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Abstract 

Pulse imperfections like pulse transients and radio-frequency field maladjustment or 

inhomogeneity are the main sources of performance degradation and limited reproducibility 

in solid-state NMR experiments. We quantitatively analyze the influence of such 

imperfections on the performance of symmetry-based pulse sequences and describe how 

they can be compensated. Based on a triple-mode Floquet analysis, we develop a theoretical 

description of symmetry-based dipolar recoupling sequences, in particular R26 , calculating 

first- and second-order effective Hamiltonians using real pulse shapes. We discuss the 

various origins of effective fields, namely pulse transients, deviation from the ideal flip angle, 

and fictitious fields, and develop strategies to counteract them for the restoration of full 

transfer efficiency. We compare experimental applications of transient-compensated pulses 

and an asynchronous implementation of the sequence to a super cycle, SR26, which is 

known to be efficient in compensating higher-order error terms. We are able to show the 

superiority of R26 compared to the super cycle, SR26, given the ability to reduce 

experimental error on the pulse sequence by pulse-transient compensation and a complete 

theoretical understanding of the sequence. 
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Introduction 

Solid-state nuclear magnetic resonance (NMR) spectroscopy relies on magic-angle spinning 

(MAS) to increase the resolution and sensitivity by averaging anisotropic interactions. To 

reintroduce such interactions, which contain structural information, one often applies radio-

frequency (rf) pulse sequences to interfere with the averaging by MAS. The dipolar coupling, 

in particular, contains direct and valuable structure information because the dipolar coupling 

constant scales with the inverse cube of the internuclear distance.1,2 A large number of 

dipolar recoupling sequences exist for the determination of dipolar couplings under MAS.3–6 

These methods give information on qualitative internuclear proximity and, in some cases, 

quantitative distance restraints. In addition, dipolar-recoupling sequences allow the excitation 

of multiple-quantum coherences, providing information on torsion angles.7,8  

Symmetry-based dipolar-recoupling sequences (so called C  and R  sequences)9 allow 

for a selective recoupling of certain terms in the dipolar Hamiltonian and have been used to 

determine distances up to a 5 Å for isolated 13C-13C spin pairs.10 Important properties of these 

sequences are  encoding and robustness towards pulse error terms and rf inhomogeneity.9 

The property of  encoding implies that the first-order effective Hamiltonian is only phase 

modulated by the third Euler angle with respect to the laboratory frame, . This leads to high 

double-quantum recoupling efficiencies with a theoretical maximum of 73% for the first 

transient. In practice, such a high efficiency is usually unachievable, due to higher-order error 

terms contributing to the Hamiltonian and experimental artefacts including pulse 

imperfections due to pulse transients.11  

Pulse transients are a consequence of the finite bandwidth of the resonance circuit in the 

probe as well as an impedance mismatch of the electrical components in the experimental 

setup. In practice, significant deviations between the ideal pulses, usually programmed as 

square pulses, and the actual B1 field are observed. These deviations are most prominent at 

points where sudden changes of the amplitude or the phase of the rf pulse happen, as is 

required for symmetry-based sequences. Several analytical models to describe transients 
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have been proposed in the literature. They are characterized by a time constant for the finite 

build-up time, , and an “electronic” offset frequency, .11 The deviation of the rising 

edge of an isolated, ideal pulse is described by Eq. (1), following the model in Ref. 11. 

∗ 1 exp ∗ exp  (1)

In linear approximation, the deviations for back-to-back pulses are modelled as a 

superposition of the rising and trailing pulse transients of the two pulses. The pulse transients 

are known to affect the spin trajectories and introduce additional effective fields in the 

Floquet picture leading to a distortion of the effective rotation axes, and ultimately, resulting 

in a significant loss in transfer efficiency. In phase-modulated recoupling sequences like the 

R and C sequences, the biggest effect comes from the effective fields that cause a mismatch 

of the resonance condition between the spin rotation and the sample rotation.12 

Restoring the transfer efficiency requires the compensation of the effective fields generated 

by pulse transients. Several strategies have been proposed focusing on minimizing those 

effective fields. These include special tune-up sequences,13,14 tunable LC circuits,15 

modification of the pulse sequence,16 or transient compensation of the pulses based on 

linear-response theory.12,17–19  

A different, experimentally simpler, compensation of effective fields involves the use of 

super-cycled pulse sequences.20,21 It is known that phase cycling a pulse sequence can 

eliminate some higher-order terms and, therefore, reduces the magnitude of these effective 

fields and increases the dipolar recoupling efficiency. 

In this work, we focus on the symmetry-based double-quantum recoupling sequence R26  

as a model for the symmetry-based sequences and its super-cycled version, denoted as 

SR26 (Figure 1A). It is well known that the super-cycled sequence is more stable and leads 

to more reproducible results at the cost of a loss of  encoding, and hence, a decrease of the 

theoretical transfer efficiency from 73% to 52%. Based on a tri-modal Floquet description we 

show that a first-order analysis of the Hamiltonian is insufficient for a full theoretical 
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understanding due to the magnitude of the second-order error terms.22 We extend the 

theoretical description21 to an analysis of the influence of the CSA-CSA cross terms. We 

adapt the concepts for the asynchronous implementation of symmetry-based pulse 

sequences, recently reported for the POST-C7 sequence, to minimize to second-order 

terms.23,24 Furthermore, we investigate the influence of pulse transients on the sequence and 

show the effect of transient compensation. 

We compare the different ways to compensate the effective fields and discuss advantages 

and disadvantages of them. We show that concepts developed earlier for C-type sequences 

can be extended to R-type sequences. 

 

Figure 1: Schematic representation of the dipolar double-quantum R26-recoupling sequence in a 1D 

experiment. Various implementations are shown with one example as a supercycle SR26 (A) with 

permutation and π-phase shift of the R26 mixing block. The dash symbolizes a phase permutation. 

Different basic R-elements are used to make up the R26 mixing block: (B) R-element consisting of 

http://dx.doi.org/10.1063/1.4989542
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ideal rectangular pulses with composition (π/2)φ(3π/2)φ+π.  (C) Transient compensated R element 

consisting of amplitude-shaped pulses with sine-shaped edges.  

Theory 

The symmetry-based R  sequences are generated from a basic element Rφ that 

implements a  rotation about an axis in the x-y plane.9 The most widely used 

implementations are either a simple  pulse or a composite pulse /2 3 /2  both 

corresponding to a net  rotation. For the complete sequence, /2 RφR‑φ elements are fit 

into n rotor periods with the phase  given as / . The correct selection of symmetry 

coefficients N, n, and  allows for a selective recoupling or decoupling of specific interactions 

based on the rotational properties of their spatial and spin components. A theoretical 

description of these types of sequences is either based on symmetry arguments and 

average-Hamiltonian theory,25 or bi-modal Floquet theory.26–28 The relevant frequencies are 

the MAS frequency , and the modulation frequency of the pulse sequence . In the bi-

modal Floquet description, we assume that the R element corresponds to an ideal inversion 

propagator. In reality, however, a more generalized description has to be applied since pulse 

imperfections in the form of rf-field amplitude missetting or inhomogeneity, or phase 

transients can lead to a deviation from the perfect inversion properties of the R element. As a 

consequence of this, the rf trajectory will no longer be cyclic and the Floquet description has 

to be extended with a third frequency, namely the effective field .29 

For the theoretical description of R , we assume an ideal homonuclear-coupled two-spin 

system (p = 1, 2) with chemical-shift interactions. In spherical-tensor notation the rotating-

frame Hamiltonian is given by 

, , ,
,  (2)

with an arbitrary amplitude- and phase-modulated rf-field Hamiltonian 
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cos φ sin φ . (3)

Here,  represents the time-dependent chemical shift of spin p, ,  the dipolar 

coupling, and  and φ  the amplitude and the phase of an arbitrary pulse sequence, 

respectively. The Floquet analysis is done in an interaction frame of the rf-field Hamiltonian. 

The interaction-frame transformation is defined by the propagator 

exp ′ ′  (4)

with the interaction-frame Hamiltonian given by 

 . (5)

Here,  represents the Dyson time-ordering operator.30 In the general case of a tri-modal 

Floquet description with 0, the interaction-frame Hamiltonian can be written as a 

Fourier series 

, ,ℓ

ℓ

ℓ  (6)

with the Fourier coefficients , ,ℓ 	given by 

, ,ℓ
,
,ℓ

,  (7)

, ,ℓ
, ,

,ℓ
,
,

,
,ℓ

, . (8)

The scaling factors ,
,ℓ  are the Fourier coefficients of the interaction-frame trajectory of the 

,  spherical spin-tensor operators 31 

, , , , ,
,ℓ

ℓ

ℓ  (9)
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and can be calculated analytically for ideal  pulses.27 In the case of real, non-ideal pulses, 

the Fourier coefficients have to be calculated numerically from the interaction-frame 

trajectory. The first-order effective Hamiltonian  is given by 

, , , ,ℓ

, ,ℓ

 (10)

and the second-order effective Hamiltonian  by  

, , , ,ℓ

, ,ℓ

 (11)

with 

, ,ℓ 1
2

, ,

, ,ℓ , , ,

1
2

, ,

, , ℓ  

(12)

at the tri-modal resonance condition 

ℓ 0. (13)

Here, , , ℓ  contains the spin part of the Hamiltonian (commutator terms) scaled with 

the Fourier coefficients ,
,  and ,

, . Note that the denominator in Eq. (12) cannot 

be zero and resonant terms must be excluded.  

In theory, ,  and ℓ  can be any set of integer numbers that fulfills Eq. (13) with the 

strength of the first-order recoupling condition given by the scaling factor ,
,ℓ . For ideal 

pulses where the effective field is zero, one can describe the sequence in a bi-modal Floquet 

picture and the resonance condition of an R  sequence is given by 	 . It can be 

shown that for such ideal R  sequences, the coefficients ,
,  are only non zero for 

/2  with  being an integer that has the same parity as .27 This condition 

yields resonant first-order contributions to the Hamiltonian for R  sequences in a bi-modal 
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Floquet picture given by , ,  (see Eq. (8)). For the R26  sequence relevant 

non-zero terms are  

∓ ,
,
∓

, ,
,   (14)

containing only double-quantum terms. If the pulses do not correspond to an ideal inversion, 

we have to use the full tri-modal picture including the effective field . It can be shown that 

for an R-type sequence, the effective field axis lies close to the z axis and that the selection 

rules for the ideal sequence /2  are still valid and ℓ  has to be fulfilled 

simultaneously, resulting in resonant first-order contributions to the effective Hamiltonian 

given by , ,ℓ , ,ℓ  where ℓ 2 for double-quantum recoupling or ℓ 0 

for zero-quantum recoupling. For the R26  sequence that selectively recouples the double-

quantum terms, the relevant terms are 

∓ , ,∓
,
∓

,
,∓

,
, . (15)

In the presence of an effective field, the resonance condition (Eq. (13)) is slightly shifted 

compared to the ideal case leading to the recoupling Hamiltonian as given in Eq. (15). 

Besides the desired resonant contributions, we also have to discuss the non-resonant error 

terms that can lead to a truncation of the resonant part of the Hamiltonian. In first order, the 

error terms originate from a term directly proportional to the isotropic chemical-shift 

Hamiltonian given by 

, ,
,
,

, . 
(16)

Evaluation of the non-resonant second-order error terms (Eq. (12)) shows that the biggest 

contributions often come from the CSA-CSA cross terms. They are obtained by evaluating 

the commutators in Eq. (12).  
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,
,

,
,

, . 

(17)

For the term , ,  it can be shown using symmetry arguments for the Fourier coefficients 

,
,  that , 0,0  only has contributions for the ,  tensor components and Eq. (17) 

reduces to  

, 0,0 ,
,

,
,

,
,

,
,

, . (18) 

In order to obtain the most efficient recoupling by an R  sequence, the triple-mode 

resonance condition (Eq. (13)) has to be fulfilled and the first-order dipolar scaling factor 

given in Eq. (15) has to be maximized while simultaneously minimizing the first-and second-

order error terms. A similar theoretical descriptions holds true for C sequences and can be 

found in detail in Ref. 16 and 24. In the following we will discuss three approaches for 

optimizing such sequences. 

Numerical Results and Discussion 

The additional effective fields, as discussed above, can be caused by an error in the rf-field 

amplitude (missetting or inhomogeneity), pulse transients induced by the resonant circuit, or 

fictitious fields caused by second-order error terms. The first two sources can be seen in the 

numerical simulations shown in Fig. 2 where the magnitude of the effective fields is plotted 

for the R26  sequence and a super-cycled version, denoted as SR26, as a function of the rf-

field amplitude (Fig. 2A) and the magnitude of the quadrature phase transients (Fig. 2B). The 

influence of rf-field amplitude deviations from the theoretical value on the magnitude of the 

effective fields is negligible for SR26 but significant for R26. In the case of pure in-phase 

pulse transients (amplitude transients,  = 0 kHz), an effective field is present for R26 as 

the amplitude transients induced by the time constant of the pulse leads to an altered flip 

angle (Eq.(1)). The amplitude transients lead to a reduced effective nutation frequency due to 

http://dx.doi.org/10.1063/1.4989542
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the finite rise time of the pulse. The reduction in the effective flip angle is partially 

compensated by the introduction of quadrature phase transients as they also modify the 

effective pulse amplitude. Nevertheless, pure in-phase amplitude transients do not generate 

an effective field for SR26 as the stability towards rf-field amplitude misset is fairly high for 

the super-cycled version and also quadrature phase transients generate only small effective 

fields (Fig. 2B).  

 

Figure 2: The effective fields after a full RN block for R26 (solid blue) and after a full super cycle SR26 

(dashed red) as a function of the rf-field amplitude (A) and the magnitude of phase transients (B). The 

pulse transients were modelled with a constant rise time of 500 ns and variable electronic offset 

frequency (Eq.(1)).  

The effective fields (from either pulse transients of rf-field amplitude errors) lead to a 

detuning of the resonance condition of the R26  sequence resulting in a decreased transfer 

efficiency. There are three possible ways to optimize the transfer efficiency of the pulse 

http://dx.doi.org/10.1063/1.4989542
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sequence by counteracting the detuning caused by the effective fields: (i) asynchronous 

implementation of the R sequence, (ii) the use of super-cycled sequences, and (iii) 

implementation of pulse-transient compensated pulses. All three possible approaches to 

optimize the pulse sequence are explored in the numerical simulations of Fig. 3. An 

experimentally straight-forward way to compensate the impact of effective fields in symmetry-

based recoupling sequences is the breaking of the rotor synchronization of the pulse 

sequence to match the modified resonance condition of Eq. (13). The simplest way to 

achieve this is by a change of the MAS frequency resulting in an asynchronous sequence. 

Numerical simulations of the transfer efficiency as a function of the MAS frequency and the 

rf-field amplitude are shown in Fig. 3A for R26 and Fig. 3B for SR26. The simulations were 

performed for parameters similar to the model compound of doubly 13C-labeled diammonium 

phthalate with 13C-labels at the two carbonyl groups. This substance poses a challenge for 

recoupling sequences due to a rather large CSA tensor (  = 77 ppm and  = 0.68) and an 

intermediate dipolar coupling of ,  = 585 Hz.32  

http://dx.doi.org/10.1063/1.4989542


13 
 

Figure 3: Numerical simulation of double-quantum transfer efficiency as a function of the change of 

the MAS frequency and the rf-amplitude and the magnitude of the phase transients, respectively. The 

simulations were performed with a dipolar coupling of 585 Hz and a chemical-shift anisotropy of 

8.75 kHz. The ideal rf-amplitude  corresponds to a value of 62.5 kHz at a MAS frequency of 

9.615 kHz. A) Transfer efficiency for R26 with ideal rectangular pulses, B) SR26 with ideal rectangular 

pulses, C) R26 with pulse transients ( = 500 ns, variable ) at the ideal rf-amplitude  = 

62.5 kHz. D) SR26 using the same parameters for the pulse transients.  

Figure 3A shows that even for a perfect inversion propagator, corresponding to an rf-field 

strength of 62.5 kHz, there is an effective field for the R26 sequence of 32 Hz which 

originates from the second-order contributions of the CSA tensor and scales roughly 

quadratic with the CSA tensor (see Supporting Information). Optimum recoupling is achieved 

by changing the MAS frequency by the same amount. The total value of the effective field is 

determined by a superposition of the contributions by the second-order cross terms and by 

the altered effective flip angle of the pulses. The simulations show that, despite the 

increasing magnitude of the effective field, almost maximum polarization transfer can be 

achieved over the whole range of rf-field amplitudes by compensating the effective field 

through a change in the MAS frequency. There are many more potential error terms, which 

have been neglected in this description based on the assumption that the CSA terms are 

dominating in our case. There are, for example, also heteronuclear dipole/dipole cross terms 

if the recoupling is done without decoupling. They can be significant for protonated carbons 

due to the large magnitude of the heteronuclear dipolar coupling of directly bound spin pairs. 

In the Supporting Information, Fig. S2, we show simulations to illustrate the effective fields 

generated by heteronuclear dipolar couplings. Under cw proton decoupling, these effective 

fields still exist but are significantly reduced in magnitude. 

A second approach is the application of a super-cycled version of the R sequence. The 

sequence SR2620,21 represents such an implementation which successfully mitigates the 

impact of an effective field by removing second- and some of the higher-order cross terms 

(Fig. 3B). This can be seen from the maximum of the transfer efficiency for perfect inversion 

http://dx.doi.org/10.1063/1.4989542
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pulses at an rf-field strength of 62.5 kHz which is the theoretical value for the applied MAS 

frequency. The super-cycled SR26 sequence also compensates rf-field amplitude missetting 

(Fig. 3B) but at the cost of losing the  encoding of the sequence under MAS. Therefore, the 

maximum transfer efficiency for SR26 is 52%, whereas the maximum transfer for R26 is 

73%. 

Adding analytically modelled pulse transients to the simulations (Fig. 3C and 3D) results in a 

further shift from the theoretical recoupling condition for the R26 sequence. The pulse 

transients were simulated according to the model given in Eq. (1).11 A time constant of  = 

500 ns and a variable offset frequency , corresponding to experimentally observed pulse 

parameters, were used for the simulations. An additional effective field due to the quadrature 

component of the pulse transients is superimposed on the effective field observed using ideal 

rectangular pulses. The best result is observed for high phase transients as the amplitude 

transient deteriorates the effective flip angle which is partially compensated by the 

introduction of phase transients. Analogous calculations for the super cycle SR26 show that 

pulse transients are compensated almost perfectly (Fig. 3D). 

Effective fields generated by a missetting of the rf-field amplitude or the pulse transients can 

directly be influenced by the experimentalist while effective fields generated by second-order 

cross terms are largely determined by the spin system. As discussed above, CSA-CSA cross 

terms are the main source of such effective fields. Their magnitude is shown in Figure 4A as 

a function of the applied rf field and the detuning of the MAS frequency. The cross terms 

were calculated according to Eqs. (12) and (18). The magnitude of the terms is virtually 

unaffected by the MAS frequency but scales nearly linearly with increasing rf-field amplitude. 

Note that the Fourier coefficients in Eq. (18) are almost independent of the MAS frequency. 

For a given rf field the MAS frequency changes the second-order Hamiltonian only through 

the denominator in Eq. (12). The magnitude of the effective fields caused by CSA cross 

terms and the rf-field amplitude missetting matches the detuning of the MAS frequency 

obtained by numerical simulations very well (Fig. 4B). Analogous calculations for the super 
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cycle SR26 yield cross terms that are five orders of magnitude smaller and the effective field 

due to these cross terms can be neglected to very good approximation.   

 

Figure 4: A) The magnitude of the second-order CSA-CSA scaling coefficients for R26-recoupling 

calculated with ideal rectangular pulses as a function of the MAS detuning and the rf-amplitude  at 

an MAS frequency of 9.615 kHz. For the fictitious effective fields, these terms are scaled with the 

coefficients  and  to match the detuning of 32 Hz at an ideal rf-field amplitude. B) The 

fictitious fields from error terms added to the effective field caused by the altered flip angle calculated 

by interaction-frame transformation (blue line). The combined effective field agrees with the MAS 

detuning obtained from numerical simulations (red dots, taken from Figure 3A). 

Numerical simulations and a triple-mode Floquet description of the R26 sequence give 

insight on the contributions to the effective field after one modulation period. The most 

important contributions are the rf-amplitude misset that results in effective fields of up to 

60 Hz for a misset of 10% and pulse transients that add an additional field between 20 and 

100 Hz depending on the magnitude of the amplitude and phase transients. A third 

contribution observed in the numerical simulations is due to the second-order CSA-CSA 
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cross terms. The magnitude of the generated fictitious field depends mainly on the spin 

system.33 It was calculated to be 32 Hz for a CSA tensor of 8.75 kHz.  

Experimental Results and Discussion 

In order to verify the results from numerical simulations, we have experimentally optimized 

the polarization transfer using the three discussed approaches. Diammonium phthalate 

selectively labelled at the carbonyl groups and diluted 1:7 in natural abundance served as a 

model compound. Polarization-transfer curves were measured at a static magnetic field of B0 

= 7.1 T corresponding to a situation with a relatively small CSA tensor (5.25 kHz). In addition, 

measurements at a static magnetic field of 16.6 T were carried out where the influence of the 

CSA tensor is much more important. 

To simulate different experimental conditions, we ran the experiments with three different 

cable lengths between the preamplifier and the probe (setup 1-3, 125 cm, 155 cm, and 

170 cm cable length). The cable length changes the impedance of the resonance circuit if 

any of the electrical components is not perfectly matched. The change of impedance results 

in an alteration of the pulse amplitude and phase. These differences can be seen in  Fig. 5A 

where the B1-field shapes measured in the probe by a pickup coil12 are plotted for a basic 

RφR‑φ element. The B1 shapes seen by the sample differ from each other at the pulse 

discontinuities, strongly affecting the transfer efficiency as can be seen in Fig. 5B where the 

transfer efficiency is plotted as a function of the mixing time and the rf-field amplitude. Only in 

setup 1 significant polarization transfer could be achieved (38%). In both the setups 2 and 3 

less than 12% efficiency was measured. Use of compensated pulses (bottom row in Fig. 5B) 

results in a high reproducibility of the polarization-transfer condition and also higher 

polarization-transfer efficiencies of 36-42%. The recoupling condition for transient-

compensated pulses becomes predictable because the effective fields caused by pulse 

transients are suppressed. The compensation of pulses leads to an almost perfect recovery 

of an inversion propagator for the basic R element without residual effective fields after the 

rotation. 
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Figure 5: Experimental double-quantum transfer efficiency for R26 recoupling at 9.615 kHz MAS in 

doubly 13C labelled phthalate. The external magnetic field was 7.1 T, with a basic R-element 

(π/2)φ(3π/2)φ+π. Decoupling during the R sequence was implemented using cw irradiation with a rf-field 

amplitude of 105 kHz.  A). Measured B1-shapes for conventional hard pulses (top row) and the 

compensated pulses (bottom row). B) Transfer efficiency for three different setups (125 cm, 155 cm, 

and 170 cm cable length) for square pulses (top row) and compensated, amplitude-shaped pulses with 

flip-angle correction (bottom row). C) Analogous measurements as in B) with the super cycle SR26.   

http://dx.doi.org/10.1063/1.4989542
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It is interesting to observe that setup 3, which has the smallest quadrature component, 

shows the worst recoupling performance which agrees with the calculations shown in Fig. 

2B. It is nearly impossible to predict the recoupling performance a priori solely based on the 

shape of the pulse transients. It is by chance that setup 1 showed favorable recoupling 

conditions. The maximum transfer could potentially be further optimized by higher decoupling 

power and a reduction of the B1-field inhomogeneity (restricted sample). Decoupling 

efficiency becomes more important for carbons with directly bound protons. 

The second possible approach is the use of the super-cycled SR26 sequence which partially 

compensates effective fields at the cost of a lower theoretical transfer efficiency. Figure 5C 

shows the transfer efficiency for the SR26 pulse sequence using rectangular pulses and 

transient-compensated pulses. One can clearly see a significant improvement compared to 

the transfer efficiency under the uncompensated R26 sequence (Fig. 5B) and transfer 

efficiencies around 29% are achieved. However, the transfer efficiency of SR26 can still be 

improved to roughly 34% using transient-compensated pulses as can be seen in the bottom 

row of Fig. 5C. The SR26 sequence shows clearly a weaker dependence for the transfer on 

the rf-field amplitude but the transfer efficiencies are significantly lower than in the transient-

compensated R26 sequence. This is due to the loss of  encoding in the SR26 sequence, 

which leads to a reduction in the theoretical transfer efficiency. For the highest transfer 

efficiency, transient-compensated pulses are clearly the better solution even if they currently 

require specialized equipment. 

Transient compensation has not yet been implemented on commercial spectrometers and, 

therefore, can only be performed on a spectrometer after modification of the probe with a 

pick-up coil. If transient compensation is not possible, asynchronous sequences for 

compensating the effective field or super-cycled sequences are an alternative that can be 

used. The asynchronous implementation of the R26 sequence was first investigated at low 

static field (7.1 T), and hence, for a small magnitude of the second-order CSA cross terms. In 

order to implement asynchronous conditions for the sequence, the MAS frequency was 
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varied in steps of 10 Hz from +100 to -100 Hz with respect to the synchronous spinning 

frequency of 9.615 kHz. In addition, the rf-field amplitude was varied independently in order 

to show the effect of an altered effective flip angle. Even for the setup 1 (Fig. 5) with 

favorable pulse transients the transfer efficiency can be improved by 6% to 44% by satisfying 

the asynchronous condition as shown in Fig. 6. 

 

Figure 6: The experimental double-quantum transfer efficiency for ammonium phthalate as a function 

of the MAS frequency detuning and the rf-field amplitude. The theoretical rf-field amplitude is 62.5 kHz 

with a synchronous MAS frequency of 9.615 kHz. The experiments were performed on a 7.1 T magnet 

with a 125 cm cable, corresponding to the setup 1 in Fig. 5. The superposition of the effective field 

generated by the CSA cross terms is obvious as the optimal MAS frequency at the recoupling 

condition is shifted by -20 Hz from the one determined from the symmetry condition.   

In actual NMR applications, measurements are usually performed at high fields for optimum 

sensitivity and spectral resolution. We therefore compare the performance of each 

implementation at a higher static field (16.6 T) with larger second-order CSA contributions 

and without prior knowledge of the actual B1 shapes, i.e., the pulse transients. Asynchronous 

implementation was tested by changing the MAS frequency in order to compensate for the 

combined effective fields from the CSA-CSA cross terms and the pulse transients. The MAS 

frequency was varied from 9.615 (synchronous), to 9.565, and 9.515 kHz while keeping the 

mixing time fixed at the experimentally optimized value. The highest observed transfer 

efficiency of 48% for R26 was found at a MAS detuning of -100 Hz (Fig. 7A) compared to an 
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efficiency of 24% for the synchronous version. For SR26 the highest transfer efficiency of 

38% was found for the synchronous implementation (Fig. 7B) and detuning resulted in 

significantly lower polarization transfer. The super-cycled sequence suppresses the effective 

fields very efficiently and can be implemented without experimental optimization. This is 

achieved, however, at the price of a lower transfer efficiency. Without the knowledge of the 

pulse transients and the magnitude of the CSA tensor, estimation of the required MAS 

detuning is not feasible. The optimization of the asynchronous recoupling condition by 

changing the MAS frequency has to be done experimentally and can be tedious especially 

for samples with low signal-to-noise ratio. As demonstrated in Fig. 7, however even a quick 

scan of the MAS frequency can restore transfer efficiencies for R26, to a value that is higher 

than the ones obtained for synchronous SR26 if the sample yields decent signal intensities. 

 

Figure 7: Experimental transfer for synchronous and asynchronous implementation of R26 (A) and 

SR26 (B), using conventional square pulses at a static magnetic field of 16.6 T. The advantages of the 
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R26 sequence are the higher transfer efficiency for the asynchronous implementation as compared to 

SR26 due to γ-encoding. The advantages of SR26 are the robustness towards second-order 

error-terms and rf-field missetting, making an asynchronous implementation obsolete. The maximum 

transfer for R26 is 48%, whereas the maximum of SR26 corresponds to 38%, as reported in the 

literature.20 

Materials and Methods 

Numerical simulations were performed using the GAMMA spin-simulation environment.34 

Different crystallites were simulated with 300 ZCW orientations for powder averaging.35 The 

MAS frequency was set to 9.615 kHz for all the simulations and analytical calculations. All 

experiments presented were performed at the same MAS frequency, unless stated 

otherwise. Orientations of dipole-dipole and chemical shift tensors were taken from quantum-

mechanical calculations based on the crystal structure of diammonium phthalate.32  

The interaction-frame transformation in the Floquet calculation was done numerically in 

MATLAB using a discrete time-step of 50 ns. Eq. (6) was discretized and it was assumed 

that the rf-field phase and amplitude were constant during the time steps. The Fourier 

coefficients describing the scaling factors and error terms were calculated by Fourier 

transform after transformation into a second rotating frame with the effective field. Finally, a 

conversion from Cartesian to a spherical-tensor representation was performed.  

Phthalic acid-α,α-13C2 was purchased from Isotec. A mixture of unlabeled and labeled sample 

with a ratio of 7:1 was prepared. For the synthesis of the diammonium salt, an excess of 

aqueous ammonia was added and the product was crystallized and purified by lyophilisation. 

The experiments on the 7.1 T magnet (300 MHz proton resonance frequency) were carried 

out on a Bruker Avance III HD spectrometer using a 1.9 mm double-resonance Bruker probe. 

The experiments on the 16.6 T magnet (600 MHz proton resonance frequency) were carried 

out on a Bruker Avance III spectrometer using a 2.5 mm triple-resonance Bruker probe. Both 

rotors were completely filled without sample restriction. Processing was done in Topspin 

(Bruker Biospin, Rheinstetten, Germany) and zeroth- and first-order phase corrections were 
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imposed manually after Fourier transformation. The transfer efficiency was calculated by 

referencing the build-up peak to the source peak at zero mixing time. The transient 

compensation was performed as described in Ref. 12.  

Conclusions  

In symmetry-based R sequences unwanted effective fields are important sources of 

decreased transfer efficiency when measuring intermediate or small couplings because they 

lead to a mismatch of the two-frequency resonance condition. The sources of the effective 

fields can be second-order CSA-CSA cross terms, pulse transients, or a radio-frequency field 

that does not generate the required flip angle. The latter can be due to a missetting of the rf-

field amplitude or due to rf-field inhomogeneity. There are three strategies to compensate the 

effective fields and restore efficient polarization transfer: (i) asynchronous recoupling by 

detuning the spinning frequency, (ii) super-cycled R sequences, and (iii) transient-

compensated pulses. Each of the three methods has different advantages and 

disadvantages. The asynchronous recoupling by a change of the MAS frequency can 

compensate all the three sources of effective fields and leads to the highest transfer 

efficiencies but needs experimental optimization. The super-cycled sequences have 

generally lower efficiencies due to the lack of  encoding but they compensate for all the 

three sources and do not need any optimization. Transient compensation can be 

implemented without experimental optimization and makes the performance of the 

sequences very reproducible but compensate only effective fields originating from pulse 

transients. 

The choice of use of which method or combination of methods to optimize the transfer 

efficiency depends on the capabilities of the spectrometer and the relative magnitude of the 

the three different contributions. On spectrometers with the capability of phase-transient 

compensation, transient-compensated pulses possibly in combination with an asynchronous 

implementation to compensate for the second-order terms leads to the best results. On 

spectrometers without the possibility to do transient compensations, an asynchronous 

http://dx.doi.org/10.1063/1.4989542


23 
 

implementation is the way to go if the S/N allows optimization of the spinning frequency. 

Otherwise super-cycled sequences offer the best chance to obtain reasonable transfer 

efficiencies without the need for experimental optimization. 

Because the best transfer efficiency requires transient compensation, it is hoped that this 

capability will soon be provided by the spectrometer manufactures to make the method more 

generally applicable. 

Supplementary Material 

The supplementary data contains additional figures showing calculations of the Fourier 

coefficients for the R26 sequence, plots showing the influence of other second-order cross 

terms besides CSA-CSA, plots of the measured experimental phase transients, and the 

simulation code used in the paper. 
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