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1 Introduction

A defect in a two-dimensional field theory is a line of inhomogeneity on the surface on which

the theory is defined. In general defect lines carry extra degrees of freedom not inherited

from the bulk, which determine how excitations are transmitted between the theories on

either side.1

1The theories on the two sides of the defect can either be the same or different. In case the theories are

different, defects are sometimes referred to as “interfaces”.
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The theory of defects is closely related to the theory of boundary conditions. Consider

for example two conformal field theories on the complex plane separated by a defect located

along the real line. Folding the plane along this line results in a surface with boundary for

a “doubled theory”, which is given by the theory on the upper half plane tensored by the

conjugate of the theory on the lower half plane [1, 2].

However, compared to boundary conditions, defects have more structure: They can

form junctions, and they can be composed by fusion. Fusion is the process in which two

parallel defects are brought infinitely close together [3–6]. In the limit, a new defect is

created. Of course, taking such a limit is in general a highly singular procedure, which in

special situations simplifies however. Most notably, there are so-called topological defects

that preserve the full diffeomorphism invariance. They can be moved around freely, in

particular without causing any singularities. Hence, they can be fused smoothly.

In the context of supersymmetricN = (2, 2) models one can consider defects preserving

A- or B-type supersymmetry. These defects survive the corresponding topological A- or

B-twists respectively. On the level of the twisted theory, their fusion is regular and defines

a product structure on all such defects [7].

Defects and their fusion have a variety of applications in the context of string theory

and conformal field theory. In the string theory context, it was proposed in [8] that defects

can be used as spectrum generating symmetries. The main idea is that fusion of a conformal

boundary condition describing a D-brane in CFT1 with a topological defect between CFT1

and CFT2, produces a conformal boundary condition in CFT2. Since conformal invariance

is equivalent to the classical string equations, fusion with topological defects creates new

solutions of classical string theory out of given ones.

Certain special defects arise between UV and IR fixed points of quantum field theo-

ries [9]. These defects can be used to describe how boundary conditions behave under the

corresponding renormalization group flows. In this way, defects and their fusion can serve

as an alternative to the perturbative analysis of this problem. This has been made explicit

in the case of N = (2, 2) minimal models in [9].2

In the same spirit, defects can be used to describe D-brane monodromies [11]. Namely,

there are defects associated to exactly marginal bulk deformations as well. Fusion with a

defect associated to a deformation along a closed loop in the bulk moduli space encodes

the effect of the corresponding monodromy on boundary conditions.

But defects are not only useful in the analysis of bulk perturbations of theories with

boundary. They also relate different boundary renormalization group flows [12–14]. The

basic idea is that certain boundary perturbations can be pulled back to the bulk by split-

ting off defects. In the context of WZW models this has been analyzed in [13]. Turning

things around, fusing a perturbed defect with a boundary condition, the defect pertur-

bation descends to a boundary perturbation of the boundary condition emanating from

the fusion. Hence, defect perturbations give rise to classes of perturbations of different

boundary conditions.

2Recently, the paper [10] explored the possibility to use certain topological defects to investigate bulk-

boundary flows on the level of the full conformal field theory.
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Motivated by these observations, in this paper, we will study perturbed defects and

their fusion in N = (2, 2) supersymmetric theories, in particular Landau-Ginzburg models

(see [10, 15, 16] for recent related work in conformal field theory). Special emphasis is put

on the cone construction, which will play a prominent role in the examples we present. In

Landau-Ginzburg models, B-type defects have a convenient realization in terms of matrix

factorizations [7]. Their fusion is regular and essentially given by a tensor product between

Chan-Paton type spaces. Therefore, this framework lends itself easily to the analysis of

fusion of perturbed defects. This will be used to discuss how defect perturbations induce

boundary perturbations in the way alluded to above.

In the case of the Landau-Ginzburg models with one chiral superfield and superpoten-

tial W = xd we establish that all supersymmetry preserving boundary perturbations arise

in this way, i.e. all boundary perturbations can be pulled back into the bulk by means of

defects. The same applies to Zd-orbifolds of these models, and to models which are tensor

products of two identical models. Although we treat it in the Landau-Ginzburg framework,

we expect that the arguments in the latter case generalize to tensor products of arbitrary

N = (2, 2) theories with their conjugates.

In the IR, the Landau-Ginzburg orbifolds with superpotential W = xd are described

by N = 2-supersymmetric minimal models, which are rational conformal field theories

with diagonal3 modular invariants. Thus, in these models we can relate our considerations

to results obtained for diagonal RCFTs. Of course, defect perturbations are much more

difficult to deal with on the level of the full conformal field theory, but some special classes

of perturbations have been treated in [5].

Apart from the induction of boundary perturbations, we use defect perturbations to

construct special classes of defects which show an interesting universal behavior. More

precisely, in any theory there are purely reflective defects which impose fixed boundary

conditions on the two theories on either side, as well as the “trivial” or identity defect.

Between these defects there is a canonical defect changing field, which descends from the

identity field on the boundary condition imposed by the reflective defect. It can be used

to perturb superpositions of reflective and identity defects. We show that the resulting

perturbed defects have the following nice properties.

If the underlying boundary condition is “spherical” in the sense that the BRST-

cohomology of boundary fields on it is two-dimensional and the boundary two-point func-

tions are non-degenerate, then the associated defect is group-like as defined in [17], i.e. the

defect and its dual fuse to the identity defect. Furthermore these defects obey a twisted

commutation relation with respect to fusion.

Moreover, if there is a collection (P1, . . . , Pm) of spherical boundary conditions, such

that there is exactly one BRST-invariant boundary condition changing field between any

neighboring Pi, Pj , |i− j| = 1 and no one between Pi and Pj , |i− j| > 1, i.e. the spherical

boundary conditions form an Am-sequence,4 the associated defects satisfy braid relations

with respect to fusion.

3with respect to B-type supersymmetry
4Examples include the Am chains on K3 surfaces responsible for the non-abelian gauge symmetries of

type II strings.
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We carry out the construction and discussion in the context of Landau-Ginzburg mod-

els, but we expect it to be valid in any N = (2, 2) supersymmetric theory.

In fact, these defects are generalizations of defects describing monodromies around

conifold points [11]. Their fusion with boundary conditions provides a world sheet realiza-

tion of the twist functors introduced in the construction of braid group representations in

the group of autoequivalences of certain categories in [18].

This paper is organized as follows: In section 2 we review the matrix factorization

formalism used to describe B-type defects and boundary conditions in Landau-Ginzburg

models. Section 3 contains a general discussion of perturbed defects and their fusion in

this framework. Section 4 is devoted to the fusion of perturbed defects with boundary

conditions, and the induced boundary perturbations. Finally in section 5 we construct the

universal twist defects and establish that under some conditions their fusion satisfies braid

relations. We provide various classes of examples in which these conditions are satisfied.

2 Brief review of matrix factorizations

In Landau-Ginzburg models, B-type supersymmetric D-branes as well as B-type super-

symmetry preserving defects have an elegant description in terms of matrix factoriza-

tions [7, 19–21], see [22, 23] for reviews.

A matrix factorization P of a polynomial W ∈ C[x1, . . . , xN ] is given by a pair (P1, P0)

of free C[x1, . . . , xN ] modules together with homomorphisms ps : Ps → P(s+1)mod 2 between

them which compose to W times the identity map, i.e. p1p0 = W idP0 and p0p1 = W idP1 .

In the following we will often represent matrix factorizations by

P : P1

p1

⇄
p0

P0 . (2.1)

Sometimes it is useful to regard them as two-periodic twisted5 complexes. Indeed, such

matrix factorizations form a category, with morphisms H∗(P,Q) between two matrix fac-

torizations P and Q given by the cohomology of the Hom-complex of the two twisted

complexes associated to P and Q. The latter is a two-periodic untwisted complex.

H∗(P,Q) = H∗(Hom(P,Q)) ∼= H∗(P ∗ ⊗Q) (2.2)

Here, P ∗ denotes the dual matrix factorization

P ∗ : P ∗
1

p∗0
⇄
−p∗1

P ∗
0 , (2.3)

and the tensor product is the ordinary tensor product of complexes. It will be spelled out

explicitly in (2.10) below.

There are always matrix factorizations with modules Ps = C[x1, . . . , xN ] and with

maps pr = 1 and p(r+1) mod 2 = W . They are trivial in the sense that they only have

zero-morphisms with any other (including themselves) matrix factorization. Two matrix

5The differential squares to W instead of zero.
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factorizations which differ by the addition of such a trivial matrix factorization are equiv-

alent. Indeed, if a matrix representing one of the maps qi of a matrix factorization Q

contains a scalar entry different from zero, such a trivial matrix factorization can always

be split off from Q.

More generally, two matrix factorizations Q and Q′ are equivalent if one can find maps

ui : Qi → Q′
i and vi : Q′

i → Qi such that

q′1 = u0q1v1 , q′0 = u1q0v0 , q1 = v0q
′
1u1 , q0 = v1q

′
0u0 (2.4)

and

v0u0 = idQ0 + χ1q0 + q1χ0 , v1u1 = idQ1 + q0χ1 + χ0q1 , (2.5)

u0v0 = idQ′
0
+ χ′

1q
′
0 + q′1χ

′
0 , u1v1 = idQ′

1
+ q′0χ

′
1 + χ′

0q
′
1 ,

for some χi : Qi → Q(i+1)mod 2 and χ′
i : Q′

i → Q′
(i+1) mod 2.

Physically, the defects constructed using matrix factorizations can be regarded as com-

posites of a defect-anti-defect pair with a tachyon turned on. The data of the matrix

factorization can be summarized in a defect BRST-operator

Q =

(
0 p1

p0 0

)
(2.6)

containing the tachyon profile. This is an operator in End(P1 ⊕ P0), which is odd with

respect to the Z2-grading

σ = idP0 − idP1 . (2.7)

In this language, H(P,Q) is just given by the BRST-cohomology on Hom(P,Q), and the

equivalence relation (2.4) becomes

Q′ = UQV, UV = id′ + {Q, O′}, V U = id + { Q, O} (2.8)

for some O and O′.

As was shown in [19, 20, 24], B-type supersymmetric D-branes in Landau-Ginzburg

models with chiral superfields x1, . . . , xN and superpotential W ∈ C[x1, . . . , xN ] can be

represented by matrix factorizations of W , where open strings between two such D-branes

are described by morphisms between the respective matrix factorizations.

In the same way, it has been argued in [7] that B-type supersymmetry preserving

defects between two Landau-Ginzburg models, one with chiral fields x1, . . . , xN and super-

potential W1 ∈ C[x1, . . . , xN ] and one with chiral superfields y1, . . . , yM and superpotential

W2 ∈ C[y1, . . . , yM ] can be represented by matrix factorizations of W1 − W2 over the

polynomial ring C[x1, . . . , xN , y1, . . . , yN ].

As mentioned before, one interesting property of N = 2-supersymmetric defects is

that they can be fused with other such defects or boundary conditions preserving the same

supersymmetry. Namely, two such defects can be brought on top of each other to produce a

new defect, or a defect can be moved onto a world sheet boundary to change the boundary

condition imposed there. This fusion has a very simple realization in terms of the matrix

– 5 –
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factorization description. For instance, let xi, yi, zi be the chiral superfields of three

Landau-Ginzburg models with superpotentials W1 ∈ C[xi], W2 ∈ C[yi] and W3 ∈ C[zi]

respectively, which are separated by two defects represented by matrix factorizations P 1 of

W1 −W2 and P 2 of W2 −W3. Fusing the two defects gives rise to a new defect separating

the Landau-Ginzburg model with chiral fields xi and superpotential W1 from the one with

chiral fields zi and superpotential W3. This fused defect is given by the matrix factorization

P 1 ∗ P 2 =
(
P 1 ⊗ P 2

)red
C[xi,zi]

. (2.9)

Here, the tensor product of two matrix factorizations is defined by taking the tensor product

of the associated twisted complexes. It is also a two-periodic complex which is twisted by

the sum of the twists of the tensor factors. More concretely, the tensor product P ⊗Q of

matrix factorizations P and Q of W and W ′ respectively can be written as

P ⊗Q : P1 ⊗Q0 ⊕ P0 ⊗Q1

r1

⇄
r0

P0 ⊗Q0 ⊕ P1 ⊗Q1 (2.10)

with

r1 =

(
p1 ⊗ id id ⊗ q1
−id ⊗ q0 p0 ⊗ id

)
, r0 =

(
p0 ⊗ id −id ⊗ q1
id ⊗ q0 p1 ⊗ id

)
(2.11)

which is a matrix factorization of W +W ′.

In the situation above, P 1 is a matrix factorization of W1−W2 and P 2 one of W2−W3.

Hence, P 1 ⊗ P 2 is a matrix factorization of W1 − W3 ∈ C[xi, zi], but it is still a ma-

trix factorization over C[xi, yi, zi]. That means that the modules (P 1 ⊗ P 2)s are free

C[xi, yi, zi]-modules and also the maps rs between them depend on the yi. The nota-

tion
(
P 1 ⊗ P 2

)
C[xi,zi]

means that this matrix factorization has to be regarded as one over

C[xi, zi] only.6 As such, it is of infinite rank, because the modules (P 1 ⊗ P 2)s regarded as

modules over C[xi, zi] are free modules of infinite rank. For instance, C[xi, yi, zi] can be

decomposed as

C[xi, yi, zi] =
⊕

(l1,...,lN )∈NN
0

yl1
1 . . . y

lN
N C[xi, zi] (2.12)

into free C[xi, zi]-modules. Physically speaking, the chiral fields yi of the theory squeezed

in between the two defects are promoted to new defect degrees of freedom in the limit

where the two defects coincide. However, most of them are trivial. Namely, if both P 1 and

P 2 are of finite rank, the matrix factorization
(
P 1 ⊗ P 2

)
C[xi,zi]

can be reduced to finite

rank by splitting off infinitely many trivial matrix factorizations. It is the result of this

reduction
(
P 1 ⊗ P 2

)red
C[xi,zi]

which describes the fused defect.

In the same way, fusion of B-type defects and B-type boundary conditions in Landau-

Ginzburg models can be formulated in the matrix factorization framework. The fusion of a

B-type defect separating a Landau-Ginzburg model with chiral fields xi and superpotential

W1 ∈ C[xi] from one with chiral fields yi and superpotential W2 ∈ C[yi] and a B-type

6In the following, it will usually be evident which base ring is chosen for matrix factorizations. For ease

of notation we will therefore omit subscripts like C[xi, zi] in equation (2.9).

– 6 –
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boundary condition in the second of these Landau-Ginzburg models can be represented by

the matrix factorization

P ∗Q = (P ⊗Q)red
C[xi]

, (2.13)

where P is the matrix factorization of W1 −W2 associated to the defect and Q the matrix

factorization of W2 associated to the boundary condition.

Certain defects are quite universal and exist in any Landau-Ginzburg model, or even

any two-dimensional QFT. A special example is the identity defect Id. It is trivial in the

sense that inserting it does not change any correlation functions. Nevertheless, it will play

an interesting role in this paper. In Landau-Ginzburg models, it is realized by the following

matrix factorization. The difference of the same superpotential in different variables can

always be factorized as

W (xi) −W (yi) =
∑

i

(xi − yi)Ai(xi, yi) . (2.14)

Denoting the rank-one factorizations with factors p
(i)
1 = xi − yi and p

(i)
0 = Ai(xj , yj) by

Id(i), a matrix factorization representing the identity defect in the Landau-Ginzburg model

with superpotential W is given by the tensor product

Id =
⊗

Id(i) . (2.15)

Even though the factorization (2.14) is not unique, the equivalence class of Id is unique.

Different choices of the Ai lead to equivalent matrix factorizations Id. This is shown

in appendix A. Indeed, as expected from the identity defect, fusion with the matrix

factorization Id is trivial: Id ∗Q = Q [7, 25].

Another universal class of defects are totally reflective defects. Such defects provide

boundary conditions for the theories on either side, and do not allow any excitations to

be transmitted between the theories. In the context of matrix factorizations, such defects

are realized by tensor products of matrix factorizations of the superpotentials on the two

sides. Let P be a matrix factorization of W (xi) and Q of W (yi). A totally reflective defect

imposing boundary condition Q on one side and P on the other side is given by

TP,Q∗ := P ⊗Q∗, (2.16)

where the dual matrix factorization Q∗ was defined in (2.3). It arises here because of

the different orientations on the two sides of the defect. The fusion of TP,Q∗ with matrix

factorizations R of W (yi) have a simple form

TP,Q∗ ∗R ≡ P ⊗ (Q∗ ⊗R) ≡ P ⊗H∗(Q∗ ⊗R) ≡ P ⊗H∗(Q,R) . (2.17)

Here, the matrix factorization P ⊗ (Q∗ ⊗ R) has to be regarded as a matrix factorization

over C[xi]. The factor Q∗⊗R is a factorization of W (yi)−W (yi) = 0. It is a complex with

a regular differential δ, which squares to zero and does not depend on the xi. Thus, the

non-zero matrix entries of δ contribute scalars to the matrix factorization P ⊗ (Q∗ ⊗ R)

which can be used to reduce it to P ⊗H∗(Q∗ ⊗R).

– 7 –
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In section 5 we will perturb the superposition of the identity and totally reflective

defects and show that the resulting defects give rise to some interesting structures.

Everything described above for Landau-Ginzburg models easily carries over to Landau-

Ginzburg orbifolds [9]. If Γ is a finite group acting on the ring C[x1, . . . , xN ] of chiral fields of

a Landau-Ginzburg model in such a way that the superpotential W is Γ-invariant, one can

consider its Γ-orbifold. B-type defects and boundary conditions in such orbifold theories

can be represented by Γ-equivariant matrix factorizations [9, 26, 27]. These are matrix

factorizations P together with representations ρi of Γ on Pi which are compatible with

the ring structure, and with respect to which the maps pi are invariant: ρ(i−1) mod 2pi =

piρi. These conditions ensure that there is an induced representation of Γ on the BRST-

cohomology H∗(P,Q) which can be used to define the BRST-cohomology of the orbifold

theory as the Γ-invariant part

H∗
orb(P,Q) = (H∗(P,Q))Γ (2.18)

of the respective BRST-cohomology in the underlying unorbifolded model.

Similarly, fusion of two defect matrix factorizations in the orbifold theory is given by

the Γsqueezed-invariant part of the fusion of the underlying matrix factorizations

P 1 ∗orb P
2 =

(
P 1 ∗ P 2

)Γsqueezed . (2.19)

Here, Γsqueezed denotes the orbifold group of the Landau-Ginzburg model squeezed in be-

tween the two defects. For more details on B-type defects in Landau-Ginzburg orbifolds

see [9].

3 Perturbed defects and their fusion

3.1 Perturbation of defects

The perturbation theory of defects exactly parallels the one of boundary conditions. Inter-

esting new effects arise however, when one considers structures inherent to defects, which

are not present in boundary conditions, for instance fusion. Let us start by briefly dis-

cussing perturbations of B-type defects in Landau-Ginzburg models, following [27].

Just like for boundaries, there are fields which are confined to defects, and which can

be used to perturb the latter. In the context of Landau-Ginzburg models, supersymmetry

preserving perturbations of B-type defects P are generated by fields in H(P,P ), and they

correspond to deformations of the corresponding matrix factorizations. In the BRST-

formulation (2.6) such a deformation is a family

Q(t) = Q0 +
∑

n>1

tnψn (3.1)

of BRST-operators with

(Q(t))2 = W (3.2)

– 8 –
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for all t. To first order in t this condition means that ψ1 has to be BRST-closed with

respect to the undeformed BRST-operator Q0

{Q0, ψ1} = 0 . (3.3)

On the other hand, if ψ1 is BRST-exact with respect to Q0

ψ1 =
[
Q0, χ1

]
(3.4)

then the first order deformation can be compensated by the equivalence

Q 7→ e−tχ1Qetχ1 . (3.5)

Thus, to first order, deformations of (equivalence classes of) matrix factorizations P are

generated by H1(P,P ). Of course, not all first order deformations are necessarily integrable.

In general, there can be obstructions at higher order, as has been analyzed in [27–30]. For

instance at second order, condition (3.2) implies

ψ2
1 + {Q0, ψ2} = 0 . (3.6)

If ψ1 squares to a non-trivial BRST-cohomology class, equation (3.6) cannot be satisfied

and the deformation generated by ψ1 is obstructed. Otherwise, one can find ψ2 such that

(3.6) holds. This can be repeated order by order: given ψ1, . . . , ψn−1 such that (3.2) holds

to order n − 1 one has to construct ψn such that it is satisfied to order n. If for some

n this is not possible, the deformation is obstructed. Otherwise one obtains a family of

BRST-operators parametrized by t, or to put it differently a family of matrix factorizations.

The corresponding family of equivalence classes is non-constant in t = 0 if and only if ψ1

represents a non-trivial class in H1(P,P ) (see [27] for a more detailed discussion in case

of boundaries).

A special case arises, when the undeformed matrix factorization is a direct sum of two

matrix factorizations P and P ′, and the deformation is generated by a “defect changing

operator” T ∈ H1(P,P ′). It describes the bound state formation of the associated defects.

Since in this case T 2 = 0, condition (3.2) is automatically satisfied to all orders, and

no higher order terms are necessary. In particular, all such deformations are integrable,

and the family of matrix factorizations are given by the mapping cones

Q(t) = Cone(tT : P −→ P ′) : P1 ⊕ P ′
1

c1 -�
c0

P0 ⊕ P ′
0 (3.7)

with

c1 =

(
p1 0

tT |P1 p
′
1

)
, c0 =

(
p0 0

tT |P0 p
′
0

)
.

Note that all Q(t) for t 6= 0 are equivalent.

– 9 –
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3.2 Fusion of perturbed defects

Our focus in this paper is the fusion of perturbed defects, in particular of those defects

which can be obtained as bound states. Of course, the fusion product of a perturbed defect

D(t) with another defect D′ can be viewed as a perturbation of the fusion product of the

unperturbed defect with the other defect

D(t) ∗D′ = (D ∗D′)(t) . (3.8)

Once the obstruction problem is solved for the initial defect D and a given direction ψ1 ∈
H1(D,D), it is automatically solved for D∗D′ for an induced direction ψ̃1 ∈ H1(D∗D′,D∗
D′). Indeed, this is obvious, because fusing a family of defects with another defect one

obtains again a family of defects.

The first question that arises is how to determine the induced direction ψ̃1. The answer

is indeed straight-forward to work out in the Landau-Ginzburg framework.

Let us start with an unperturbed defect corresponding to a matrix factorization of

W1(xi) −W2(yi) with BRST-operator Q0
1. Adding a perturbation generated by ψ1 results

in a perturbed BRST-operator Q1(t) = Q0
1 +

∑
n>0 t

nψn. We now take the fusion product

with an arbitrary other defect with BRST-operator Q2, (Q2)
2 = W2(yi) −W3(zi). Fusion

creates a new defect with BRST-operator

Q(t) = Q0
1 +

∑

n>0

tnψn + Q2 = Q0 +
∑

n>0

tnψn (3.9)

which correctly squares to W1(xi) −W3(yi). This equation just reflects the fact that the

fusion of a perturbed defect with another defect can be interpreted as a perturbation of

the fusion of the unperturbed defects. The BRST-operators Q(t) appearing above still

depend on the chiral fields yi, which in the fusion process were promoted to new defect

degrees of freedom. In terms of matrix factorizations, the result is an infinite dimensional

matrix factorization over C[xi, zi]. They can be made finite dimensional by equivalence

transformations involving stripping off infinitely many trivial matrix factorizations. For

the unperturbed fusion there exist polynomial matrices U, V that are inverse to each other

up to BRST-equivalence and satisfy

UQ0V = [Q0]red , (3.10)

where [Q0]red is the finite dimensional reduction of Q0. Once the equivalences U, V are

determined for the unperturbed fusion, they can be used to map the perturbing field ψ1

and the higher order terms ψn, n > 1 to the induced fields ψ̃n on [Q0]red.

As discussed above, in case the perturbed defect D(t) corresponds to a bound state,

the same is true for D(t) ∗D′. Hence, also the deformation problem for D(t) ∗D′ is solved

at first order and all ψ̃n = 0 for n > 1. Only ψ̃1 needs to be determined.

Consider for instance the bound state

P = Cone(T : P (1) → P (2)) (3.11)

for some T ∈ H1(P (1), P (2)).
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The fusion with a defect represented by a matrix factorization Q then takes the form

P ∗Q = Cone(T : P (1) → P (2)) ∗Q (3.12)

=
[
Cone(T : P (1) → P (2)) ⊗Q

]red

=
[
Cone(T ⊗ id : P (1) ⊗Q→ P (2) ⊗Q)

]red

= Cone(T̃ : P (1) ∗Q→ P (2) ∗Q)

In the last step, the tensor product matrices have been reduced to finite dimension, and the

tachyon T was transferred accordingly by means of the equivalences P (i) ⊗Q ∼= P (i) ∗Q,.

3.3 Method to calculate fusion products

As alluded to in section 2 the most difficult part in determining the fusion P ∗Q = (P⊗Q)red

of two matrix factorizations P ofW1(xi)−W2(yi) andQ ofW2(yi)−W3(zi) is to reduce their

tensor product to finite dimension. Indeed, trying to find the corresponding equivalences

directly on the level of matrix factorizations can be very intricate. However as put forward

in [7] one can make use of the relation between maximal Cohen-Macaulay modules and

matrix factorizations [31]. Namely, instead of considering the matrix factorization Q′ =

P ⊗ Q over C[xi, zi], one can equivalently consider an R = C[xi, zi]/(W1(xi) −W3(zi))-

module V with a projective resolution

. . .
vn+1−→ Vn

vn−→ Vn−1
vn−1−→ . . .

v1−→ V0 = V → 0 , (3.13)

which after a finite number of steps turns into the two-periodic complex determined by the

matrix factorization Q′

VN+2i = Q′
0/(W1 −W3)Q

′
0 , VN+2i+1 = Q′

1/(W1 −W3)Q
′
1 ,

vN+2i = q′0 , vN+2i+1 = q′1 ,
(3.14)

for all i ≥ 0. Instead of reducing Q′ one can now reduce V to a finite rank R-module

Ṽ ∼= V and calculate a projective resolution

. . .
evn+1−→ Ṽn

evn−→ Ṽn−1
evn−1−→ . . .

ev1−→ Ṽ0 = Ṽ → 0 , (3.15)

which also turns two-periodic after a finite number of steps

Ṽ eN+2i
= S0/(W1 −W3)S0 , Ṽ eN+2i+1

= S1/(W1 −W3)S1 ,

ṽ eN+2i = s0 , ṽ eN+2i+1 = s1 ,
(3.16)

for all i ≥ 0. Here the Si are free C[xi, zi]-modules of finite rank, and the two-periodic part

of the resolution gives rise to a finite dimensional matrix factorization

S : S1

s1 -�
s2

S0 (3.17)

of W1(xi)−W3(zi) over C[xi, zi]. Because of projectivity, the isomorphisms r : V → Ṽ and

r∗ : Ṽ → V lift to the resolutions

. . .
v3−→ V2

v2−→ V1
v1−→ V0

∼= V → 0

r2
?

6
r∗
2

r1
?

6
r∗
1

r

?

6
r∗

. . .
ev3−→ Ṽ2

ev2−→ Ṽ1
ev1−→ Ṽ0

∼= Ṽ → 0

, (3.18)
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and the ri and r∗i for i > N, Ñ provide an equivalence of the matrix factorizations Q′ and

S. In this way, one can obtain a finite dimensional matrix factorization S equivalent to Q′,

and also determine the equivalence between the two. The latter can in particular be used

to map morphisms of Q′ to those of S.

4 An application: boundary flows from defects

A special case of the fusion processes discussed above is the fusion of a perturbed defect with

a boundary condition. If the perturbation of the defect is unobstructed, so that it gives

rise to a family of supersymmetry preserving defects, fusion with a boundary condition

immediately yields a family of boundary conditions. The deformation problem on the

boundary does not need to be solved again, it is solved on the level of the defect. Note that

one and the same family of defects can be fused with many different boundary conditions.

This means that unobstructed directions in the moduli space of different D-branes are in

fact related: They are universal flat directions in the sense that they can be pulled back

to the bulk using the same defect.

This holds in particular for defects, which can be obtained as bound states. Fusing

such a defect with a boundary condition yields a bound state of boundary conditions, where

the tachyon is induced by the one on the defect. This again means that certain tachyon

condensation processes of D-branes are universal in the above sense and can be pulled

back to the bulk, as has been discussed for WZW models in [13]. The advantage of the

Landau-Ginzburg language is that the fusion product can easily be calculated, and that it

is therefore straight forward to determine the resulting boundary flows. We will illustrate

this in some examples.

4.1 Example: minimal models

4.1.1 B-type boundary conditions in minimal models

Consider a Landau-Ginzburg model with superpotential

W = xd . (4.1)

B-type supersymmetric boundary conditions in these models can be represented by ma-

trix factorizations of W . All matrix factorizations of W can be obtained as cones of the

elementary matrix factorizations

Qℓ : Qℓ
1 = C[x]

xℓ

-�
xd−ℓ

C[x] = Qℓ
0 . (4.2)

As described in section 2, the open string spectrum between two different boundary con-

ditions can be obtained as the BRST-cohomology H(Qℓ1, Qℓ2) of the respective matrix

factorizations Qℓi
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Qℓ1 : C[x]
-xℓ1

C[x]�
xd−ℓ1

Qℓ2 : C[x]
-xℓ2

C[x]�
xd−ℓ2

? ?

φ1 φ0

HHHHHHHHj

���������

t1 t0

A BRST-invariant fermion t = (t1, t0) : Qℓ1 → Qℓ2 has to satisfy

xd−ℓ2t1 + t0x
ℓ1 = 0 .

In the case that ℓ1 + ℓ2 ≤ d we can solve for t0

t0 = −t1xd−ℓ1−ℓ2 , (4.3)

otherwise, if ℓ1 + ℓ2 > d

t1 = −t0xℓ1+ℓ2−d (4.4)

The fermion is BRST-exact if

t1 = xℓ2φ1 + φ0x
ℓ1, t0 = φ0x

d−ℓ2 + φ1x
d−ℓ1 . (4.5)

Hence, the fermionic BRST-cohomology can be described as

t = (t1, t0) = (t1,−t1xd−ℓ1−ℓ2) , t1 ∈ xb
C[x]/〈xa〉 ∼= H1(Qℓ1 , Qℓ2) , (4.6)

where a = min{ℓ1, ℓ2} − 1 and b = max{d− ℓ1 − ℓ2, 0}.
The possible tachyon condensation processes have been described in the Landau-

Ginzburg framework in [32]. Deformations of a single Qℓ are not integrable, but per-

turbations with defect changing fields are. As discussed above, they can be represented

by cones

Cone(t : Qℓ1 → Qℓ2) (4.7)

In the following we will demonstrate that all these perturbations are induced by fusion

with perturbed defects. The idea is to generate all boundary conditions by fusing defects

with the boundary condition corresponding to the elementary matrix factorization Q1,

and to show that the boundary spectra can be induced from the defects. Let us start by

introducing the defects which we will use.

4.1.2 B-type defects in minimal models

B-type defects in minimal models can be represented by matrix factorizations of

the superpotential

W = xd − yd . (4.8)

A nice class of such defects can be easily obtained by grouping the linear factors of

W (x) −W (y) =

d∏

l=1

(x− ηly), ηl = e
2πil

d (4.9)
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into two sets. One obtains rank-one factorizations

P I : C[x, y]
pI
1 -�
pI
0

C[x, y] (4.10)

with

pI
1 =

∏

i∈I

(x− ηiy), pI
0 =

∏

i∈D\I

(x− ηiy), (4.11)

and D = {1, . . . , d} and I ⊂ D.

4.1.3 Inducing boundary flows by defects

It is not difficult to see [7] that an elementary matrix factorization Qℓ can be obtained by

fusing any defect matrix factorization P I with |I| = ℓ with Q1

P I ∗Q1 ∼= Q|I| . (4.12)

Namely, as described in section 3.3 to reduce the infinite dimensional matrix factorization

Q′ = P I ⊗Q1 we consider the R = C[x]/〈xd〉-module V = coker(pI
1 ⊗ idQ0, idP0 ⊗ q11) and

its R-free resolution

. . .
q′0−→ Q′

1

q′1−→ Q′
0

q′1−→ Q′
1

(pI
1,q1

1)−→ P0 ⊗Q0 → V → 0 , (4.13)

which turns into the matrix factorization Q′ after two steps. But now as an R-module

V = coker(pI
1, q

1
1)

∼= C[x, y]/〈
∏

i∈I

(x− ηiy), y〉 ∼= C[x]/〈x|I|〉 =: Ṽ , (4.14)

which has a two-periodic resolution

. . .
xd−|I|

−→ R
x|I|

−→ R
xd−|I|

−→ R
x|I|

−→ R→ Ṽ → 0 , (4.15)

corresponding to the matrix factorization Q|I|. Hence, Q′ ∼= Q|I|.

Next we will show that also the boundary condition changing spectra between elemen-

tary boundary conditions specified by Qℓ1 and Qℓ2 can be induced from defect changing

spectra of P I1 and P I2, |Ii| = ℓi upon fusion with Q1.

The spectrum between the defects P I1 and P I2 depends very much on the divisibility

properties of pI1
1 , p

I2
1 . In the extreme case I1 = I2 the spectrum is purely bosonic, whereas

in the case that I1 and I2 have no common factors it is purely fermionic. For our purposes,

we are interested in having many fermionic defect changing fields, and hence we choose I1
and I2 such that the cardinality of their intersection is minimized. If ℓ1 + ℓ2 ≤ d, there

are non-intersecting I1 and I2 with |Ii| = ℓi. Then pI2
0 is always divisible by pI1

1 . If on the

other hand ℓ1 + ℓ2 > d the intersection I1 ∩ I2 contains at least ℓ1 + ℓ2 − d elements. If

I1 and I2 are chosen to contain exactly ℓ1 + ℓ2 − d elements, pI1
1 is divisible by pI2

0 . This

means that the condition for BRST-closedness of a defect changing field T : P I1 → P I2

pI2
0 T1 + T0p

I1
1 = 0 (4.16)
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can be solved similarly to the case of the boundary conditions Qℓ

T0 = −p
I2
0

pI1
1

T1, for ℓ1 + ℓ2 ≤ d, (4.17)

T1 = −p
I1
1

pI2
0

T0, for ℓ1 + ℓ2 > d (4.18)

BRST-exact fermions satisfy

T1 =
∏

m∈I1

(x− ηmy)φ1 + φ0

∏

m∈I2

(x− ηmy) (4.19)

T0 = φ0

∏

m∈D\I1

(x− ηmy) +
∏

m∈D\I2

(x− ηmy)φ1

Thus, the fermionic BRST-cohomology can be described as

T = (T1, T0) =

(
T1,−

pI2
0

pI1
1

T1

)
, T1 ∈

∏

i∈I1∩I2

(x− ηiy)C[x, y]/〈pI1
1 , p

I2
1 〉 . (4.20)

Next, we will show that upon fusion with Q1 these defect changing spectra indeed induce

the boundary condition changing spectra between the respective Qℓi .

To show that this is the case, we first determine the equivalence of the matrix factor-

izations Q′ = P I ⊗ Q1 and Qℓ with ℓ = |I|. This can be easily done using the method

described in section 3.3. Namely, we just have to lift the isomorphism V ∼= Ṽ to a map be-

tween the resolutions (4.13) and (4.15). Setting R̂ = C[x, y]/〈W (x)〉 we have to construct

the R-module homomorphisms r, r∗, ri, r
∗
i in

. . .
q′1−→ R̂2 q′0−→ R̂2 (pI

1,y)−→ R̂ → coker(pI
1, y) → 0

r2
?

6
r∗
2

r1
?

6
r∗
1

r

?

6
r∗

?

6∼=

. . .
xℓ

−→ R
xd−ℓ

−→ R
xℓ

−→ R → coker(xℓ) → 0

. (4.21)

The isomorphism can be lifted in the following way:

r : (1 7→ 1 , yi 7→ 0) , r∗ : 1 7→ 1 ,

r1 = r ◦ (1, 0) , r∗1 =

(
1

1
y (−pI

1 + xℓ)

)
◦ r∗ ,

r2 = r ◦ (1, 0) , r∗2 =

(
1

1
y (−pI

0 + xd−ℓ)

)
◦ r∗ ,

. . . .

(4.22)

Note that pI
1 = xℓ+y(. . . ) and pI

0 = xd−ℓ+y(. . .) so that all the morphisms are well defined.

As discussed in section 3.3 the morphisms r1, r
∗
1 , r2, r

∗
2 indeed provide the equivalence of

the matrix factorizations Q′ = P I ⊗ Q1 and Qℓ, and they can be used to transfer defect

changing fields T : P I1 → P I2 to boundary condition changing fields t : Qℓ1 → Qℓ2. Upon
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fusion with Q1, a defect changing field T is transferred to a boundary condition changing

field T ⊗ idQ1 on Q′. By means of the equivalence one obtains

t1 = r
(2)
2 ◦ (T ⊗ idQ1)1 ◦ r(1)∗1 = r ◦ T1 ◦ r∗ , (4.23)

t0 = r
(2)
1 ◦ (T ⊗ idQ1)0 ◦ r(1)∗2 = r ◦ T0 ◦ r∗ ,

where r
(i)
i , r

(i)∗
i denote the equivalences of P Ii ⊗ Q1 ∼= Qℓi respectively. Thus, the ti

are obtained from the Ti by setting y = 0. Comparing the fermionic spectra (4.20) of

defect changing fields P I1 → P I2 and the ones (4.6) of boundary condition changing fields

Qℓ1 → Qℓ2 , one finds that the entire fermionic boundary spectra can be induced by defect

changing fields upon fusion with Q1. Thus, for A-type minimal models, all boundary RG

flows can be pulled back to the bulk using defects.

4.2 Example: minimal model orbifolds

As a next example, we consider the Zd-orbifold of the Landau-Ginzburg model with su-

perpotential W = xd, where the orbifold group acts on the chiral superfield x by phase

multiplication. In fact, these orbifold theories are mirror to the original unorbifolded

Landau-Ginzburg models, and B-type defects and boundary conditions in the orbifolds

correspond to A-type defects and boundary conditions in the unorbifolded theories. As

mentioned in section 2, B-type boundary conditions and matrix factorizations in Landau-

Ginzburg orbifolds are represented by equivariant matrix factorizations of the respective

superpotentials. For instance the Zd-equivariant rank one factorizations of W are given by

Qℓ
m : C[x][m+ ℓ]

xℓ

-�
xd−ℓ

C[x][m] , (4.24)

where the Zd-representation on C[x][m] is specified by the action of the generator on

1 ∈ C[x]: 1 7→ e
2πim

d 1. Also in the orbifold models all matrix factorizations can be obtained

by cones of such rank-one factorizations.

B-type defects in the orbifold models are represented by Γ = Zd × Zd-equivariant

matrix factorizations of W (x) −W (y), where the first Zd acts on x only, and the second

one on y. Indeed, by means of the orbifold construction, one can obtain such factorizations

out of the non-equivariant P I defined in equation (4.10). Roughly speaking, one chooses a

representation of the stabilizer subgroup Γstab ⊂ Γ under which P I is invariant and then

takes its Γ/Γstab-orbit. In this case Γstab is the diagonal Zd-subgroup, so one obtains a sum

P I
m =

⊕

γ∈Zd

P γ(I)[m] , (4.25)

where the representation of the diagonal Zd-subgroup is indicated by (·)[m] and

γ({i1, . . . , ir}) = {i1 + γmod d, . . . , ir + γmod d}

is the cyclic shift of I. This is a diagonal d-dimensional matrix factorization, on which the

action of Γ is non-diagonal however. But it can be diagonalized. Denoting the basis in
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which the matrix factorization is diagonal by ei, we can diagonalize the Γ-action by the

change of basis

ên =

d∑

i=1

ηinei (4.26)

which is inverted by

em =
1

d

∑

i

ηmiêi. (4.27)

In the basis ên, P I
M takes the form

P I
m : C[x, y]d




[m+|I|,0]

[m+1+|I|,−1]

...

[m+(d−1)+|I|,−(d−1)]




pI
1
(X,Y )

-�
pI
0
(X,Y )

C[x, y]d




[m,0]

[m+1,−1]

...

[m+(d−1),−(d−1)]



, (4.28)

where X and Y are the d × d-matrices X = x1d and Y = yΞ, with Ξ the d-dimensional

shift matrix

Ξab = δ
(d)
a,b+1 . (4.29)

Note that because of the orbit formation in the orbifold construction not all of the P I
m are

inequivalent. In fact, P I
m

∼= P J
m if J is a (cyclic) shift of I, i.e. J = I + nmod d.

The fusion of P I
m with Q1

0 can be easily calculated. Using the method already employed

in section 4.1.2, one obtains

P I
m ∗Q1

0
∼=
⊕

i∈Zd

Q
|I|
m+i[−i] , (4.30)

where here ·[−i] denotes the representation of the second Zd, the orbifold group of the

model squeezed in between defect and boundary. The fusion in the orbifold model is the

Γsqueezed-invariant part of (4.30)

P I
m ∗orb Q

1
0
∼= Q|I|

m . (4.31)

Hence, also in the orbifold theory, one can generate all elementary matrix factorizations

Qℓ
m by fusing defect factorizations P I

m with Q1
0.

Indeed, there is another way to obtain the fusion (4.30). Namely, we one can use the

diagonal form (4.25) P I
m, which is a direct sum of the ordinary rank-one factorizations

P I . In this way, one reduces the problem to the problem in the non-orbifolded situation

discussed in section 4.1.2. Since the result of the fusion of P I with Q1 only depends on

the cardinality of I, the fusion P I
m ∗Q1

0 just gives a direct sum of d equal summands Q|I|.

To bring this in the basis in which the Γ-action is diagonal, we have to do the change of

basis (4.26), (4.27). Being diagonal, this does not change the result however, and we arrive

at (4.30).

Having established that one can generate all Qℓ
m by fusing defects P I

m with Q1
0, we

would like to show next that also the entire spectra of boundary operators Qℓ1
m1

→ Qℓ2
m2

can be induced upon fusion with Q1
0 by defect changing operators P I1

m1
→ P I2

m2
with |Ii| = ℓi.
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As in the unorbifolded theory we choose I1, I2 in such a way that |I1∩I2| is minimized.

Indeed, it is easy to see that for a given T (x, y) ∈ H1(P I1 , P I2) in the unorbifolded theory of

degree ℓ1+m1−m2 mod d for T1 and degree ℓ2+m2−m1 for T0, T (X,Y ) ∈ H1
orb(P

I1
m1
, P I2

m2
).

To transfer this boundary condition changing field to the fused boundary we make use of

the diagonal form (4.25). This allows us to reduce the problem to the unorbifolded problem.

Using the equivalences in the unorbifolded case (4.23) and then projecting to the invariant

part of the fusion product, we obtain

t = r ◦ T ◦ r∗ = T (x, 0) (4.32)

for the boundary changing field. As in the unorbifolded case, comparing defect and bound-

ary BRST-cohomology we find that before the orbifold projection we obtain the entire

boundary spectra this way. But of course also the projections agree. Hence, we arrive at

the conclusion that in the orbifold models as well the entire boundary changing spectra

can be induced from defect changing fields by fusion of defects P I
m with Q1

0.

4.3 Example: tensor products of identical LG models

Another simple example is the tensor product of two identical minimal models. It turns

out that this is not any simpler than the more general case of a product of two arbitrary

identical Landau-Ginzburg models. In fact, for ease of notation we will consider tensor

products of Landau-Ginzburg models with their conjugates in the following. That means

the models have chiral superfields x1, . . . , xN , x̂1, . . . , x̂N and superpotential W (xi)−W (x̂i)

instead of W (xi)+W (x̂i). The construction below easily carries over to the tensor product

of identical Landau-Ginzburg models.

Now, given any matrix factorization Q(xi, x̂i) of W (xi) −W (x̂i), we define the defect

matrix factorization of W (xi) −W (x̂i) −W (yi) +W (ŷi) as the tensor product

PQ := Q(xi, yi) ⊗ Id(x̂i, ŷi) , (4.33)

where Id(x̂i, ŷi) is the matrix factorization representing the identity defect in the second

tensor factor.

Of course, fusing PQ with the identity matrix factorization

E = Id(yi, ŷi) (4.34)

between the two tensor factors gives back the matrix factorization Q:

PQ ∗E ∼= Q . (4.35)

Here one only needs to make repeated use of the fact that Id ∗ P ∼= P for any matrix

factorization P . Hence, in these models every matrix factorization Q can be obtained

by fusing a defect matrix factorization PQ with a fixed matrix factorization E. This is

true in particular for families Q(t) of matrix factorizations. Therefore, all perturbations

of boundary conditions can be pulled back into the bulk by means of the defects PQ in

these models.
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Of course it is also clear from the above that the defect changing fields

H1(Q1, Q2) ⊗ idId ⊂ H1(PQ1, PQ2) (4.36)

induce the respective boundary condition changing fields between the fused boundaries

PQi ∗ E ∼= Qi.

In fact, the arguments used to arrive at this conclusion do not depend on the matrix

factorization formalism, so we expect that the result carries over to tensor products of

arbitrary N = (2, 2)-theories with their conjugates.

4.4 Defect induced boundary flows in CFT

The fusion of perturbed defects has been considered on the level of the full conformal field

theory for rational models with diagonal modular invariants in [5]. There, only defects

which preserve both, the holomorphic and antiholomorphic W -algebras on the full complex

plane were considered. These defects in particular preserve both copies of the Virasoro

algebra and are therefore topological, which implies that their fusion is non-singular.

To ensure that also the perturbed defects (taken here to extend parallel to the real

line) can be moved smoothly along the imaginary axis, the perturbations are restricted to

chiral defect fields φ(z), ∂
∂z̄φ(z) = 0. Defects perturbed by chiral fields still commute with

the Hamiltonian generating translations along the imaginary axis, and hence can be fused

smoothly with parallel defects. Moreover, the perturbations are further restricted in [5] by

demanding that only fields in a single fixed representation occur.

The result of the fusion of two defects perturbed in this way is obtained as a bunch

of defects resulting from the fusion of the unperturbed defects perturbed again by defect

changing fields in the fixed representation.

For rational CFTs with charge conjugate modular invariant, defect operators corre-

sponding to topological defects can immediately be written down [3]

DJ =
∑

j

SJj

S0j
Pjj̄ . (4.37)

Here, J, j specify irreducible representations of the chiral symmetry algebra and take values

in some index set I. Pjj̄ are projection operators on the representation spaces Vj ⊗Vj̄, and

S denotes the modular S-matrix of the respective characters χj . Fusion of these defects

can be obtained by composing the respective operators, and using the Verlinde formula,

one easily obtains

DJ ∗DJ ′ =
∑

J ′′

N J ′′

JJ ′DJ ′′ , (4.38)

where N denote the fusion rule coefficients.

Likewise, boundary states for symmetry preserving boundary conditions are given by

Cardy’s formula

‖J〉〉 =
∑

j

SJj√
S0j

|j〉〉 , (4.39)

where |j〉〉 denote the Ishibashi states in the sector Vj ⊗ V j̄ .
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Fusion of topological defects with boundary conditions can be calculated by applying

the respective defect operators to the boundary states. For the defects and boundary states

above this yields

DJ‖J ′〉〉 =
∑

J ′′

N J ′′

JJ ′‖J ′′〉〉 . (4.40)

This implies in particular that all Cardy boundary conditions ‖J〉〉 can be obtained by

fusing the topological defectsDJ with the boundary condition ‖0〉〉 associated to the vacuum

representation. This is very much like in the case of B-type boundary conditions in Landau-

Ginzburg models discussed in sections 4.1 and 4.2 above, where all boundary conditions

can be produced by fusing defects with a fixed linear matrix factorization.

The spectra of defect changing fields between the defects DJ and the spectrum of

boundary condition changing fields between the Cardy boundary conditions ‖J〉〉 can be

easily determined in the RCFT setting

HD
JJ ′ =

⊕

j,j′,j′′

N j′′

jj′N J
j′′J ′Vj ⊗ Vj′ , (4.41)

HB
JJ ′ =

⊕

j

N J
J ′jVj . (4.42)

The chiral defect changing fields are obtained by setting j′ = 0 in (4.41). One immedi-

ately finds that the space of chiral defect changing fields between defects DJ and DJ ′ is

isomorphic to the space of boundary condition changing fields between ‖J〉〉 and ‖J ′〉〉.
This implies that indeed all boundary perturbations can be obtained by fusing the

boundary condition ‖0〉〉 with chirally perturbed defects.

For instance a boundary flow of a sum of boundary conditions ‖J〉〉⊕‖J ′〉〉 generated by

a boundary condition changing field in representation j can be obtained by fusing boundary

condition ‖0〉〉 with a defect DJ ⊕DJ ′ perturbed by the chiral defect changing field in that

same representation.7

On a formal level this is quite similar to what we have seen for matrix factorizations:

All boundary conditions can be generated by fusing defects with a particular boundary

condition, and all boundary condition changing fields can be induced by choosing particular

defect changing fields.

To make the relation completely precise, one can consider the example of the super-

symmetric minimal model with A-type boundary conditions and defects, or equivalently

B-type boundary conditions and defects in the orbifold of the minimal model. Here both a

description in terms of matrix factorizations and in terms of rational conformal field the-

ory is available. On the level of matrix factorizations this is the Landau-Ginzburg orbifold

discussed in section 4.2.

The N = (2, 2)-superconformal minimal models Mk are rational with respect to the

N = 2 super Virasoro algebra at central charge ck = 3k
k+2 . In fact, the bosonic part of this

algebra can be realized as the coset W-algebra

(SVirck
)bos =

ŝu(2)k ⊕ û(1)4
û(1)2k+4

, (4.43)

7Representations of fields are not changed when they are transferred in the fusion process.
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and the respective coset CFT can be obtained from Mk by a non-chiral GSO projection.

The Hilbert space Hk of Mk decomposes into irreducible highest weight representa-

tions of holomorphic and antiholomorphic super Virasoro algebras, but it is convenient to

decompose it further into irreducible highest weight representations V[l,m,s] of the bosonic

subalgebra (4.43). These representations are labelled by

[l,m, s] ∈ Ik := {(l,m, s) | 0 ≤ l ≤ k, m ∈ Z2k+4, s ∈ Z4, l +m+ s ∈ 2Z}/ ∼ , (4.44)

where [l,m, s] ∼ [k − l,m + k + 2, s + 2] is the field identification. The highest weight

representation of the full super Virasoro algebra are given by

V[l,m] := V[l,m,(l+m)mod 2] ⊕ V[l,m,(l+m)mod 2+2] . (4.45)

For (l +m) even V[l,m] is in the NS-, for (l +m) odd in the R-sector. Here [l,m] ∈ Jk :=

{(l,m) | 0 ≤ l ≤ k, m ∈ Z2k+4}/ ∼, [l,m] ∼ [k − l,m + k + 2]. The Hilbert spaces of Mk

in the NSNS- and RR-sectors then read

Hk
NSNS

∼=
⊕

[l,m]∈Jk
l+m even

V[l,m] ⊗ V [l,m] , Hk
RR

∼=
⊕

[l,m]∈Jk
l+m odd

V[l,m] ⊗ V [l,m] . (4.46)

To obtain a CFT with a modular invariant partition function from this fully supersym-

metric theory, one needs to perform a GSO projection. In the case at hand, there are two

possibilities, a type 0A and a type 0B projection, distinguished by the action of (−1)F . We

will consider the type 0B case, where states in the sector V[l,m,s] ⊗ V[l,m,−s] are invariant

under the projection.

The defects of the theory with either GSO projection have been given in [7]. The

general form of the defect operators in the Cardy case is

D =
∑

[l,m,s],s̄
s−s̄ even

D[l,m,s,s̄]P[l,m,s,s̄] , (4.47)

where P[l,m,s,s̄] is a projector on the modules V[l,m,s] ⊗ V [l,m,s̄] of the bosonic subalgebra.

The solutions for the coefficients are given by

D[l,m,s,s̄]

[L,M,S,S̄]
= e−iπ

S̄(s+s̄)
2

S[L,M,S−S̄][l,m,s]

S[0,0,0],[l,m,s]
, (4.48)

where the different defects are specified by [L,M,S, S̄] with [L,M,S − S̄] ∈ Ik, and

S[L,M,S][l,m,s] =
1

k + 2
e−iπ Ss

2 eiπ
Mm
k+2 sin

(
π

(L+ 1)(l + 1)

k + 2

)
(4.49)

is the modular S-matrix for the coset representations V[l,m,s].

In the orbifold theory, modding out the Zk+2 phase symmetry acting on the u2k+4

labels projects the Hilbert space of Mk on the subsector with m = 0. Together with the

twisted sectors, the new Hilbert space takes the form

Hk
NSNS

∼=
⊕

[l,m]∈Jk
l+m even

V[l,m] ⊗ V [l,−m] , Hk
RR

∼=
⊕

[l,m]∈Jk
l+m odd

V[l,m] ⊗ V [l,−m] . (4.50)
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The defect operators of the orbifold theory look very similar to that of the original theory:

Dorb =
∑

[l,m,s],s̄
s−s̄ even

D[l,m,s,s̄]Porb
[l,m,s,s̄] , (4.51)

where now Porb
[l,m,s,s̄] is a projector on V[l,m,s] ⊗V[l,−m,s̄]. The coefficients are given by (4.48)

just like in the unorbifolded case.

For this reason, also the fusion algebra between defects in the orbifold theory is the

same as the one in the original unorbifolded model [7]

Dorb
[L1,M1,S1,S̄1]

Dorb
[L2,M2,S2,S̄2]

=
∑

L

NL
L1L2

Dorb
[L,M1+M2,S1+S2,S̄1+S̄2]

. (4.52)

For L = 0 these defects are group like. For the original theory, the defects D[0,M,0,0] realize

the action of the orbifold group, whereas in the orbifold theory, the Dorb
[0,M,0,0] realize the

corresponding quantum symmetry.

For later use, we calculate the defect changing spectrum. For this, we use the folding

trick and map the defects to permutation boundary states in the doubled theory. These

boundary states have been analyzed in detail for the unorbifolded case [33, 34]. To sum-

marize, in the original, unorbifolded theory, the permutation B type boundary states are

given by

||[L,M,S1, S2]〉〉 (4.53)

=
1

2
√

2

∑

l,m,s1,s2

SLl

S0l
eiπMm/(k+2) e−iπ(S1s1−S2s2)/2 |[l,m, s1] ⊗ [l,−m,−s2]〉〉σ ,

where the sum runs over all l,m, s1 and s2 for which

l +m+ s1 and s1 − s2 are even. (4.54)

Here, |[l,m, s1] ⊗ [l,−m,−s2]〉〉σ are B-type permutation Ishibashi states in the sectors

(
V[l,m,s1] ⊗ V[l,−m,−s2]

)
⊗
(
V̄[l,m,s2] ⊗ V̄[l,−m,−s1]

)
, (4.55)

which means that they intertwine the respective supersymmetry algebras of the two tensor

factors. In the orbifold theory, the boundary states are similarly given by

‖[L,M,S1, S2]〉〉orb (4.56)

=
1

2
√

2

∑

l,m,s1,s2

SLl

S0l
eiπMm/(k+2) e−iπ(S1s1−S2s2)/2 |[l,m, s1] ⊗ [l,m,−s2]〉〉σorb ,

where now the permutation Ishibashi states with m 6= 0 come from the twisted sectors
(
V[l,m,s1] ⊗ V[l,m,−s2]

)
⊗
(
V̄[l,m,s2] ⊗ V̄[l,m,−s1]

)
. (4.57)

These boundary states can be obtained directly from the defect (4.51) by means of the

folding trick. It can also be obtained from the un-orbifolded boundary states (4.53) using
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the orbifold construction. To see this, note that the boundary states are invariant under the

diagonal Zk+2 ⊂ Zk+2×Zk+2, leading to resolved boundary states labelled by an additional

Zk+2-representation label M ′, which specifies the representation in the boundary sectors.

Orbifolding by the second Zk+2-factor introduces an orbit of boundary states of different

M . The result is (4.56). In our notation we do not distinguish between labels M and M ′

although from the orbifold point of view these labels play different roles.

Note that the permutation boundary states of the two theories differs only in a minus

sign in front of one of the m labels in the Ishibashi states. As a consequence, also the

one-loop amplitudes are almost identical to the ones

〈〈[L,M,S1, S2]||q
1
2
(L0+L̄0)−

c
12 ||[L̂, M̂ , Ŝ1, Ŝ2]〉〉 =

∑

[l′i,m
′
i,s

′
i]

χ[l′1,m′
1,s′1]

(q̃)χ[l′2,m′
2,s′2]

(q̃)

∑

l̂

[
Nl̂L̂

L Nl′1l′2
l̂ δ(2k+4)(∆M +m′

1 −m′
2)

×
(
δ(4)(∆S1 + s′1) δ

(4)(∆S2 + s′2) + δ(4)(∆S1 + 2 + s′1) δ
(4)(∆S2 + 2 + s′2)

)

+Nl̂ k−L̂
L Nl′1l′2

l̂ δ(2k+4)(∆M + k + 2 +m′
1 −m′

2)

×
(
δ(4)(∆S1 + 2 + s′1) δ

(4)(∆S2 + s′2) + δ(4)(∆S1 + s′1) δ
(4)(∆S2 + 2 + s′2)

)]
,

of the original unorbifolded theory. Here ∆M = M̂−M and ∆Si = Ŝi−Si. In particular, we

find that the boundary spectrum of ‖[0, 0, 0, 0]〉〉 is isomorphic to the bulk spectrum, which

is expected, because it is isomorphic to the spectrum of defect fields on the trivial defect.

In the orbifold theory one obtains

〈〈[L,M,S1, S2]||q
1
2
(L0+L̄0)−

c
12 ||[L̂, M̂ , Ŝ1, Ŝ2]〉〉orb=

∑

[l′i,m
′
i,s

′
i]

χ[l′1,m′
1,s′1]

(q̃)χ[l′2,m′
2,s′2]

(q̃)

∑

l̂

[
Nl̂L̂

L Nl′1l′2
l̂ δ(2k+4)(∆M +m′

1 +m′
2)

×
(
δ(4)(∆S1 + s′1) δ

(4)(∆S2 + s′2) + δ(4)(∆S1 + 2 + s′1) δ
(4)(∆S2 + 2 + s′2)

)

+Nl̂ k−L̂
L Nl′1l′2

l̂ δ(2k+4)(∆M + k + 2 +m′
1 +m′

2)

×
(
δ(4)(∆S1 + 2 + s′1) δ

(4)(∆S2 + s′2) + δ(4)(∆S1 + s′1) δ
(4)(∆S2 + 2 + s′2)

)]
,

where as before ∆M = M̂ − M and ∆Si = Ŝi − Si. As alluded to above, the only

difference between the open string spectra for the orbifold and the original theory is the

sign with which m2 enters. The reason for this is of course that in the bulk of the orbifold

theory V[l,m,s] is paired with V̄[l,−m,s] instead of V̄[l,m,s] so that the B-type permutation

Ishibashi states are from a conjugate sector compared to the original theory. A modular

transformation to the open string sector then leads to a sign flip for m′
2, which is the

only difference.

Let us now discuss the B-type boundary states in minimal models and their spectra.
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For the original unorbifolded model, the boundary states are given by

||L,S〉〉 =
√
k + 2

∑

l+s∈2Z

S[L,0,S],[l,0,s]√
S[l,0,s],[0,0,0]

|[l, 0, s]〉〉 . (4.58)

These boundary states are not of Cardy type, but require an additional projection on

Ishibashi states that satisfy B-type boundary conditions.

This is different in the orbifold theory, where indeed the standard Cardy construction

can be applied to B-type boundary conditions. The Ishibashi states |[l,m, s]〉〉orb are from

the sectors V[l,m,s] ⊗ V̄[l,−m,−s] and the boundary states are explicitly given by

‖[L,M,S]〉〉orb =
∑

[l,m,s]

S[L,M,S][l,m,s]√
S[0,0,0][l,m,s]

|[l,m, s]〉〉orb . (4.59)

These boundary states can of course also be obtained from the states (4.58) by the orb-

ifold construction. The spectrum of boundary condition changing fields between two such

orbifold boundary conditions is given by the partition function

〈〈[L,M,S]|q 1
2
(L0+L̄0)−

c
24 ‖[L′,M ′, S′]〉〉orb

=
∑

[l,m,s]

(
N l

LL′δ(4)(S′ − S + s)δ(2k+4)(M ′ −M +m) (4.60)

+Nk−l
LL′ δ

(4)(S′ − S + s+ 2)δ(2k+4)(M ′ −M +m+ k + 2)
)
χ[l,m,s](q)

Being a special case of an RCFT with diagonal modular invariant, one expects from the

general discussion in section 4.4 that all supersymmetry preserving boundary flows between

B-type boundary conditions in the orbifold theory should be generated by fusion of chirally

perturbed B-type topological defects with the boundary condition ‖[0, 0, 0]〉〉orb . Indeed,

fusion of the defects Dorb
[L1,M1,S1,S̄1]

and boundary conditions ‖[L2,M2, S2]〉〉 is given by

Dorb
[L1,M1,S1,S̄1]

‖[L2,M2, S2]〉〉orb =
∑

L

NL
L1L2

‖L,M1 +M2, S1 − S̄1 + S2〉〉orb . (4.61)

In particular Dorb
[L,M,S,0]‖[0, 0, 0]〉〉orb = ‖[L,M,S]〉〉orb. Hence, all boundary conditions can

be obtained by fusing boundary condition ‖[0, 0, 0]〉〉orb with defects Dorb
[L,M,S,0]. Moreover,

the chiral defect changing spectrum between defects Dorb
[L1,M1,S1,0] and Dorb

[L2,M2,S2,0], which

can be obtained from the spectrum (4.58) of boundary condition changing operators of

permutation boundary conditions in the folded model by setting [l′2,m
′
2, s

′
2] = [0, 0, 0] is

isomorphic to the spectrum of boundary condition changing operators between boundary

conditions ‖[L1,M1, S1]〉〉orb and ‖[L2,M2, S2]〉〉orb.

Thus, in orbifolds of minimal models, we have explicitly seen that perturbations of

B-type supersymmetric boundary condition can be pulled back into the bulk by chirally

perturbed topological defects.

This can be compared to our discussion of boundary flows in Landau-Ginzburg orb-

ifolds in section 4.2. Namely, the minimal model Md−2 is the IR fixed point of a Landau-

Ginzburg model with superpotential W = xd, and the same is true for the Zd-orbifolds of

the respective models.
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Thus, B-type boundary conditions and defects in the (orbifold of the) minimal model

Md−2 can nicely be represented by (equivariant) matrix factorizations. For the minimal

model one obtains8

Qℓ ↔ ‖ℓ− 1, 0〉〉
P {m,m+1,...,m+ℓ} ↔ D[ℓ,ℓ+2m,0,0]

. (4.62)

Note that there are more defect matrix factorizations than there are topological defects in

the CFT. Namely, only those matrix factorizations P I have an interpretation as topological

defects in the CFT for which I is a set of consecutive integers (mod d) [33, 34].

In the orbifold theory, the relation is

Qℓ
m ↔ ‖[ℓ− 1, ℓ− 1 − 2m, 0]〉〉

P
{m,m+1,...,m+ℓ}
M ↔ D[ℓ,ℓ−2M,0,0]

. (4.63)

Note that in the orbifold model P
{m,m+1,...,m+l}
M

∼= P
{m′,m′+1,...,m′+l}
M .

Comparing the discussion of B-type boundary flows in the matrix factorization ap-

proach and the full CFT we find complete agreement. The boundary condition ‖[0, 0, 0]〉〉orb
out of which all boundary conditions can be generated by means of fusion with topological

defects corresponds to the matrix factorization Q1
0, which was used in the same way in the

matrix factorization approach. Of course, also the defects which are used for this purpose

coincide, when we restrict to P I
M with index sets consisting of consecutive (mod d) integers.

Finally, inspection of the defect changing spectra in the CFT and the matrix factorization

approach shows that we have indeed chosen the same defect changing fields to induce

boundary condition changing fields in the fusion with ‖[0, 0, 0]〉〉orb and Q1
0 respectively.

5 Braid group actions and defects

In string theory, actions of braid groups on D-brane categories arise in various contexts.

For example one finds braid group actions on A-type branes whenever the target space

manifold contains an Am chain of Lagrangian spheres Li, which have intersections

(Li ∩ Lj) =

{
1 |i− j| = 1

0 |i− j| > 1
(5.1)

In particular, such configurations arise when the compactification manifold degenerates into

a singular space with singularity of type Am. On the level of the homology it is well-known

that probe cycles undergo a Picard-Lefschetz monodromy transformation when encircling

a locus where one of the spheres shrinks to zero size. This transformation acts as

LL(x) = x− 〈[L]|x〉[L] , (5.2)

where the bracket 〈. . . 〉 denotes the intersection number between the two cycles. Such

transformations satisfy the braid group relations on n strands

LLiLLjLLi = LLjLLiLLj , for |i− j| = 1 (5.3)

LLiLLj = LLjLLi , for |i− j| > 1 .

8Note that the matrix factorizations only describe B-type boundary states and defects with the same

spin structure, which we chose by setting all the S-labels to zero.
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Picard Lefschetz transformations play a role in the context of BPS solitons (described by

A-type D-branes ) in Landau-Ginzburg models [35]. Here, the intersection numbers are

realized as soliton numbers, and the Picard Lefschetz monodromy captures their changes

under deformations of the superpotential.

A natural question is whether this braid group action extends to the level of the full

topological D-brane category rather than just the charges. This question has been answered

in the work of Seidel [36], who constructed braid group actions on categories of A-branes,

which is mathematically described by the Fukaya category. Via mirror symmetry, this

action should carry over to an action on the mirror B-brane category. Indeed, this was

constructed by Seidel and Thomas in [18]. The authors introduce the notion of spherical

objects E in the derived category of coherent sheaves on the target space manifold X which

satisfy the condition

Exti(E,E) =

{
C i = 0, n

0 i 6= 0, n
, (5.4)

where n is the complex dimension of X. To any such object they associate a Fourier-Mukai

transformation which describes an autoequivalence of the derived category of coherent

sheaves on X. The kernel of the Fourier-Mukai transformation

KC
Q = Cone(r : Q ⊠ Q∨ → O∆X) , (5.5)

is determined by the large volume complex Q associated to the B-brane Q [18, 37]. Here Q∨

denotes the dual of Q, and Q⊠Q∨ = π∗1(Q)⊗π∗2(Q∨) is obtained by tensoring the pullbacks

on X×X of Q and Q∨ from its first and second factor by means of the respective projections

πi : X ×X → X. Moreover, O∆X is the structure sheaf of the diagonal ∆X ⊂ X ×X, and

the map r is the restriction map to ∆X. If for instance Q = OX , then the map r restricts

OX×X = OX ⊠OX to O∆X . Transformations of this type in for example describe the effect

on B-branes of monodromies around conifold points in Kähler moduli spaces. These are

points where B-branes Q become massless. The action on the B-brane charges is encoded

in the periods near the conifold point and can be represented by equation (5.2).

Braid group actions can be obtained provided that there is an Am-chain (E1, . . . , Em)

of spherical objects. Mimicking condition (5.1) on the A-side, this means

∑
dim(Extk(Ei, Ej)) =

{
1 |i− j| = 1

0 |i− j| > 1
(5.6)

In a different but related context, the braid group has appeared in the context of

4-dimensional gauge theories with surface operators [38, 39].

If the non-linear sigma model with target space X has a Landau-Ginzburg phase, the

derived category of coherent sheaves on X is equivalent to the category of B-branes in the

corresponding Landau-Ginzburg orbifold, i.e. the associated category of equivariant matrix

factorizations.9 In these cases representations of braid groups in the autoequivalences of

the derived category of coherent sheaves on X carry over to the respective category of

matrix factorizations.
9The equivalence can be realized for instance in terms of gauged linear sigma models [40].
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In the following we will present a world sheet realization of these braid group repre-

sentations. Namely, we will construct defects which satisfy braid relations on the level of

their fusion. Since they can be fused with boundary conditions they give rise to functors

(in this case autoequivalences) on the respective D-brane categories. One should point

out however, that defects have a richer structure than the associated functors on D-brane

categories. First of all they are objects in the full conformal field theory, not just in the

topologically twisted theories. Moreover, defects can form junctions etc.

The construction we use is rather general and should apply to any N = (2, 2)-

supersymmetric theory. It is certainly not limited to theories which have a non-linear sigma

model phase. However, we will restrict our considerations to Landau-Ginzburg models, in

which everything can be spelled out relatively explicitly.

5.1 The defects

The defects that are relevant for us are conifold type defects considered in [11]. Following

terminology from the work of Seidel and Thomas [18] we will call them twist defects. Such

defects exist in any theory, and in case the theory hasN = (2, 2) supersymmetry one can lift

them to the respective B-twisted model. Namely, in any theory we have the trivial identity

defect and totally reflective defects. The identity defect Id is a topological defect and maps

via fusion any boundary condition back to itself. On the other hand, a totally reflective

defect is a defect that provides boundary conditions for each of the two adjacent theories.

In a theory with N = (2, 2) supersymmetry we can choose the boundary conditions to be

of B-type, the defect then preserves B-type supersymmetry and can be fused on the level

of the B-twisted theory. Choosing for example the boundary condition P on the one side

of the defect and its world sheet parity dual P ∗ on the other side, we obtain the defect

TP,P ∗ = P ⊗P ∗. Fusing it with a boundary condition Q one obtains a copy of P for every

boundary condition changing field between P and Q

TP,P ∗ ∗Q = H∗(P,Q) ⊗Q . (5.7)

Consider now a defect that is a superposition of the identity defect Id and the totally

reflective defect TP,P ∗ {1}, i.e. TP,P ∗ shifted by one. There is a universal defect changing

field between TP,P ∗{1} and Id, which can be used to perturb this configuration. To see this,

note that there is always a bosonic defect changing field between TP and Id which has its

origin in the fact that there is an identity field on the boundary condition P . Accordingly,

there is a canonical fermion between TP,P ∗ {1} and Id.

This construction mimics the form of the Fourier-Mukai kernel (5.5). Here, O∆X and

Q ⊠ Q∨ correspond to the identity and the purely reflective defects respectively.

Physically, fusion of boundary conditions with this defect mimics how D-branes behave

when one moves along a closed path in Kähler moduli space which encloses a locus ∆P on

which a D-brane P becomes massless. Since copies of P and its anti-brane can be produced

at no cost in energy, a probe D-brane Q which is carried around ∆P forms bound states

with P provided there is a suitable tachyon. As we will see explicitly in the next sections

this is exactly how fusion with the bound state of TP,P ∗ and Id acts on boundary conditions.
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The Id defect preserves a copy of Q, whereas the totally reflective defect creates as many

copies of P as there are tachyons between P and Q. Finally the universal defect changing

field between TP,P ∗ and Id induces a bound state formation between all the copies of P

and the copy of Q.

5.2 Realization in terms of matrix factorizations

5.2.1 Twist defects

The matrix factorizations corresponding to the identity and the totally reflective defects

in Landau-Ginzburg models have been explicitly described in section 2.

Since the reflective defect is really a product of two boundary conditions the space of

defect changing fields between the totally reflective defect TP,P ∗ and the identity defect

Id is isomorphic to the space of boundary conditions changing fields between the two

boundary conditions

H(TP,P ∗, Id) ≡ H(P ⊗ P ∗, Id) ≡ H(P,P ) . (5.8)

In particular, via this isomorphism the identity field idP on P gives rise to a canonical

defect changing field ψP

H0(TP,P ∗ , Id) ∋ ψP 7→ idP ∈ H0(P,P ) , (5.9)

which can be used to perturb the superposition of the (shifted) tensor product and the

identity defect. The outcome

DP = Cone(ψP : TP,P ∗ → Id) (5.10)

of this perturbation obeys some nice universal relations. Indeed, the DP are the twist

defects alluded to above. To see this, let us first describe how these defects act on ma-

trix factorizations

DP ∗Q ∼= DP ⊗Q ∼= Cone(ψP ⊗ idQ : TP,P ∗ ⊗Q→ Id ⊗Q). (5.11)

As discussed in section 2, TP,P ∗ ⊗ Q ∼= P ⊗ H(P,Q) and Id ⊗ Q ∼= Q. Indeed, via these

isomorphisms, the morphism ψP ⊗idQ is mapped to the evaluation map ev : P⊗H(P,Q) →
Q. This can be seen as follows. By definition, the morphism ψP is mapped to ψP 7→ idP

under the isomorphism H(TP,P ∗, Id) ∼= H(P,P ). Indeed, it also maps to ψP 7→ idP ∗ under

the isomorphism H(TP,P ∗ , Id) ∼= H(P ∗, P ∗), and hence ψP ⊗ idQ 7→ idP ∗ ⊗ idQ under

H(TP,P ∗ ⊗ Q, Id ⊗ Q) ∼= H(P ∗ ⊗ Q,P ∗ ⊗ Q). Here P ∗ ⊗ Q are matrix factorizations of 0

and therefore ordinary complexes. But now H(P ∗ ⊗ Q,P ∗ ⊗ Q) ∼= H(P ⊗ P ∗ ⊗ Q,Q) ∼=
H(P ⊗H(P,Q), Q), and idP ∗ ⊗ idQ 7→ ev under this isomorphism, because idV ∗ is mapped

to the evaluation map under the canonical isomorphism Hom(V ∗, V ∗) → (V ⊗ V ∗)∗.

Thus, we obtain

DP ∗Q ∼= Cone(ev : P ⊗H(P,Q) → Q) . (5.12)
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A similar form can be found for the fusion with the dual of a twist defect which is repre-

sented by the dual matrix factorization D∗
P . Namely

D∗
P ∗Q ∼= (Q∗ ∗DP )∗ ∼= (Cone(idQ∗ ⊗ ψP : Q∗ ⊗ TP,P ∗ → Q∗ ⊗ Id))∗ . (5.13)

With arguments similar to the ones above one arrives at

D∗
P ∗Q ∼= (Cone(ev : H(Q,P ) ⊗ P ∗ → Q∗))∗

∼= Cone(ev∗ : Q→ (H(Q,P ))∗ ⊗ P ) . (5.14)

The action (5.12) of the defects DP on matrix factorizations is realized by twist functors

as introduced in [18]. There Seidel and Thomas show that under certain assumptions such

twist functors generate representations of braid groups in the groups of autoequivalences of

certain derived categories. In the next subsections, we follow their arguments to establish

that under similar conditions, twist defects satisfy braid relations with respect to fusion.

5.2.2 Twist defects for spherical matrix factorizations

A matrix factorization P is called n-spherical if

Hi(P,P ) =

{
C , i = 0, n

0 , otherwise
(5.15)

and for every matrix factorization Q, the operator product

Hi(P,Q) ⊗Hn−i(Q,P ) → Hn(P,P ) (5.16)

is non-degenerate. Note that we have extended the grading of H∗ from Z2 to Z by means of

the R-charge, and n is chosen such that −n is the R-charge anomaly of the disk amplitudes

in the models under consideration.10 Condition (5.16) is nothing but the non-degeneracy

of the boundary two-point function, which holds for unitary theories. We restrict our

considerations to such theories and will assume condition (5.16) in the following.

One nice property of spherical matrix factorizations P is that the associated twist

defects DP are indeed group-like i.e.

DP ∗D∗
P = id = D∗

P ∗DP . (5.17)

In particular, they act on matrix factorization categories as equivalences. To see this, we

calculate the fusion DP ∗ (D∗
P ∗Q) for P a spherical and Q any matrix factorization. Using

equations (5.14) and (5.12) one arrives at

DP ∗ (D∗
P ∗Q) ∼= Cone




P ⊗H(P,Q)
f−→ H(P,P ) ⊗ (H(Q,P ))∗ ⊗ P

ev

?
ev

?
Q

ev∗

−→ (H(Q,P ))∗ ⊗ P



, (5.18)

10For models with a realization in terms of non-linear sigma models, n is the complex dimension of the

target space.
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where the induced map f acts as a dualization H(P,Q) −→ H(P,P ) ⊗ (H(Q,P ))∗ of the

operator product H(P,Q)⊗H(Q,P ) → H(P,P ). Now, since by assumption P is spherical,

the non-degeneracy (5.16) of the operator product Hn−i(P,Q) ⊗ Hi(Q,P ) → Hn(P,P )

implies that we have an isomorphism

P ⊗H(P,Q)
∼=−→ Hn(P,P ) ⊗ (H(Q,P ))∗ ⊗ P (5.19)

in the upper row of (5.18). Furthermore, in the right column, we have an isomorphism

H0(P,P ) ⊗ (H(Q,P ))∗ ⊗ P
∼=−→ (H(Q,P ))∗ ⊗ P . (5.20)

These isomorphisms can be used to reduce the matrix factorization (5.18) to Q. Therefore,

DP ∗ (D∗
P ∗Q) ∼= Q . (5.21)

In a similar way one obtains D∗
P ∗ (DP ∗Q) ∼= Q.

The fact thatDP is group-like for spherical P can be used to show the following relation

between twist defects associated to spherical matrix factorizations P1, P2:

DP2 ∗DP1
∼= DDP2

P1 ∗DP2 . (5.22)

For this, we again fuse the equation with a matrix factorization Q

DP2 ∗ (DP1 ∗Q)∼=Cone




P2 ⊗H(P1, Q) ⊗H(P2, P1)
ev−→ P2 ⊗H(P2, Q)

ev

?
ev

?
P1 ⊗H(P1, Q)

ev−→ Q




∼=Cone(H(P1, Q) ⊗DP2P1
g−→ DP2Q) . (5.23)

Since DP2 is group-like H(P1, Q) ∼= H(DP2P1,DP2Q) and the map g factors through the

evaluation map

H(P1, Q) ⊗DP2P1
∼=−→ H(DP2P1,DP2Q) ⊗DP2P1

ev−→ DP2Q . (5.24)

Thus,

DP2 ∗ (DP1 ∗Q) ∼= Cone(H(DP2P1,DP2Q) ⊗DP2P1
ev−→ DP2Q)

∼= DDP2
P1 ∗ (DP2 ∗Q) . (5.25)

5.2.3 Defect realization of braid groups

Relation (5.22) can be used to construct defect realizations of braid groups in the following

way. An Am-sequence of spherical matrix factorizations is a collection (P1, . . . , Pm)

of spherical matrix factorizations Pi such that

dimH(Pi, Pj) =

{
1 , |i− j| = 1

0 |i− j| > 1
. (5.26)
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Given such a collection, with the preparations of the last sections, it is easy to see that the

associated twist defects DPi satisfy braid relations (5.3). Namely for |i−j| > 1 H(Pi, Pj) =

0, so that from (5.12) one reads off that DPiPj
∼= Pj . Therefore, relation (5.22) implies

DPi ∗DPj
∼= DPj ∗DPi for |i− j| > 1 . (5.27)

Moreover, using dimH(Pi+1, Pi) = 1 one obtains

DPi+1 ∗ Pi
∼= Cone(Pi+1[−ri] fi 6=0−→ Pi) (5.28)

D∗
Pi

∗ Pi+1
∼= Cone(Pi+1

gi 6=0−→ Pi[ri]) (5.29)

for some shifts ri. But since dimH(Pi+1, Pi) = 1, fi and gi are multiples of each other.

In particular,

DP2 ∗ P1[ri] ∼= D∗
P1

∗ P2 . (5.30)

Now we can conclude the other braid relations:

DPi ∗DPi+1 ∗DPi
∼= DPi ∗DDPi+1

∗Pi ∗DPi+1

∼= DPi ∗DD∗
Pi

∗Pi+1
∗DPi+1

∼= DDPi
∗D∗

Pi
∗Pi+1

∗DPi ∗DPi+1

∼= DPi+1 ∗DPi ∗DPi+1 , . (5.31)

Here, the first equation is obtained by means of (5.22). In the second equation use was

made of (5.30) and the fact that shifts do not change twist defects. The third equation is

again obtained by means of relation (5.22), where one has to note that because twist defects

of spherical matrix factorizations are group-like, their fusion products with spherical matrix

factorizations are still spherical. Finally, in the last equation one again employs (5.17).

Summarizing, we have established the following. Given a boundary conditions P ,

the superpositions of the shifted purely reflective defects TP,P ∗ and the trivial defect Id

exhibit a universal defect changing field. The corresponding perturbations lead to twist

defects DP , which have some universal properties. For spherical boundary conditions P

the associated twist defects DP are group-like, and with respect to fusion, satisfy the

commutation relation (5.22). Moreover, Am-sequences of boundary conditions give rise

to a collection of twist defects, which satisfy braid relations. We have discussed this

explicitly in the context of B-type defects in Landau-Ginzburg models, but we expect that

the constructions should apply to general N = (2, 2)-supersymmetric theories.

5.3 Examples

In this section we will present some examples of Landau-Ginzburg models, which exhibit

Am-sequences of B-type boundary conditions. By means of the construction above they

give rise to B-type defects satisfying braid relations.
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5.3.1 Degenerate K3 and fibrations

Geometrically, the appearance of Am-chains of homology cycles has played a prominent

role in the discussion of heterotic-IIA duality [41, 42]. In particular, local singularities

of K3-surfaces are responsible for the non-abelian gauge symmetry enhancement of the

IIA string compactified on K3. Via het-IIA duality this is dual to the non-Abelian gauge

symmetries appearing at special points in the moduli space of the toroidally compactified

weakly coupled heterotic string. Here, we are particularly interested in the case that the en-

hanced symmetry is Am, meaning that the K3 should locally exhibit an orbifold singularity

C
2/Zm+1. Standard examples arise as suitable hypersurfaces in weighted projective spaces.

Consider for example a degree 12 hypersurface in P(1,3,4,4)[12]. Projective equivalence acts

on the affine coordinates as

(x1, x2, x3, x4) 7→ (λx1, λ
3x2, λ

4x3, λ
4x4) (5.32)

For λ4 = 1 this transformation leaves x3 and x4 invariant, leading to a local C
2/Z4-

singularity in x1 = 0 = x2. This singularity is resolved by three spheres intersecting in an

A3 pattern. The hypersurface intersects the singular fixed point set in three points. Hence,

there are three A3-chains on this K3 surface. Note also that this means that the Picard

lattices of K3’s embedded in this weighted projective space generically have rank 10 (1

canonical holomorphic (1, 1) coming from the hyperplane bundle plus 3×3 spheres coming

from the resolution of the singularities) so that the embedding requires a restriction to a

particular part of the K3 moduli space.

This model has a Landau-Ginzburg orbifold phase with superpotential

W = x12
1 + x4

2 + x3
3 − x3

4 (5.33)

and orbifold group Γ = Z12. Therefore, one can realize the B-branes supported on the ex-

ceptional divisors by Z12-equivariant matrix factorizations of W . They have been obtained

in [43]. All the building blocks have already appeared in sections 4.1 and 4.2. The relevant

matrix factorizations are

En
m = Q1

m(x1) ⊗Q1
0(x2) ⊗ P {n}(x3, x4)0 . (5.34)

This is a tensor product of three linear matrix factorizations: the ordinary one-variable

factorizations Q1 in the first two factors, and a permutation matrix factorization P {n} in

the last two factors. Here, m specifies the Z12-representation of the matrix factorization,

and n ∈ Z3 denotes which of the three A3-sequences En
m belongs to. To motivate that

these are good candidates for the matrix factorizations realizing the A3-sequences of B-

type boundary conditions, one can use a simplified version of the arguments in [40, 44].

The latter suggests that the B-type boundary conditions associated to En
m are localized at

the zero locus of the factorization

x1 = x2 = x3 − ηnx4 = 0 , (5.35)

which is the Z4-singularity. This is blown up by the exceptional divisors, and it is known

e.g. from orbifold theories, that the fractional branes of the corresponding Z4 represent

B-branes wrapping the exceptional divisors at large volume.
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Of coures, one can just check that the En
3m are spherical and form A3-sequences. The

Witten-index between the matrix factorizations En
M and En

N is easily calculated to be

IM,N =
(
(1 − g−1)(1 − g3)(1 + g4)

)
M,N

(5.36)

=
(
2 − g−1 − g−3 + g−4 + g4 − g3 − g

)
M,N

,

where

gM,N = δ
(12)
M−N,1 (5.37)

is the Z12-shift matrix. Since these matrix factorizations are tensor products of matrix

factorizations which do not have bosons and fermions at the same degree, and since further-

more no cancellation occurred in the expansion of (5.36) one can indeed even read off the

dimensions of the corresponding open string Hilbert spaces H∗(En
M , En

N ). One obtains that

the En
m are spherical and that (En

0 , E
n
3 , E

n
6 ) constitute A3-sequences of spherical objects.

Let us turn to models with three dimensional target spaces. Examples that gained

particular importance in the context of string dualities are K3 fibrations. Here, one expects

an enhanced gauge symmetry at points in moduli space where the fiber exhibits an ADE

degeneration. For instance, a hypersurface in weighted projective space P1,1,6,8,8[24] is a

K3-fibration over P
1 with fiber a hypersurface in P(1,3,4,4)[12]. To see this, we intersect the

hypersurface with a linear equation in the coordinates x0, x1 of weight 1. A special case is

x0 = 0 for which the hypersurface equation reduces to

x24
1 + x4

2 + x3
3 − x3

4 = 0 (5.38)

from which we recover the K3 hypersurface equation (5.33) by substituting y2 = x2
2 which

is single valued because of quasi-projective equivalence. In complete analogy to the above

discussion, the fibers degenerate at the points (5.35). Hence, one expects an A3-intersection

pattern for the matrix factorizations

Ên
m = Q1

m(x0) ⊗Q1
0(x1) ⊗Q1

0(x2) ⊗ P
{n}
0 (x3, x4) . (5.39)

Indeed, the intersection matrix between the Ên
m is given by

I = (1 − g−1)2(1 − g−6)(1 + g8) (5.40)

= −2g−1 + g−2 − g−6 + 2g−7 − g−8 + g8 − 2g7 + g6 − g2 + 2g ,

where now g denotes the Z24-shift matrix. Again, no cancellation occured in the expan-

sion of (5.40), and one can read off that the matrix factorizations Ên
m are spherical, and

that (Ên
0 , Ê

n
6 , Ê

n
12) constitute A3-sequences. Many more examples can be constructed in a

similar manner, making use of the divisibility patterns of the weights.

An-sequences can also be obtained in these examples using tensor products of the one

variable matrix factorizations Q1 only. These factorizations have the advantage that they

are universally available in any theory with an R-charge, since any quasi-homogeneous

superpotential can be factorized as W =
∑

i xiAi. Geometrically they come from the

embedding quasi-projective space.
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Moreover, one easily sees that tensor products of linear matrix factorizations Q1 are

always spherical: The spectrum for the ith factor of the tensor product consists of the

identity and one fermion (see e.g. section 4.1). The part of the spectrum of the tensor

product factorizations which survives the orbifold projection consists of the identity and

the product of the fermionic fields in each factor. Hence condition (5.15) is always satisfied.

This means in particular that the corresponding twist defects are always group-like and

the induced functors on the B-brane categories are autoequivalences. Geometrically, these

universal autoequivalences correspond to the monodromy in Kähler moduli space around

the locus where the highest dimensional D-brane becomes massless.

Making additional assumptions on the divisibility of the weights, one can construct fur-

ther examples which exhibit An-sequences of spherical tensor product boundary conditions.

5.3.2 A non-geometric Landau-Ginzburg example

A very simple class of Landau-Ginzburg models exhibiting Am-sequences of spheri-

cal B-type boundary conditions are the LG-orbifolds with two chiral superfields x1,

x2, superpotential

W = xd
1 + xd

2 (5.41)

and orbifold group Γ = Zd whose generator acts on the xi by

G : (x1, x2) 7→ (ωx1, ω
−1x2), ω = e

2πi
d (5.42)

The intersection matrix for the linear tensor product factorizations Fm = Q1
m ⊗Q1

0 in this

model is given by

I = (1 − g−1)(1 − g) = 2 − g−1 − g , (5.43)

where g denotes the Zd-shift matrix. As in the previous examples, also here one can read

off the dimensions of the BRST-cohomologies from I. Any collection of d − 1 of the Fm

forms an Ad−1-sequence of spherical matrix factorizations.

This model is non geometric in the sense that it has (generically) non-integer central

charge and thus no direct geometrical interpretation. Note however its close relationship

to the corresponding noncompact models C
2/Zd which can be obtained by setting the

superpotential to zero.

5.3.3 Hirzebruch-Jung examples

The examples discussed in the last section can be generalized to the Landau-

Ginzburg models (
W = xd

1 + xd
2

)
/Zd(k) . (5.44)

As before, one considers Zd-orbifolds of the Landau-Ginzburg models with two chiral su-

perfiels x1, x2 and superpotential W = xd
1 + xd

2, where now the orbifold generators act as

G : (x1, x2) 7→ (ωx1, ω
kx2), ω = e

2πi
d . (5.45)

Here, d and k are assumed to be coprime, and the previous examples are obtained by

setting k = d− 1.
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The corresponding non-compact models have appeared in the context of non-super-

symmetric orbifolds C
2/Zd(k) [45–48]. The orbifold singularity can be resolved using the

Hirzebruch-Jung resolution, which replaces the singular point by a chain of P1’s whose

intersection pattern is determined by the continuous fraction expansion

d

k
= a1 −

1

a2 − 1
a3−

1
...1/af

= [a1, . . . , af ]. (5.46)

The ai are the self-intersection numbers of the f exceptional P1’s blown up in the resolution.

The intersection number between subsequent spheres is 1. Hence, for those (d, k) such that

the continuous fraction expansion of d
k contains a string as = as+1 = . . . = as+r−1 = 2 the

corresponding orbifold model contains an Ar-sequence of spherical B-branes wrapping the

associated exceptional P1’s.

Because of the close relationship between non-compact orbifold and Landau-Ginzburg

models such Ar-chains must also be present in the LG models (5.44). As an example, let

us consider the case that the string of 2’s is located at the beginning of the continuous

fraction expansion of d
k , followed by one further integer b > 2:

d

k
= [2, . . . , 2, b] =

(r + 1)b− r

rb− (r − 1)
. (5.47)

As candidates for the Ar-sequence of spherical matrix factorizations we again choose ten-

sor products

Gm = Q∆
m ⊗Q1

0, ∆ = d− k . (5.48)

Quite generally, if the continued fraction expansion of d
k starts with a 2, we can conclude

that ∆ ≤ d
2 . In the specific case (5.47) ∆ = b − 1. The intersection matrix of the Gm is

given by

I =




∆−1∑

j=−∆

sgn(j)gj



(
1 − g−k

)

= 2

∆−1∑

j=0

gj −
2∆−1∑

j=∆

gj −
−1∑

j=−∆

gj , (5.49)

where g is the d-dimensional shift matrix. Note that no cancellation occurs in the expan-

sion (5.49). Since the Gm are tensor products of matrix factorizations which do not have

bosons and fermions at the same degree, one can therefore read off the dimensions of the

BRST cohomology groups directly from I. One finds that the Gm are spherical and that

dimH∗(Ga∆, Gb∆) = 1 for |a− b| = 1. Indeed, the Ga∆ with a ∈ {0, . . . , r − 1} constitute

an Ar-sequence of spherical matrix factorizations. Namely, since (r − 1)∆ < d, no sum-

mand gn∆ with r > |n| ≥ 2 appears in (5.49), and hence dimH∗(Ga∆, Gb∆) = 0 for all

a, b ∈ {0, . . . , r − 1} with |a− b| > 1.

In exactly the same way one obtains Ar-sequences of spherical matrix factorizations for

models in which the single integer b in the continuous fraction expansion (5.47) is replaced

by an arbitrary string
d

k
= [2, . . . , 2, br+1, . . . , bf ] . (5.50)
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The discussion of the general case

d

k
= [a1, . . . , ai, 2, . . . , 2, br+i+1, . . . , bf ] (5.51)

is slightly more involved and can be found in [49].
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A Equivalence of identity matrix factorizations

In this appendix it is shown that the equivalence class of the identity matrix factoriza-

tion (2.15) does not depend on the choices made in its definition.

For any polynomial W ∈ C[x1, . . . , xN ], the difference W (xi) −W (yi) can be written

in factorized form

W (xi) −W (yi) =
∑

i

(xi − yi)Ai(xi, yi) , (A.1)

for some polynomials Ai ∈ C[x1, . . . , xN , y1, . . . , yN ], which are however not completely

determined by (A.1). For a choice of Ai define the identity matrix factorization Id as the

tensor product

Id =
⊗

Id(i) : Id1

id1

⇄
id0

Id0 (A.2)

of the rank one matrix factorizations Id(i) with maps p
(i)
1 = (xi − yi) and p

(i)
0 = Ai(xj , yj).

This matrix factorization of course depends on the choice of Ai. In order to show that its

equivalence class is independent of this choice, we use a convenient Koszul-type represen-

tation of tensor product matrix factorizations (c.f. [11, 34]):

Id : Id1 = ΛoddV ∗
δ
⇄
δ

ΛevenV ∗ = Id0 , (A.3)

where V = C[x1, . . . , xN , y1, . . . , yN ]N and

δ = ı∆ +A ∧ · , ∆ =
∑

i

(xi − yi)ei , A =
∑

i

Aie
∗
i . (A.4)

Here (ei) is a basis of V and (e∗i ) its dual basis of V ∗; ı∆ and A ∧ · denote insertion of

the vector ∆ and multiplication with the form A respectively. Obviously, δ2 = ı∆(A) =

W (xi) −W (yi).

Now, for any other choice of factorization

W (xi) −W (yi) =
∑

i

(xi − yi)A
′
i(xi, yi) , A′

i = Ai + ai , (A.5)
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one obtains in the same way a matrix factorization (A.3), where now the map δ is re-

placed by

δ′ = ı∆ +A′ ∧ · = δ + a ∧ · . (A.6)

Of course

W (xi) −W (yi) = (δ′)2 = δ2 + {δ, a ∧ ·} = δ2 + ı∆(a) , (A.7)

from which it follows that a ∧ · is δ-closed, and more explicitly ı∆(a) = 0. This implies

however that a = ı∆(ω) for some ω ∈ Λ2V ∗. Since ω is a two-form multiplication with it

commutes with multiplication of any other form, i.e. ω ∧π ∧ · = π ∧ω ∧ · for all π ∈ Λ∗V ∗,

and therefore

e−ω∧·δeω∧· = e−ω∧·ı∆e
ω∧· +A ∧ · = e−ω∧·

[
ı∆, e

ω∧·
]
+ δ (A.8)

= ı∆(ω) ∧ · + δ = δ + a ∧ · = δ′ .

Thus e−ω : Λ∗V ∗ −→ Λ∗V ∗ defines an isomorphism from Id to Id′, and hence the equiva-

lence class of Id is independent of the choice of Ai.
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