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Abstract: The benefits of terrestrial radar interferometry
(TRI) for deformation monitoring are restricted by the
influence of changing meteorological conditions contami-
nating the potentially highly precise measurements with
spurious deformations. This is especially the case when
the measurement setup includes long distances between
instrument and objects of interest and the topography
affecting atmospheric refraction is complex. These situ-
ations are typically encountered with geo-monitoring in
mountainous regions, e.g. with glaciers, landslides or vol-
canoes.
We propose and explain an approach for the mitigation
of atmospheric influences based on the theory of intrinsic
random functions of order k (IRF-k) generalizing existing
approaches based on ordinary least squares estimation of
trend functions. This class of random functions retains
convenient computational properties allowing for rigor-
ous statistical inference while still permitting to model
stochastic spatial phenomena which are non-stationary
in mean and variance. We explore the correspondence be-
tween the properties of the IRF-k and the properties of
the measurement process. In an exemplary case study, we
find that our method reduces the time needed to obtain
reliable estimates of glacial movements from 12 h down to
0.5 h compared to simple temporal averaging procedures.
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1 Introduction
Terrestrial radar interferometry (TRI) is a technology
providing spatiotemporally dense measurements for the
quantification of geometric surface changes along the line-
of-sight over distances up to a few km. This is not only
of immediate practical interest in applications like struc-
tural health monitoring, operation and safeguarding of
open pit mines or monitoring of rockfalls endangering
critical infrastructure but could also facilitate better un-
derstanding of dynamic processes underlying large-scale
geological natural hazards through scientific measure-
ments.

TRI is therefore regularly deployed in mountainous
regions, e.g. to survey glaciers [15], to assess the likeli-
hood of geologically predisposed areas becoming active
landslides [4] or to observe the flanks of volcanoes for
deformation patterns indicating an increase in activity
[14]. Even though TRI, as a remote sensing technology,
has certain advantages over classical point-based geodetic
techniques due to its high sensitivity to small surface dis-
placements, inherently areal sampling and remote oper-
ability without need for any in-situ components, it shares
with them some of their limitations.

Like for any other type of measurement, TRI data
consist of a signal part and a noise part. The latter is fur-
ther decomposable into a spatiotemporally highly auto-
correlated component having its origins in the essentially
unpredictable meteorological changes along the propaga-
tion path, and a second, spatiotemporally uncorrelated,
component subsuming thermal noise, crosstalk between
electronic circuits and movements of the surveyed object
on very short length- or timescales or in manners other-
wise inaccessible to systematic analysis.

This second component becomes directly visible in
the interferograms at locations corresponding to regions
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with weak backscattering. Particularly, it appears in the
form of unsystematic disturbances seemingly adhering to
the restrictive probability laws of white noise and is there-
fore easily modeled stochastically and amenable to statis-
tical standard treatments.

Fig. 1. Two successive 2-minute interferograms, in which the
APS masks the deformations that are actually limited to the area
outlined in black.

The noise component corresponding to atmospheric
influences is more problematic. In addition to the atmo-
spheric phase screen (APS) reaching magnitudes and spa-
tial extents allowing it to completely mask the underlying
signal (see Fig. 1), its stochastic properties also depend
on the topography and are consequently non-constant
because the APS associated with a point 𝑡 ∈ 𝑇 (e.g.,
𝑇 = R3) is the result of an integration of differential at-
mospheric effects along the line joining 𝑡 and the instru-
ment position. Accordingly, the APS cannot be second
order stationary [5, p. 253], and thus widely known in-
ference methods like simple Kriging hold no optimality
properties [7, p. 352]. This raises the question of stochas-
tically optimal inference of an instationary APS.

This inference problem has been approached from dif-
ferent perspectives. Most of them employ a blend of (i)
deterministic relations between APS, refractive index and
meteorological quantities and (ii) stochastic relations of

the deterministically unmodelled residuals to deduce the
APS from the measurements. A purely deterministic ap-
proach was investigated in [9], where the authors gath-
ered meteorological data and predicted the atmospheric
phase delay using tools from weather forecasting. An al-
ternative to the strictly deterministic viewpoint consists
in mixing a polynomial model for the APS with a multi-
ple regression model meant to explicitly incorporate the
information from altitude and phase measurements on
known stable points into the coefficients of the polyno-
mial APS [11]. Presupposing less regularity of the APS
and placing more emphasis on the structure found in the
data leads the authors of [4] to estimate the APS over the
area potentially containing displacements with a spatial
low-pass filter.

It is in recognition of the irregular movement pat-
terns and highly variable meteorological properties of air
in mountainous terrain that we adopt a data-driven view-
point similar to the one proposed in [4]. In section 2 an
interpretation of the APS as an intrinsic random function
will be presented and followed in section 3 by a scheme
allowing rigorous statistical inference for intrinsic random
functions in form of what is called the BLIE (Best Linear
Intrinsic Estimator) in the geostatistical literature (see
[12]). Section 4 contains results validating the proposed
correction method in the context of a monitoring cam-
paign targeting an alpine glacier in southern Switzerland.

2 A mathematical model for the
APS

The area potentially containing moving objects will be
assumed known. A set of persistent scatterers (PS) lying
outside of it has to be extracted from the data for later
use as reference points with good backscattering char-
acteristics and signal-to-noise ratio that provide reliable
information regarding the APS over stable regions. To
this end, the amplitude dispersion index (ADI) described
for example in [13] may be used although care must be
taken to eliminate any PS detected in unstable areas. The
goal is then to derive for all locations 𝑡 ∈ 𝑇 the least
squares estimator minimizing the expected quadratic er-
ror 𝐸[(𝐴(𝑡) − 𝐴(𝑡))2] which represents the deviation be-
tween predicted and true APS, and to quantify the uncer-
tainties associated with the resulting estimates. Acknowl-
edging the effect of noise unaccounted for otherwise, we
will refrain from employing a strict interpolation proce-
dure and instead perform estimation and smoothing si-
multaneously using a coherence-based noise parameter.
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The APS itself will be considered a random field

𝐴(·) : 𝑇 ∋ 𝑡 ↦→ 𝐴(𝑡) ∈ 𝐿2(Ω) (1)

where 𝐿2(Ω) denotes the Hilbert space of square inte-
grable random variables on the probability space Ω (see
for example [7, p 25]). The above definition is to be inter-
preted as 𝐴(·) being an assignment of a random variable
to each location 𝑡 ∈ 𝑇 . Measurements 𝑀(·) on the PS
will be demanded to satisfy

𝑀(·) = 𝐴(·) + 𝑁(·) (2)

with noise 𝑁(·) being a zero-mean random field with di-
agonal covariance matrix Σ𝑁 and 𝐴(·) and 𝑁(·) uncor-
related. To model drifts in variance and expected value
of 𝐴(·), the usual regularity assumption of second order
stationarity (s.o.s.) of 𝐴(·) is dropped and replaced by the
weaker [12, p. 440] assumption of 𝐴(·) being an intrinsic
random function of order k (IRF-k).

IRF-k’s can be understood as random functions, for
which a differential operator ∇𝑘+1 of order 𝑘 + 1 exists,
such that ∇𝑘+1𝐴(·) satisfies 𝐸[∇𝑘+1𝐴(𝑡)] = 0 ∀𝑡 ∈ 𝑇

and 𝐸[∇𝑘+1𝐴(𝑡)∇𝑘+1𝐴(𝑠)] = 𝐶(𝑡 − 𝑠) ∀𝑠, 𝑡 ∈ 𝑇 , where
𝐶 : 𝑇 ×𝑇 → R is a covariance function unaffected by any
translation Γ𝑡0 : 𝑇 ∋ 𝑠 ↦→ 𝑠 + 𝑡0 ∈ 𝑇 acting jointly on
locations 𝑠 and 𝑡:

𝐶(Γ𝑡0(𝑠) − Γ𝑡0(𝑡)) = 𝐶(𝑠 + 𝑡0 − 𝑡 − 𝑡0) = 𝐶(𝑠 − 𝑡). (3)

As this implies ∇𝑘+1𝐴(·) to have translation invariant
first and second moment functions, a more succinct way of
stating 𝐴(·) to be an IRF-k consists of stating ∇𝑘+1𝐴(·)
to be s.o.s..

Direct physical meaning can be attributed to the case
𝑘 = 0 as it corresponds to the assumption of ∇𝐴(·) being
s.o.s., even though 𝐴(·) itself, as a sum of atmospheric
phase variations along wave propagation paths of different
lengths, will exhibit an instationary variance depending
on the distance between instrument and targeted area.
As its variance is not translation invariant, 𝐴(·) can not
be s.o.s., although the supposition of s.o.s. derivatives of
𝐴(·) seems justifiable due to a lack of visible drifts in
the variance of velocities differentiated with respect to
the range direction (see Fig. 2) and will make rigorous
inference possible.

Arguments and definitions will be made more formal
in the following section adhering closely to notations laid
out in [5, pp. 238-270] and loosely to the theory presented
in [12]. A small glossary listing mathematical symbols and
their meaning is supplied at the end of the paper (table
1) to further aid the reader.

Fig. 2. Measured displacement velocities and their derivative in
range-direction. The latter seems to be zero-mean with a homo-
geneous correlation function.

3 Inference in the space of IRF-k

3.1 Intrinsic random functions

Let 𝛿 be the Dirac measure and 𝛿𝑡, 𝑡 ∈ 𝑇 denote its trans-
late, i.e., 𝛿𝑡(𝑇 ′) = 1 if 𝑡 ∈ 𝑇 ′ ⊂ 𝑇 and 𝛿𝑡(𝑇 ′) = 0 oth-
erwise. Then the discrete measure 𝜆 =

∑︀
𝑖 𝜆𝑖𝛿𝑡𝑖 , 𝜆𝑖 ∈ R

freely chosen, acts on a function 𝑋 : 𝑇 → 𝑈 via

𝑋𝜆 :=
∑︁

𝑖

∫︁
𝑇

𝜆𝑖𝑋(𝑠)𝛿𝑡𝑖(𝑑𝑠) =
∑︁

𝑖

𝜆𝑖𝑋(𝑡𝑖).

If 𝑈 is either 𝐿2(Ω) or R and 𝑋 therefore a random field
or a normal, scalar function, define the action of 𝜆 on 𝑋

around 𝑡 as

𝑋𝜆(𝑡):=
∑︁

𝑖

∫︁
𝑇

𝜆𝑖𝑋(𝑠)𝛿𝑡+𝑡𝑖(𝑑𝑠) =
∑︁

𝑖

𝜆𝑖𝑋(𝑡 + 𝑡𝑖). (4)

The space Λ𝑘 of discrete measures allowable at order 𝑘

consists of those 𝜆 for which all polynomials 𝑃 𝑘 : 𝑇 → R
of degree at most 𝑘 vanish:

𝜆 ∈ Λ𝑘 ⇔
∑︁

𝑖

𝜆𝑖𝑃
𝑘(𝑡 + 𝑡𝑖) = 0 ∀ 𝑡 ∈ 𝑇

whereby the number of 𝜆𝑖 is almost arbitrary. This emu-
lates closely polynomials of degree 𝑘 being in the kernel
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of the differential operator of order 𝑘 + 1. Such 𝑋𝜆 are
then called allowable linear combinations of order 𝑘, or
ALC-k for short. If 𝜆 ∈ Λ𝑘 then polynomial drifts of 𝑋(·)
up to order 𝑘 in mean and up to order 2𝑘 in variance are
mapped to 0 by 𝜆 according to

𝑋(𝑡) := 𝑌 (𝑡) + 𝑃 𝑘(𝑡)
𝑋𝜆(𝑡) = 𝑌𝜆(𝑡) + 𝑃 𝑘

𝜆 (𝑡)⏟  ⏞  
0 since 𝜆∈Λ𝑘

= 𝑌𝜆(𝑡)

𝐸[𝑋(𝑠)𝑋(𝑡)] := 𝐾(𝑠, 𝑡)⏟  ⏞  
only function of 𝑡−𝑠

+
∑︀
𝑖6𝑘

𝑃 𝑖(𝑠)𝑓1
𝑖 (𝑡)

+
∑︀
𝑗6𝑘

𝑃 𝑗(𝑡)𝑓2
𝑗 (𝑠) +

∑︀
𝑖,𝑗6𝑘

𝑃 𝑖(𝑠)𝑃 𝑗(𝑡)

𝐸[𝑋𝜆(𝑠)𝑋𝜆(𝑡)] = 𝐾𝜆𝜆(𝑠, 𝑡) +
∑︀
𝑖6𝑘

𝑃 𝑖
𝜆(𝑠)𝑓1

𝑖 𝜆(𝑡)

+
∑︀
𝑗6𝑘

𝑃 𝑗
𝜆(𝑡)𝑓2

𝑗 𝜆
(𝑠) +

∑︀
𝑖,𝑗6𝑘

𝑃 𝑖
𝜆(𝑠)𝑃 𝑗

𝜆(𝑡)

= 𝐾𝜆𝜆(𝑠, 𝑡)⏟  ⏞  
only function of 𝑡−𝑠

where 𝐾𝜆𝜆(𝑠, 𝑡) is understood as a notational extension
of eq. (4) equivalent to

𝐾𝜆𝜆(𝑠, 𝑡) =
∑︁
𝑖,𝑗

𝜆𝑖𝜆𝑗𝐾(𝑡 + 𝑡𝑖, 𝑠 + 𝑠𝑗).

𝑋𝜆(𝑡) is therefore free of the influences of those polyno-
mial drifts and would be stationary if these were the only
terms inciting instationary behavior of 𝑋(·). If indeed this
is the case and the random field 𝑋𝜆(·) : 𝑇 ∋ 𝑡 ↦→ 𝑋𝜆(𝑡) ∈
𝐿2(Ω) is zero-mean and s.o.s. for 𝜆 ∈ Λ𝑘:

𝐸[𝑋𝜆(𝑡)] = 0 ∀𝑡 ∈ 𝑇

𝐸[𝑋𝜆(𝑠)𝑋𝜆(𝑡)] = 𝐶(𝑡 − 𝑠) ∀𝑠, 𝑡 ∈ 𝑇 (5)

then 𝑋(·) is called an IRF-k. The special case 𝑘 = 0
is again particularly instructive. If 𝑋 exhibits a linear
trend in variance as typical for integrated s.o.s. processes
[5, p. 253], the 𝑋𝜆 satisifies the equations 𝐸[𝑋𝜆] = 0 and
𝐸[𝑋𝜆(𝑠)𝑋𝜆(𝑡)] = 𝐾𝜆𝜆(𝑡 − 𝑠) and is s.o.s. for all 𝜆 ∈ Λ0

(e.g. 𝜆 the discrete derivative). Consequently, 𝑋 is an
IRF-0.

For explanatory purposes we will showcase the nec-
essary constructions and the derivation of the BLIE for
the APS 𝐴(·) in the 1D case only. The extensions re-
quired to handle data in more than one dimension are
straightforward (see [12]) and any non-obvious adjust-
ments to the procedure —necessary for the application
to 2D random fields in sec. 4 —will only originate from
the polar geometrical nature of the measurements. To
avoid unnecessary clutter of symbols, the linear map

𝐿𝜆 : 𝐹 ∋ 𝑓(·) ↦→ 𝑓𝜆(·) ∈ 𝐹 , with 𝐹 some space of func-
tions, will also be denoted by 𝜆. No confusion should arise
due to the different meanings of 𝜆 as a measure and the
linear map that maps a function 𝑓 to 𝑓𝜆.

We will now define two specific measures ∇ and ∫
that are inverse to each other in a certain sense to be
made explicit later. In section 3.3 they will be the basis
for a formalization of the idea that differencing in range
direction can make interferograms s.o.s. Let 𝑇 be a set of
pixel indices now, Ξ the space of all random fields, and

∇ : Ξ ∋ 𝐴(·) ↦→ 𝐴∇ = 𝐴(·) − 𝐴(· − 1) ∈ Ξ

∫ : Ξ ∋ 𝐴(·) ↦→ 𝐴∫ (·) =
·−𝑎∑︁
𝑘=0

𝐴(𝑎 + 𝑘) ∈ Ξ

where 𝐴(·) : 𝑇 ∋ 𝑡 ↦→ 𝐴(𝑡) ∈ 𝐿2(Ω), 𝑇 ⊂ Z is a discrete
(1D) random field and 𝑎 is an arbitrary integer constant
corresponding to the lower limit of integration. A short
calculation shows

∇ ∫ 𝐴(·) = ∇

(︃ ·−𝑎∑︁
𝑘=0

𝐴(𝑎 + 𝑘)

)︃
(6)

=
·−𝑎∑︁
𝑘=0

𝐴(𝑎 + 𝑘) −
·−𝑎−1∑︁

𝑘=0

𝐴(𝑎 + 𝑘)

= 𝐴(·)
∫ ∇𝐴(·) = ∫ (𝐴(·) − 𝐴(· − 1))

=
·−𝑎∑︁
𝑘=0

𝐴(𝑎 + 𝑘) − 𝐴(𝑎 + (𝑘 − 1))

= 𝐴(·) − 𝐴(𝑎 − 1)

so that ∇ and ∫ are not strictly inverses on Ξ. How-
ever, analogous to integration and differentiation in
real analysis, ∫ ∇ differs from the identity function idΞ
only by 𝐴(𝑎 − 1) which is an element of ker ∇ :=
{𝑋 ∈ Ξ : 𝑋∇ = 0} and can be considered as giving rise
to the identity on the quotient space Ξ / ker ∇. By the
universal property of quotient spaces [1, p 89] ∃!∇̄ such
that

Ξ Im ∇

Ξ/ ker ∇

........................................................................................................................ ............
∇

........................................................................................... .......
.....

𝜋

........
........
........
........
........
........
........
........
........
................
............

∇̄
𝜋 : Ξ ∋ 𝑋 ↦→ 𝑋̄ ∈ Ξ/ ker ∇

∇ = ∇̄ ∘ 𝜋

𝑋̄ = {𝑌 ∈ Ξ : 𝑌 −𝑋 ∈ ker ∇}

commutes, that is ∇̄ ∘ 𝜋𝑋 = ∇𝑋 ∀ 𝑋 ∈ Ξ. Here, as in
𝑋̄, the overbar is understood to indicate the equivalence
class of 𝑋 under the relation 𝑋 ∼ 𝑌 ⇔ 𝑋 − 𝑌 ∈ ker ∇
and Ξ/ ker ∇ is the space of equivalence classes with ad-
dition 𝑋̄ + 𝑌 = 𝑋 + 𝑌 and scalar multiplication 𝛼𝑋̄ =
𝛼𝑋, 𝛼 ∈ R. Since ∇̄𝑋̄ = ∇𝑋 is well defined accord-
ing to 𝑋 ∼ 𝑌 ⇒ ∇(𝑋 − 𝑌 ) = 0 ⇔ 𝑋∇ = 𝑌∇ and
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by the first isomorphism theorem for modules [1, p 89]
Im ∇ ∼= Ξ/ ker ∇ we surmise that ∇̄ might be an isomor-
phism between Im ∇ and Ξ/ ker ∇. Indeed it is

surjective by ∇̄(Ξ/ ker ∇) = ∇̄ ∘ 𝜋(Ξ) = Im ∇
injective by 𝑋̄ ̸= 𝑌 ⇒ 𝑋 − 𝑌 /∈ ker ∇

⇒ ∇𝑋 ̸= ∇𝑌 ⇒ ∇̄𝑋̄ ̸= ∇̄𝑌

and lastly a homomorphism by
∇̄(𝑋̄ + 𝑌 ) = ∇(𝑋 + 𝑌 ) = ∇̄𝑋̄ + ∇̄𝑌

∇̄(𝛼𝑋̄) = ∇𝛼𝑋 = 𝛼∇̄𝑋̄ .

Furthermore, ∫̄ = 𝜋 ∘ ∫ : Im ∇ → Ξ/ ker ∇ serves as a
two sided inverse homomorphism. This means that the
following diagrams commute.

Im ∇ Im ∇

Ξ/ ker ∇

................................................................................................................. ............

idIm ∇

........
........
........
........
........
........
........
........
........
................
............∫︀ ........................................................................................... .......

.....

∇̄ ∇̄∫̄𝑋(·) = ∇̄𝜋 ∫ 𝑋(·)
= 𝑋(·)

Ξ/ ker ∇ Ξ/ ker ∇

Im ∇

.............................................................................. ............

idΞ/ ker ∇

........
........
........
........
........
........
........
........
........
................
............

∇̄
........................................................................................... .......

.....

∫︀
∫̄ ∇̄𝑋̄(·) = 𝜋 ∫ ∇𝑋(·)

= 𝑋̄(·)

As of now ∇̄ : Ξ/ ker ∇ → Im ∇ is identified as an iso-
morphism with inverse ∫̄ : Im ∇ → Ξ/ ker ∇. This implies
in fact the recapturability of the equivalence class of 𝐴(·)
from 𝐴∇(·), since 𝐴(·) = ∫𝐴∇(·) satisfies ∇̄𝐴(·) = 𝐴∇(·)
meaning that 𝐴 is the equivalence class of all solutions
𝐴(·) to ∇𝐴(·) = 𝐴∇(·) with 𝐴∇(·) given. By exchang-
ing the space of functions on 𝑇 × 𝑇 for Ξ in the quotient
space constructions, it is possible to show that equivalence
classes 𝜎̄ of covariance functions are recoverable from 𝐶 in
the same way equivalence classes 𝐴 of random functions
are from 𝐴∇. They turn out to be not only the minimum
requirement for best linear estimation, but also directly
inferrable from the data by extending the inversion pro-
cedure on the quotient space Ξ/ ker ∇ to 𝐹/ ker ∇∇ and
applying it to a parametric model of 𝐶.

3.2 Derivation of the BLIE

The main impediment complicating statistical inference
for instationary random fields is the fact that the covari-
ance function 𝜎 depends not only on the difference be-
tween pixels but also on the location, making it impos-
sible to infer it from one realization of a random field.
However, it will turn out that for optimal estimation the
instationary covariance is in fact not strictly required; the

equivalence class of its stationary part, termed general-
ized covariance (GC) in [12], will be sufficient. The GC in
turn depends only on the equivalence class of the random
field, enabling reliable estimation in presence of drift in
mean and variance. Since 𝐴∇(·) can be assumed station-
ary, the covariance function of the ALC-0 𝐴∇(·)

𝐸 [𝐴∇(𝑠)𝐴∇(𝑡)] = 𝜎∇∇(𝑡, 𝑠) = 𝐶(𝑡 − 𝑠)

is stationary and can be inferred from the data. Em-
ploying arguments from section 3.1 it can be shown
that for ∇1𝜎 = 𝜎∇𝛿 and ∇2𝜎 = 𝜎𝛿∇ the inverse of
∇2∇1 : 𝐹/ ker ∇2∇1 → ∇2∇1(𝐹 ) is 𝜋21 ∫1 ∫2 with 𝐹

some function space containing 𝜎 and other quantities
as defined below.

𝐹 ∇1(𝐹 )

𝐹/ ker ∇1

................................................................................................................. ............

∇1

........
........
........
........
........
........
........
........
........
................
............

𝜋1
...................................................................................... .......

.....

∇̄1

∇1(𝐹 ) ∇2∇1(𝐹 )

∇1(𝐹 )/ ker ∇2

................................................................................... ............

∇2

........
........
........
........
........
........
........
........
........
..............
............

𝜋2
...................................................................................... .......

.....

∇̄2

· 𝜋 is the natural projection onto the quotient space
· ∇̄𝜎̄ = ∇𝜎 ; 𝜎̄𝑖 equiv. class of 𝜎 in 𝐹/ ker ∇𝑖

· ∇𝑖(𝐹 ) is space of functions of type ∇𝑖𝜎, 𝜎 ∈ 𝐹

𝐹 ∇1(𝐹 ) ∇2∇1(𝐹 )

𝐹/ ker ∇2∇1

.............................................................................................................................................................. ............
∇1 ................................................................................................................................ ............

∇2
............................................................................................................................................................................................................................................................................................................................................................. ..........

..

𝜋21

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

...................

............

∇2∇1

Checking that they are inverses is simple:

For 𝐶 ∈ ∇2∇1(𝐹 ), ∇1𝑒 = 𝑑, ∇2𝑑 = 𝐶

𝑖) ∇2∇1𝜋21 ∫
1

∫
2

𝐶 = ∇2∇1𝜋21 ∫
1

(𝑑 + 𝑞2)

= ∇2∇1𝜋21(𝑒 + 𝑞1⏟ ⏞ 
∈ker ∇1

+ ∫
1

𝑞2⏟ ⏞ 
∈ker ∇2

)

= ∇2∇1𝑒21 = ∇2∇1𝑒 = 𝐶

𝑖𝑖) 𝜋21 ∫
1

∫
2

∇2∇1𝑒21 = 𝜋21 ∫
1

∫
2

∇2(∇1𝑒)

= 𝜋21 ∫
1

∇1𝑒 + 𝑞2

= 𝜋21(𝑒 + 𝑞1 + ∫
1

𝑞2) = 𝑒21

This directly translates to the formula

𝜎̄21 = 𝜋21∫1∫2𝐶 (7)

since ∇2∇1𝜎 = 𝜎∇∇ = 𝐶 is known allowing inference
not of the instationary covariance function but only of



6 J. Butt et al., Intrinsic random functions

its equivalence class 𝜋21𝜎. For any 𝜆𝜆 : 𝜎 ↦→ 𝜎𝜆𝜆 with
ker 𝜆𝜆 ⊇ ker ∇2∇1 𝜆𝜆 : 𝐹/ ker ∇2∇1 ∋ 𝜎̄21 ↦→ 𝜎𝜆𝜆 ∈
∇2∇1(𝐹 ) is well defined:

𝜎1 ∼ 𝜎2 ⇔ 𝜎1 − 𝜎2 ∈ ker ∇2∇1 ⊆ ker 𝜆𝜆

⇒ 𝜆𝜆(𝜎1 − 𝜎2) = 0 ⇔ 𝜆𝜆𝜎1 = 𝜆𝜆𝜎2

Thus for any 𝜆 ∈ Λ0, 𝜎𝜆𝜆 only depends on the equivalence
class 𝜎̄21 which can be calculated from the stationary
covariance 𝐶 of the first derivatives of 𝐴(·). We estimate
the atmosphere at 𝑡0 ∈ 𝑇 linearly from 𝑛 measurements:

𝐴(𝑡0) =
𝑛∑︁

𝑗=1
𝜆𝑗𝑀(𝑡0 + 𝑠𝑗) = 𝜆𝑇 𝑀

The error 𝜖(𝑡0) = 𝐴(𝑡0) − 𝐴(𝑡0) = 𝐴𝜖 + 𝑁𝜆 with 𝜖 =∑︀𝑛
𝑗=0 𝜆𝑗𝛿𝑠𝑗 − 𝛿 is an instationary random field. Forcing

the residual term 𝐴𝜖 to be drift independent and sta-
tionary is equivalent to adding the constraint 𝜖 ∈ Λ0 ef-
fectively constraining 𝜖 to eliminate constant polynomi-
als translating to the equation

∑︀𝑛
𝑖=1 𝜆𝑖 − 1 = 0. Setting

𝐾̄ = 𝜋21 ∫1 ∫2 𝐶 and 𝐶 = 𝜎∇∇, the error variance can be
written as

𝐸[𝜖2] = 𝐸[(𝐴𝜖 − 𝑁𝜆)2] 𝐴⨿𝑁= 𝐸[𝐴2
𝜖 ] + 𝐸[𝑁2

𝜆]
= 𝜎𝜖𝜖(𝑡0, 𝑡0) + 𝜆𝑇 Σ𝑁 𝜆

𝜖∈Λ0

= 𝐾𝜖𝜖(𝑡0, 𝑡0) + 𝜆𝑇 Σ𝑁 𝜆

= 𝜆𝑇 (𝐾𝑖𝑗 + Σ𝑁 )⏟  ⏞  
𝐾

𝜆 − 2𝜆𝑇 𝐾𝑡0 + 𝐾(𝑡0, 𝑡0)

{𝐾𝑖𝑗}𝑘𝑙 = 𝐾(𝑡0 + 𝑠𝑘, 𝑡0 + 𝑠𝑙)
{𝐾𝑡0}𝑘 = 𝐾(𝑡0 + 𝑠𝑘, 𝑡0) 𝑘, 𝑙 = 1, ..., 𝑛

Minimizing 𝐸[𝜖2] subject to
∑︀𝑛

𝑗=1 𝜆𝑗 −1 = 0 leads to the
system of equations [2, pp. 84-86]

𝐾𝜆 + 1−𝜇 = 𝐾𝑡0 (8)

1−
𝑇 𝜆 = 1

where 𝜇 is a single Lagrange-multiplier and 1− ∈ R𝑛 is a
vector of ones. Successive substitution ultimately yields

𝐴(𝑡0) =
𝑛∑︁

𝑗=1
𝜆𝑗𝑀(𝑡0 + 𝑠𝑗) (9)

𝜆 = 𝐾−1
(︁

𝐾𝑡0 − 1−(1−
𝑇 𝐾−11−)−1(1−

𝑇 𝐾−1𝐾𝑡0 − 1)
)︁

.

This estimator can be seen to coincide with ordinary Krig-
ing (see [6] for a similar formulation) but with the GC 𝐾

instead of the stationary covariance 𝐶 and an additional
term accounting for the effects of noise. How this formula
is to be adapted for practical application under consider-
ation of coordinate dependent aspects will be discussed
in the next section.

3.3 Geometrical considerations and
practical implementation

Let 𝑠 ∈ 𝑇 be a point and let 𝑐𝑠 = (𝑥𝑠, 𝑦𝑠)𝑇 and 𝑝𝑠 =
(𝑟𝑠, 𝜙𝑠)𝑇 denote Cartesian and polar coordinates of this
point, respectively. The coordinate transform given by

𝜑 : [0, ∞) × [0, 2𝜋) ∋ 𝑝𝑠 ↦→ 𝑐𝑠 ∈ R2

𝜑(𝑝𝑠) =
[︂
𝑟𝑠 cos(𝜙𝑠)
𝑟𝑠 sin(𝜙𝑠)

]︂
𝜑−1(𝑐𝑠) =

[︂ √︀
𝑥2

𝑠 + 𝑦2
𝑠

atan(𝑦𝑠/𝑥𝑠)

]︂
maps the polar coordinates of a point 𝑠 to its Cartesian
coordinates. If 𝑓(·) is a function from 𝑇 to R then 𝑓𝑐(·)
and 𝑓𝑝(·) will be the corresponding functions acting on
the Cartesian and polar coordinates satisfying 𝑓(𝑠) =
𝑓𝑐(𝑐𝑠) and 𝑓(𝑠) = 𝑓𝑝(𝑝𝑠). The identity 𝑓(𝑠) = 𝑓𝑐(𝑐𝑠) =
𝑓𝑐(𝜑𝑝𝑠) implies the transformation laws 𝑓𝑐 ∘ 𝜑 = 𝑓𝑝 and
𝑓𝑝∘𝜑−1 = 𝑓𝑐. An analogous statement holds for functions
with multiple inputs for which the coordinate transform
is applied to each input separately, e.g.:

𝜎𝑐 ∘ (𝜑, 𝜑) = 𝜎𝑝

𝜎𝑐 = 𝜎𝑝 ∘ (𝜑−1, 𝜑−1)

Following the line of argumentation outlined in section
2, the derivative of the APS 𝐴(·) in line-of-sight may be
regarded as s.o.s.. It will be numerically approximated
by the discrete derivative of 𝐴(·) in range direction. In-
troducing the measure ∇ as below, 𝐴∇(·) ≈ (𝜕/𝜕𝑟)𝐴(·)
and a linear map ∫ can be found such that the relation
between ∇ and ∫ closely resembles that of ∇ and ∫ as
defined in the 1D case in section 3.1.

Note, however, that apart from the errors introduced
by discretization, further sources of uncertainty exist:

1. The derivative in range direction is used instead of
the inaccessible derivative in line-of-sight.

2. Height information is not used although it might in
reality have a significant role to play in the determi-
nation of atmospheric correlations.

3. The covariance of 𝐴∇ is treated as though it were
stationary even if it is likely to be height dependent
and empirically known only at ground level.

Given the lack of reliable information regarding the
stochastic properties of differential phase delay and the
ill-posedness of the estimation problem, none of these
simplifying neglections can be proven justified within the
framework in which the BLIE is valid. For the time be-
ing we will just assume their validity and not try to find
a more faithful stochastic model. However, ∇ and ∫ still
need to be defined in terms of coordinates to provide a
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link between image geometry and stochastic aspects of
the measurements:

∇ : 𝐴(·) ↦→ 𝐴∇(·) = 1
Δ𝑟

[𝐴𝑝(𝑝·) − 𝐴𝑝(𝑝· − Δ)]

∫ : 𝐴(·) ↦→ 𝐴∫ (·) =

𝑟·−𝑟𝑎
Δ𝑟∑︁

𝑘=0

𝐴𝑝(𝑝· + 𝑘Δ)Δ𝑟

Here Δ = (Δ𝑟, 0)𝑇, Δ𝑟 is the range difference between
two pixels and 𝑎 ∈ 𝑇 is a point undetermined apart from
its membership to the line joining · and the instrument.
Closedness of 𝑝𝑇 under translation by Δ is presumed only
to avoid problems of the definitions in the vicinity of the
boundary of 𝑝𝑇 .

Calculations mirroring those in section 3.2 show
that ∇̄ and ∫ are isomorphisms between Ξ/ ker ∇ and
Im ∇ and 𝜋21∫1∫2 and ∇2∇1 are isomorphisms between
𝐹/ ker ∇2∇1 and Im ∇2∇1 for 𝐹 ∋ 𝜎 and ∇2∇1𝜎 =
𝜎∇2∇1 . Thus one of the GC’s 𝐾 satisfying 𝐾 − 𝜎 ∈
ker ∇2∇1, as required in the BLIE, can be seen to be

𝐾(𝑠, 𝑡) = ∫1∫2𝐶𝑝(𝑝𝑠, 𝑝𝑡) (10)

=

𝑟𝑠−𝑟𝑎
Δ𝑟∑︁

𝑘=0

𝑟𝑡−𝑟𝑏
Δ𝑟∑︁

𝑗=0
𝐶𝑝(𝑝𝑎 + 𝑘Δ, 𝑝𝑏 + 𝑗Δ)Δ𝑟2 .

Here 𝑎 = (𝑟0, 𝜙𝑠)𝑇 and 𝑏 = (𝑟0, 𝜙𝑡)𝑇 are chosen to lie on
the lower border of the interferogram. Equation 10 can be
interpreted as assuring that the GC 𝐾(𝑠, 𝑡) can be com-
puted as the double integral of the stationary covariance
function 𝐶𝑐 (𝐶𝑝 need not be stationary) along the two
lines 𝐿𝑠, 𝐿𝑡 joining points 𝑎, 𝑏 to 𝑠, 𝑡 (see Fig. 3).
We recognize equation 10 as a discretization of the inte-
gral representation of 𝐾(𝑠, 𝑡) in the continuous case:

𝐾(𝑠, 𝑡) =
∫︁
𝐿𝑠

∫︁
𝐿𝑡

𝐶(𝑢, 𝑣)𝑑𝑢𝑑𝑣

=
𝑟𝑠∫︁

𝑟0

𝑟𝑡∫︁
𝑟0

𝐶𝑝

(︂[︂
𝑟1
𝜙𝑠

]︂
,

[︂
𝑟2
𝜙𝑡

]︂)︂
𝑑𝑟1𝑑𝑟2

=
𝑟𝑠∫︁

𝑟0

𝑟𝑡∫︁
𝑟0

𝐶𝑐

(︂
𝜑

[︂
𝑟1
𝜙𝑠

]︂
, 𝜑

[︂
𝑟2
𝜙𝑡

]︂)︂
𝑑𝑟1𝑑𝑟2

This can be understood intuitively. The total correlation
between the APS associated to points 𝑠 and 𝑡 consists
of the sum of all individual correlations between points
in the atmosphere along the propagation paths 𝐿𝑠 and
𝐿𝑡. Even though 𝐾(𝑠, 𝑡) is instationary, it differs from a
stationary GC only by an element of ker ∇2∇1 as proven
in [8, pp. 179-186].

Fig. 3. Geometric relations between 𝐴 (top layer) and 𝐴∇ (lower
layer) are inherited by the covariance functions.

To summarize our findings and tie them to a practi-
cally feasible algorithm, we propose the following scheme:

1. Choose PS lying outside the deformation area by
thresholding on the ADI and using prior knowledge
on stable areas.

2. Calculate 𝐴∇ from a version of 𝐴 previously
smoothed with a median filter to reduce the impact
of noise on the estimation of the derivative.

3. Infer 𝐶𝑐(𝑐𝑠, 𝑐𝑡) = 𝐸[𝐴∇(𝑠)𝐴∇(𝑡)] by minimizing
the squared error between the empirical covariance
and the parametric anisotropic stationary covariance
model.

4. Calculate the GC 𝐾(𝑠, 𝑡) using eq. 10 and estimate
Σ𝑁 by using formulas linking coherence and signal-
to-noise ratio (see e.g. [10, p 98]) and a rough prior
of the variance of the APS.

5. Estimate the APS at the unobserved locations us-
ing its noisy observations on the PS using eq. 9 and
subtract it from the measurements to estimate the
deformations.

We finally propose to perform these steps for a set of
overlapping windows to lessen the computational burden
and the impact of neglected but potentially existing in-
stationarity in 𝐶𝑐(𝑐𝑢, 𝑐𝑣).

In our tests, step 3. proved to be problematic. In ac-
cordance to Fig. 2 the estimation of an anisotropic co-
variance function yielded very short correlation lengths in
range-direction. This, however, affected unfavourably the
robustness of the output and the runtime of the algorithm
due to the demand for smaller steps in the numerical in-
tegration of 𝐶𝑐. To sidestep these challenges, isotropy of
𝐶𝑐 was assumed during the production of the results pre-
sented in section 4. Additionally, 𝑟0 was set to 0 and 𝐶𝑐
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chosen in a way to optimize the fit between 𝐾 and the
empirical covariance of 𝐴(·), circumventing occasionally
unreliable inference of 𝐾 from a single dataset.

4 Validation and conclusion
For testing and validation purposes we draw upon the
data gathered during a 2014 measurement campaign in
the alpine regions of southern Switzerland, see [3]. The
dataset features rugged terrain with height differences ex-
ceeding 1 km, a spatiotemporally highly variable APS,
and stable reference areas surrounding a rapidly mov-
ing glacier. Data were collected with a sampling inter-
val of 2 minutes from a location across the valley, at a
distance of up to 8 km from the monitored area. Even
though movements locally reach 2 m/day, the influence of
the APS can mask the signal to the point where atmo-
spheric artifacts and real displacements become indistin-
guishable (see Fig. 4).

For the estimation of the APS the phase values of ap-
proximately 3500 PS were used, the distribution of which
was very sparse in the right fifth of the interferograms
shown in Fig. 4 (≈ 25PS/km2) and increasingly dense to-
wards their center (≈ 350PS/km2). As can be seen in
Fig. 4, the correction scheme performs well in regions with
a high amount of PS and produces poor results in re-
gions with few PS (right) or bad coherence (left). This
is also supported by the accompanying estimation of the
error variance, which is helpful for quantifying the un-
certainty associated with the APS correction procedure.
It is worth noting that the left parts of the images con-
tain the backscattering of objects in a distance of about
4 km to the instrument while for the right, topographi-
cally highly irregular parts, this distance is about 8 km.
Consequently the error variances are significantly higher
in the latter area.

Depending on the number of PS, the error variance
for deformation estimation using 2-minute interferograms
is in certain regions of a magnitude that rivals the ampli-
tude of the signal. This can be explained with short cor-
relation lengths induced by turbulent atmospheric behav-
ior; averaging in time improves the stochastic properties
of the residuals by mitigating temporal high-frequency
components. Fig. 5 shows the average total errors derived
from cross validation on the stable areas as a function of
averaging time and size of the area without any PS in it.

Two obvious trends are clearly visible: larger aver-
aging times lead to more reliable estimations in both cases

Fig. 4. From top to bottom: Average of five two-minute interfero-
grams, estimated velocities after subtraction of the APS and error
variance.

Fig. 5. Average total errors of estimated deformations for the
IRF-k approach and simple temporal averaging. Colouring added
for better visual distinction between error levels.

and the larger the area without reliable APS-
observations, the more uncertain the results. Less than
0.05 m/day average total error are reached within 20
minutes with our approach, whereas simple averaging in
time needs 12 h, and the widely employed fitting of sec-
ond order polynomials (not shown) around 2 h. Due to
the stochastic nature of the estimator, we expect that
high irregularity of the APS and dense distribution of PS
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will further widen the gap between the method proposed
here and comparable methods relying on deterministic
assumptions.

We conclude the suitability of IRF-k’s for mitigating
the atmospheric phase screen and facilitating deforma-
tion monitoring based on interferograms heavily affected
by instationary autocorrelated atmospheric noise as ex-
pected in mountaineous terrain. We will further pursue
an approach generalizing IRF-k’s to linear random func-
tionals and reproducing kernel Hilbert spaces of distribu-
tions to better include geometric correlations induced by
the topography and best represented via linear operators
acting on stationary covariance functions in 3D space.
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ETH Zürich, and Prof. Martin Truffer, University of
Alaska, who also provided the instrument. The Swiss Fed-
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Table 1. Glossary of mathematical terms and symbols

General notation

𝑋𝑇 Transpose of 𝑋
𝑋̂ Estimator for 𝑋
𝑋̄ Equivalence class of X

Index sets and variables

𝑇 Space, time or pixel indices
𝑐𝑠 Cartesian coordinates of 𝑠 ∈ 𝑇
𝑝𝑠 Polar coordinates of 𝑠 ∈ 𝑇
𝐿𝑠 Line joining Radar and 𝑠 ∈ 𝑇

Spaces

𝐿2(Ω) Space of square integrable ran-
dom variables

Ξ Space of random fields

Λ𝑘 Space of allowable measures
Im(𝑓) Image of the map 𝑓
ker(𝑓) Kernel of the map 𝑓

𝑋/𝑌 Quotient space 𝑋 by 𝑌

Random fields

𝑀(·) Measurements
𝐴(·) Atmospheric phase screen
𝑁(·) Noise
𝜖(·) Estimation error

Measures and functions

𝛿 Dirac measure
𝜆 Arbitrary discrete measure

𝜎, 𝐾 Covariance functions

𝐶 Translation invariant covari-
ance function

𝑃 𝑘 Polynomial of up to order 𝑘
𝜋 Canonical projection
𝜑 Coordinate transform

𝑓𝑐 Function acting on cart. coord.
𝑓𝑝 Function acting on pol. coord.

Matrices and operators

Σ𝑁 Covariance matrix of noise
𝐸 Expectation operator

∇𝑘+1 Differential operator of order
at most 𝑘 + 1

∇ Derivative in range direction∫︀
Integration in range direction


