n and a delay τ > 0. For the stability analysis of the corresponding

DDE ẋ(t) = A0x(t)+ A1x(t − τ), it is of interest to compute eigenvalues with large
real part. To obtain an initial guess, we approximate T (λ) by a polynomial

T (λ) ≈ P(λ) := λI − A0 − A1

�∑
i=0

1

i ! (−λτ)i . (26)

and compute the k eigenvalues λ1, . . . , λk of P that have largest real part. We then
choose S0 = diag(λ1, . . . , λk) and compute X0 with Algorithm 2.

Example 13 [21, Sec. 2.4.1] Consider (25) for the matrices

A0 =
[−5 1

2 −6

]
, A1 =

[−2 1
4 −1

]

and τ = 1. We aim at computing an invariant pair for 5 eigenvalues. In this case, the
minimality index is at least 3.

Figure 1 displays the numerical results obtained from running the block Newton
method proposed in this paper for this example with k = 5 and l = 3. For the initial
approximation (26), we have chosen � = 4. Initially, three eigenvalues are well and

123



368 D. Kressner

−2.5 −2 −1.5 −1 −0.5 0 0.5
−6

−4

−2

0

2

4

6

0 2 4 6 8 10
10

−15

10
−10

10
−5

10
0

10
5

Fig. 1 Numerical results for Example 13. Left plot: Location of eigenvalue approximations initially (plus),
after 3 Iterations (circle), and at convergence after 12 iterations (cross). Right plot: Residual norm (23) in
the course of the Newton iteration

two eigenvalues are poorly approximated. During the first 2 iterations the step size
is at the allowed minimum 2−3 before it successively increases to 1 at the sixth step,
after which quadratic convergence sets in. Comparing with the results [21], it turns
out that the converged eigenvalues are in fact the ones with largest real part. Note that
the condition number of the Jacobian is 9.2×105 at convergence, which could explain
the poor transient behavior of the Newton method.

Example 14 [21, Sec. 2.4.2] The experiments from Example 13 are repeated for the
matrices

A0 =
⎡
⎣ −0.8498 0.1479 44.37

0.003756 −0.2805 −229.2
−0.1754 0.02296 −0.3608

⎤
⎦ , A1 =

⎡
⎣ 0.28 0 0

0 −0.28 0
0 0 0

⎤
⎦ ,

and τ = 1, which has – according to [15] – applications in the stability analysis of
a semiconductor laser subject to external feedback. This time, � = 2 in the approx-
imation (26), and k = 4, l = 2. The step size is either 2−2 or 2−1 during the first 5
iterations and settles at 1 at the sixth iteration see Fig. 2.

The condition number of the Jacobian is 2.2× 106 at convergence.

3.5 Application 2

As a second application, we consider a simple boundary eigenvalue problem, which
was also considered in [24]. Find λ > κ and a nonzero function u : [0, 1] → R such
that

− u′′(y) = λu(y), u(0) = 0, −u′(1) = f (λ)u(1), (27)

where f (λ) = κ Mλ
λ−κ

and κ = K
M for given positive numbers K , M . The Eq. (27)

describes the eigenvibrations of a string with a load of mass M attached by an elastic
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Fig. 2 Numerical results for Example 14. Left plot: Location of eigenvalue approximations initially (plus),
after 3 Iterations (circle), and at convergence after 12 iterations (cross). Right plot: Residual norm (23) in
the course of the Newton iteration

spring of stiffness K . In practice, two- or three-dimensional variants of (27) are used
to model mechanical structures with elastically attached loads.

A finite element discretization of (27) with linear elements on subintervals of length
h = 1/n leads to the nonlinear matrix eigenvalue problem

(A1 + f (λ)eneT
n − λA3)x = 0, (28)

where

A1 = 1

h

⎡
⎢⎢⎢⎢⎣

2 −1

−1
. . .

. . .

. . . 2 −1
−1 1

⎤
⎥⎥⎥⎥⎦ , A3 = h

6

⎡
⎢⎢⎢⎢⎣

4 1

1
. . .

. . .

. . . 4 1
1 2

⎤
⎥⎥⎥⎥⎦ .

Note that (28) could be turned into a polynomial eigenvalue problem by multiplying
with λ − κ but this introduces the erroneous eigenvalue κ . Moreover, in more real-
istic problems with a large number of different springs, this strategy would lead to a
polynomial of high degree and massive numerical cancellation can be expected when
forming this polynomial.

Example 15 We consider (28) for n = 100 and M = K = κ = 1. We apply the
Newton method with k = 5, l = 1. As initial pair, we choose S0 = diag(2, 2, 2, 2, 2)

and a random matrix X0 ∈ R
n×5. Figure 3 reveals convergence despite this poor

choice of initial eigenvalues. Also, quadratic convergence almost immediately sets in.
We have repeated this experiment for n = 400 and obtained a rather similar conver-
gence behavior.

For reference, we provide the first 10 decimal digits of the computed eigenvalues:

n λ1 λ2 λ3 λ4 λ5

100 4.4821765459 24.223573113 63.723821142 123.03122107 202.20089914
400 4.4820338110 24.219005847 63.692138408 122.91317036 201.88234012
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Fig. 3 Numerical results for Example 15. Left plot: Obtained eigenvalue approximations in the course of
the Newton iteration. Right plot: Residual norm (23) in the course of the Newton iteration

These values compare well with the analytically computed values from [24] and reveal
that the Newton method has in fact converged to the 5 smallest eigenvalues.

4 Conclusions

When little is known about a nonlinear eigenvalue problem at hand, the concept of
invariant pairs proposed in this paper offers a robust way of representing several
eigenvalues and eigenvectors simultaneously. We are not aware of any competitive
alternative representation in the literature. To compute such invariant pairs, we have
developed a block Newton method and described some algorithmic details, mainly
to maintain a reasonable computational cost. However, it should be emphasized that
our block Newton method inherits the disadvantages of similar methods [11] for solv-
ing linear eigenvalue problems: Its global convergence may be erratic and already
a single slowly converging eigenvalue contained in S will hinder the convergence
of the entire pair. To a certain extent, this is avoided in single-vector methods such
as Jacobi-Davidson [7,23], Arnoldi [27], and preconditioned inverse iteration [24].
A logical next step of future research is to employ invariant pairs in single-vector
methods for safely locking and purging converged eigenpairs, similar to the work by
Meerbergen [19] on the quadratic eigenvalue problem.
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comments. Discussions with Volker Mehrmann, TU Berlin, on the subject of this paper as well as joint
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Appendix A: Matlab code

The following Matlab function implements the forward substitution method sketched
in Sect. 3.2.

function [dX,dS] = nlevp_newtonstep( A, f, X, S, W, RT, RV )
% Computes the solution (dX,DS) to the linearized system in one
step of

% the block Newton method for a nonlinear eigenvalue problem (NLEVP).
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%
% Input: A - 3d-array containing the matrices A_j of the NLEVP
% f - handle to a function f(j,M) that returns f_j(M)
% for any square matrix M
% (X,S) - current iterate. S is assumed upper triangular.
% W - 3d-array containing the normalization matrices W_j
% (RT,RV) - right-hand side
%
% Output: Solution (dX,dS) to the linearized equation in one step
% of the block Newton method for the NLEVP.
n = size(A,1); m = size(A,3); k = size(X,2); l = size(W,3);
dX = zeros(n,k); dS = zeros(k,k);
% Precompute all required powers and functions of S.
fS = zeros(k,k,m); pS = zeros(k,k,l-1); pS(:,:,1) = S;
for j = 1:m, fS(:,:,j) = feval(f,j,S); end
for j = 2:l-1, pS(:,:,j) = pS(:,:,j-1)*S; end
% Main loop for computing the ith columns of dX and dS
for i = 1:k,

% Set up and solve linear system
s = S(i,i);
T11 = zeros(n); for j = 1:m, T11 = T11 + A(:,:,j)*feval(f,j,s);
end
T12 = zeros(n,k);
for j = 1:m,

DF = feval(f,j,[S, eye(k);zeros(k) s*eye(k) ]);
T12 = T12 + A(:,:,j)*X*DF(1:k,k+1:2*k);

end
T21 = W(:,:,1)’; for j = 2:l, T21 = T21 + sˆ(j-1) * W(:,:,j)’; end
DS = eye(k); T22 = zeros(k);
for j = 2:l, T22 = T22 + W(:,:,j)’*X*DS; DS = s*DS + pS(:,:,j-1);
end
sol = [T11 T12; T21 T22] \ [RT(:,i);RV(:,i)];
dX(:,i) = sol(1:n); dS(:,i) = sol(n+1:end);
% Update right-hand side
Z = zeros(k); Z(:,i) = dS(:,i); DS = Z;
for j = 1:m,

DF = feval(f,j,[S, Z;zeros(k) S ]);
RT(:,i+1:k) = RT(:,i+1:k) - A(:,:,j) * ( dX(:,i)*fS(i,i+1:k,j)

+ X*DF(1:k,k+i+1:2*k) );
end
for j = 2:l,

RV(:,i+1:k) = RV(:,i+1:k) - W(:,:,j)’ * ( dX(:,i)*pS(i,i+1:
k,j-1) + X*DS(:,i+1:k) );

DS = DS*S + pS(:,:,j-1)*DS;
end

end
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