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SUMMARY

Immune cells in the tumor microenvironment modu-
late cancer progression and are attractive therapeu-
tic targets. Macrophages and T cells are key
components of the microenvironment, yet their phe-
notypes and relationships in this ecosystem and to
clinical outcomes are ill defined. We used mass
cytometry with extensive antibody panels to perform
in-depth immune profiling of samples from 73 clear
cell renal cell carcinoma (ccRCC) patients and five
healthy controls. In 3.5 million measured cells, we
identified 17 tumor-associated macrophage pheno-
types, 22 T cell phenotypes, and a distinct immune
composition correlated with progression-free sur-
vival, thereby presenting an in-depth human atlas
of the immune tumor microenvironment in this dis-
ease. This study revealed potential biomarkers and
targets for immunotherapy development and vali-
dated tools that can be used for immune profiling
of other tumor types.
INTRODUCTION

Cells of the adaptive and innate immune systems infiltrate the

tumor microenvironment (TME) and form an ecosystem that

modulates all aspects of tumor development (Grivennikov

et al., 2010). T cells are the most abundant and best-character-
736 Cell 169, 736–749, May 4, 2017 ª 2017 The Author(s). Published
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ized population in the TME of solid tumors (Galon et al., 2006;

Vesely et al., 2011). CD4+ helper T cells and cytotoxic CD8+

T cells can prevent tumor growth by targeting antigenic tumor

cells, and high numbers of activated CD8+ T cells are associated

with good prognosis in various cancers (Vesely et al., 2011).

Tumors can lose their immunogenicity, however, and the tumor

milieu can suppress T cell responses. Suppression may involve

regulatory T cells, which secrete immunosuppressive cytokines

and myeloid and stromal cells, which modulate immune check-

points by activation of co-inhibitory receptors (e.g., PD-1,

Tim-3, and CTLA-4) on T cells resulting in dysfunctional, ex-

hausted T cell phenotypes (Speiser et al., 2016; Wherry and Kur-

achi, 2015).

Tumor-associated macrophages (TAMs) are another key im-

mune population in the TME that can either block or facilitate tu-

mor growth (Kitamura et al., 2015; Sica et al., 2008). Distinct TAM

subsets can induce or repress anti-tumor immunity, angiogen-

esis, and cell migration (Murray et al., 2014; Qian and Pollard,

2010; Quatromoni and Eruslanov, 2012). TAM phenotypes

are highly plastic, and recent reports show that the model

distinguishing between classically polarized anti-tumor M1 and

alternatively polarized pro-tumor M2 subtypes incompletely ac-

counts for the phenotypic diversity in vivo (Ginhoux et al., 2016).

T cell and TAM phenotypes are attractive biomarkers (Daud

et al., 2016; Galon et al., 2014; Ostuni et al., 2015), and both

T cells and TAMs show promise as therapeutic targets (Maus

and June, 2016; Ries et al., 2014; Shin and Ribas, 2015). Treat-

ment with anti-PD-1 and anti-CTLA-4 antibodies can overcome

T cell exhaustion in different cancer types (Shin and Ribas,

2015), and clinical trials are investigating the effect of depletion of
by Elsevier Inc.
creativecommons.org/licenses/by-nc-nd/4.0/).
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TAMs and the repolarization of pro-tumor TAMs into anti-tumor

TAMs (Pyonteck et al., 2013; Ries et al., 2014). Broader use of

T cells and macrophages as biomarkers and drug targets has

been hindered by the fact that human TAM and T cell pheno-

types and relationships among them in the TME have not been

comprehensively characterized. Characterization of TAMs in

the TME has focused on a handful of markers (Komohara

et al., 2013; Reinartz et al., 2014; Yang et al., 2015), and gene

expression profiling has been done in bulk tissues or total macro-

phage populations (Dannenmann et al., 2013; Doedens et al.,

2010). Single-cell RNA sequencing provides high-dimensional,

single-cell data (Tirosh et al., 2016), yet the low numbers of cells

analyzed mean that this technology currently cannot capture

cellular complexity present in a tumor and is not yet suitable

for studies of large patient cohorts.

In order to comprehensively analyze the immune landscape in

the TME, millions of cells from human tumors must be character-

ized by simultaneous analysis of dozens of markers (Noy and

Pollard, 2014; Quatromoni and Eruslanov, 2012). Mass cytome-

try enables the quantification of more than 50 readouts at the sin-

gle-cell level by combiningmetal isotope-labeled antibodies with

mass spectrometry detection (Bandura et al., 2009; Ornatsky

et al., 2010). With its ability to analyze millions of cells in a short

time at low cost, mass cytometry represents the method of

choice to assess the phenotypic diversity of T cells and TAMs

present in the TME in large patient cohorts.

In this study, we present a mass cytometry-based atlas of

the immune landscape in tumor samples from 73 clear cell

renal cell carcinoma (ccRCC) patients and five normal kidney

controls. ccRCC is a common and lethal uro-genital cancer

(Koul et al., 2011). Around 50% of ccRCC patients develop me-

tastases despite treatment, and less than 10% of these patients

survive 5 years. Targeted treatments such as tyrosine kinase in-

hibitors are only palliative (Koul et al., 2011), but novel checkpoint

immunotherapies show considerable promise in some patients

(Joseph et al., 2017). Thus new avenues to guide immuno-

therapy-based treatments are urgently needed (Shinohara and

Abe, 2015). We used unsupervised computational approaches

to reveal an unprecedented phenotypic complexity in TMEs in

ccRCC patient samples. Our data expand the view of T cell

immunosuppression phenotypes, suggest links between a TAM

phenotype and populations of regulatory T cells and CD8+ immu-

nosuppressed T cells, and identify an immune cell composition

within the TME that is correlated with progression-free survival.

RESULTS

In-Depth Immunophenotyping of ccRCC Tumor Samples
Using Mass Cytometry
We performed a large-scale mass cytometry analysis of 73 tu-

mor samples from patients with all grades of ccRCC and five

healthy matched kidney samples (Figure 1A; Table S1). We

stained cells with two antibody panels created for this study (Fig-

ures 1B and 1C; Table S2; STAR Methods). Since TAM pheno-

types are little characterized in human, the TAM panel originated

from an antibody screen (Figures 1B, S1A, and S1B), whereas

the T cell panel (Figure 1C) was designed to identify different

populations of naive, memory, effector, regulatory, and ex-
hausted T cells. Comparison of mass cytometry to flow cytome-

try showed an average correlation of 0.88, confirming the

reliability of the mass cytometry data (Figure S1C). Both panels

included markers for the identification of B cells, natural killer

cells, plasma cells, granulocytes, andmyeloid cells. The samples

were barcoded (Bodenmiller et al., 2012; Zunder et al., 2015),

and standards analyzed on each plate (Figure S2A) demon-

strated that the data were highly consistent across plates (Fig-

ures S2B and S2C).

Immune Landscape in ccRCC
To generate a comprehensive view of the immune ecosystem of

each tumor, we generated two-dimensional maps of the data us-

ing the dimensionality reduction algorithm t-SNE (for gating

strategy, see Figure S2D) (Amir et al., 2013; van der Maaten

and Hinton, 2008). This analysis showed a strong overlap be-

tween tumors of all grades (Figures 2A and 2B). To partition

the cells into distinct phenotypes, we applied the PhenoGraph

clustering algorithm (Levine et al., 2015), which takes into ac-

count phenotypic adjacency of cells in high-dimensional space

and is suited for clustering of single-cell data (Levine et al.,

2015). This analysis identified the main immune cell types in

both T cell and TAM data (Figures 2C–2F, S3A, and S3B). Con-

tour plots usually used to identify cell populations in manual

gates confirmed identities (Figure 2G). PhenoGraph analyses re-

vealed highly similar frequencies across plates and across

panels, highlighting the robustness of the dataset and analysis

(Figures S3C and S3D).

T cells were the main immune cell population in the ccRCC

TME, with a mean of 51% across samples (Figure 2H, left panel)

(Geissler et al., 2015). The mean frequencies of myeloid cells,

natural killer cells, and B cells were 31%, 9%, and 4%, respec-

tively (Figure 2H, left panel). Granulocytes were present at very

low levels in all but one sample. Plasma cells constituted a minor

fraction in most samples. A double-positive CD8+/CD4+ popula-

tion was observed in many samples, reaching up to 25% of the

T cell compartment in some samples (Figure 2H, right panel).

T Cell Characterization Reveals Various Phenotypes
Associated with Immunosuppression
When data have rich population structure, t-SNE and

PhenoGraph find dominant phenotypes; finer granularity of

structures is found by separate analyses of these dominant phe-

notypes. To exhaustively map cell phenotypes, we performed

additional PhenoGraph analyses focused on each T cell and

TAM subset defined in our initial analyses (Figures 2E and 2F).

The expression profiles of the T cell PhenoGraph clusters were

visualized in a heatmap (Figure 3A) and heterogeneity in marker

level was assessed at the single-cell level using t-SNE (Figures

3B and 3C). This approach led to the identification of eight

CD4+ phenotypes, 11 CD8+ phenotypes, one CD4+/CD8+ dou-

ble-positive phenotype and one double-negative phenotype

(Figure 3A). We observed highly similar phenotypes among

CD4+ and CD8+ subsets including cells expressing CD127+,

CD11b+, PD-1�/CD11b�, and CTLA-4+ (Figure 3D). Regulatory

T cells (T-6) were mostly observed among the CD4+ subset

and were defined by the co-expression of CD25, Foxp3, and

CTLA-4 and the absence of CD127.
Cell 169, 736–749, May 4, 2017 737
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See also Figure S1 and Tables S1 and S2.
PD-1+ cells were observed in both CD8+ and CD4+ subsets

(Figure 3E). The population T-0, characterized by the highest

level of PD-1 expression among CD8+ cells, was also

strongly positive for other co-inhibitory receptor (such as

Tim-3), the activation markers CD38 and HLA-DR, and the

co-stimulatory receptors ICOS and 4-1BB but had low

levels of CD127 (Figures 3A and 3E). This phenotype was

previously associated with exhausted T cells and anti-PD-1
738 Cell 169, 736–749, May 4, 2017
treatment response (Ahmadzadeh et al.,

2009; Daud et al., 2016).

Subsets with similar levels of PD-1

differed in expression of activationmarkers

and co-stimulatory receptors (Figure 3E).

The cluster T-1 had the same expression

pattern as T-0 butmarkerswere expressed

at lower levels. The T-1 cells could corre-

spond to precursors of a fully exhausted

T-0 population, since during exhaustion

inhibitory receptor expression progres-

sively increases (Wherry, 2011). The other

PD-1+ clusters (T-7, T-5, T-16, T-9, and

T-19) were characterized by the absence

of Tim-3 expression and by heterogeneity

in expression of markers such as 4-1BB,

CD38, CTLA-4, and OX-40. Except for

T-16 and T-19, all clusters expressed

CD38, a marker not previously associated

with T cell exhaustion in cancer. Flow

cytometry and transcriptome analysis of

sorted populations confirmed co-expres-

sion of PD-1 with CD38 (Figures S4A–

S4D; Table S3).

Within the CD4+ T cell subset, one PD-1+

population (T-18) was observed (Fig-

ure 3E). Cells in the T-18 cluster co-ex-

pressed CD38 and Tim-3, but ICOS and

4-1BB were at lower levels than in the T-0

cluster. Populations of CD4+ cells that ex-

press CTLA-4 (T-13) and OX-40 (T-17)

were also identified, but the level of PD-1

was lower on these cells than on their

CD8+ counterparts (Figure 3E).

The marker expression pattern of the

double-positive PD-1+ cluster T-8 was

highly similar to that of the T-0 cluster

(Figure 3E). Both cytotoxic and immuno-
suppressive roles have been suggested for this phenotype

(Overgaard et al., 2015). In our ccRCC samples, this population

exhibits an exhausted phenotype. Neither LAG-3 nor GITR were

observed in any T cell population investigated, suggesting that

the expression of these modulatory receptors is context specific

(Figure 3A).

When cluster frequencies were analyzed based on tumor

grade (Figures 3F and S4E), we observed that normal samples
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(A and B) t-SNE maps displaying 100,000 cells from the ccRCC cohort analyzed with (A) T cell and (B) TAM panels and colored by grade.

(C and D) t-SNEmaps displaying 100,000 cells from the ccRCC cohort analyzedwith (C) T cell and (D) TAM panels and colored by themain cell populations based
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See also Figures S2 and S3.
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were positive for CD4+ central memory T cells (T-2), CD4+ and

CD8+ effector memory cells (T-3, T-4), and CD8+/CD45RA+

T cells (T-14). Regulatory T cells (T-6) and PD-1+ clusters (T-0,

T-1) were virtually absent from normal samples but were present

in ccRCC samples at different levels depending on grade and in

metastatic samples (Figures 3F and S4E). Collectively, these

data reveal an unexpected phenotypic diversity amongPD-1-ex-

pressing T cells present in samples from ccRCC tumors.

High-Resolution Analysis of TAMs Reveals Phenotypic
Diversity of Tissue-Resident and Tumor-Specific
Macrophages
TAM populations were characterized by more subtle differences

in marker expression than T cell populations and were more

challenging to categorize. To ensure a robust set of clusters,

we developed a subsampling procedure to obtain a consensus

PhenoGraph solution (STAR Methods) that led to the identifica-

tion of 17 TAM phenotypes (Figures 4A and 4B). Visualization

of single cells on the t-SNE map confirmed a continuum of

expression for most markers; a few (CD123, CD169, CD163,

CD204, and CD206) had bimodal expression (Figure 4C).

Others have suggested that macrophages form a spectrum of

phenotypically related cell subsets (Ginhoux et al., 2016; Murray

et al., 2014; Xue et al., 2014). To identify potential relationships

among the TAM phenotypes, we used diffusion mapping, a

method originally proposed to align cells along branching devel-

opmental paths (Haghverdi et al., 2015). Blood monocytes were

included as a reference population. The resulting three-dimen-

sional diffusion plot has three main branches (Figure 4D). The

TAM groupings on these branches are consistent with the

PhenoGraph clusters.

The first branch mostly consists of blood monocytes and the

M-15 cluster, characterized by intermediate levels of HLA-DR,

CD68, and CD64 and high levels of CD36 and CD11b (Figures

4A and S5A). This phenotype suggests that theM-15 cluster cor-

responds to circulating CD14+monocytes from the tumor vascu-

lature. Consistent with this hypothesis, this cluster was present

in healthy samples and across all tumor grades (Figure 4E).

This first branch expands along diffusion component one (DC1)

to include clusters M-1 and M-14 (Figure 4D). Cells along this

component were characterized by a progressive loss of CD36

and CD11b and increases in HLA-DR, CD4, CD68, and CD64

(Figure 4F), a trend culminating with cluster M-5, which showed

one of the highest DC1 values. This marker regulation is consis-

tent with changes observed during themonocyte tomacrophage

transition that occurs upon migration into tissue (Ostuni et al.,

2015). Our data also suggest that CD54 and CD81 are associ-

ated with this transition.

The second branch was almost exclusively formed by cells of

the M-16 cluster. The M-16 phenotype is consistent with that of

inflammatory CD16+ circulating monocytes (Figure S5B). This

cluster was present in healthy samples and across all tumor

grades (Figure 4E).

The third branch has a complex structure (Figures 4D, S5C,

and S5D). One grouping involves clusters M-5, M-11, M-12,

and M-13 (Figures 4D and S5C). These clusters displayed the

highest levels of HLA-DR, CD68, and CD64 of all clusters and

no expression of CD11b or CD36, suggesting that the cells
740 Cell 169, 736–749, May 4, 2017
were mature (Ostuni et al., 2015). Consistent with this, these

clusters were only present in tumors of grade II and higher (Fig-

ures 4E and S5E). These clusters were characterized by a previ-

ously unrecognized diversity of combinations of pro- (CD163,

CD204, and CD206) and anti-tumor (CD169) TAM markers (Fig-

ure 4G; Table S4). M-5 and M-13 clusters expressed only

CD204, the M-12 cluster was positive for CD204 and CD206,

and the M-11 cluster was positive for all four markers. The M-5

cells also expressed high levels of CD38, a marker exclusively

found upon M1 polarization in murine macrophages (Jablonski

et al., 2015). Thus, macrophages in the TME can co-express

anti-tumor and pro-tumor markers.

Another group in the third branch involvesM-0, M-10, andM-7

clusters (Figures 4D and S5D). M-0 and M-10 clusters had high

levels of CD206 expression. M-0 cells expressed low levels of

CD163, CD169, and CD204, whereas M-10 cells were negative

for these markers. M-0 and M-10 clusters were present in

healthy tissues (Figure 4E), suggesting that these clusters corre-

spond to tissue-resident macrophages.

Analysis of the Immune Landscape across Patients
To investigate heterogeneity of immune cell signatures across

ccRCC patients, we determined frequencies of identified T cell

and TAM phenotypes relative to parent populations for each in-

dividual patient. We performed a hierarchical clustering based

on CD8+ T cells to order patients by compositional similarity (Fig-

ure 5, left). This analysis suggests compositional patterns in that

in samples with the highest amount of T-0 and T-1 PD-1+ cells,

the T-4, T-5, and T-11 populations, which express little or no

PD-1, were absent, suggesting that these T cell phenotypes

might be mutually exclusive. The analysis of the CD4+ T cells

(Figure 5, middle) only revealed subtle patterns and no patterns

were visible among the TAM clusters, which displayed the high-

est variability across and within samples (Figure 5, right). To

confirm this visual observation, the Kullback-Leibler divergence

of each patient composition relative to the mean composition

was computed for TAM and CD4+ and CD8+ T cell compart-

ments. Patients were most heterogeneous in their TAM compo-

sition, followed by CD8 composition, and were most uniform in

their CD4 composition (Figure S6). Overall, these results suggest

that relationships among the analyzed cell types can be identi-

fied within the TME.

Systematic Correlation Analysis Reveals Relationships
in the TME
To systematically quantify relationships between immune cell

populations present in the TME, we calculated the frequencies

for each immune cell phenotype of each individual tumor (Fig-

ure 6A) and used these frequencies in correlation analyses de-

signed to exclude outlier effects (STAR Methods). Multiple

robust relationships were identified (Figure 6B). All pairs of

CD4+ and CD8+ correlations qualitatively identified (Figure 3D)

were present among the top 20 strongest correlations (Fig-

ure S7A; Table S5), consistent with the idea that CD4+ and

CD8+ T cells in the TME are exposed to a similar milieu and

tend to follow similar polarization schemes.

We were intrigued to find strong relationships among the ex-

hausted T-0 cluster, the regulatory T-6 cluster, and the M-5
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macrophage cluster. The frequency of T-0 cells was high in sam-

ples with high levels of M-5, and samples with high levels of T-0

andM-5 also contained high amounts of the T-6 CD4+ regulatory

T cells (Figure 6C, left, and S7A). Not all samples containing high

levels of regulatory T cells were enriched for M-5, however. Inter-

estingly, the other two main pro-tumor macrophage phenotypes

M-11 and M-13 displayed a mutually exclusive relationship with

exhausted T cells (Figure 6C, top middle and top right) and did

not show an association with regulatory T cells (Figure 6C,

bottom middle and bottom right). We also observed that M-5,

M-11, and M-13 pro-tumor macrophage populations tended

not to co-occur (Figure 6D).

To explore whether the M-5 phenotype might directly trigger

immunosuppression, we sorted these cells and analyzed their

transcriptomes (Figures S7B and S7C; Table S3). The M-5 pop-

ulation expressed a mixture of pro-inflammatory markers,

including TLR4, STAT1, STAT2,CIITA, andHLA-DP, and anti-in-

flammatory markers such as PPAR-g, C/EBP-b, c-MAF, and

CD200R compared to control (Figure 6E). However, some

canonical markers of pro- and anti-inflammatory macrophages

were not induced (Figures 6E and S7D). The M-5 population

also exhibited direct immunosuppressive features including

expression of PDCD1LG2 (CD273) and CD274, which encode li-

gands of PD-1 responsible for T cell exhaustion, and of CXCL10

and CCL8, which encode chemokines known to attract CD8+

T cells and regulatory T cells, respectively (Griffith et al., 2014)

(Figure 6E). Imaging data confirmed that CD38 was co-ex-

pressed on both CD68+ and CD8+ cells and that these cells

could co-localize (Figure 6F). Our imaging panel did not include

enough markers to fully resolve the macrophage and the T cell

phenotypes, but the samples used for imaging were highly en-

riched for the M-5 and T-0 populations (samples 37, 64, and

68; see Figure 5). Thus CD38 expressing CD68+ and CD8+ cells

likely correspond to phenotypes M-5 and T-0, respectively.

Taken together, these data emphasize that M-5 macrophages

display pro-inflammatory and anti-tumor markers and sug-

gest that this population might contribute to the immunosup-

pressed phenotypes of tumors containing high amounts of

M-5 macrophages.

Structure of the Immune Landscape Correlates with
Clinical Outcome
To obtain a global understanding of the relationships between

all immune subsets and clinical parameters, we performed cor-

respondence analysis (CA) (Härdle and Simar, 2003). CA is

similar to principal component analysis but is applied to a fre-
Figure 3. In-Depth Characterization of the T Cell Compartment

(A) Heatmap showing normalized expression of the T cell panel markers for the 22

profile and were manually assigned to the main T cell subsets as indicated with t

graph on the right.

(B) t-SNE map displaying 2,000 cells from each PhenoGraph cluster identified in

(C) Cells colored by normalized expression of indicated markers on the t-SNE m

(D) Contour plots showing expression of indicated markers for eight clusters with

(E) Histograms showing expression of indicated costimulatory molecules, activat

(upper panel), CD4+ cells (middle panel), and CD8+/CD4+ double-positive cells (l

(F) Boxplots showing the frequencies of the indicated T cell clusters grouped in

metastatic tissue). p values calculated with a Mann-Whitney-Wilcoxon test are s

See also Figure S4 and Table S3.
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quency table (Table S6). CA reduces high-dimensional observa-

tions to a smaller set of ‘‘explanatory’’ components. In our case,

visualizations based on CA display data on each patient and im-

mune subsets in the same space. Patients are organized by their

tendency to contain certain immune subsets, and immune sub-

sets are organized by their tendency to co-occur in the same

patients.

We found that the first component mainly captures the ten-

dency of the exhausted T cells that express high levels of

PD-1 (T-0) to co-occur with M-5 macrophages (Figures 7A

and 7B). The second component provides a different ordering

of immune subsets and patients, driven by co-occurrence pat-

terns involving M-11 and M-13 clusters. Because the CA

components represent the dominant co-occurrence patterns

observed in these samples, we used these components to

query statistical relationships between TME composition and

clinical variables (Table S1). We found that only the second

component was significantly associated with progression-free

survival (hazard ratio = 7.5; p = 5.5 3 10�3; Table S6; STAR

Methods). Examining the distribution of progression-free sur-

vival times across CA scores, we found that CA-2 assigned

high scores to seven patients (Figure 7C; patient IDs 6, 28, 31,

38, 39, 40, and 53 [Table S1]). Among those patients one died

from acute myeloid leukemia and was removed from subse-

quent statistical analyses. In this scenario, the CA-2 was again

significantly associated with worse clinical outcome (Figure 7D;

log-rank p = 0.013). Analysis of the clinical variables did not

reveal any commonality that might explain the association with

progression-free survival (Table S1).

The most important immune subpopulations for CA-2 are the

pro-tumor macrophage subpopulations M-11, M-13, and M-5

(Figure 7B), in that patients with high CA-2 scores and poor pro-

gression-free survival times had high frequencies of either M-11

or M-13 and low frequencies of M-5 macrophages. In fact, we

found that a score computed as %M-11 + %M-13 – %M-5 pro-

duced a close approximation of the CA-2 score and generated

similar progression-free survival statistics. Thus, the association

between CA-2 and progression-free survival is obtained by

capturing higher order relationships between immune subsets.

These results show that the comprehensive mapping of the im-

mune landscape across 73 patients by mass cytometry not

only identified relationships among immune cell phenotypes in

the TME but also stratified patients in a meaningful way as

reflected in the concordance with clinical outcomes. The latter

association would not have been possible if only individual

markers or cell types had been analyzed.
T cell clusters identified with PhenoGraph. Clusters are grouped by expression

he color code. The cluster IDs and relative frequencies are displayed as a bar

(A) colored by cluster.

ap.

similar phenotypes in CD4+ and CD8+ T cell populations.

ion markers, and cell cycle markers of clusters of PD-1-expressing CD8+ cells

ower panel).

to early stages (normal tissue and grade I) and late stages (grades II–IV and

hown for each cluster.
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Figure 4. In-Depth Characterization of TAM Phenotypes

(A) Heatmap showing normalized expression of markers from the TAM panel for the 17 cell clusters identified with PhenoGraph. Relative frequencies are dis-

played as a bar graph to the right.

(B) t-SNE map, colored by clusters, displaying 2,000 cells from each PhenoGraph cluster identified in (A).

(C) Normalized expression of indicated markers on the t-SNE map.

(legend continued on next page)
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Data hierarchically clustered based on CD8+ subsets using Ward’s method. Sample types are indicated by color.

See also Figure S6.
DISCUSSION

Immune cells of the TME are part of a complex and intricate

ecosystem. Even after tumors evade immune elimination

(Schreiber et al., 2011), immune cells are able to modulate tumor

progression. With the success of immune checkpoint therapies,

immune cells have become a focus of cancer research and phar-

maceutical development. To improve understanding of the TME,
(D) Visualization of blood monocytes and TAM clusters using first, second, and th

The three main branches are indicated with solid arrows and two sets of clusters

(E) Boxplots showing the frequencies of the TAM clusters grouped in early stage (n

p values calculated with a Mann-Whitney-Wilcoxon test are shown for each clus

(F) Conditional mean expression of the indicated markers along diffusion compon

the conditional mean expression along diffusion component one (bottom panel).

(G) Histogram overlay showing expression of indicated markers of TAM clusters

See also Figure S5 and Table S4.
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we performed a mass cytometry analysis of the immune cells

present in normal renal tissue and ccRCC samples. This high-

quality dataset validates prior observations and affords many in-

sights into the immune landscape of the TME.

T cell profiling expanded the view on CD8+/PD-1+ T cell phe-

notypes and found that these cells are characterized by combi-

natorial expressions of inhibitory receptors. Whereas PD-1 had

broad expression, TIM-3, CTLA-4 and 4-1BB were expressed
ird components of a diffusion map. Cells are colored by PhenoGraph clusters.

are circled with dashed lines.

ormal and grade 1) and advanced stage (grades 2–4 and metastatic) samples.

ter.

ent one (top panel). Histograms displaying the TAM clusters used to calculate

.
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Figure 6. Relationships between TAM and T Cell Clusters in ccRCC Samples

(A) Schematic showing how clusters are related to parent populations.

(B) Heatmap showing Pearson coefficients of correlation for relationships between immune cell phenotypes.

(C) Scatterplots showing relationships between T-0 exhausted T cells and T-6 regulatory T cells with the pro-tumor TAM phenotypes M-5, M-11, and M-13.

Pearson correlations and p values are indicated. For significant correlations, linear models are shown as blue lines.

(legend continued on next page)
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Figure 7. Relationships between Immune Landscape and Clinical Outcomes

(A) The first two components of correspondence analysis, accounting for 30% of the co-association structure between immune subsets and patients in the

cohort, are shown. Immune phenotypes are displayed as squares (TAMs) and triangles (T cells), and patient samples as circles.

(B) Contributions of the immune subsets to CA-1 and CA-2.

(C) Projection of each patient onto the first and second component of the correspondence analysis. Circle size represents progression-free survival time. CA-2

assigns high scores (right of dotted line and labeled in blue) to six patients with low progression-free survival times.

(D) Kaplan-Meier analysis of the six patients with low progression-free survival times (blue curve) versus the remaining patients (green curve). Shaded regions

represent 95% confidence intervals.

See also Tables S1 and S6.
only by few PD-1+ clusters; thus, targeting those molecules

might be less effective than targeting PD-1 in ccRCC. Clinical tri-

als should assess whether targeting specific combinations of

inhibitory receptors will enable personalization of therapy and

improve patient outcome. We also identified CD38 as a potential

T cell exhaustion marker in ccRCC. CD38 activates nitric oxide

synthetase, leading to the release of nitric oxide, a mediator of

T cell immunosuppression (Mayo et al., 2008). In HIV patients,

CD38 is co-expressedwith PD-1 on exhausted T cells (Hoffmann

et al., 2016). There are differences in exhausted T cells in patients

with chronic infection versus those with cancer (Speiser et al.,

2016), but we propose here that expression of CD38, which

shows the highest overlap with PD-1, is a hallmark of exhausted

T cells in ccRCC.

Based on clustering of data generated with our antibody

panel, we identified 17 major TAM phenotypes. Using a diffusion

map to characterize how TAM clusters are related, we identified

a developmental trajectory that recapitulates the transition be-

tween circulating monocytes and early immigrant and mature
(D) Pairwise relationships between the frequencies of pro-tumor TAM phenotype

(E) Boxplots showing RNA-sequencing data on sorted populations for indicated

Whitney-Wilcoxon test p values are shown.

(F) Representative ccRCC tissue stained for CD68 (green), CD38 (red), CD8 (blue)

CD38 (yellow) and for CD8 and CD38 (magenta). Scale bar, 100 mm.

See also Figure S7 and Tables S3, S5, and S7.
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macrophages in the tissue. Although CD163, CD204, and

CD206 have been interchangeably used to define pro-tumori-

genic TAM populations (Komohara et al., 2013; Shigeoka et al.,

2013; Xu et al., 2014), our results suggest that these markers

distinguish subsets. Previous reports suggested that CD169+

macrophages are linked to anti-tumorigenic function due to a

cross-presentation of tumor antigens to CD8+ T cells (Asano

et al., 2011; Martinez-Pomares and Gordon, 2012; Ohnishi

et al., 2013). We observed that in most subsets CD169 was

co-expressed with CD163, CD204, or CD206. This raises the

question of whether CD169 has anti-tumorigenic functions

in ccRCC.

As a first step toward understanding the functional diversity of

these TAM phenotypes, we studied their relationships with other

immune cell populations and to clinical data.We observed a rela-

tionship between the immunosuppressed T cell compartment,

characterized by high levels of PD-1-expressing CD8+ T cells

and a high frequency of regulatory CD4+ T cells, and the M-5

TAM subpopulation. The specificity of this TAM cluster is mostly
s M-5, M-11, and M-13.

genes in control (n = 11) and M-5 (n = 6) macrophage populations. Mann-

, and DNA (white). Arrows in selected area highlight cells positive for CD68 and



due to the expression of CD38. Depletion or inhibition of CD38

slows progression of glioblastoma in animal models (Blacher

et al., 2015; Levy et al., 2012), and CD38-positive myeloid-

derived suppressor cells suppress T cell activity and promote tu-

mor growth in esophageal cancer models (Karakasheva et al.,

2015). Our results demonstrate that CD38 expression is not

restricted tomyeloid-derived suppressor cells but is also present

on TAM subsets. The cluster M-13, which shares most features

with M-5 but does not express CD38, does not show any asso-

ciation with immunosuppression. This suggests that CD38 has

an important role in modulating T cell activity.

The correspondence analysis performed on all immune cell

subsets demonstrated that taking into consideration the fre-

quencies of all immune infiltrates provides a more powerful

way to predict patient outcome than does looking at subsets

individually. We observed that the frequencies of the M-11,

M-13, and M-5 TAM subsets showed a relationship with pro-

gression-free survival. Specifically, patients whose TMEs had

higher frequencies of M-11 and/or M-13 and lower frequencies

of M-5 had shorter progression-free survival.

Our study has limitations. First, mass cytometry relies on high-

quality, informative antibodies. The TAM panel is based on an

antibody screen against human monocyte-derived macro-

phages andmight be biased toward these in vitro polarized cells.

Second, we analyzed dissociated ccRCC biopsy samples, and

thus we cannot distinguish immune cell phenotypes specific to

the tumor from those specific to healthy adjacent tissue and ves-

sels. Third, the presented immune cell phenotypes are based on

single-cell measurements coupled to computational analysis.

Our approach recapitulated the known immune landscape, but

follow-up studies to define roles of the phenotypes identified

here are needed. The question of what should ultimately be

defined as a cell type must be resolved. Fourth, cell phenotype

correlations and associations with clinical outcome are based

on a cohort of 73 patients and five matched healthy samples.

Larger and independent cohorts need to be analyzed to yield

statistical power sufficient to identify relationships between clin-

ical outcome and additional immune phenotypes (e.g., previous

work proposed that exhausted T cells correlate with outcome

(Kang et al., 2013)) and to confirm the relationships proposed

in our study. Clinical trials are needed to assess the value of tar-

geting phenotypes described in this study. Fifth, highly multi-

plexed tissue imaging is necessary to determine whether cell

type frequency correlations are reflections of direct cell-cell in-

teractions (Giesen et al., 2014). However, given the influence of

the tissue milieu over space and time on tissue-resident cells,

the influence of one cell type on another cell type does not

necessarily depend on direct cell-cell interactions.

Our fine-grained analysis of the immune cells in the ccRCC

TME revealed well-defined TAM and T cell phenotypes and

showed that distinct subsets are associated with clinical

outcome. Immunotherapy targeting immune checkpoints is

revolutionizing cancer treatment but only for subsets of patients.

The mechanisms of treatment failures are poorly understood,

and monophasic biomarkers such as PD-L1 (CD274) expression

do not identify all responders. The first step in improving immu-

notherapies and supporting the development of novel treat-

ments is to map immune cell infiltrate of tumors and to study
the relationships among these cells. The immune cell atlas re-

ported here will provide a valuable resource to accelerate

research in this direction.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

CD8a (RPA-T8) – purified Biolegend Cat# 301002

CD64 (10.1) – purified Biolegend Cat# 305002

CD38 (HIT2) – purified Biolegend Cat# 303502

CD68 (Y1/82A) – purified Biolegend Cat# 333802

CD36 (5-271) – purified Biolegend Cat# 336215

CD71 (CY1G4) – purified Biolegend Cat# 334102

CD20 (H1(FB1)) – purified Becton Dickinson Cat# 555677

CD206 (15-2) – purified Biolegend Cat# 321112

CD13 (WM15) – purified Biolegend Cat# 301702

CD204 (351615) – purified R&D Systems Cat# MAB2708

CD123 (6H6) – purified Biolegend Cat# 306002

CD11b (M1/70) – purified Biolegend Cat# 101202

CD40 (5c3) – purified eBioscience Cat# 14-0409

Slamf7 (162.1) – purified Biolegend Cat# 331802

CD273/PD-L2 (MIH18) – purified Biolegend Cat# 345502

Neuropilin/CD304 (446921) – purified R&D Systems Cat# MAB38701

CD82 (ASL-24) – purified Biolegend Cat# 342102

CD274/PD-L1 (130021) – purified R&D Systems Cat# MAB1561

CD274/PD-L1 (E1L3N) – purified Cell Signaling Technologies Cat# 13684S

CD119 (GIR-208) – purified Biolegend Cat# 308604

CXCR4 (12G5) – purified Biolegend Cat# 306502

CD279/PD-1 (EH12.2H7) – purified Biolegend Cat# 329902

CD7 (M-T701) – purified Becton Dickinson Cat# 555359

CD4 (RPA-T4) – purified Biolegend Cat# 300516

CD32 (FUN-2) – purified Biolegend Cat# 303202

CD16 (3G8) – purified Biolegend Cat# 302002

CD14 (RMO52) – purified Beckman Coulter Cat# IM2580U

CD163 (GHI/61) – purified Biolegend Cat# 333602

CD169 (7-239) – purified Biolegend Cat# 346002

CD86 (233(FUN-1)) – purified Becton Dickinson Cat# 555655

HLA-ABC (W6/32) – purified Biolegend Cat# 311402

CD81 (5A6) – purified Biolegend Cat# 349502

CD88 (S5/1) – purified Biolegend Cat# 344302

HLA-DR (L243) – purified Biolegend Cat# 307602

CD54 (HA58) – purified Biolegend Cat# 353102

CD15 (HI98) – purified Biolegend Cat# 301902

CD80 (2D10) – purified Biolegend Cat# 305202

CD28 (CD28.2) – purified eBioscience Cat# 16-0289

Tim-3 (F38-2E2) – purified Biolegend Cat# 345035

LAG-3 (333210) – purified R&D Systems Cat# MAB23193

CTLA-4 (L3D10) – purified Biolegend Cat# 349902

CD278/ICOS (C398.4A) – purified Biolegend Cat# 313502

CD134/OX40 (Ber-ACT35) – purified Biolegend Cat# 350002

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

4-1BB ((4B4-1) – purified Biolegend Cat# 309802

GITR (621) – purified Biolegend Cat# 311602

CD3 (UCHT1) – purified Biolegend Cat# 300402

CD25 (M-A251) – purified Biolegend Cat# 356102

Ki-67 (8D5) – purified Cell Signaling Technologies Cat# 9449

CD45 (HI30) – purified Biolegend Cat# 304002

CD45RA (HI100) – purified Biolegend Cat# 304102

CD11c (Bu15) – purified Biolegend Cat# 337221

CD127 (A019D5) – purified Biolegend Cat# 351302

Foxp3 (PCH101) - Dy162 Fluidigm Cat# 3162011A

CD197/CCR7 (G043H7) - Sm159 Fluidigm Cat# 3159003A

CD38 (EPR4106) – purified Abcam Cat# ab176886

Foxp3 (236A/E7) – purified eBioscience Cat# 14-4777-82

PD-1 (D4W2J) – purified Cell Signaling Cat# 86163S

CD8 (4B11) – purified Bio-Rad Cat# MCA1817T

Anti-mouse IgG1, 2a, 3 (Fc fragment) - HRP Jackson Immuno Cat# 115-035-164

anti-goat IgG (H+L) - HRP SantaCruz Cat# sc-2020

anti-rabbit IgG (minimal x-reactivity) - HRP Biolegend Cat# 406401

Biological Samples

Buffy Coat Zurich Blood Transfusion Service N/A

Clear cell renal cell carcinoma samples University Health Network (UHN)

Biospecimen Sciences Program

and the Cooperative Health

Tissue Network (CHTN)

N/A

Chemicals, Peptides, and Recombinant Proteins

M-CSF PeproTech Cat# 300-25

LPS Sigmal Aldrich Cat# L2654

IL10 Peprotech Cat# 200-10

Ovalbumin Sigma Aldrich Cat# C6534

a-chicken Sigma Aldrich Cat# A5503

Paraformaldehyde Electron Microscopy Sciences Cat# 15710

Alexa Fluor 700 NHS Ester Molecular Probes Cat# 20010

Alexa Fluor 750 NHS Ester Molecular Probes Cat# 20011

Monocyte isolation Kit Miltenyi Biotech Cat# 130-096-537

Bromoacetamidobenzyl-EDTA (BABE) Dojindo Laboratories Cat# B437-10

Maleimido mono amide DOTA (mDOTA) Macrocyclics Cat# B-272

Cisplatin Fluidigm Cat# 201064

Iridium Fluidigm Cat# 201192A

Maxpar X8 Multimetal labeling kit Fluidigm Cat# 201300

Lanthanide (III) metal isotopes as

chloride salts

Fluidigm N/A

FcR Blocking Reagent, human Miltenyi Biotech Cat# 130-059-901

Zombie NIR dye Biolegend Cat# 423105

Trilogy buffer CellMarque Cat# 920P-04

Critical Commercial Assays

LEGENDScreen Human Cell Screening

(PE) Kit

Biolegend cat # 700001

SMARTer Stranded Total RNA-Seq

Kit - Pico Input Mammalian

ThermoFischer Cat# KIT0204

(Continued on next page)

Cell 169, 736–749.e1–e7, May 4, 2017 e2



Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

High Sensitivity NGS Fragment Analysis Kit Advanced Analytical Cat# DNF-474

Opal 7-Color Fluorescent IHC Kit PerkinElmer Cat# OP7DS1001KT

Deposited Data

RNA-sequencing data This paper ArrayExpress: E-MTAB-5640

Mass cytometry data This paper https://premium.cytobank.org/cytobank/projects/875

Software and Algorithms

FlowJo v10.0.7 N/A https://www.flowjo.com/

Cytobank Kotecha et al., 2010 https://www.cytobank.org/

Concatenation tool Cytobank https://support.cytobank.org/hc/en-us/articles/

206336147-FCS-file-concatenation-tool

Normalizer Finck et al., 2013 https://github.com/nolanlab/bead-normalization/

releases

Single cell debarcoder Zunder et al., 2015 https://github.com/nolanlab/single-cell-debarcoder

t-SNE van der Maaten and Hinton, 2008 https://github.com/jkrijthe/Rtsne

PhenoGraph Levine et al., 2015 https://github.com/jacoblevine/PhenoGraph

Diffusion map Angerer et al., 2016 https://cran.r-project.org/web/packages/

diffusionMap/index.html

Correspondence Analysis Härdle and Simar, 2003 https://gist.github.com/jacoblevine/

2e91ff5ccad671d4ba716c3f941ec296

Lifelines Davidson-Pilon, 2016 https://github.com/CamDavidsonPilon/lifelines/

Survival (R package) N/A https://cran.r-project.org/web/packages/survival/

index.html

STAR 2.5.2b Dobin et al., 2013 https://github.com/alexdobin/STAR

fastq-screen 0.9.5 N/A http://www.bioinformatics.babraham.ac.uk/projects/

fastq_screen/

QuasR 1.14.0 Gaidatzis et al., 2015 http://bioconductor.org/packages/release/bioc/html/

QuasR.html

edgeR 3.16.5 Robinson et al., 2010 https://bioconductor.org/packages/release/bioc/

html/edgeR.html

R 3.3.2 R Development Core Team, 2015 https://www.R-project.org
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by Lead Contact Bernd Bod-

enmiller (bernd.bodenmiller@imls.uzh.ch).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Buffy coats from healthy donors were obtained from the Zurich Blood Transfusion Service. Primary ccRCC tissue samples were ob-

tained from the University Health Network (UHN) Biospecimen Sciences Program and from the Cooperative Health Tissue Network

(CHTN) from patients providing written consent under UHN Research Ethics Board approval, protocol #09-0828-T. Tumor grades

were histologically determined by a pathologist and are reported in Table S1. 78 samples grouped as normal kidney (n = 5),

grade I (n = 5), grade II (n = 34), grade III (n = 22), grade IV (n = 8) and metastasis (n = 4) were used in this study. Further clinical

data were available only for the 47 tumor samples collected via the UHN, since additional clinical information associated to the

CHTN samples could not be retrieved. 15 tumors were collected fromwomen and 32 frommen. 14 samples were from patients under

60, 16 from patients between 60 and 70 and 17 from patients above 70.

METHOD DETAILS

MDM Culture
Monocytes were isolated by histopaque (Sigma Aldrich) density gradient centrifugation followed by a MACS purification using the

pan monocyte isolation kit (Miltenyi Biotech) according to manufacturer’s instructions. Monocytes were differentiated into immature
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macrophages by culture for 5 days in 75-cm2 tissue culture dishes in presence of 30 ng/ml M-CSF (PeproTech). Cells were subse-

quently polarized for 24 hr as indicated in Table S2. For mass cytometry analysis, cells were stained for viability with 10 mM cisplatin

(Enzo Life Sciences) in a 1 min pulse before quenching with 10% FBS as previously described (Fienberg et al., 2012). Cells were then

fixed with 1.6% paraformaldehyde (Electron Microscopy Sciences) for 10 min at room temperature and stored at �80�C.

Fluorescence Cell Barcoding and Antibody Screening
Fixed MDM populations were barcoded with 0, 0.01, 0.1, or 1 mg/ml Alexa Fluor 700 carboxylic acid, succinimidyl ester (Molecular

Probes) and 0, 0.1, or 10 mg/ml of Alexa Fluor 750 carboxylic acid, succinimidyl ester (Molecular Probes) as previously described

(Krutzik and Nolan, 2006). The combined samples were screened with the BioLegend human cell screening kit containing 342

pre-titrated PE-conjugated antibodies arrayed on four 96-well plates according to manufacturer’s instructions. Immediately after

staining, data were acquired on a Canto II (BD Biosciences) using the auto sampler. We identified 87 differentially expressedmarkers

(Figure S1B), and a subset of these was selected for the TAM panel (Figure 1C).

Tumor and Standard Sample Preparation
Tumor samples were digested to generate single-cell suspensions as previously described (Gedye and Ailles, 2013). Cells were then

viably frozen in 10% DMSO in D-SDCM complemented with 10% FBS. Cryopreserved cells were resuscitated for mass cytometry

analyses by rapid thawing and slow dilution. Cells were stained for viability, fixed, and stored as indicated for MDMs. A standard was

generated bymixing PBMCswith three populations ofmonocytes obtained after activation with LPS, with LPS and immune complex,

and with IL-10 in a 3:1:1:1 ratio.

Gadolinium Contamination Test
Some patients were scanned during diagnosis with magnetic resonance imaging using a gadolinium-containing contrast agent. To

identify samples positive for gadolinium, a small aliquot of each sample was collected after fixation and analyzed individually in the

mass cytometer.

Mass Cytometry Barcoding
To ensure homogeneous staining, 0.3 3 106 to 0.8 3 106 cells from each tumor sample were barcoded using a 20-well barcoding

scheme consisting of unique combinations of three out of six barcoding reagents as previously described (Zunder et al., 2015).

Four palladium isotopes (104Pd, 106Pd, 108Pd, and 110Pd, Fluidigm) were conjugated to bromoacetamidobenzyl-EDTA (BABE) and

two indium isotopes (113In and 115In, Fluidigm) were conjugated to 1,4,7,10-tetraazacy-clododecane-1,4,7-tris-acetic acid 10-

maleimide ethylacetamide (mDOTA) following standard procedures (Zivanovic et al., 2013). Mass tag barcoding reagents were

titrated to ensure an equivalent staining for each reagent, and the final concentrations were between 50 nM and 200 nM. Cells

were barcoded using the transient partial permeabilization protocol (Behbehani et al., 2014). The samples were grouped as gadolin-

ium-positive and gadolinium-negative, and samples were randomly loaded in five 96-well plates. One standard sample was loaded in

one well of each plate. Cells were washed with 0.03% saponin in PBS (Sigma Aldrich) and incubated for 30 min with 200 mL of mass

tag barcoding reagents. Cells were washed twice with PBS-S and twice with cell staining medium (CSM, PBS with 0.5% bovine

serum albumin and 0.02% sodium azide). At this point, samples from each plate were pooled and split into two tubes for subsequent

cell staining with the two antibody panels.

Antibodies and Antibody Labeling
Provider, clone, andmetal tag of each antibody used in this study are listed in Table S2. Antibody labeling with the indicatedmetal tag

was performed using the MaxPAR antibody conjugation kit (Fluidigm). The concentration of each antibody was assessed after metal

conjugation using a Nanodrop (Thermo Scientific). The concentration was adjusted to 200 mg/ml in Candor Antibody Stabilizer. Con-

jugated antibodies were titrated for optimal concentration for use. All antibodies used in this study were managed using the cloud-

based platform AirLab (Catena et al., 2016).

Antibody Staining
After barcoding, pooled cells were incubated with FcR blocking reagent (Miltenyi Biotech) for 10 min at 4�C. Samples were stained

with 300 ml of the antibody panel per 107 cells for 20 min at 4�C. Cells were washed twice in CSM and resuspended in 1 mL of nucleic

acid Ir-Intercalator (Fluidigm) for 1 hr at room temperature. Cells were then washed once in CSM, once in PBS, and twice in water.

Cells were then diluted to 0.53 106 cells/ml in H2O containing 10% of EQ Four Element Calibration Beads (Fluidigm). Samples were

acquired on a CyTOF 2mass cytometer (TAM panel) and a Helios upgraded CyTOF 2 (T cell panel). Individual .fcs files collected from

each set of samples were concatenated using the .fcs concatenation tool from Cytobank, and data were normalized using the

executable MATLAB version of the Normalizer tool (Finck et al., 2013). Individual samples were debarcoded using the executable

MATLAB version of the single-cell debarcoder tool (Zunder et al., 2015).
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Cell Sorting, RNA Extraction and Deep Sequencing
M-5, control macrophages, PD-1- and CD8+/PD-1+ cells were isolated from tumor samples enriched for those subsets (Table S3).

Viably frozen samples were resuscitated as previously described, incubated with the Zombie NIR dye (Biolegend) for dead cell exclu-

sion for 15min at room temperature, blocked with FcR blocking reagent (Miltenyi Biotech) for 10min at 4�C, and stained for 30 min at

4�C with the antibodies indicated in Table S3. As shown in Figures S4C and S7B, cell subsets were sorted as CD14+/HLA-DR+/

CD204-/CD38-/CD206- (Control) and CD14+/HLA-DR+/CD204+/CD38+/CD206- (M-5), CD3+/CD8+/PD-1- (CD8+/PD-1- T cells) and

CD3+/CD8+/PD-1+ (CD8+/ PD-1+ T cells) using a 100-mm nozzle on a FACS Aria III 5L Cell sorter. Cells were harvested in RPMI-

FBS (10%) medium and immediately used for RNA purification using the PicoPure RNA Isolation Kit (ThermoFischer) according to

manufacturer’s instructions. RNA was resuspended in 15 mL of elution buffer, quality-checked on the Bioanalyzer instrument (Agilent

Technologies) using the RNA 6000 Pico Chip (Agilent Technologies), and quantified by fluorometry using Quant-iT RiboGreen RNA

Assay Kit (Life Technologies). Of each sample, 4 ng RNAwas used to generate the sequencing libraries using the SMARTer Stranded

Total RNA-Seq Kit - Pico Input Mammalian (Takara Bio) and Nextera XT (Illumina) according to manufacturer’s instructions. Libraries

were quality-checked on the Fragment Analyzer (Advanced Analytical) using the High Sensitivity NGS Fragment Analysis Kit

(Advanced Analytical). Libraries were pooled and sequenced SR75 on a NextSeq 500 system (Illumina) using the High Output Kit

v2 (75 cycles) following the manufacturer’s protocols.

Multiplexed Imaging
Formalin-fixed paraffin embedded sections from M-5 positive and control ccRCC samples were stained using the Opal 7-Color

Fluorescent IHC Kit (PerkinElmer) according to manufacturer’s protocol. Slides were deparaffinized and rehydrated and antigen

retrieved using Trilogy buffer (CellMarque) by autoclaving for 15 min. Slides were treated with 3% H2O2 for 15 min, washed, and

blocked using 4% BSA/PBS/0.1% Triton X-100 (all from Sigma). Primary antibodies and consecutive HRP-conjugated secondary

antibodies (Table S7) were diluted in 1% BSA/PBS/0.1% Triton X-100 and incubated for 1 hr at room temperature. Slides were

then incubated in Amplification diluent containing a tyramide-conjugated fluorophore for 10min. Prior to the second primary antibody

incubation, the slides were heated for 10min in 10mM citric acid, pH 6.0 at 95�C to strip the antibodies of the first staining round. The

protocol was repeated from the blocking step 3 to 4 times to co-stain several markers.

QUANTIFICATION AND STATISTICAL ANALYSIS

Deep sequencing Data Analysis
Sequences were aligned against the human GRCh37/hg19 genome assembly using STAR (Dobin et al., 2013) version 2.5.2b

using parameters:–outFilterType BySJout,–outFilterMultimapNmax 20,–outMultimapperOrder Random,–alignSJoverhangMin

8,–alignSJDBoverhangMin 1,–outFilterMismatchNmax 999,–alignIntronMin 20,–alignIntronMax 1000000,–alignMatesGapMax

1000000,–outSAMmultNmax 1, and–clip5pNbases 3. These parameters will clip the first three bases from each read and align reads

with up to 20 hits in the genome, reporting a single randomly selected hit per read, resulting in average mapping rates of 70% and

95% for uniquely and total mapped reads, respectively, corresponding to an average of 30.5 Mio. aligned reads per sample (ranging

from 22.7 Mio. to 40.9 Mio.). Ribosomal RNA contamination was estimated using fastq-screen version 0.9.5 http://www.

bioinformatics.babraham.ac.uk/projects/fastq_screen/ using a collection of mammalian ribosomal RNA sequences downloaded

from GenBank (https://www.ncbi.nlm.nih.gov/genbank/) and was found to be on average about 4% (ranging from 0.5% to

8.1%). Counts representing gene expression levels were obtained using the qCount function from the QuasR Bioconductor

package (Gaidatzis et al., 2015) with parameters reportLevel = ’’gene,’’ orientation = ’’same’’ and gene annotation from the

TxDb.Hsapiens.UCSC.hg19.knownGene package, which counts all reads that overlap with any exon from a gene on the sense

strand. Differentially expressed genes were identified using the edgeR bioconductor package (Robinson et al., 2010), specifically

the quasi-likelihood generalized linear model framework (Lun et al., 2016)

To control for possible patient effects that would similarly affect all cell populations isolated from the same patient donor and

confound the comparison of cell populations across patients, we fit the data using glmQLFit and a model of the form �0 + cell.

population + patient. In this model, the resulting coefficient cell.population represents average gene expression of each cell popu-

lation, whereas patient-specific effects are absorbed by the patient coefficient. For visualization, normalized gene expression levels

were calculated as read per kilobase andmillion as: rpkmg,i = ng,i /Ni *10
6 /lg *10

3, where ng,i is the read count for gene g in sample i,Ni

the total number of read counts for all genes in sample i, and lg is the number of exonic bases in gene g.

Mass Cytometry Data Analysis
Files (.fcs) were uploaded into Cytobank, populations of interest were manually gated, and events of interest were exported as .fcs

files. For visualization of biaxial marker expression we used FlowJo. For downstream analysis, .fcs files were loaded into R

(R Development Core Team, 2015). Signal intensities for each channel were arcsinh transformed with a cofactor of 5 (x_transf =

asinh(x/5)). To visualize the high-dimensional data in two dimensions, the t-SNE algorithm was applied on data from 2,000 randomly

selected cells from each sample. The total cell population was used when less than 2,000 cells were available. The R t-SNE package

for Barnes-Hut implementation of t-SNE was used. Data were displayed using the ggplot2 R package (Wickham, 2009).
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To visualize marker expression analyses on t-SNEmaps, the top percentile was excluded, and the maximum intensity was defined

as the 99th percentile. The data from all samples were divided by this value leading to signal intensities ranging between 0 and 1 for

each channel. For hierarchical clustering, pairwise distances between samples were calculated using the Spearman correlation.

Dendrograms were generated using Ward’s method. Heatmaps were displayed in R using the heatmap.2 function from the ggplot

package. Clustering analysis was performed using the Python implementation of PhenoGraph run on all samples simultaneously.

To identify the main cell subsets in the datasets generated with TAM and T cell panels, PhenoGraph was run with the parameter

k, defining the number of nearest neighbors, set to 100 (Levine et al., 2015). Sample #61 was excluded as an outlier for the myeloid

compartment and samples #25 and #17 were excluded due to insufficient immune cell number.

To specifically define the T cell clusters, PhenoGraph was run on the T cell subsets defined in the first PhenoGraph analysis after

principal component analysis preprocessing on the components accounting for 99% of the variance. CD86, CD20, CD206, CD68,

and CD15 were excluded from the analysis to remove markers not expressed on T cells and likely to add noise in the cluster gen-

eration process. CD7 was also excluded from the PhenoGraph clustering since this marker split most clusters into CD7+ and

CD7- fractions without a clear biological meaning and simultaneously reduced the impact of more biologically relevant markers

on the clustering. The parameter k to define the nearest neighbors was set to 100. Because TAM subsets were less well-character-

ized than T cell subsets and because they tend to form less discrete structures in phenotypic space, we deployed a subsampling

procedure in order to identify robust TAM clusters. PhenoGraph was run on 500 random subsamples of the myeloid cells identified

by the initial application of the algorithm (Figure 2C). Each subsample retained 90%of the original cells and the value of the parameter

kwas also set to a random value between 40 and 80 for each subsample. The purpose of this procedure was to identify substructures

that occur consistently despite perturbations to the underlying data and parameter k. In order to obtain a consensus solution based

on these subsamples, each intermediate result was compared using an overlap score, which quantifies how well each result repre-

sents the others. For two partitions A and B, the score is defined as:

S=
X

i;j

ðoi;j � ei;jÞ
Zi;j
where i and j index clusters in A and B and the following quantit
ies are defined:

oi;j =

��AiXBj

��
��AiWBj

��
�1
ei;j =
N jAi j

��Bj

��

jAi j +
��Bj

�� � N�1jAi j
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��
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�� Þ �
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andN is the total number of cells. Note that S= 0 for randomA and
B and S= 1 whenA=B. The intermediate solution with the highest

mean score was taken as the best consensus solution. Because this solution contained cluster assignments for 90% of cells, the

remaining 10% of cells were assigned to clusters using the PhenoGraph classification procedure as previously described (Levine

et al., 2015).

To assess single-cell trajectories among TAMs, we used the R implementation of the diffusion map algorithm destiny (Angerer

et al., 2016). A maximum of 2,000 cells randomly selected from each cluster were included in the analysis. Diffusion distances

were calculated based on arcsinh transformed data (cofactor of 5). The width sigma of the Gaussian kernel was defined using the

heuristic estimation provided in the destiny implementation, the k nearest neighbor was set to 100, and Euclidean distance was

used as a metric.

In order to rank the correlations between immune cell type frequencies across patients while ignoring inflated correlations driven by

individual patients, we report the Pearson correlation coefficient and associated p value corresponding to the worst performing sub-

set of all leave-one-out patient subsets. The correlation was computed for each pair of immune cell types on 73 subsets of samples,

each subset lacking one of each of the 73 samples included in the analysis. The correlation for each cell type pair was then defined as

the result among subsets for which the p value was largest.

Correspondence analysis was performed on a frequency table in which each row represents a patient and each column represents

the frequency of an immune cell type in that patient (Table S6). Calculation of the projections, variance explained, and absolute con-

tributions was performed exactly as described (Härdle and Simar, 2003).

Progression-free survival was defined as the number of days from diagnosis until the first of locoregional recurrence, distant recur-

rence, or death if any of these occurred. Survival analysis was conducted in R and in Python using the ‘survival’ and ‘lifelines’ libraries,

for Cox proportional hazards regression and Kaplan-Meier analysis, respectively (Davidson-Pilon, 2016). The association between

CA score and progression-free survival was assessed in several contexts. First, each of the first 25 component scores—accounting
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collectively for 98% of the variance in the co-association structure of the data—was tested in a univariate context (with age and

gender included as possible confounding variables); only CA-2 was significant in this setting (p = 0.006). Next, we considered multi-

variate models including up to six CA components; CA-2 was the only component associated with progression-free survival in any

context (Table S6). The same statistical analyses were repeated after exclusion of patient ID #53 who died from acute myeloid leu-

kemia. The association between CA-2 and progression-free survival was the only significant relationship in any univariate context

(with age and gender included as possible confounding variables) and in a multivariate context until and including CA-3 (Table

S6). The dataset was under-powered to include stage and grade in the regression models, but an in-depth assessment of the seven

patients highlighted for Kaplan-Meier analysis did not reveal a common covariate—such as stage or grade—that might explain the

association with progression-free survival.

DATA AND SOFTWARE AVAILABILITY

The accession number for the sequencing data reported in this paper is ArrayExpress: E-MTAB-5640, and the mass cytometry data

are accessible from https://premium.cytobank.org/cytobank/projects/875. All data can be downloaded from http://www.
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Figure S1. Comparison of FACS and Mass Cytometry Analyses, Related to Figure 1

(A) Scheme illustrating the in vitro system used to generate the monocyte-derived macrophage (MDM) populations from monocytes isolated from the blood of

healthy donors.

(B) Heatmap showing themean expression of the indicated surface markers among the different MDMs and bloodmonocyte populations. Only markers showing

a 2-fold change among the MDM populations were included.

(C) Correlations between FACS and mass cytometry measurements for the 33 antibodies present both in the mass cytometry antibody panel and in the cell

surface flow cytometry antibody screen were assessed using a linear regression model. The coefficient of determination R2 and the linear model are shown for

each antibody. MFI, mean fluorescent intensity; MC, metal count.
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Figure S2. Consistency of Mass Cytometry Data, Related to Figure 2

(A) Schematic representation of the experimental approach used to stain cells from all normal and patient samples with two antibody panels after barcoding on

five plates.

(B) t-SNE maps derived from the standard cells measured on each of the five plates after staining with the T cell panel (upper panel) and the TAM panel

(lower panel).

(C) Histogram overlays showing the expression of the markers included in the TAM and T cell panels on the standard cells measured on each of the five plates.

Only markers with positive expression on the standard cells are shown.

(D) Gating strategy to identify cells (upper panel), live cells (middle panel), and gadolinium-negative cells (lower panel).
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Figure S3. Consistency between Immune Populations Identified Using TAM and T Cell Panels, Related to Figure 2

(A) t-SNE map showing the expression of each marker included in the T cell panel after a 0 to 1 normalization based on the 99th percentile.

(B) t-SNE map showing the expression of each marker included in the TAM cell panel after a 0 to 1 normalization based on the 99th percentile.

(C) Scatterplot showing the frequencies of the indicated populations identified with the T cell panel (upper panel) and with the TAM panel (lower panel) for sample

26, which was loaded in duplicate on two different plates.

(D) Scatterplots showing the correlations for the indicated immune cell population frequencies established by automatic cell detection based on the T cell panel

and the TAM panel. For each relationship, the R2 and the linear models are indicated. DC, dendritic cells, pDC, plasmacytoid dendritic cells, NK, natural killer.
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Figure S4. In-Depth Characterization of T Cell Subsets, Related to Figure 3

(A) Histogram showing PD-1 expression on FACS-analyzed CD8 T cells identified as live cells, CD45+, CD3+, and CD8+ (top panel). The expression of CD38

among PD-1� and PD-1+ cells is shown as overlaid histograms (bottom panel).

(B) Dot plot showing the correlation between CD38 and PD-1 expression on 14 different PD-1+ CD8 T cell populations analyzed by FACS and gated as described

in (A).

(C) Scatterplots showing the gating strategy used to sort CD8+/PD-1� and CD8+/PD-1+ cells.

(D) Boxplots showing the reads per kilobase of transcript per million mapped reads (rpkm) for PD-1 (PDCD1) and CD38 based on 6 samples of CD8+/PD-1+ and

CD8+/PD-1- sorted cells analyzed by RNA-seq. The p values calculated with a Mann-Whitney-Wilcoxon test are shown.

(E) Boxplots showing the frequencies of the different T cell clusters by ccRCC grade and in normal and metastatic tissues.
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Figure S5. In-Depth Characterization of TAM Subsets, Related to Figure 4

(A) Contour plots showing the expression of the indicated markers for blood monocytes and the indicated TAM clusters.

(B) Histogram overlays showing expression levels of the indicated proteins on the surface of CD16- monocytes (blue) and CD16+ monocytes (red) isolated from

the blood of a healthy donor.

(C and D) Diffusionmaps showing the clustersM-1 andM-14 and the clusters constituting the groups I (C) and II (D) of branch three as defined in Figure 3D in three

dimensional space defined by the first (DC1), second (DC2), and third (DC3) diffusion components.

(E) Boxplots showing the frequencies of the different T cell clusters by ccRCC grade and in normal and metastatic tissues.
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Figure S6. Variability across CD4+ and CD8+ T Cell and TAM Compartments, Related to Figure 5

Violin plot showing the Kullback-Leibler divergence computed for each patient for CD4+ and CD8+ T cell and TAM compartments. The Welsch t test was used to

calculate differences between means, and the p value is shown for each relationship.
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Figure S7. FACS Isolation of Macrophage Subsets and Deep-Sequencing Results, Related to Figure 6

(A) Scatterplots showing the relationships between pairs of phenotypically similar CD4+ and CD8+ subsets (see Figure 3D). For each relationship, the Pearson

correlation score and the p value are indicated. The linear model describing the relationship is depicted as a blue line.

(B) Contour plots showing the gating strategy used to sort CD14+/HLA-DR+/CD204�/CD38�/CD206� (Control) and CD14+/HLA-DR+/CD204+/CD38+/CD206�

(M-5) macrophage populations.

(C) Boxplots comparing the expression levels of the 30 macrophage-specific markers present in the TAM panel as assessed by mass cytometry (Protein) and by

deep sequencing (mRNA). The surface phenotypes of the manually gated M-5 population (CD68+/HLA-DR+/CD204+/CD38+/CD206�) and the PhenoGraph

identified M-5 cluster in the 6 populations used for deep sequencing were compared (M-5 gated versus M-5 PG cluster) highlighting the consistency of the

different analysis modalities.

(D) Boxplots showing the expression level of the indicated genes in control (n = 11) and M-5 (n = 6) macrophage populations as assessed by deep sequencing.

The p values calculated using a Mann-Whitney-Wilcoxon test are shown.

(E) Another antibody clone against CD274 provides a higher dynamic range and recapitulates the expression difference observed in (C). Top: Contour plot

showing the gating strategy to identify CD68+/CD204+/CD38+ macrophage and CD68+/CD204�/CD38� control cells. Middle: Histogram overlay showing the

expression of CD274 in control versus M-5 macrophage populations. Bottom: Boxplot showing the median intensity of CD274 on control cells (n = 6) and M-5

(n = 6) macrophage populations.


