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Output-only parameter identification of a colored-noise-driven Van
der Pol oscillator – Thermoacoustic instabilities as an example

Giacomo Bonciolini, Edouard Boujo and Nicolas Noiray

CAPS Laboratory, MAVT department ETH Zürich, 8092, Zurich, Switzerland

Abstract

The problem of output-only parameter identification for nonlinear oscillators forced by colored
noise is considered. In this context, it is often assumed that the forcing noise is white, since
its actual spectral content is unknown. The impact of this white noise forcing assumption upon
parameter identification is quantitatively analyzed. First, a Van der Pol oscillator forced by an
Ornstein-Uhlenbeck process is considered. Second, the practical case of thermoacoustic limit cycles
in combustion chambers with turbulence-induced forcing is investigated. It is shown that in both
cases, the system parameters are accurately identified if time signals are appropriately band-pass
filtered around the oscillator eigenfrequency.

1. Introduction

System identification (SI) is a long-standing problem that has fostered much research effort
[1, 2]. A wide variety of SI methods have been developed in different frameworks (control theory,
machine learning, information theory), and tailored to the specific situation at hand. In each case,
the following questions, among others, must be considered to choose the adequate SI method: is
it possible to apply a forcing to the system of interest and observe its response (input-output SI),
or is it only possible to measure a given observable (output-only or “blind” SI)? Is a model of
the system already available, with parameters to be identified (parameter identification), or has
the model itself to be uncovered (model identification)? Does the system exhibit nonlinear and/or
transient behavior or can linear time invariance (LTI) be assumed? Is the output corrupted by
measurement noise? Is the system itself subject to dynamic noise, i.e. external stochastic forcing?
Is the system chaotic?

Classical input-output SI techniques generally employ a state-space representation and estimate
the parameters of a (postulated or physically derived) model by minimizing the error between the
predicted and measured values of some output-based quantity, using e.g. maximum likelihood
(ML), prediction error method (PEM), or least-squares (LS) [3, 4, 5, 6]. Popular model classes
include auto-regressive / moving-average (AR, MA, ARMAX) models [7], finite impulse response
(FIR) models [8], output error models (OEM) [9] and Volterra series [10]. If physical insight is
lacking, SI can take care of selecting an adequate model among several candidates, although a
careful trade-off between accuracy and simplicity is needed; this kind of Occam’s razor principle
is typically applied with probabilistic (Bayesian) approaches [11] or sparsity-promoting algorithms
[12]. Methods based on machine learning use kernels [13] rather than postulating a model in the
first place.
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Figure 1: Summary and context of the paper. Center: stochastically forced dynamic system. In order to perform
model-based output-only SI, models for the stochastic input and for the dynamic system (being in the present study
a Van der Pol oscillator) are required. Left: effects of noise color on oscillator dynamics and statistics, with x(t)
being the system state and A(t) its envelope (the energy is ∝ A2). Right: filtering the data to isolate the dynamics
of interest can be needed. The corresponding filter bandwidth affects the statistics and dynamics of the data, which
has to be accounted for in the parameter identification procedure.

Output-only SI methods have to rely on partial information, either because the system cannot
be arbitrarily driven, or because the input cannot be measured. Standard tools include Kalman
filters [14], synchronization methods [15], modal identification [16] and reduced-order modeling
[17]. Empirical dynamic modeling [18] allows for model-free output-only SI. As for input-output
SI, sparse identification techniques are available for output-only SI [19].

Rather than identifying a model or its parameters, some techniques allow the determination
of a number of characteristics of a system: distinguish between its chaotic and stochastic nature
[20], unveil time delays [21] or discover hidden patterns [22] based on information theory (e.g.
entropy and complexity); detect causality with convergent cross mapping [23]; analyze periodicity
and intermittency in noisy signals using recurrence quantification analysis [24, 25, 26].

The presence of measurement noise and dynamic noise often complicates the task of SI, deterio-
rating both its accuracy when identifying parameters and its ability to select plausible models, even
though state-space representations can explicitly account for noise. See [27, 28, 29] for some efforts
towards better noisy SI. However, one can take advantage of the very presence of dynamic noise to
extract information and perform output-only SI: inherent stochastic forcing drives the system away
from its deterministic equilibrium trajectory and make it visit states that would not been visited
otherwise. As proposed in [30], these enriched statistics can then be processed to reconstruct the
coefficients of the system’s Langevin equation or corresponding Fokker-Planck equation [31] and
identify the governing parameters. In the present study this approach is adopted for output-only
model-based SI for stochastically driven nonlinear oscillators: the parameters of a given analytical
model are identified from the output signal of the system forced by a non-measurable random
input. Of course, in the case of linear harmonic oscillators, the system parameters (linear damping
rate and resonance frequency) can be readily obtained, e.g. by estimating peak frequency and
corresponding quality factor, which is not possible when nonlinearities are active. In this context,
accurate and robust output-only parameter identification requires:
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(i) an adequate model of the system,

(ii) a model for the driving noise,

(iii) an appropriate data pre-processing.

These aspects are pictured in fig. 1, where a summary of the present work is sketched. In regards
to point (i), the selected model for this work is a Van der Pol oscillator (henceforth “VDP”), which
is a canonical model used in many different disciplines such as electronics (since the pioneering
work [32]), biology and medicine [33, 34, 35], neurology [36, 37], optics [38, 39], seismology [40],
sociology and economics [41] or thermoacoustics dynamics in turbulent combustors [42], the latter
being the application discussed in more detail in the second part of the paper. The stochastic
differential equation of a Van der Pol oscillator driven by additive noise reads:

ẍ+ ω2
0x = [2ν − κx2]ẋ+ ξ(t), (1)

where x represents the state of the system, f0 = ω0/2π the natural oscillation frequency, ν the
linear growth rate, κ the saturation constant and ξ(t) the additive driving noise.
Concerning point (ii), the simplest model for ξ in eq. (1) is the white noise because it greatly
simplifies the analytical derivations. However, a real stochastic forcing is always “colored”, i.e.
it always features a non-zero autocorrelation time and a non-constant spectral distribution. One
can find a wide collection of studies where the color of the noise plays a fundamental role in the
system dynamics, in topics such as economics, biology and mechanical configurations [43, 44, 45],
as well as in the specific case of oscillators [46, 47, 48]. In the field of thermoacoustics, one can
for instance refer to [49] or [50], the latter investigating the effect of different types of noise on
limit-cycle triggering. This suggests that it is essential to take the noise color into account in
system identification.
In the first part of the present work, the widely used Ornstein-Uhlenbeck process is used as the
driving source of the Van der Pol oscillator. Afterwards another type of noise is introduced for
the specific case of thermoacoustic instabilities in turbulent combustors. In both cases, the asso-
ciated system dynamics and statistics are scrutinised and the effect of noise color on parameter
identification is addressed. The need of properly filtering the output data to reliably identify the
parameters – item (iii) in the aforementioned list – is then discussed.

2. Van der Pol oscillator driven by Ornstein-Uhlenbeck noise

2.1. Effect of colored noise on oscillations statistics

In this section, the noise that drives the Van der Pol oscillator is generated by an Ornstein-
Uhlenbeck (OU) process. It is widely used in various contexts to account for finite correlation
time effects of a stochastic forcing. One therefore considers that ξ in eq. (1) satisfies the following
Langevin equation:

ξ̇(t) = − 1

τξ
ξ(t) +

√
γ

τξ
ζ(t), (2)

where ζ is a unit-variance Gaussian white noise of intensity Γ, γ is a constant coefficient, which will
be used later in the paper to adjust the power of the noise ξ, and τξ denotes its characteristic time
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constant. In the frequency domain, the OU process ξ̂ results from filtering ζ̂ with the following
transfer function

H(s) =
ξ̂(s)

ζ̂(s)
=

√
γ

1 + τξs
, (3)

where s = iω is the Laplace variable. The power spectrum of ξ is given by

Sξξ(ω) = |H|2Sζζ =
Γ

2π

γ

1 + ω2τ2ξ
, (4)

It is useful to define the quantity

Γe = 2πSξξ(ω0) = Γ
γ

1 + ω2
0τ

2
ξ

, (5)

which is the power spectral density of ξ at the oscillator eigenfrequency, referred to as “effective
OU noise intensity” in the remainder of the paper.
Considering that the target of this study is to quantitatively compare white and colored noise
forcing on the oscillator, it is necessary to set a criterion regarding the input power. It is convenient
to adjust the intensity of ξ by using the coefficient γ such that the powers provided by ξ and by a
white noise of intensity Γ in a band [ω1;ω2] are equal, i.e.

∫ ω2

ω1
Sξξdω =

∫ ω2

ω1
Γ/2πdω, which yields:

γ =
τξ(ω2 − ω1)

atan(ω2τξ)− atan(ω1τξ)
. (6)

A sensible choice is to define this “iso-power band” around the oscillator resonance frequency ω0:
[ω1;ω2] = [ω0−∆Ω;ω0+∆Ω]. Henceforth, ∆Ω can vary between 0 (band degenerating in the single
angular frequency ω0) and ω0 (band [0; 2ω0]). The frequency range ∆Ω will be referred to as “iso-
power semi-bandwidth”. One can see in fig. 2 how this parameter affects the forcing noise power
spectrum. The parameter τξ is a direct measure of how much “colored” the noise is: the shorter
τξ, the closer to a white noise ξ is. As τξ goes to zero, the cut-off frequency goes to infinity, leading
to a constant power spectrum, i.e. a white noise source. This is illustrated in fig. 3 (red spectra),
together with the fact that the power spectral density of the oscillator response (blue spectra) is
accordingly affected. Note that in the limit τξ → 0, one gets γ → 1 and Sξξ(ω)→ Γ/2π = Sζζ(ω).
The characteristic time τξ is the noise correlation time, obtained via the autocorrelation function
of ξ:

kξξ(t) = Γ
γ

2τξ
e
− t
τξ , τξ =

1

kξξ(0)

∫ ∞
0

|kξξ(t)|dt. (7)

Such OU process is now considered as being the driving force of the Van der Pol oscillator given
by eq. (1). It is convenient to investigate the system in terms of its slowly-varying amplitude
and phase dynamics with x(t) ≈ A(t) cos [ωt+ ϕ(t)] = A(t) cosφ(t). This coordinate change is
legitimate provided that ν � ω0. Performing deterministic and stochastic averaging [51] yields the
following stochastic differential equation for the amplitude A:

Ȧ = A
(
ν − κ

8
A2
)

+
Γe

4ω2
0A

+ µ(t), with 〈µµτ 〉 =
δ(τ)πSξξ(ω0)

ω2
0

=
Γe

2ω2
0

δ(τ). (8)

It is important to underline that the averaging procedure is valid only if τξ � τA, where the
amplitude correlation time τA is related to the system growth rate by τA ' π/|ν| (see [52, 53, 54]).
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One can refer to fig. 4 where the important time scales of the considered system are presented. It
is also interesting to compare eq. (8) to its white-noise-driven oscillator counterpart

Ȧ = A
(
ν − κ

8
A2
)

+
Γ

4ω2
0A

+ µ(t), with 〈µµτ 〉 =
δ(τ)πSζζ(ω0)

ω2
0

=
Γ

2ω2
0

δ(τ). (9)
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The two equations only differs by the fact that Γe substitutes Γ. In the limit τξ → 0, Γe → Γ,
and eq. (8) tends to eq. (9). Considering the Fokker-Planck equation associated with eq. (8), one
can derive the stationary probability distribution (PDF) for the amplitude of the VDP oscillator
driven by an OU noise:

Pou(A) = NouA exp

[
4ω2

0

Γe

(
νA2

2
− κA4

32

)]
, (10)

and for the white-noise driven VDP oscillator:

Pw(A) = NwA exp

[
4ω2

0

Γ

(
νA2

2
− κA4

32

)]
, (11)

where Nou and Nw are two normalization constants such that
∫∞
0
P (A)dA = 1. Apart from the

normalization constants, Pou and Pw differ by the factor Γ/Γe = (1 + ω2
0τ

2
ξ )/γ in the exponential,

which is depicted in fig. 5.
Figure 6 compares the amplitude PDFs of the oscillator driven by white noise (shaded area) and
by the colored noise (solid lines) for the same system parameters ν, κ, ω0 and Γ. Two different
iso-power semi-bandwidths ∆Ω (columns), which were already considered in fig. 2, as well as two
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different values of the linear growth rates ν (rows) are considered. In the case of a wide iso-power
band, one can observe that Pou significantly deviates from Pw when τξ increases. One can note
that for large enough τξ and for ∆Ω < ω0, Pou tends to a limit case distribution1. On the other
hand, no significant difference among the PDFs can be noticed when ∆Ω/ω0 = 0.1.
To obtain a quantitative measure of the difference between the two PDFs, one can make use of the
Hellinger distance:

H =
√

1−B, (12)

where B =
∫ +∞
−∞

√
p(x)q(x)dx is the Bhattacharyya coefficient. The Hellinger distance H is a

statistic quantity that measures the difference between two PDFs of the same random variable p(x)
and q(x), and ranges from 0 when p(x) = q(x), to 1 when they do not overlap. In the following,
H is computed to compare Pw and Pou in a systematic way for different points (∆Ω, τξ, ν) of the
space of iso-power semi-bandwidth, correlation time and growth rate. The results are presented as
colormaps in fig. 7. The linear growth rate ν has a minor effect: all the maps in fig. 7.a are similar,
but H is slightly higher when ν < 0, due to the shift of the amplitude of maximum probability
Am observed in this case (see again fig. 6). Focusing on the other two parameters in fig. 7.b, H
is large in the upper-right corner of the map, i.e. for high values of ∆Ω and τξ. The influence of
τξ is intrinsically related to the noise color: as discussed earlier, the shorter τξ, the closer is ξ to
a white noise. That is why the region of match between Pc and Pw is wider for short correlation
times. In case of a long τξ, the bandwidth ∆Ω has a strong influence, leading for large values to a
significant difference between Pc and Pw. A large ∆Ω means that the equality of power between

1It can be proven that limτξ→∞(1 + ω2
0τ

2
ξ )/γ = ω2

0/(ω
2
0 −∆Ω2), so except for the case ∆Ω = ω0, this limit is

finite and the Pou asymptotically tends to a limit PDF. Remember that τξ � τA must anyway hold to have a valid
derivation of the equations.
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white noise and colored noise is set in a wide band around the oscillator eigenfrequency. If τξ is
long enough to let the oscillator frequency f0 fall in the decaying part of Sξξ, the power spectral
density of the two forcing noise is sensibly different around f0 (see again fig. 2), and the response
of the system significantly changes.

2.2. Parameter identification and white-noise assumption

In this section, the influence of the finite correlation time τξ of the driving OU noise upon param-
eter identification strategies is investigated. The problem is the following: the noise driving the
oscillator is never white in practice. Therefore, the use of a white noise driven oscillator model as
a base for parameter identification can be brought into question.
One alternative would be to adopt a model featuring a noise source with finite correlation time
as exemplified in the previous section with the OU process. However, this would not make any
difference if the adopted SI method relies on the statistics of the signal. In fact, looking at eq. (10),
one can see that the analytical expression for Pou produces self-similar probability distributions.
In other words, different combinations of Γ and τξ, lead to the same output amplitude statistics.
However, if one is only interested in identifying the linear growth rate ν and the saturation co-
efficient κ one should presumably be able to use a white noise driven VDP model as a basis for
the SI. Still, it has to be verified if the presence of non-zero autocorrelation time τξ can affect
the identification process: even though the amplitude PDFs of the two models are the same, the
output time traces and spectra are different, especially for some combinations of parameters.
To verify the possibility of achieving a robust parameter identification of the linear growth rate ν
and the saturation coefficient κ using a white noise approximation, the following test is performed.
A Van der Pol oscillator (see eq. (1)), having the true parameters ν = νt and κ = κt and forced
with an OU noise of intensity Γt and correlation time τξ, is simulated in Simulink R©, and then the
slowly-varying envelope A(t) and phase ϕ(t) of the output signal x(t) are extracted. A parameter
identification using the white noise driven model is then attempted, making use of the approaches
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3 and 4 proposed in [55]. They consist in finding the optimum parameters ν, κ and Γ giving the
best fit of P (A) and P (Aϕ̇) for method 3, and of the drift and diffusion coefficients of the Fokker-
Planck equation for method 4. However, the identified parameters significantly differ from the
actual values: νid = 2.1νt, κid = 1.9κt, Γid = 1.7Γt with approach 3 and νid = 1.5νt, κid = 1.6κt,
Γid = 1.5Γt using the approach 4.

As will become apparent, the parameter identification failed because of the lack of pre-processing
of the data. In fact it is wrong to assume that the measured output spectrum Sxx(ω) can be
generated by an equivalent white noise source: the actual driving noise spectral power distribution
Sξξ(ω) leaves some peculiar signature in Sxx(ω). However, it is indeed possible to reproduce over
a limited band around the oscillator frequency the actual output of the colored noise driven VDP
with a white noise forcing, because Sξξ is a smooth function of frequency. This is exemplified in
fig. 8.b, where one can see the spectrum of a colored noise driven VDP (thick grey line), overlaying
the one of a VDP driven by a white noise of intensity Γe (thin black line).

The next attempt is, therefore, to bandpass filter the signal obtained from the simulation in the
band f0 ±∆f , using a ∆f progressively narrower2. The obtained identification of ν is presented
in fig. 8.a as a function of ∆f . If ∆f = f0, the identified parameters values are close to the ones
obtained using the unfiltered data. Decreasing ∆f , the identified growth rate νid converges to
the actual one νt for ∆f/f0 = 0.3. The same trend is found for the saturation constant κ. This
indicates that it is necessary to filter the data around the frequency of interest in order to perform
a reliable model-based output-only parameter identification.

One might be tempted to reduce further the filter bandwidth, in order to decrease even more the

2Note that ∆f is not related to ∆Ω: the first is the filter semi-width adopted to pre-process the data for parameter
identification, the second is a semi-bandwidth arbitrarily chosen to define the driving noise intensity.
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semi-bandwidth ∆Ω. a) Identification using the unfiltered data. b) Identification using signals filtered in the band
[f0(1± 0.5)]. The identification result is given as relative error: ε = |νt − νid|/νt.

driving noise modeling inaccuracy. However, one can see that below ∆f = 0.05 the estimated ν
again deviates from the actual one. This fact is explained through the other two panels of fig. 8.
In the panel b, the spectrum of the signal generated by the simulation of the OU noise driven
VDP oscillator is presented, together with two different filter widths. The corresponding filtered
time traces of the oscillation amplitude, used as data for the parameter identification, are plotted
in panel c, superimposed to the unfiltered oscillator signal (grey). One can observe that if a too
narrow band is considered, the signal is altered and substantially deviates from the original: the
amplitude time trace follows the general trend, but does not capture anymore the high frequency
content. This affects the statistics and dynamics of the data and, therefore, the outcome of the
parameter identification. Hence, one must refrain from filtering too much the signal, to preserve
the core information of the original signal.

In the next step, the parameter identification is performed for different colored noise parameters,
to ensure that an adequate filtering is the means of achieving a reliable identification. In fig. 9
the results of this test are presented. Each panel includes the identification result (method 4 in
[55] is adopted) of 100 different simulations of the system, each corresponding to a different com-
bination of noise parameters ∆Ω and τξ. The identification inaccuracy is given in terms of relative
error ε = |νt − νid|/νt. In the left column, the identification results when using the raw data
are presented. The iso-power semi-bandwidth ∆Ω does not noticeably affect this error, as it just
changes the value of Γe to be identified. The noise correlation time has a dramatic impact on the
identification error for long correlation times. However, the error vanishes if τξ is very short, as in
this case the driving noise gets closer a white one. In the right column of fig. 9, the same signals
are bandpass filtered in a band [f0(1 ± 0.5)] before the parameter identification is run. One can
notice how the identification is considerably enhanced, leading to very accurate results regardless
of the parameters of the noise source. This result consolidates the confidence on the output-only
parameter identification methods, as even without knowing the noise parameters Γ, ∆Ω and τξ it
is possible to obtain the correct oscillator parameters ν and κ by just applying an adequate filter
to the output signal.
Summing up, it can be stated that, for a OU noise driven VDP oscillator, the parameter identifi-
cation based on a white noise approximation will accurately estimate the linear growth rate ν and
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the saturation constant κ if the signal is filtered before the analysis. The filtering bandwidth has
to be:

• narrow enough, to have a satisfactory approximation of the real noise with a white one over
the considered band,

• not too narrow, to preserve the amplitude dynamics of the signal.

A sensible strategy is to use a progressively narrower filter for the data pre-processing, and repeat
the identification process until the obtained parameters reach a plateau.
In the next part of this work, the study will be carried out using a different type of noise source,
which is also closer to the actual stochastic forcing characteristic of thermoacoustic systems.

3. Thermoacoustic instabilities: Modeling

3.1. Practical context

In gas turbine, aeronautics and aerospace applications, the race for more efficient, less polluting,
more fuel- and operation-flexible systems is ongoing, towed by customers needs and environmen-
tal regulations [56]. The thermoacoustic instabilities taking place in the combustion chambers of
these engines constitute a major difficulty to overcome [57], because their resulting high amplitude
acoustic levels induce high cycle fatigue of the combustor components and reduce their lifetime.
The mechanisms ruling the constructive interaction between flames and acoustic modes are com-
plex and the occurrence of these instabilities at a given engine operating point is hard to predict.
Therefore, the development of reliable predictive methods is of primary importance. Currently,
brute force Large Eddy Simulations cannot be routinely used in a combustor design optimisation
context due to their prohibitive computational costs. Therefore, a significant portion of the re-
search efforts concentrate on the development of Helmholtz solvers and low-order thermoacoustic
network models that are combined with experiments or computationally-cheaper numerical simu-
lations [58, 59, 60, 61, 62, 63, 64, 65, 66].

In parallel, it is also important to establish robust system identification methods in order to validate
the aforementioned linear-stability prediction tools. It has been recently shown that thermoacous-
tic linear growth rates can be extracted from limit cycle dynamic pressure data recorded in real
systems [55, 67, 54, 42], and compared to the ones obtained using predictive thermoacoustic meth-
ods. Such network model validation is performed in [68].
In the context of the present work, this section deals with output-only parameter identification
methods applied to thermoacoustic systems, where the measurable output is the acoustic pressure
at one location in the combustion chamber while the unknown input is the stochastic forcing re-
sulting from the intense turbulence in the combustor. This last contribution is often modelled as
an additive forcing, and assumed to be a white noise. In reality, this noise is not delta-correlated
as explained in section 3.2. Therefore, in section 3.3 a more accurate model of the actual noise is
introduced and the equations for the Van der Pol forced by this specific noise source are derived.
The impact of the selected model on the effectiveness of the parameter identification is afterward
scrutinised in section 4.1.
Regarding the system modeling, a single thermoacoustic mode description is often adopted in order
to keep the number of system parameters to be identified to a minimum. This allows the use of
a single oscillator as a model of the system. However the raw data, i.e. the acoustic pressure
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Figure 10: Example of power spectra (Sqq and Spp) of turbulence-induced heat release rate fluctuations q̂n and
combustion noise of a flame radiating sound in the free field (adapted from reference [69]). Spp can be approximated
with a bandpass model (-#-), plotted also in the inset, in linear scale.

at a given location in the combustion chamber, result from the superposition of the contribu-
tions from all the combustor eigenmodes. Consequently, it cannot be directly treated and requires
pre-processing to isolate the information corresponding to the single eigenmode considered for pa-
rameter identification. This can be done by bandpass filtering the data [42] or by performing a
modal projection if several simultaneous records at different locations in the chamber are available
[67]. These data manipulations can, however, change the outcome of output-only parameter iden-
tification methods, because the signal and its statistics can be sensibly altered. This problem is
considered in section 4.2.

3.2. Colored random excitation

In thermoacoustics, the acoustic pressure satisfies the Helmholtz equation with heat release rate
source in the volume of the domain and the impedance conditions on boundaries:

∇2p̂(s, x)−
(s
c

)2
p̂(s, x) = −s (γ − 1)

c2
q̂(s, x) in the domain, (13)

p̂(s, x)

û(s, x) · n
= Z(s, x) on boundaries, (14)

where p̂ and û are the acoustic pressure and velocity fluctuations, s the Laplace variable, x the
position, c the local speed of sound, γ the specific heat ratio, q̂ the heat release rate fluctuation,
n the outward normal to the boundary and Z the acoustic impedance. This equation stands if
the Mach number is low. If the flame is placed in an open environment, waves generated by the
reaction zone are radiated away without reflections. In reference [70], the radiated sound field in
this situation is modelled as function of the turbulence-induced heat release rate fluctuation and
compared to experimental data. The formal solution of eq. (13) for a fluctuating heat release rate
source in an open environment is:

p̂(s, x) = s
(γ − 1)

4πrc2

∫
Vf

q̂(s, y)e
s
c |x−y|d3y, (15)
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Figure 12: a) Example of normalized combustion noise spectra measured for different open flames configurations
(adapted from [69]). In the inset, the frequency of the spectrum maximum fmax is given as a function of the flow
characteristics for a large set of operating conditions (see main text for definitions). b) Typical acoustic pressure
spectrum recorded in a combustion chamber.

where x is the observer position in the far field, r ≈ |x| is the distance of the observer from the
flame. This equation is valid when the flame brush, which extends over the volume Vf , is compact
with respect to the considered acoustic wavelength. An example of the far-field acoustic power
spectral density Spp in such configuration, i.e. the so-called combustion noise [71], is given in
fig. 10, together with integrated heat release oscillation power spectrum Sqq. In this situation,
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the heat release rate fluctuations q̂ generating the sound field are only due to the non-coherent
turbulent component q̂n (see fig. 11.a).
The combustion noise spectrum Spp features a maximum at frequency fmax and a bandpass sig-
nature, in contrast with the low-pass character of Sqq, having fmax as cut-off frequency. The two
spectra are related to each other by eq. (15), which is the topic of e.g. [69, 72].
All the authors, from the fundamental theoretical work by Clavin and Siggia [73] to the systematic
study by Rajaram and Lieuwen [69], agree on the shape of the combustion noise spectrum Spp.
In [69] it has been shown that the normalized combustion noise power spectra of different burners
operating under different conditions collapse on top of each other, indicating a general scaling law
(see fig. 12.a). The combustion noise spectrum features a maximum, and varies like Spp(f) ∝ f2

on the left side, and like f−r, with 2 < r < 3.4, on the right side. The peak frequency of the
combustion noise spectrum can be estimated making use of experimental relations such as the one
proposed in [74], involving dimensions, flow properties and chemical quantities. Alternatively, it
has been observed in [69] that the Strouhal number St = fmaxLF/Uavg is almost in any case close
to 1, where LF is the flame length and Uavg the average velocity of the reactants mixture. Hence
fmax ≈ Uavg/LF, which is shown in the inset of fig. 12.a.

As exemplified in fig. 12, the acoustic signature dramatically changes when the flame is placed
within a combustion chamber. In fig. 12b, a single mode dominates the spectrum, with a sharp
peak of frequency f0, surrounded by several side peaks, which correspond to the other thermoa-
coustic eigenmodes. One can conveniently express the acoustic pressure at a given location x as

p(x, t) =

∞∑
i=1

ηi(t)ψi(x), (16)

where ηi denotes the amplitude of the ith mode and ψi the spatial distribution of the corresponding
natural acoustic mode of the chamber.

This spatial projection leads to a set of coupled stochastic nonlinear differential equations for
the modes η(t) = [η1(t), · · · , ηj(t), · · · ]T . However, it is often possible to describe the dynamics of
a single mode j by neglecting the influence of other modes [75]. In this case, the mode amplitude
ηj is given by the nonlinear stochastic oscillator

η̈j + ω2
j ηj = gj(ηj , η̇j) + ξj , (17)

where ωj = 2πfj is the angular frequency of the jth natural acoustic mode, ξj(t) is the additive
stochastic forcing coming from turbulence-induced processes. The term gj is a non-linear func-
tion which includes, amongst others, the effects of acoustic damping mechanisms and coherent
heat release rate fluctuations (this last contribution is coherent in the sense that it depends on
the acoustic field). One can see in fig. 11.b a diagram depicting the coherent feedback q̂a from
a flame located in a combustion chamber. At the same time the flame is also influenced by the
turbulent flow. The resulting heat release fluctuation is the aforementioned q̂n, which was the only
source in case of an open flame. The turbulence-induced flow perturbations exhibit a much smaller
spatial correlation than the acoustic ones, which are correlated over the entire combustor. These
quantities q̂a(ω) and q̂n(ω) can be measured in dedicated test rigs equipped with loudspeakers and
microphones, as explained in e.g. [76], and can be used afterwards in network models providing
predictions of the system stability.
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3.3. Colored noise driven Van der Pol oscillator

In the following, it is assumed that the non-linear function gj in eq. (17) results from a linear
acoustic damping and a non-linear flame feedback: g(η, η̇) = q̇a − αη̇, where α is the damping
constant, and subscripts are omitted from now on. The flame response is expanded up to the third
order in acoustic amplitude, which is often sufficient to characterise supercritical thermoacoustic
bifurcations [77, 78]: qa = βη − κη3/3. This assumption yields the already presented Van der Pol
oscillator equation:

η̈ + ω2
0η = [2ν − κη2]η̇ + ξ(t) (18)

where ν = (β − α)/2 is the linear growth rate.

Considering ξ as a white noise, i.e. a delta correlated forcing, simplifies the modeling approach
and has been used in most of the studies dealing with stochastically forced thermoacoustic limit
cycles (e.g., again [77, 78]).
In the remainder of the paper the random forcing ξ is assumed to result from the non-coherent heat
release rate fluctuations qn only. As a result, Sξξ follows the same power law as the combustion
noise and is therefore proportional to Spp [72, 79].

In order to keep the problem tractable, ξ is defined by

ξ̂(s) = H(s) ζ̂(s) =

√
γτ2s

(1 + τs)2
ζ̂(s), (19)
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where ζ is a unit-variance Gaussian white noise of intensity Γ, γ is a constant used to adjust the
power of the process ξ and τ is its characteristic time constant. The resulting power spectrum is
given by |H|2Sζζ :

Sξξ(ω) =
Γ

2π

γω2τ4

(1 + ω2τ2)2
, (20)

that features a maximum at

fmax =
1

2πτ
. (21)

One can again define an “effective colored noise intensity”:

Γe = 2πSξξ(ω0) = Γ
γω2

0τ
4

(1 + ω2
0τ

2)2
. (22)

This model is a close approximation of actual experimental data, as shown in fig. 10 (-#-). This
model is also close to others provided in literature, like in [79], but, thanks to its simplicity, it
allows for the analytical derivation that follows.
As done for the OU case, the colored noise power is equated to the one of a white noise of intensity
Γ in the band [ω1;ω2] = ω0 ±∆Ω, which yields:

γ =
2(ω2 − ω1)

τ

(
atan(ω2τ)− atan(ω1τ)− ω2τ

1 + ω2
2τ

2
+

ω1τ

1 + ω2
1τ

2

)−1
. (23)

One can see in fig. 13 how the parameter ∆Ω affects the forcing noise power spectrum.
The characteristic time τ is related to the noise correlation time τξ, that can be obtained via the
autocorrelation function of ξ,

kξξ(t) = Γ
γτ2

4
√

2π
(τ − t)e− t

τ , (24)

τξ =
1

kξξ(0)

∫ ∞
0

|kξξ(t)|dt =
2τ

e
, (25)
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where e = exp (1) ' 2.718.
The value of τξ is related to the “color” of the noise: it determines where the maximum of the
noise spectrum fmax is located compared to the oscillator eigenfrequency f0, affecting, as presented
in fig. 14, the response of the VDP. Focusing in a band around f0, one can see how the oscillator
is forced either by a source having the power increasing with frequency (“blue” noise), or almost
constant (close to a white noise), or decreasing (“pink” noise). The resulting output p is, accord-
ingly, substantially different.

0
0 0.5

1

1

2

3

10−4

10−3

10−2

τξ

τA

∆Ω/ω0
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is the acoustic period). Solid lines are the PDFs for colored noise VDP (eq. (27)), shaded area the white noise
driven PDF (eq. (11)) for the same parameters. The amplitude A is given as relative to Am, the amplitude where
Pw(A) is maximum.

The VDP equation is again recast in amplitude-phase coordinates. In this case, this substitution
is legitimate as, in most of the practical cases, the thermoacoustic systems satisfy the condition
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ν � ω0. This means that the right hand side of eq. (17) is much smaller than the left one and
then η(t) ≈ A(t) cos [ωt+ ϕ(t)] = A(t) cosφ(t). Adopting the colored noise model (20) for ξ,
deterministic and stochastic averaging yields the stochastic differential equation:

Ȧ = A
(
ν − κ

8
A2
)

+
Γe

4ω2
0A

+ µ(t), 〈µµτ 〉 =
πSξξ(ω0)δ(τ)

ω2
0

=
Γe

2ω2
0

δ(τ), (26)

with Γe given by eq. (22). Again, the averaging method is valid if the correlation times are such
that τξ � τA [51]. This is generally verified for practical cases. The amplitude correlation time is
related to the growth rate by τA ' π/|ν| [54]. Taking ν = 10 rad/s, for instance, τA = 314 ms,
while the noise correlation time τξ = 2τ/e ≈ 1/eπfmax is generally smaller than 1 ms (fmax ≥ 50
Hz, see fig. 12.a).
The stationary probability distribution for the amplitude of the bandpass noise driven VDP oscil-
lator is then:

Pc(A) = NcA exp

[
4ω2

0

Γe

(
νA2

2
− κA4

32

)]
, (27)

where Nc is the normalization constant to have
∫∞
0
Pc(A)dA = 1.

Like for the OU case, eqs. (26) and (27) have the same structure as their white noise driven system
counterparts eqs. (9) and (11), with the effective colored noise intensity Γe (eq. (22)) replacing the
white noise intensity Γ. Therefore, Pc and Pw differ only for the factor Γ/Γe in the exponential.
In fig. 15 one can see a map of this factor, as function of the iso-power bandwidth ∆Ω and of the
source noise correlation time τξ.
Comparing this map with the one for the OU noise (fig. 5), one can notice how Γ and Γe might
differ whatever the correlation time. This is due to the fact that this type of noise does not con-
verge to a white one for short τξ. Another difference is that this coefficient can be lower than one.
In line with this map, Pc and Pw can show significant differences, as depicted in fig. 16. To compare
quantitatively Pc and Pw, the Hellinger distance is plotted in fig. 17. As for the OU noise, for
small ∆Ω, H tends to 0. However in this case, for large ∆Ω, H is large whatever the correlation
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time of the noise source.

4. Thermoacoustic instabilities: parameter identification

In this section, the white noise approximation is assessed in the context of parameter identification.
As discussed before, the dynamics of a thermoacoustic mode can be seen as a SISO system.
Although the output, represented by pressure oscillation, is easily accessible via experimental
measures, the input, resulting from turbulence, is not known. Therefore, this system necessitates
output-only parameter identification methods.

4.1. Assessment of the white noise approximation
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Figure 18: Map of band-pass colored noise driven oscillator identification, for different noise correlation time τξ and
iso-power semi-bandwidth ∆Ω. a) Identification using the unfiltered data. b) Identification using signals filtered in
the band [f0(1± 0.5)]. The identification result is given as relative error: ε = |νt − νid|/νt.

Following the same procedure as in section 2.2, 100 test cases with fixed oscillator parameter ν = νt
and κ = κt, but different noise parameters τξ and ∆Ω, are analysed to ensure that the identification
methods relying on the white noise assumption are not biased by the actual noise spectrum and
autocorrelation. The relative error ε = |νt − νid|/νt on the estimated oscillator linear growth rate
νid is presented in fig. 18.
Like for the OU noise case, the identification might fail if the unfiltered data are used (left panel).
It is interesting to notice that, compared to the OU case, the error is generally less severe. This is
due to the spectral distribution of the bandpass noise, rapidly decaying in power at high and low
frequencies. Another peculiar aspect is the distribution of the errors in the map. While for the
OU noise low τξ means a quasi-white noise forcing and, therefore, a small identification error, here
short τξ corresponds to a blue noise forcing.
As in the OU case, filtering the data prior to parameter identification improves the identification
results (right panel of fig. 18). This is, again, due to a more accurate approximation of the real
forcing spectrum with a white one in the considered frequency range.
The bandwidth of the filter adopted in the pre-processing of the data has to be chosen with care
in order not to discard essential amplitude dynamics. In addition, practical acoustic spectra often
feature neighboring peaks around the main one, due to the coexistence of several thermoacoustic
modes in the combustor. This is a further constraint when one analyses experimental data and
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Figure 19: Effects of three different filter bandwidths on the analysis of combustor pressure experimental data. a)
Acoustic pressure spectrum and filters bands. b) Time traces resulting from the three different filtering. c) Detail
of the envelopes over a time span of two τA.

performs single-mode output-only parameter identification. These two aspects are covered in the
following.

4.2. Effect of data preprocessing on parameter identification
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(refer to eq. (28)): ω2 = 1.3ω1, α1/ω1 = 0.02, β1/ω1 = 0.03, α2/ω1 = 0.03, β2/ω1 = −0.02, κ1/ω1 = κ2/ω1 = 0.015.
The colored noise parameters (refer to eq. (20)) are: fmax/f1 = 0.2, ∆Ω/ω1 = 0.5, Γ/4ω2

1 = 1. a) Overview of the
total pressure and forcing noise spectra. b) The spectral SPL of total output, single oscillators outputs p1 and p2,
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simulation of a double VDP oscillator, of known parameter (e.g. νt is the true growth rate). The identification
is performed on mode #1, of eigenfrequency f1, while another mode of eigenfrequency f2 is in place. Three
identification methods of [55] are used, respectively based on: the power spectral density of the amplitude (-4-),
the probability density function of the amplitude (-#-) and the coefficients of the Fokker-Planck equation (-�-).

A typical combustor acoustic pressure spectrum features several peaks (fig. 12.b). The different
modes acting in the domain are mutually coupled, each one influencing the response of the others.
However, if the neighboring peaks are not too close, one can analyse one mode at a time, isolating
its dynamic from that of the other modes. This is easily done by bandpass filtering the data and
simplifies the system identification, since neither the parameters of neighboring modes, nor the
coupling coefficients have to be taken into account.
Figure 19 shows a typical situation and the effects of a different filter bandwidth. A wider portion
of this spectrum has already been shown in fig. 12.b. This experimental spectrum features a strong
peak, corresponding to the dominant mode eigenfrequency, surrounded by two others small peaks.
In order to identify the mode parameters accurately, removing the other modes effect, the signal
is filtered around the main peak, i.e. in the band [f0−∆f ; f0 + ∆f ]. The maximum bandwidth is
the one that discards neighboring peaks while keeping the main peak and its tails (∆f/f0 = 0.20
in this case). One could also choose narrower bands (∆f/f0 = 0.10 or ∆f/f0 = 0.025 in this
example), obtaining different resulting time signals. Looking at the central panels of fig. 19, one
can see that in the first case (green), the dynamics on time scales comparable to the amplitude
correlation time τA = π/|ν| is preserved: compared to the widest filter (blue), only high-frequency
amplitude oscillations are lost. This means that the essential dynamics are unaffected. In the
second case (red), the general trend is followed, but too much information has been lost to reliably
identify the parameters ν and κ.
In the following, a “toy model” of two coupled oscillators driven by colored noise is used to illustrate
this issue: 

η̈1 + α1η̇1 + ω2
1η1 = [β1 − κ1η21 ]η̇1 + [β2 − κ2η22 ]η̇2 + ξ

η̈2 + α2η̇2 + ω2
2η2 = [β1 − κ1η21 ]η̇1 + [β2 − κ2η22 ]η̇2 + ξ

p = p1 + p2 = ψ1η1 + ψ2η2.

(28)

The total output p, which is the sum of the outputs of the two oscillators η1 and η2 weighted by
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ψ1 and ψ2, features a spectrum, plotted in fig. 20, that is similar to the experimental pressure
spectrum shown in fig. 12. This figure also highlights what is hidden behind a single-mode approx-
imation.
Note the difference between the spectra of p2 without coupling (theoretical, thick blue) and with
coupling (numerical, thin blue), especially for f = f1. This difference appears because the os-
cillators are coupled and the linearly unstable oscillator #1, characterized by a limit-cycle at
f1 = ω1/2π, is forcing oscillator #2, having eigenfrequency f2 = 1.3f1 = ω2/2π. At the same time,
the linearly stable mode (oscillator #2) contributes to Spp around the eigenfrequency f1 of the
unstable mode (oscillator #1). Therefore, the response of the system at f = f1 is not due to the
oscillator #1 only. However, if the two peaks are distant enough and one is stronger than the other,
these mutual contributions are negligible, compared to the direct output of the oscillator #1 at its
natural frequency (more than 20 dB of difference in this example). Restricting the discussion to
this case, one can adopt the aforementioned single-mode approximation, and attempt a parameter
identification on one mode at a time.
To test the sensibility of the identification results to the filter bandwidth, the output signal is
filtered with different bandwidth around the first eigenfrequency f1. The aim is to extract the
linear growth rate of the first unstable oscillator, which has the true value νt ≈ (β1 − α1)/2. For
this purpose, three different methods of [55] are used. The results are presented in fig. 21. One
can observe that, whatever the adopted identification method, for too narrow filter bandwidth,
the identified growth rate is far from the true one, whereas it converges to νt for large enough
windows. On the other hand, when the filter is too wide, the effect of the neighboring mode starts
to bias the identification. Therefore, when one analyses experimental data around a frequency of
interest, there exist, for the filter bandwidth: i) a lower limit, given by the need not to alter the
amplitude statistics, ii) an upper limit, given by the distance from the neighboring peaks. These
constraints have to be satisfied in parallel with the one regarding the validity of the white noise
approximation (section 4.1). However, in most of the practical cases, neighboring peaks are close
and the maximum filter bandwidth to satisfy condition ii) is narrow enough that the effect of noise
color can be safely neglected.
On the other hand, it is clear that any identification attempt on a mode that is both highly un-
stable and very close to another mode will fail because the filter to adopt to isolate one mode
dynamics would be so narrow that condition i) is not fulfilled. In this situation a two-mode model
would be required for parameter identification. As already suggested, it is advisable to iterate the
parameter identification varying the applied filter bandwidth: one can be confident on the result
if a plateau is observed.

5. Conclusion

In this work, the effects of the color of a stochastic excitation driving a Van der Pol Oscillator has
been investigated. First, an Ornstein-Uhlenbeck process has been considered as the driving source.
Then, a noise model, mimicking the stochastic forcing exerted by turbulence in thermoacoustic
systems, has been used. It has been shown that in both cases the envelope statistics is the same as
the one obtained with a white noise forcing, provided that an equivalent effective noise intensity
is considered. Then, the approximation of a colored noise by a white one has been assessed in the
context of data analysis and parameter identification. The main conclusion is that one can reliably
identify the linear growth rate and saturation constant by band-pass filtering the data around the
oscillator eigenfrequency.
This result is valid regardless of the parameters values and nature of the forcing noise. This fact
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consolidates the output-only parameter identification methods proposed in [55], because in real
cases it might be impossible to determine the spectral distribution of the forcing noise.
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Bifurcation and Chaos 9, 2197 (1999).
[41] L. Glass and M. C. Mackey, From clocks to chaos: the rhythms of life (Princeton University

Press, 1988).
[42] N. Noiray and A. Denisov, Proceedings of the Combustion Institute (2016).
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