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Abstract In Monte Carlo methods quadrupling the sample size halves the error.
In simulations of stochastic partial differential equations (SPDEs), the total work is the
sample size times the solution cost of an instance of the partial differential equation.
A Multi-level Monte Carlo method is introduced which allows, in certain cases, to
reduce the overall work to that of the discretization of one instance of the determin-
istic PDE. The model problem is an elliptic equation with stochastic coefficients.
Multi-level Monte Carlo errors and work estimates are given both for the mean of the
solutions and for higher moments. The overall complexity of computing mean fields as
well as k-point correlations of the random solution is proved to be of log-linear com-
plexity in the number of unknowns of a single Multi-level solve of the deterministic
elliptic problem. Numerical examples complete the theoretical analysis.

Mathematics Subject Classification (2000) 65N30

1 Introduction

Monte Carlo methods are widely used in statistical simulation. In the case of partial
differential equations with random inputs, “sampling” entails the numerical solution of
one deterministic partial differential equation (PDE) per sample. For time dependent,
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124 A. Barth et al.

parabolic problems driven by noise (see, e.g. [3–5,15,22]), numerous paths must be
simulated. Here, we are concerned with Monte Carlo methods (MC methods) for ellip-
tic problems where the source of randomness lies in the coefficients. Such problems
arise prominently in the numerical simulation of subsurface flow problems (see, e.g.
[27,28] and the references therein). Some key characteristics of elliptic problems with
stochastic coefficients, which arise in computational geosciences, are the low spa-
tial regularity of the permeability samples, the small spatial correlation lengths (this
implies slow convergence of Karhunen–Loève expansions), and, more challenging,
the possible non-stationarity of realistic stochastic models. All these factors hinder the
efficient numerical simulation of such problems. In order to deal with these difficul-
ties, we propose a Multi-level Monte Carlo method (MLMC method). This family of
methods was introduced, to the authors’ knowledge, by Giles [17,18] for Itô stochastic
ordinary differential equations after earlier work by Heinrich on numerical quadrature
(see [21]).

We consider the following elliptic model problem

−div(a∇u) = f in D,

where D ⊂ R
d , d = 1, 2, . . . We impose mixed Dirichlet and Neumann boundary

conditions and assume f to be in L2(D). The coefficient a is assumed to be a possibly
correlated random field over the spatial domain D. The random field solution u of
Problem (1.1) not only depends on x ∈ R

d , but also on a stochastic parameter ω ∈ �,
where � is the space of all elementary events, which we specify later. For a fixed
ω, Eq. (1.1) is an elliptic PDE with inhomogeneous coefficient, which can be solved
efficiently by a Galerkin Finite Element approximation and Multi-level methods. We
shall be interested in particular in the computation of moments of the stochastic solu-
tion by a Monte Carlo method (MC method). However, the rate of convergence of
the MC method is 1/2, so that quadrupling of the sample size halves the error of the
approximation. To estimate the moments of the solution of Eq. (1.1), we must solve
the deterministic equation for each sample and form the k-fold tensor product of the
Finite Element solution. The cost of this algorithm is the number of samples times
the cost for the approximation in the space domain (in the case of a Finite Element
method this corresponds to the degrees of freedom).

One of the aims of the Multi-level Monte Carlo Finite Element method (MLMC-FE
method), proposed here, is to decrease the cost of this computation to log-linear com-
plexity of N , the number of degrees of freedom of a single deterministic instance of
Eq. (1.1) by a Multi-level method, at least for low order Finite Elements. In order to do
so, we introduce a nested sequence of hierarchic Finite Element spaces (FE spaces),
in each of which we calculate a certain number of samples of the approximation of the
solution. As observed initially by Giles in the context of Itô-SDEs in [18], this leads
on the one hand to a large number of samples on a very coarse grid, whereas only few
samples are needed on a fine grid where the convergence in the space variable x is
fast, but solving the linear system of equations for each sample is expensive. Our error
analysis shows how the MLMC method exploits this fact: we prove that the optimal
number of MC samples is related to an inverse power of the meshwidth at each level
of discretization. This strategy provides substantial gains in the efficiency compared
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MLMC-FE method for elliptic sPDEs 125

to a MC method. With the use of a full Multigrid solver, the computational cost of the
MLMC method is shown to be log-linear in N , the number of degrees of freedom on
the finest grid, in R

d , for d > 1. Moreover, the error of the MLMC method balances
the error of the space approximation and the sampling error. The sample size should
therefore be increased if the space approximation is “too good” or the solution “too
smooth”. Depending on the dimension of the physical domain, the complexity of the
MLMC method with linear Finite Elements becomes then, in terms of the number of
degrees of freedom, less efficient.

Further we analyze the MLMC approximation of higher moments of the solution.
To this end, we propose estimators which are based on sparse tensor products of wave-
let representations of the FE solutions for the samples of the random coefficients. This
leads to a sparse tensor MLMC-FE method which exhibits near optimal asymptotic
error bounds for k-point correlations of any order k, and, as we show in Sect. 5, is
of log-linear complexity in the number N of degrees of freedom. As key step in our
analysis, we show that the solution exhibits a certain “mix” regularity, which takes
the form of r -summability of the stochastic solution as a Bochner function in a scale
{Xs}s≥0 of Sobolev spaces on the domain D.

This paper is structured as follows. In the second chapter we present all the pre-
liminaries. This is followed by the formulation of our model problem, where we also
study the well posedness and certain regularity conditions of the solution. In the fourth
chapter we analyze the rate of convergence of the Multi-level Monte Carlo method. We
prove convergence rates of the Monte Carlo approximations for the continuous solu-
tion and its Galerkin Finite Element approximation. Chapter 5 contains the extension
of our previous results to the approximation of higher order moments of the solution.
Here we derive rates of convergence for the sparse tensor Multi-level Monte Carlo
method for the kth moment, 1 ≤ k ∈ N, of the solution. Subsequently we present
numerical experiments for some examples in one and two space dimensions.

2 Preliminaries

For the variational formulation as well as for our error analysis of the MLMC-FE
method for the problem at hand, given by Eq. (1.1), we shall require Bochner spaces
of r -summable functions in D ⊂ R

d , for d = 1, 2, . . .. To this end, for any Banach
space B of real-valued functions on the domain D with norm ‖ · ‖B , we denote the set
of strongly measurable, r -summable mappings v : �→ B by

Lr (�,A,P; B) := {v : �→ B | v strongly measurable, ‖v‖Lr (�;B) <∞},

where, for 0 < r ≤ ∞,

‖v‖Lr (�;B) :=

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎝

∫

�

‖v(ω, ·)‖r
B dP(ω)

⎞

⎠

1/r

if 0 < r <∞,

esssupω∈�‖v(ω, ·)‖B if r = ∞ .
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126 A. Barth et al.

Here we introduced a probability space (�,A,P),where, as usual,� denotes a set ele-
mentary events, A ⊂ 2� the σ -algebra of all possible events and where P : A→ [0, 1]
is a probability measure. Let B ∈ L(X,Y ) denote a continuous linear mapping from X
to another separable Hilbert space Y . For a random field x ∈ Lr (�; X) this mapping
defines a random variable y = Bx ∈ Lr (�; Y ) and

‖Bx‖Lr (�;Y ) ≤ C‖x‖Lr (�;X).

Furthermore, there holds

B
∫

�

x(ω) d P(ω) =
∫

�

Bx(ω) d P(ω).

We refer to Chapter 1 of [13] for a synopsis of these and further results of Banach
space valued random variables.

3 Model elliptic problem with stochastic coefficients

In the bounded Lipschitz domain D ⊂ R
d , d = 1, 2, 3, we consider the elliptic

diffusion problem with stochastic diffusion coefficient a

− div(a∇u) = f in D. (3.1)

Here, f ∈ L2(D) is a given source term. We assume that the Lipschitz boundary
� = ∂D is partitioned into a finite union of (d−1)-dimensional planes, which in turn
are grouped into a Dirichlet part �D and a Neumann part �N . We assume in addition
that

|�N | ≥ 0 and |�D| > 0. (3.2)

Furthermore, the exterior unit normal vector 
n to � exists almost everywhere on �.
Equation (3.1) is completed by the boundary conditions

γ0u := u|�D = 0, γ1,au := (a 
n · ∇u)|�N = g, (3.3)

where g is a given normal flux on �N (specific assumptions on g will be given below).
In the case of the Laplacean, i.e. when a = 1, we write γ1 in place of γ1,a .

To ensure well-posedness of our problem, we require that the following assumption
on the stochastic diffusion coefficient a is fulfilled:

Assumption 3.1 The stochastic diffusion coefficients a(ω, x) in Eq. (3.1), and
Eq. (3.3) is assumed to be a strongly measurable mapping from � into L∞(D).
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MLMC-FE method for elliptic sPDEs 127

There exist constants 0 < a− < a+ <∞ such that the random coefficient a(ω, x)
in Eq. (3.1) is uniformly elliptic, i.e. for every ω ∈ � holds1

0 < a− ≤ essinfx∈Da(ω, x) ≤ ‖a(ω, ·)‖L∞(D) ≤ a+ <∞. (3.4)

We remark that for Lipschitz domains D the trace operator γ0 in Eq. (3.3) is well-
defined and continuous from H1(D) onto H1/2(�D).

For the normal derivative operator γ1,a , we have

Lemma 3.2 Under Assumption 3.1, for f ∈ L2(D) and every 0 < r ≤ ∞, the
co-normal derivative operator γ1,a in Eq. (3.3) is a well-defined and surjective linear
operator from Lr (�; H1

�D
(D,�)) onto Lr (�; H−1/2(�N )) where

H1
�D
(D,�) := {v ∈ H1(D) : γ0v = 0, �v ∈ L2(D)}

and H−1/2(�N ) := (H1/2
00 (�D))

∗ (with duality being understood with respect to the

“pivot” space L2(�); see [24] for the definition of H1/2
00 (�D)).

3.1 Variational formulation and well-posedness

To present the variational formulation of Eq. (3.1) we introduce the Hilbert space

V = H1
�D
(D) = {v ∈ H1(D) : γ0v = 0}. (3.5)

Due to the assumption |�D| > 0, by the continuity of the trace operator γ0 the space
V is a closed, linear subspace of H1(D) and by the Poincaré inequality the expression

V � v→ ‖v‖ :=
⎛

⎝

∫

D

|∇v|2 dx

⎞

⎠

1/2

is a norm on V . We identify L2(D) with its dual and denote by V ∗ the dual of V
with respect to the “pivot” space L2(D), i.e. we work in the triplet V ⊂ L2(D) 
L2(D)∗ ⊂ V ∗.

To derive the variational formulation of the stochastic elliptic boundary value prob-
lem, given by Eqs. (3.1)–(3.3) we fixω ∈ � for the moment. We then multiply Eq. (3.1)
by a test function v ∈ L2(�; V ) and integrate by parts in D to obtain (for fixedω ∈ �)
the (formal) integral identity

∫

D

a∇v · ∇u dx =
∫

D

f v dx +
∫

�N

gγ0v ds.

1 We assume that the random coefficient a is, possibly after modification of a given a on a null-set, well-
defined and computationally accessible for every ω ∈ �.
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128 A. Barth et al.

Taking expectations on both sides of this expression, we arrive at the weak formulation
of the stochastic elliptic boundary value problem (Eqs. (3.1)–(3.3)): given a satisfying
Assumption 3.1, f ∈ L2(�; V ∗) and g ∈ L2(�; H−1/2(�N )), which are mutually
independent, find u ∈ L2(�; V ) such that

B(u, v) = F(v) ∀v ∈ L2(�; V ), (3.6)

where the bilinear form B(·, ·) : L2(�; V )× L2(�; V )→ R is given by

B(u, v) = E

⎡

⎣

∫

D

a(·, x)∇u(·, x) · ∇v(·, x) dx

⎤

⎦ ,

and

F(v) = E

⎡

⎣

∫

D

f (·, x)v(·, x) dx

⎤

⎦+ E

⎡

⎢
⎣

∫

�N

gγ0v(·, x) dsx

⎤

⎥
⎦ ,

where the ‘integrals’
∫

D f (·, x)v(·, x) dx and
∫

x∈�N
. . . dsx understood as L2(�; V )×

L2(�; V ∗) respectively as L2(�; H1/2
00 (�N ))× L2(�; H−1/2(�N )) duality pairings

obtained by extending the corresponding L2 inner products by continuity. By the Riesz
Representation Theorem there exists a linear operator A(ω) ∈ L(V, V ∗) such that for
all v,w ∈ V

B(v,w) = V ∗〈A(ω)v,w〉V . (3.7)

Theorem 3.3 Under Assumption 3.1, for every f ∈ L2(�; V ∗) and g ∈ L2(�;
H−1/2(�N )), the weak formulation, Eq. (3.6), of the stochastic elliptic boundary value
problem, given by Eqs. (3.1)–(3.3), admits a unique solution u ∈ L2(�; V ).

Proof By Assumption 3.1, we have for every v,w ∈ V

|B(v,w)| ≤ esssupω∈�‖a(·, x)‖L∞(D)‖v‖L2(�;V )‖w‖L2(�;V )
≤ a+‖v‖L2(�;V )‖w‖L2(�;V ) (3.8)

and

B(v, v) ≥ a−‖v‖2
L2(�;V ). (3.9)

Moreover, for given g ∈ L2(�; H−1/2(�N )) and f ∈ L2(�; V ∗), we have by the
Cauchy–Schwarz and Poincaré inequalities and the continuity of the trace operator γ0
that for every w ∈ V

|F(w)| ≤ ‖ f ‖L2(�;V ∗)‖w‖L2(�;V ) + ‖g‖L2(�;H−1/2(�N ))
‖γ0w‖L2(�;H1/2(�D))

≤ C(D)(‖ f ‖2
L2(�;V ∗) + ‖g‖2

L2(�;H−1/2(�N ))
)1/2‖w‖L2(�;V ). (3.10)

The assertion now follows from the Lax-Milgram Lemma. ��
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MLMC-FE method for elliptic sPDEs 129

Remark 3.4 The variational formulation, Eq. (3.6), requires in Assumption 3.1 only
the definition and boundedness of the random coefficient a P-a.s.. The (stronger)
Assumption 3.1 implies in particular the unique solvability of the stochastic diffu-
sion problem, defined in Eq. (3.1) for every ω; this is required for the MLMC-FE
simulation. Assumption 3.1 in addition also implies

∀ω ∈ � : ‖u(ω, ·)‖V ≤ 1

a−

(
‖ f (ω, ·)‖2

V ∗ + ‖g(ω, ·)‖2
H−1/2(�N )

)1/2
. (3.11)

3.2 Regularity of Solutions

To ensure local H2(D) regularity and the existence of higher moments of the stochastic
solution u ∈ L2(�; V ) we impose additional assumptions on the data f and g:

Assumption 3.5 We assume that f ∈ Lr (�; L2(D)), g ∈ Lr (�; H1/2(�N )), for
some 2 ≤ r ≤ ∞, and that the mapping � � ω→ a(ω, ·) takes values in W 1,∞(D)
for every ω ∈ �. Moreover, we assume that the sources of randomness, i.e. a, f and
(if |�N | > 0) g are independent and strongly measurable as mappings taking values
in the respective Banach spaces W 1,∞(D), L2(D) and in H1/2(�N ).

By the usual elliptic regularity theory (see, e.g. [16]), Assumption 3.5 ensures in
particular that u ∈ H2

loc(D),P-a.s. We have the following

Proposition 3.6 Under Assumption 3.5 and by Eq. (3.4), the elliptic problem, given
by Eqs. (3.1)–(3.3), admits a unique solution u ∈ Lr (�;W ). Here, the space W is
defined by

W := {w ∈ V : �w ∈ L2(D), γ0w = 0, γ1w ∈ H1/2(�N )},

equipped with the norm ‖ · ‖W given by

‖w‖W := ‖�w‖L2(D) + ‖w‖L2(D).

Further, with 2 ≤ r ≤ ∞ as in Assumption 3.5, there holds the a priori estimate

‖u‖Lr (�;W ) ≤ C(a)
(‖ f ‖Lr (�;L2(D)) + ‖g‖Lr (�;H1/2(�N ))

)
. (3.12)

Here, C(a) depends on a− and a+, resp. on ‖a‖L∞(�;W 1,∞(D)).

Proof The proof is a consequence of the W 1,∞(D)-regularity of all realizations of
the stochastic coefficient a which implies that the stochastic solution u ∈ L2(�; V )
satisfies the identity

−�u(ω, ·) = 1

a(ω, ·) ( f (ω, ·)+∇a(ω, ·) · ∇u(ω, ·)) in L2(D), ∀ω ∈ �.
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130 A. Barth et al.

Therefore we may estimate for every ω ∈ � with a constant C(a) independent of ω

‖�u(ω, ·)‖L2(D) ≤ C(a)
(‖ f (ω, ·)‖L2(D) + ‖g(ω, ·)‖H1/2(�N )

)
.

Adding the corresponding L2(D) bound [which results from Eq. (3.11) and the
Poincaré-inequality], raising both sides of the resulting bound on the ‖ · ‖W norm
of u to the power r and taking expectations implies the assertion. ��

We remark that the space W can be characterized as a weighted Sobolev space with
weights vanishing at vertices and (in case d = 3) at edges of the polyhedron D; see,
e.g. [20].

In the following section we introduce the Galerkin projections our Finite Element
method will be based on. We prove convergence of the resulting discrete problem by
a Monte Carlo method, before we proceed with the convergence and a work estimate
for the MLMC method for the discrete equation.

4 Multi-level Monte Carlo Finite Element method

A key ingredient in MLMC-FE method are pathwise, hierarchic Finite Element dis-
cretizations of the stochastic elliptic problem (Eq. (3.1)) which we present next. Fol-
lowed by an error estimate for the Monte Carlo method of the (non-discrete) solution of
the problem at hand. From this result we derive a convergence rate for the MC method
of the discrete solution (full tensor MC-FE method) and finally for the Multi-level
MC-FE method.

4.1 Mean square stability of the Galerkin projection

The Finite Element method which we consider is based on sequences of regular sim-
plicial meshes of quasi-uniform triangles or tetrahedra {Tl}∞l=0 of the polygonal respec-
tively polyhedral domain D. For any l ≥ 0, we denote the meshwidth of Tl by

hl = max
K∈Tl

{diam(K )} =: max
K∈Tl

{hK }.

We recall (see, e.g. [8,9]) that the nested family {Tl}∞l=0 of regular, simplicial meshes
is called κ-shape regular if and only if there exists a κ <∞ such that κ := supl κl =
supl maxK∈Tl

hK
ρK

. Here ρK is the radius of the largest ball that can be inscribed into
any K ∈ Tl .

The uniform refinement of the mesh is achieved by regular subdivision. This results
in the meshwidth hl = 2−l h0, where h0 denotes the meshwidth of the coarsest tri-
angulation. The nested family {Tl}∞l=0 of regular, simplicial triangulations obtained in
this way is κ-shape regular, since κl = κ0 = κ .

For p ≥ 1 we define the Finite Element spaces as

S p(D, T ) = {v ∈ H1(D) : v|K ∈ Pp, ∀K ∈ T }, (4.1)
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MLMC-FE method for elliptic sPDEs 131

where we denote by Pp(K ) = span{xα : |α| ≤ p} the space of polynomials of total
degree ≤ p on a set K . We also denote by

S p
�D
(D, T ) = {v ∈ H1

�D
(D) : v|K ∈ Pp, ∀K ∈ T },

the corresponding Finite Element space with essential boundary condition, with �D

coinciding with a finite union of boundary edges of T0.
The family of FE spaces that we employ is V = {S1

�D
(D, Tl)}∞l=0, which is the

family of spaces of continuous, piecewise linear functions on the regular, simplicial
triangulation {Tl}∞l=0 that satisfy the homogeneous essential boundary conditions on
the Dirichlet boundary �D (whose closure coincides, by assumption, with the union
of all closed edges of elements K ∈ Tl abutting at �D).

The Galerkin approximation is based on the weak formulation in Eq. (3.6) of the
stochastic elliptic boundary value problem, presented in Eqs. (3.1)–(3.3).

Since for each level l of mesh refinement, Vl = S1
�D
(D, Tl) ⊂ H1

�D
(D) the corre-

sponding discrete problem reads: find ul ∈ L2(�;S1
�D
(D, Tl)) such that

B(ul , vl) = F(vl) ∀vl ∈ L2(�;S1
�D
(D, Tl)), (4.2)

where F(v) is defined as in Eq. (3.6).
By Eqs. (3.8), (3.9) and (3.10), for each l = 0, 1, 2, . . . exists a unique stochastic

FE solution ul ∈ L2(�;S1
�D
(D, Tl)).

The operator Gl projecting the variational solution u ∈ L2(�; V ) into the stochastic
Finite Element solution ul ∈ L2(�;S1

�D
(D, Tl)) is an L2(�; V )-stable projection:

by Eqs. (4.2) and (3.9), we have for every l

a−‖ul‖2
L2(�;V ) ≤ B(ul , ul) = B(u, ul) ≤ a+‖u‖L2(�;V )‖ul‖L2(�;V ),

which implies

‖Glv‖L2(�;V ) ≤
1

a−
‖v‖L2(�;V ) ∀v ∈ L2(�; V ).

Under Assumption 3.1, the Galerkin projection Gl is well-known to be quasioptimal
(see, e.g. [8,9]), i.e.

‖u − ul‖L2(�;V ) ≤ Ca inf
vl∈Vl

‖u − vl‖L2(�;V ), (4.3)

where Ca =
√

a+
a− .

Assumptions 3.1 and 3.5 imply local H2(D)-regularity of the solution. More pre-
cisely, with the space W ⊂ V as defined in Eq. (3.12), there exists a unique weak
solution u ∈ L2(�;W ) and Eq. (3.12) holds. Then, C(a) depends on a− and a+ resp.
on ‖a‖L∞(�;W 1,∞(D)). With the same assumptions and by well known results (see for
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example [8,9]) we have for all w ∈ W and every l ∈ N0

inf
vl∈S1

�D
(D,Tl )

‖w − vl‖H1
�D
(D) ≤ CI 2−l h0‖w‖W , (4.4)

where CI > 0 is some constant, independent of l.
We proceed with an analysis of the rate of convergence of the Monte Carlo method

for the solution of the stochastic elliptic problem (3.6). First we derive the estimate
for the solution which is not discretized in space and then generalize this result to the
Finite Element solution.

4.2 Rate of convergence of the Monte Carlo method

We are interested in estimating statistical moments of the random solution. We estimate
the expectation E[u] ∈ V by the mean over solution samples ûi ∈ V, i = 1, . . . ,M
corresponding to M independent, identically distributed realizations of the random
input data a, f and g:

EM [u] := 1

M

M∑

i=1

ûi ∈ V . (4.5)

The following result is a bound on the statistical error resulting from this Monte Carlo
estimator.

Lemma 4.1 For any M ∈ N and for u ∈ L2(�; V ) holds

‖E[u] − EM [u]‖L2(�;V ) ≤ M−1/2‖u‖L2(�;V ).

Proof Let us denote by ûM the sample average over M samples. Defined as such ûM

is a random variable that maps � into V . With the independence of the identically
distributed samples it follows

‖E[u] − EM [u]‖2
L2(�;V ) = E

⎡

⎣

∥
∥
∥
∥
∥
E[u]− 1

M

M∑

i=1

ûi

∥
∥
∥
∥
∥

2

V

⎤

⎦ = 1

M2

M∑

i=1

E

[
‖E[u] − ûi‖2

V

]

= 1

M
E

[
‖E[u] − u‖2

V

]
= 1

M
(E‖u‖2

V − ‖E[u]‖2
V )

≤ 1

M
‖u‖2

L2(�;V ).

��

4.3 Single-level Monte Carlo Finite Element method

The implementation of the estimator EM [u] in Eq. (4.5) requires a Finite Element
approximation of the ‘samples’ ûi which we choose from a continuous, piecewise
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MLMC-FE method for elliptic sPDEs 133

linear Finite Element space on a family of shape regular, affine and simplicial trian-
gulations {Tl}∞l=0.

The key question which arises naturally here is which is the optimal choice of the
sample size in dependence of the grid size to achieve a prescribed error level with
minimal work.

We shall address this question under the following assumptions on the Finite
Element method.

Assumption 4.2 For a given Finite Element mesh Tl from the family of meshes the
FE solution for a given realization âi ∈ W 1,∞(D) of the stochastic coefficient which
satisfies Assumption 3.1, the Galerkin projection ul = Glu ∈ Vl on the Finite Element
subspace Vl = S1

�D
(D, Tl) of dimension Nl = dim(S1

�D
(D, Tl)) can be realized in

O(Nl)work and memory. The Galerkin projections ul admit the a priori error estimate

‖w − Glw‖V ≤ CaCI hl‖w‖W ,

where hl = 2−l h0 = maxK∈Tl diam(K ) denotes the meshwidth of Tl .

We remark that for polygonal domains D ⊂ R
2, Assumption 4.2 on the space W

can be satisfied by standard Multilevel solvers for continuous, piecewise linear Finite
Elements on families {Tl}∞l=0 of meshes with suitable refinement towards the vertices
of D. We now establish a first error estimate for the MC-FE method in the case when
the same Finite Element mesh Tl is used for all samples: we estimate the expectation
of the solution, E[u], by

EM [ul ] := 1

M

M∑

i=1

Glû
i ∈ L2(�;S1(D, Tl)) (4.6)

Theorem 4.3 Under Assumptions 3.1 and 3.5 holds the error bound

‖E[u]− EM [ul ]‖L2(�;V )≤C(a)

(
1√
M
+ hl

)
(‖ f ‖L2(�;L2(D))+‖g‖L2(�;H3/2(�N ))

)
.

(4.7)

Proof We split the left hand side of the equation above as follows

‖E[u] − EM [ul ]‖L2(�;V ) ≤ ‖E[u] − E[ul ]‖L2(�;V ) + ‖E[ul ] − EM [ul ]‖L2(�;V )
≤ E [‖[u] − [ul ]‖V ]+ ‖E[ul ] − EM [ul ]‖L2(�;V ).

The first term on the right hand side is bounded by Assumption 4.2 and
Proposition 3.6. The assertion follows with Lemma 4.1 for the second term. ��

The optimal choice of sample size versus grid size for a fixed error is reached when
the statistical and the discretization errors are equilibrated, i.e. when
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M− 1
2 = O(hl)= O(2−l). In terms of the degrees of freedom of the Finite Element

method, Nl , therefore, we obtain from Eq. (4.7) the basic relation

M− 1
2 = O(hl) = O(N

− 1
d

l ). (4.8)

We have a closer look at the computational cost of the Monte Carlo method. We work
under Assumption 4.2 and take the same estimate as before, i.e. we estimate E[u] by
the mean of ûi

l , i = 1, . . . ,M for M independent samples with the fixed discretization
level l:

E[ul ]  EM [ul ] = 1

M

M∑

i=1

ûi
l =

1

M

M∑

i=1

Glû
i .

Under Assumption 4.2, the computational cost of this estimate is O(M · Nl) work
and memory, i.e. the number of samples times the cost for each Finite Element solu-
tion with Nl = 2ld degrees of freedom. With the previous calculation on the optimal

sample size, i.e. Eq. (4.8), which implies M = N
2
d

l = O(22l), we may write for the
computational cost O(2l(2+d)).

Subsequently we generalize these calculations to the case of a Multi-level approx-
imation of the Monte Carlo method.

4.4 Multi-level Monte Carlo Finite Element method

For the MLMC method we discretize the variational formulation, given by Eq. (3.6),
by Galerkin projection onto the hierarchic sequence V of finite dimensional sub-spaces
V0(D) ⊂ V1(D) ⊂ · · · ⊂ Vl(D) ⊂ · · · ⊂ V (D), where Vl(D) := S1

�D
(D, Tl). With

the notation u0 := 0 we may write

uL =
L∑

l=1

(ul − ul−1)

and, by linearity of the expectation operator E[·],

E[uL ] = E

[
L∑

l=1

(ul − ul−1)

]

=
L∑

l=1

E[ul − ul−1].

In the MLMC-FE method, we estimate E[ul − ul−1] by a level dependent number
Ml of samples, which implies that we may estimate E[u] by

E L [u] :=
L∑

l=1

EMl [Glu − Gl−1u]. (4.9)

Convergence of the MLMC-FE method is guaranteed by the following
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Lemma 4.4 Under Assumptions 3.1, 3.5 and 4.2, the MLMC-FE approximation,
Eq. (4.9) of the expectation E[u] of the solution u ∈ L2(�;W ) to the stochastic ellip-
tic boundary value problem, presented in Eqs. (3.1)–(3.3), in the polyhedral domain
D ⊂ R

d admits the error bound

‖E[u] − E L [u]‖L2(�;V )

≤ C

(

hL +
L∑

l=1

hl M−1/2
l

)
(‖ f ‖L2(�;L2(D)) + ‖g‖L2(�;H1/2(�N ))

)
. (4.10)

Here, the constant C depends only on d, a− and on the bound ‖a‖L∞(�;W 1,∞(D)) in
Assumption 3.5.

Proof We rewrite the error to be estimated as in the proof of Theorem 4.3 as

‖E[u] − E L [u]‖L2(�;V ) =
∥
∥
∥
∥
∥
E[u] − E[uL ] + E[uL ] −

L∑

l=1

EMl [ul − ul−1]
∥
∥
∥
∥
∥

L2(�;V )
≤ ‖E[u] − E[uL ]‖L2(�;V )

+
∥
∥
∥
∥
∥

L∑

l=1

(
E[ul − ul−1] − EMl [ul − ul−1]

)
∥
∥
∥
∥
∥

L2(�;V )
=: I + I I.

We estimate the error bounds for the terms I and I I separately.
Term I: By Jensen’s and the Cauchy–Schwarz inequality, for every l = 1, . . . , L ,

we get

I ≤
([
‖E(u − Glu)‖2

L2(�;V )
])1/2 = ‖u − ul‖L2(�;V ) ≤ CI Ca hl‖u‖L2(�;W ).

In particular for l = L we obtain the asserted bound for Term I .
Term II: By the triangle inequality we consider for each l = 1, . . . , L the term

‖E[ul − ul−1] − EMl [ul − ul−1]‖L2(�;V ).

Each of these terms is estimated as follows:

‖E[ul − ul−1] − EMl [ul − ul−1]‖L2(�;V ) = ‖(E− EMl )[ul − ul−1]‖L2(�;V )
≤ M−1/2

l ‖ul − ul−1‖L2(�;V )
≤ M−1/2

l

(‖u − ul‖L2(�;V )
+‖u − ul−1‖L2(�;V )

)

≤ CaCI M−1/2
l (hl + hl−1)‖u‖L2(�;W )

= 3 CaCI hl M−1/2
l ‖u‖L2(�;W ).
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Here we used Lemmas 4.1, Eqs. (4.3) and (4.4). Summing these estimates from l =
1, . . . , L completes the proof. ��

The preceding result gives an error bound for the MLMC-FE approximation, for
any distribution {Ml}Ll=1 of samples over the mesh levels. Like in the single-level
Monte Carlo approximation one is interested in the optimal ratio of sample size versus
grid size in every level, i.e. how Ml relates to hl to achieve an overall convergence
rate of O(hL).

Theorem 4.5 Under Assumptions 3.1, 3.5 and 4.2, the MLMC-FE approximation,
given by Eq. (4.9), of the expectation of the solution of the stochastic elliptic boundary
value problem (Eqs. (3.1)–(3.3)) in the polyhedral domain D ⊂ R

d with Ml samples
on mesh level l given by Ml = O(l2+2ε22(L−l)h0), l = 1, 2, . . . , L, where ε > 0 is
arbitrarily small, admits the error bound

‖E[u] − E L [u]‖L2(�;V ) ≤ ChL(‖ f ‖L2(�;L2(D)) + ‖g‖L2(�;H3/2(�N ))
).

If, at each level l the Finite Element equations for each sample ûi
l in the estimator

EMl [ul ] are solved approximately with a full Multigrid method to accuracy O(hl) in
the energy norm, the total work Work(L) and memory for computing E L [u] approxi-
mately to accuracy O(hL) is bounded by

Work (L) ≤ Cε

⎧
⎨

⎩

N 2
L for d = 1,

NL(log NL)
3+ε for d = 2,

NL(log NL)
2+ε for d = 3,

where the constant C depends on ε but is independent of L.

Proof The convergence result in Lemma 4.4 suggests that we choose Ml such that the
overall rate of convergence is O(hL). With the choice

Ml = O(l2+2ε(hl/hL)
2) = O(l2+2ε22(L−l)), l = 1, . . . , L (4.11)

for some ε > 0, we obtain from Eq. (4.10) the asserted error bound, since for ε > 0
this implies

L∑

l=1

hl M−1/2
l ≤ C

L∑

l=1

2−l h0l−(1+ε)2(l−L)h0 ≤ C2−L h0

L∑

l=1

l−(1+ε)

≤ ChL

L∑

l=1

l−(1+ε) = C(ε)hL .

To estimate the work, we observe that the approximate solution given by the Finite
Element equation solved by a full Multigrid method at mesh level l to accuracy hl is
of linear complexity in the number Nl of unknowns at mesh level l (see, e.g. [8,9]).
For Ml samples (possibly in parallel) this requires a total of O(Ml Nl) computational
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work and memory. This amounts to the following bound for the overall work for the
MLMC-FE method at level L

Work(L) �
L∑

l=1

Ml Nl ≤
L∑

l=1

l2+2ε22(L−l)2dl

= 2d L
L∑

l=1

l2+2ε22(L−l)2d(l−L) = 2d L
L∑

l=1

l2+2ε2(d−2)(l−L)

� NL

⎧
⎪⎪⎨

⎪⎪⎩

∑L−1
l ′=0 (L − l ′)2+2ε2l ′ for d = 1,

∑L−1
l ′=0 (L − l ′)2+2ε for d = 2,

∑L−1
l ′=0 (L − l ′)2+2ε2−l ′ for d = 3.

This implies the asserted work estimates, if we use in the case d = 1 for 0 < ε < 1
summation by parts three times. ��
Remark 4.6 We remark that in the particular case d = 1, i.e. when the domain D
coincides with an interval, with the standard “hat function” basis for S1(D, Tl) the
stiffness matrix is tridiagonal and symmetric positive definite provided Assumption 3.1
is satisfied. Therefore, direct solvers are applicable with complexity O(Nl).

Remark 4.7 In the same particular case d = 1, the approximation with standard “hat
functions” is already too accurate for the model problem. Since we equilibrate the
errors of the MC method and the FE method, the MC error is dominating the overall
error, leading to an increase of the samples which causes the quadratic complexity. In
the cases of higher space dimensions the accuracy of the FE approximation, expressed
in terms of the degrees of freedom, is lower. In this case the overall error is not domi-
nated by the MC error.

In the subsequent chapter we further detail these results for the mean field to the
approximation of higher moments of the solution of the elliptic model problem.

5 Multi-level Monte Carlo Finite Element approximation of higher moments

We now address two generalizations of the MLMC-FE approximation: the efficient
computation of kth moments of the stochastic solution u ∈ L2(�; V ), and the use
of Finite Elements which are based on continuous, piecewise polynomials of degree
p ≥ 1. In particular the case k = 2, i.e. second moments, is of substantial interest in
practice. Since, however, kth moments (which are sometimes referred to as k-point
correlation functions) are functions on the k-fold product domain Dk = D×· · ·× D,
a naive MC estimation (with M samples) of the product of the solution vectors will
entail complexity M N k

L . The main result of the present section states that in order to
recover log-linear complexity of kth moments with k ≥ 2, the MLMC-FE approxi-
mation must be combined with a wavelet compression of the Finite Element solutions
for each sample. For k = 1, the results constitute a generalization of the preceding
analysis to higher order elements. For k = 2 in two spatial dimensions (i.e. when
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d = 2) we obtain in particular a log-linear complexity scheme for the computation of
a Galerkin approximation to the so-called “4d-VAR” of the stochastic solution.

Therefore, we first establish the regularity of the kth moment of the solution of
the elliptic problem given certain smoothness and regularity conditions on the data
and the coefficient and we introduce wavelet bases for the hierarchical meshes. Under
these assumptions we derive full and sparse tensor error bounds for the Finite Element
approximation. Those bounds are essential for the error of the sparse tensor MLMC-FE
approximation.

5.1 Existence and Regularity of kth Moments

We are interested in statistical moments of the stochastic solution u: for any k ∈ N we
denote the k-fold tensor products of a separable Hilbert space X as

X (k) = X ⊗ · · · ⊗ X
︸ ︷︷ ︸

k-times

,

equipped with the natural norm ‖ · ‖X (k) . This norm has the property that for every
u1, . . . , uk ∈ X there holds the isometry

‖u1 ⊗ · · · ⊗ uk‖X (k) = ‖u1‖X · · · ‖uk‖X .

For u ∈ Lk(�; X) we now consider the random field (u)(k) defined by u(ω)⊗ · · · ⊗
u(ω). Then (u)(k) = u ⊗ · · · ⊗ u ∈ L1(�, X (k)) and we have the isometry

‖(u)(k)‖L1(�;X (k)) =
∫

�

‖u(ω)⊗ · · · ⊗ u(ω)‖X (k) d P(ω)

=
∫

�

‖u(ω)‖k
X d P(ω) = ‖u‖k

Lk (�;X). (5.1)

Therefore, we define the moment Mku as the expectation of (u)(k) = u ⊗ · · · ⊗ u
︸ ︷︷ ︸

k-times

:

Definition 5.1 For u ∈ Lk(�; V ), for some integer k ≥ 1, the kth moment (or k-point
correlation function) of u(ω) is defined by

Mku = E[(u)(k)] = E[u ⊗ · · · ⊗ u
︸ ︷︷ ︸

k-times

]

=
∫

ω∈�
u(ω)⊗ · · · ⊗ u(ω)
︸ ︷︷ ︸

k-times

d P(ω) ∈ V (k). (5.2)

As above, the numerical analysis of the higher order MLMC-FE method requires
a regularity theory for solutions of Eqs. (3.1)–(3.3). To this end we introduce a
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smoothness scale (Ys)s≥0 for the data f, g with Y0 = H−1(D) × H−1/2(�N ) and
with Ys ⊂ Yt for s > t .

We assume that we have a corresponding scale (Xs)s≥0 of “smoothness spaces”
for the solutions with X0 = V = H1

�D
(D) and with Xs ⊂ Xt for s > t , such that

(A(ω))−1 : Ys → Xs , defined in Eq. (3.7), is continuous for all coefficient realization
P-a.s.

For our model problem, Eqs. (3.1)–(3.3) with smooth random coefficients a(ω, x)
in a domain D with smooth boundary ∂D and with �N = ∅, we may choose Ys =
V ∗ ∩ H−1+s(D)× H−1/2+s(�N ) and Xs = V ∩ H1+s(D) for any s > 0. We remark
that in non-smooth domains such as polyhedra in R

3 the spaces Xs are weighted
spaces which contain functions which are singular at corners and edges (see, e.g.
[20]). We can now state our assumptions on the data of the model problem, given by
Eqs. (3.1)–(3.3):

Assumption 5.2 For some r∗ ≥ 2 and some s∗ > 0, the data ( f, g) in Problems (3.1)–
(3.3) belong to Lr∗(�; Ys∗) and the mapping� � ω→ a(ω, ·) is such that the operator
A(ω) is boundedly invertible from Ys to Xs ⊂ V P-a.s. for all 0 < s ≤ s∗ for some
s∗ > 0. Moreover, the random inputs a, f and g are independent.

We remark that Assumption 5.2 is satisfied if a(·, ω) ∈ W s,∞(D) for P-a.e. ω ∈ �
and every 0 ≤ s ≤ s∗.
Theorem 5.3 If Assumptions 3.1 and 5.2 hold, then for every 2 ≤ k ≤ r∗, for all
1 ≤ r ≤ r∗/k, and every 0 ≤ s < s∗ holds the a priori estimate

‖(u)(k)‖
Lr (�;X (k)s )

≤ C‖( f, g)(k)‖
Lr (�;Y (k)s )

≤ C‖( f, g)‖k
Lrk (�;Ys)

. (5.3)

Proof Under Assumption 5.2, the operator A(ω)(k) is boundedly invertible from Y (k)s

to X (k)s for each coefficient realization P-a.s.. The stochastic solution satisfies, for
ω ∈ �P-a.s., the a priori estimate

‖u(ω, ·)‖Xs ≤ C(s, ω)‖( f, g)(ω, ·)‖Ys , 0 ≤ s ≤ s∗,

with a random variable C(s, ·) ∈ L∞(�). Raising both sides of the bounds to the r th
power and integrating the resulting inequality over ω ∈ � with respect to the prob-
ability measure P(dω), we obtain the first inequality. The second inequality follows
from the isometry given in Eq. (5.1). ��

Note in particular that in the case s = 1, we have W = X1,Y1 = H1/2(�N )×L2(D)
and for k = 2 Assumption 3.5 with r = 2 and Eq. (3.12) imply the a priori estimates

‖M2u‖W (2) = ‖E[(u)(2)]‖W (2) ≤ ‖u‖2
L4(�;W )

≤ C(a)
(
‖ f ‖2

L4(�;L2(D)) + ‖g‖2
L4(�;H1/2(�N ))

)
,

and

‖(u)(2)‖L2(�;W (2)) ≤ C(a)
(
‖ f ‖2

L4(�;L2(D)) + ‖g‖2
L4(�;H1/2(�N ))

)
.
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5.2 Finite elements with uniform mesh refinement

We now generalize the foregoing analysis to subspaces Vl of simplicial Finite Elements
of order p ≥ 1.

Let us first consider the case of a bounded polyhedron D ⊂ R
d . Let {Tl}∞l=0 be the

sequence of partitions obtained by uniform mesh refinement. Then Vl = S p
�D
(D, Tl)

with hl = max{diam(K ) : K ∈ Tl} = 2−l h0. We obtain Nl = dim Vl = O(h−d
l ).

With V as before, and Xs = V ∩H1+s(D) the standard Finite Element approximation
results give that the following bound holds for s ∈ [0, p].

inf
v∈Vl

‖u − v‖V ≤ C N−s/d
l ‖u‖Xs . (5.4)

5.3 Wavelet basis for Vl

We introduce a hierarchical basis for the nested spaces V0 ⊂ · · · ⊂ VL : we start with
a basis {(ψl) j } j=1,...,N0 for the space V0. We write the finer spaces Vl with l > 0 as
a direct sum Vl = Vl−1 ⊕Wl with a suitable space Wl . We assume available explicit
basis functions {(ψl) j } j=1,...,N̄l

. Therefore we have that VL = V0⊕W1⊕ · · · ⊕WL ,

and { (ψl) j | l = 0, . . . , L; j = 1, . . . , N̄l } is a hierarchical basis for VL where
N̄0 := N0:

(W1) Vl = span{(ψl) j |1 ≤ j ≤ N̄k, 0 ≤ k ≤ l},
with Nl := dim Vl and, N̄l := Nl − Nl−1 for l ≥ 0.

Property (W1) is in principle sufficient for the formulation and implementation of
the sparse MC-FE method and the deterministic sparse Finite Element method. In
order to obtain an algorithm with log-linear complexity we will need that the hier-
archical basis satisfies the additional properties (W2)–(W6) of a wavelet basis. This
will allow us to perform matrix compression, and to obtain optimal preconditioning
for the iterative linear system solver (Fig. 1).

(W2) Small support diam supp((ψl) j ) = O(2−l).
(W3) Biorthogonal basis there exists a biorthogonal basis �̃ = {(ψ̃l) j : 1≤ j ≤ N̄k,

0 ≤ k ≤ l = 1, 2, . . .} such that

〈(ψl) j , (ψ̃l ′) j ′ 〉 = δll ′δ j j ′ .

(W4) Energy norm stability there is a constant CB > 0 independent of level L , such

that for all vL = ∑L
l=0

∑N̄l
j=1 (vl) j (ψl) j (x) ∈ VL holds (vl) j = 〈v, (ψl) j 〉

and

1

CB

L∑

l=0

N̄l∑

j=1

|(vl) j |2 ≤ ‖vL‖2
V ≤ CB

L∑

l=0

N̄l∑

j=1

|(vl) j |2.
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(W5) Wavelets (ψl) j with l ≥ l0 have vanishing moments up to order p0 ≥ p − 2

∫

(ψl) j (x) xα dx = 0, 0 ≤ |α| ≤ p0.

Except possibly for wavelets where the closure of the support intersects the
boundary ∂D or the boundaries of the coarsest mesh.

(W6) Decay of coefficients for “smooth” functions in Xs there exists C > 0 inde-
pendent of L such that for every v ∈ Xs and every L holds

L∑

l=0

N̄l∑

j=1

∣
∣(vl) j

∣
∣2 22ls ≤ C Lν‖v‖2

Xs
,

ν =
{

0 for 0 ≤ s < p,
1 for s = p.

Piecewise polynomial, Finite Element wavelet bases satisfying (W1)–(W6) are avail-
able, also in polygonal and polyhedral domains D. Any function u ∈ V admits a

wavelet expansion
∑∞

l=0
∑N̄l

j=1 (ul) j (ψl) j . We define the projection PL : V → VL

by truncating this wavelet expansion of u, i.e.

PLu :=
L∑

�=0

N̄l∑

j=1

(ul) j (ψl) j , (ul) j = 〈u, (ψ̃l) j 〉.

With the stability (W3) and the approximation property in Eq. (5.4) we obtain that the
wavelet projection PL is quasioptimal: with NL = dimVL , we have for 0 ≤ s ≤ s∗
and u ∈ Xs the asymptotic error bound

‖u − PLu‖V ≤ C N−s/d
L ‖u‖Xs .

5.4 Full and sparse tensor product spaces

To compute MLMC-FE approximations for Mku ∈ V⊗· · ·⊗V = V (k) (cf. Eq. (5.2)),
we project Mku onto a finite dimensional subspace of V (k). The choice of the k-fold
tensor product space V (k)

L = VL ⊗ · · · ⊗ VL leads to the full tensor MC-FE estimates
for Mku in Eq. (5.2):

EM [(ul)
(k)] = 1

M

M∑

i=1

(ûi
l )
(k). (5.5)

Here, the ûi
l ∈ Vl are the previously discussed Galerkin approximations for

i = 1, . . . ,Ml i.i.d. samples of the stochastic coefficients.
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(a) (b)

Fig. 1 Biorthogonal, piecewise linear spline wavelets

The space V (k)
L has dimension N k

L and even forming one tensor product (û j
L)
(k) of

a Finite Element sample in the Monte Carlo estimate of Eq. (5.5) would destroy the
linear complexity of the MC-FE estimator for moments of order k > 1.

A reduction in cost at, as we shall show, essentially no loss in accuracy, is possible
by using so-called sparse tensor products of the Finite Element spaces Vl which we
define next.

We now define the k-fold sparse tensor product space V̂ (k)
L by

V̂ (k)
L =

∑


�∈N
k
0

|
�|≤L

V�1 ⊗ · · · ⊗ V�k ,

where we denote by 
� the vector (�1, . . . , �k) ∈ N
k
0 of discretization levels and its

length by |
�| = �1 + · · · + �k . We can write V as a direct sum by using the comple-
ment spaces Wl :

V̂ (k)
L =

∑


�∈N
k
0

|
�|≤L

W�1 ⊗ · · · ⊗W�k .

We define a projection operator P̂(k)L : V (k) → V̂ (k)
L , for x = (x1, . . . , xk) ∈ D(k) by

truncating the wavelet expansion:

(P̂(k)L v)(x) :=
∑

0≤�1+···+�k≤L

1≤ jν≤N̄�ν ,ν=1,··· ,k

(v�1...�k ) j1... jk (ψ�1) j1(x1) . . . (ψ�k ) jk (xk). (5.6)
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Here, the coefficients are given by

(v�1...�k ) j1... jk = V (k)〈v, (ψ̃�1) j1 ⊗ · · · ⊗ (ψ̃�k ) jk 〉(V (k))′ .

With the projections �l := Pl − Pl−1, l = 0, 1, . . . and P−1 := 0 we can express
P̂(k)L as

P̂(k)L =
∑

0≤�1+···+�k≤L

��1 ⊗ · · · ⊗��k .

The approximation property of sparse tensor products of the Finite Element spaces,
i.e. of V̂ (k)

L , was established for example in [19; 31; 32, Proposition 4.2; 34].

Proposition 5.4 For u ∈ X (k)s with 0 ≤ s ≤ s∗ we have

inf
v∈V̂ (k)

L

‖u − v‖V (k) ≤ C(k)

{
N−s/d

L ‖u‖
X (k)s

if 0 ≤ s < p,

N−s/d
L L(k−1)/2‖u‖

X (k)s
if s = p .

The stability property (W3) implies the following result (see, e.g. [34]):

Lemma 5.5 (Properties of P̂ (k)
L ) Assume (W1)–(W6) and that the component spaces

V� of V̂ (k)
L have the approximation property given in Eq. (5.4). Then for u ∈ V (k) the

truncated tensorized wavelet expansion is stable, i.e. for every k ∈ N exists C(k) > 0
such that for every u ∈ V (k) and every L holds

‖P̂(k)L u‖V (k) ≤ C(k) ‖u‖V (k) . (5.7)

For u ∈ X (k)s and 0 ≤ s ≤ s∗ we have quasioptimal convergence of P̂(k)L u:

‖u − P̂(k)L u‖V (k) ≤ C(k)N−s/d
L (log NL)

(k−1)/2‖u‖
X (k)s
. (5.8)

These results provide us with the necessary tools to estimate the rate of convergence
for the sparse tensor MLMC-FE method for Mku.

5.5 Sparse tensor Multi-level Monte Carlo approximation of higher moments

We aim at estimating

Mku = E[(u)(k)] = E[u ⊗ · · · ⊗ u].

To do so, we have at our disposal coefficient samples a(ωi , x) and the correspond-
ing Galerkin Finite Element approximations ul(x) defined in Eq. (4.2). We therefore
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define MLMC-FE estimates as statistical averages of the compressed tensor products
of the Galerkin Finite Element approximations as follows:

Ê L [(uL)
(k)] :=

L∑

l=1

EMl

[
P̂(k)l (ul)

(k) − P̂(k)l−1(ul−1)
(k)
]
, (5.9)

where we once again used the convention that u0 := 0 and that P̂(k)0 := 0. We remark

that due to P̂(1)l = Pl , the estimator in Eq. (5.9) will coincide with our standard
MLMC-FE estimator in the case k = 1, i.e. for estimating the expectation of u. We
can now state our MLMC-FE error bound for moments Mku of order k ≥ 2.

Theorem 5.6 Assume that ( f, g) ∈ L2k(�, Ys) and that the operators A(ω) ∈
L(Xs,Ys), as defined in (3.7), are boundedly invertible for 0 ≤ s ≤ s∗ P-a.s., and that
the Finite Element spaces S p,n(D, τl), for l = 1, . . . , L, defined in Eq. (4.1), satisfy
the approximation property in Eq. (5.4).

Then there holds for 0 ≤ s ≤ min(s∗, p) and for any numbers Ml of coefficient
samples in the Galerkin Finite Element method on mesh Tl the bound

∥
∥
∥Mku − Ê L [(uL)

(k)]
∥
∥
∥

L2(�;V (k))
�
(

L∑

l=1

M−1/2
l hs

l | log hl |(k−1)/2

)

‖( f, g)‖k
L2k (�;Ys)

.

Here, ML = 1 and the constant in � depends on s, p, k but is independent of the
number L of mesh refinements and of the distribution of the numbers Ml of samples
at mesh levels l.

Proof We write

‖Mku − Ê L [(uL)
(k)]‖L2(�;V (k)) = ‖E[(u)(k)] − Ê L [(uL)

(k)]‖L2(�;V (k))

≤ ‖E[(u)(k)] − E[P̂(k)L (uL)
(k)]‖L2(�;V (k))

+‖E[P̂(k)L (uL)
(k)] −

L∑

l=1

EMl [P̂(k)l (ul)
(k) − P̂(k)l−1(ul−1)

(k)]‖L2(�;V (k))

=: I + I I.

We estimate the terms separately. For term I , we obtain with Jensen’s inequality and
Eq. (5.7), for any 0 ≤ s ≤ min(p, s∗), the error bound

I =
∥
∥
∥E[(u)(k)] − E[P̂(k)L (uL)

(k)]
∥
∥
∥

L2(�;V (k))

=
∥
∥
∥E[(u)(k) − P̂(k)L (uL)

(k)]
∥
∥
∥

V (k)

≤
∥
∥
∥(u)(k) − P̂(k)L (u)(k)

∥
∥
∥

L1(�;V (k))
+
∥
∥
∥P̂(k)L ((u)(k) − (uL)

(k))

∥
∥
∥

L1(�;V (k))

�
∥
∥
∥(I − P̂(k)L )(u)(k)

∥
∥
∥

L1(�;V (k))
+
∥
∥
∥(u)(k) − (uL)

(k)
∥
∥
∥

L1(�;V (k))

=: Ia + Ib.
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Term Ia is a consistency error which is bounded with Eq. (5.8). To estimate term Ib,
we denote the k dependence of this term by Ib(k), then we write

Ib(k) = ‖(u)(k) − (uL)
(k)‖L1(�;V (k))

≤ ‖(u − uL)⊗ (u)(k−1)‖L1(�;V (k)) + ‖uL ⊗ ((u)(k−1) − (uL)
(k−1))‖L1(�;V (k))

≤ ‖u − uL‖L2(�;V )‖(u)(k−1)‖L2(�;V (k−1))

+‖uL‖L∞(�;V )‖(u)(k−1) − (uL)
(k−1)‖L1(�;V (k−1))

= ‖u − uL‖L2(�;V )‖u‖k−1
L2k−2(�;V ) + ‖uL‖L∞(�;V ) Ib(k − 1)

≤ C(s)N−s/d
L ‖ f ‖L2(�;Ys )

‖ f ‖k−1
L2k−2(�;V ∗) + C(a)Ib(k − 1) .

Induction with respect to k leads to the overall bound for I

I ≤ Ia + Ib(k) ≤ C(a, f, k)N−s/d
L (log NL)

(k−1)/2 .

We estimate term I I as follows.

I I = ‖E[P̂(k)L (uL)
(k)] −

L∑

l=1

EMl [P̂(k)l (ul)
(k) − P̂(k)l−1(ul−1)

(k)]‖L2(�;V (k))

=
∥
∥
∥
∥
∥

L∑

l=1

{
(E− EMl )[P̂(k)l (ul)

(k) − P̂(k)l−1(ul−1)
(k)]
}
∥
∥
∥
∥
∥

L2(�;V (k))

≤
L∑

l=1

M−1/2
l

∥
∥
∥P̂(k)l (ul)

(k) − P̂(k)l−1(ul−1)
(k)
∥
∥
∥

L2(�;V (k))

≤
L∑

l=1

M−1/2
l

{∥
∥
∥(u)(k) − P̂(k)l (ul)

(k)
∥
∥
∥

L2(�;V (k))

+
∥
∥
∥(u)(k) − P̂(k)l−1(ul−1)

(k)
∥
∥
∥

L2(�;V (k))

}

=:
L∑

l=1

M−1/2
l (I I I (l)+ I I I (l − 1)).

Each of the terms in the sum is bounded as

I I I (l) :=
∥
∥
∥(u)(k) − P̂(k)l (u)(k)l

∥
∥
∥

L2(�;V (k))

≤
∥
∥
∥(u)(k) − P̂(k)l (u)(k)

∥
∥
∥

L2(�;V (k))
+
∥
∥
∥P̂(k)l ((u)(k) − (ul)

(k))

∥
∥
∥

L2(�;V (k))

�
∥
∥
∥(u)(k) − P̂(k)l (u)(k)

∥
∥
∥

L2(�;V (k))
+
∥
∥
∥(u)(k) − (ul)

(k)
∥
∥
∥

L2(�;V (k))

=: I I Ia + I I Ib.
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We estimate I I Ia with Eq. (5.8). Term I I Ib is bounded as term Ib(k), with l in place
of L . Combining the bounds for I I Ia and I I Ib, we obtain with hl  N−1/d

l for every
k ≥ 1 and every l ≥ 0 the error estimate

I I I ≤ C(k)N−min(s,p)/d
l (log Nl)

(k−1)/2‖(u)(k)‖
L2(�;X (k)s )

+ hk min(s,p)
l ‖u‖k

L2k (�;Xs )

≤ C(k, s)N−min(s,p)/d
l (log Nl)

(k−1)/2‖u‖k
L2k (�;Xs )

= C(k, s)hmin(s,p)
l | log hl |(k−1)/2‖u‖k

L2k (�;Xs )
.

Using this estimate for each l = 0, . . . , L to bound I I , and referring to Eq. (5.3) with
p = 2, we obtain with the estimate for I the asserted error bound. ��

We observe that in the case k = 1 and p = 1, with the choices X0 = V and
X1 = W , we recover the previous results. We now optimize the selection of MC
samples {Ml}Ll=0 and state the resulting overall convergence rate of the MLMC-FE
method for moments, Mku, for any order k ≥ 1.

Theorem 5.7 Assume that ( f, g) ∈ L2k(�, Ys) and that the operators A(ω) ∈
L(Xs,Ys) are boundedly invertible, for 0 ≤ s ≤ min(s∗, p) for ω ∈ �,P-a.s.

Given any k ∈ N, we choose the number of MC samples in the MC-FE method at
level l used in the computation of the MLMC-FE estimators in Eq. (5.9) as

Ml = O(22s(L−l)(l/L)k−1), l = 1, . . . , L . (5.10)

Then there holds for 0 ≤ s ≤ min(s∗, p) the error bound

‖Mku − Ê L [(uL)
(k)]‖L2(�;V (k)) � hs

L | log hL |(k+1)/2‖( f, g)‖k
L2k (�;Ys )

,

and the total work Ŵ (L) for computing the MLMC-FE estimator in Eq. (5.9) is
bounded by

Ŵ (L) ≤ C(k)

{
NL(log NL)

k−1 2s ≤ d,

N 2s/d
L (log NL)

k−1 2s > d.
(5.11)

Proof In Theorem 5.6, we choose the numbers Ml of samples at mesh level l such
that the error contributions from the levels to the error bound are equilibrated. This
gives, for l = 1, 2, . . . , L ,

M−1/2
l = 2−s(L−l)(L/ l)(k−1)/2,

which implies Eq. (5.10). Inserting this into the error bound of Theorem 5.6, we obtain
Eq. (5.11).

To estimate the complexity, we observe that the work to solve the Galerkin Finite
Element equations to the required accuracy O(hs

l ) in the ‖ · ‖V -norm can be achieved
in linear complexity, i.e. in O(Nl) = O(2ld) work and memory; this complexity
estimate can be attained in two ways: either by using the standard (one-scale) Finite
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Element basis and full Multigrid (see e.g. [8,9]), or by using a diagonally precondi-
tioned Richardson iteration in wavelet bases. In the latter case, the wavelet Galerkin
Finite Element solution vector is directly obtained in the wavelet representation, so
that the formation of the sparse tensor approximation in Eq. (5.6) of the kth moment
of the Galerkin Finite Element approximation is obtained at cost O(Nl(log Nl)

k−1)

work and memory.
In case the Finite Element solution is computed in the standard (one-scale) basis,

the solution vector for each sample must first be transformed into the wavelet basis.
This is achieved as usual in O(Nl)work and memory by the pyramid scheme (see e.g.
[10]). Then the formation of the k-fold sparse tensor product of P̂lu

(k)
l proceeds again

according to Eq. (5.6).
For the work estimate, we therefore obtain

Ŵ (L) =
L∑

l=1

Ml Nl(log Nl)
k−1

�
L∑

l=1

22s(L−l)(l/L)k−12dllk−1

= 2d L
L∑

l=1

L−(k−1)l2(k−1)22sL+l(d−2s)−d L

= NL L−(k−1)
L∑

l=1

l2(k−1)2(l−L)(d−2s)

= NL L−(k−1)
L−1∑

l ′=0

(L − l ′)2(k−1)2l ′(2s−d)

� NL L−(k−1)
{

L2(k−1) 2s ≤ d,
∑L−1

l ′=0 (L − l ′)2(k−1)2l ′(2s−d) 2s > d.

��
Remark 5.8 We remark that the case discussed in Theorem 4.5 corresponds to the case
k = 1, s = 1 and p = 1 in Theorems 5.6 and 5.7. Upon comparing both error bounds
and the corresponding work estimates, we observe slight differences in the logarithmic
terms; this is due to the slightly more conservative choice of the sample sizes Ml in
Eq. (4.11) which we made in order to avoid the appearance of log hL terms in the error
bound of Eq. (4.10). For moments of order k ≥ 2, however, such terms appear in any
case due to the sparse tensor approximation error bound in Proposition 5.4 which is
sharp, so that the slightly more straightforward selection in Eq. (5.10) is sufficient to
achieve the expected convergence rates.

Remark 5.9 The complexity bound in Eq. (5.11) in Theorem 5.7 indicates loss
of log-linear complexity as soon as 2s > d. In this case, the smoothness s of
the solution mapping A(ω)−1 allows for higher convergence rates of the Galer-
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kin Finite Element approximation in D which, when combined with a linear com-
plexity solver such as Multigrid or a diagonally preconditioned wavelet solver,
will imply that the efficiency of the MLMC-FE method (i.e. accuracy versus
work) is dominated by the “weaker” of the two methods. In the case s >

d/2, this is the MC method. We conclude from Theorem 5.7 that, therefore,
the use of a MLMC-FE method is only advisable in connection with low order
Finite Element methods: in spatial dimension d = 2, log-linear complexity
will be retained with linear simplicial Finite Element methods where p = 1.
In spatial dimension d = 3, linear complexity can be retained up to s = 3/2; to
access this range of convergence orders, it will suffice to use simplicial Finite Ele-
ment methods of polynomial degree p = 2. Then, convergence for the expectation
and for moments of order k ≥ 2 can be achieved with sparse tensor products of
the FE solution samples in overall complexity of O(N 4/3

L (log NL)
k−1) for work and

O(NL(log NL)
k−1) for memory.

6 Implementation and examples

In this section we discuss the approximation of the stochastic coefficient a for ω ∈ �,
followed by numerical examples in R and R

2.

6.1 Coefficient representations

For numerical simulations, the random field a(ω, x) in Eq. (3.1) must be repre-
sented parametrically. Here, we discuss the implementation and the complexity of two
choices: a Karhunen–Loève expansion and a (multi)wavelet expansion of a(ω, x).

6.1.1 Karhunen–Loève -expansion

Random diffusion coefficients a(ω, x) ∈ L2(�; L2(D)), admit a Karhunen–Loève
expansion in terms of the eigenpairs (λk, ϕk)

∞
k=1 of the covariance operator which is

the compact and self-adjoint integral operator with kernel qa given by

qa := E[(a − E[a])⊗ (a − E[a])] (6.1)

or defined pointwise formally by

qa(x, x ′) := E[(a(·, x)− E[a](x))(a(·, x ′)− E[a](x ′))], x, x ′ ∈ D. (6.2)

We assume that the eigenfunctions ϕk are normalized in L2(D) and the λk are
enumerated in decreasing magnitude, then the random diffusion coefficient admits
the Karhunen–Loève expansion

a(ω, x) = E[a](x)+
∞∑

i=1

√
λi Yi (ω)ϕi (x), (6.3)
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where the random coefficients Yi (ω), for i = 1, 2, . . ., are defined by

Yi (ω) =

⎧
⎪⎨

⎪⎩

1√
λi

∫

D

(a(ω, x)− E[a](x))ϕi (x) dx, if λi > 0,

0, otherwise.

(6.4)

The Karhunen–Loève series in Eq. (6.3) converges in L2(�; L2(D)) (see e.g. [33]).
Estimation of the probability density function for the stochastic coefficients Yk

in the Karhunen–Loève expansion, Eq. (6.3), from an ensemble {âi ∈ L∞(D) :
i = 1, . . . , I }, can be performed via Eq. (6.4) provided the Covariance Qa(x, x ′) in
Eq. (6.2) is known. In this case, the smoothness of the covariance kernel qa(x, x ′) is
well known to determine the rate of decay of the eigenvalues to zero in the Karhunen–
Loève expansion (e.g. [33]). Moreover, approximate eigenpairs can be computed via
variational methods using Finite Element subspaces, and rates of pointwise conver-
gence in D can be established almost surely. We emphasize that to determine the
Karhunen–Loève expansion of the stochastic coefficient a explicit knowledge of the
covariance kernel qa in Eqs. (6.1) and (6.2) is required.

6.1.2 Wavelet-expansion

The Finite Element spaces Vl = S1
�D
(D, Tl), as defined in Eq. (4.1), in the domain

D are built on the nested sequence {Tl}∞l=0 of regular, simplicial triangulations τl ,
obtained by l uniform refinements of some initial, regular partition T0 of D into sim-
plices (K0) j , j = 1, . . . , #T0. Therefore, for each l ∈ N0, every simplex (Kl) j ∈ Tl

is affinely equivalent to the reference simplex K̂ = {x̂ ∈ R
d+ : ‖x̂‖1 < 1}: there are

affine mappings

(Fl) j : K̂ � x̂ → x ∈ (Kl) j ∈ Tl ,

such that, for all j = 1, . . . , #(Tl),

det|D(Fl) j | = |(Kl) j |/|K̂ | = O(2−ld).

We observe that for every p ≥ 1 and any regular, simplicial partition T of D holds

∇(S p,1
�D
(D, T )) ⊆ S p−1,0(D, T )d ⊂ L2(D)d . (6.5)

For any L , q ∈ N0, we have the orthonormal decomposition

Sq,0(D, TL) =
L⊕

l=0

Rl ,

where

Rl := Sq,0(D, Tl) ∩ Sq,0(D, Tl−1)
⊥ if l ≥ 1, and R0 := Sq,0(D, T0).
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An L2(D)-orthonormal basis of Sq,0(D, T ) can be explicitly constructed as fol-
lows: let T̂0 = {K̂ } and define T̂1 = {(K̂1) j : j = 1, . . . , 2d}, the set of 2d many
simplices (K̂1) j that are obtained by regular subdivision of the reference simplex K̂ .
We define for any q ∈ N0,

Nq := dim(Sq,0(K̂ , T̂0)) =
(

q + d
d

)

,

and, for d = 1, 2, . . . and q = 0, 1, . . .,

Ñq := dim(Sq,0(K̂ , T̂1) ∩ Sq,0(K̂ , T̂0)
⊥) = (2d − 1)

(
q + d

d

)

.

Denote by {ϕ̂n}Nq
n=1 an L2(K̂ ) orthonormal basis of

Ŵ0 := Sq,0(K̂ , T̂0) = Pq(K̂ )

and by {ψ̂n}Ñq
n=1 an L2(K̂ ) orthonormal basis of

Ŵ1 := Sq,0(K̂ , T̂1) ∩ Sq,0(K̂ , T̂0)
⊥. (6.6)

For l = 0 we define the basis �0 by

�0 := {(ψ0) j,n| ∀(K0) j ∈ T0 : (ψ0) j,n|(K0) j ◦ (F0) j = ϕ̂n, ; ϕ̂k ∈ Ŵ0} (6.7)

and, for every l ≥ 1, we define �l by

�l := {(ψl) j,n : j = 1, . . . , #(Tl−1), n = 1, . . . , Ñq}, (6.8)

i.e. by the set of affine images of the (mother-wavelets) ψ̂n under (Fl−1) j :

(ψl) j,n ◦ (Fl−1) j = ψ̂n, l ≥ 1, j = 1, . . . , #(Tl−1), n = 1, . . . , Ñq .

By construction, (ψl) j,n = ψ̂k ◦ ((Fl−1) j )
−1 forms an L2(D) orthogonal system.

Proposition 6.1 Assume that the elements (ψl) j,n of the sets �l defined in Eqs. (6.7)
and (6.8) are L2(D) normalized, i.e. that

((ψl) j,n, (ψl ′) j ′,n′)L2(D) = δl,l ′δ j, j ′δn,n′ , ∀l, l ′ ∈ N0,

j = 1, . . . , #(Tl), j ′ = 1, . . . , #(Tl ′).

Then

L2(D) =
∞⊕

l=0

Rl , where Rl := span{�l}, l ≥ 0. (6.9)
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Proof Since the (ψl) j,n are L2(D) orthonormal by construction, the algebraic sums
�0 +�1 + · · · of subspaces are direct. Since, for every L ∈ N0 and every q ∈ N0

Sq,0(D, TL) =
L⊕

l=0

�l ⊇ S0,0(D, TL) (6.10)

and since the space of simple functions on the partition TL coincides with S0,0(D, TL),
the sequence of subspaces defined in Eq. (6.10) is dense in L2(D) as L →∞, which
proves Eq. (6.9). ��
Every stochastic diffusion coefficient a(ω, x)∈ L2(�; L2(D))=L2(�,A,P; L2(D))
admits, by Eq. (6.9), a multi-wavelet expansion

a(ω, x) =
∞∑

l=0

N̄l∑

j=1

Ñq∑

n=1

(al) j,n(ω)(ψl) j,n(x), (6.11)

where the “coefficients” (al) j,n(ω) ∈ L2(�,A,P;R) are random variables defined
by

(al) j,n(ω) =
∫

D

a(ω, x)(ψl) j,n(x) dx = (a(ω, ·), (ψl) j,n)L2(D). (6.12)

The convergence in Eq. (6.11) is, as in the case of the Karhunen–Loève expansion, in
L2(�, L2(D)). However, unlike in the case of a Karhunen–Loève expansion, in cer-
tain cases the Finite Element discretization of Eq. (4.2) on mesh TL coincides exactly
with the discretization of a diffusion problem where the wavelet coefficient expansion,
Eq. (6.11), is truncated at level L .

Proposition 6.2 Assume that the stochastic coefficient a(ω, x) in Eq. (3.1) is given
in the form of Eq. (6.11). Denote for 1 ≤ L <∞ by aL(ω, x) the partial sum

aL(ω, ·) =
L∑

l=0

N̄l∑

j=1

Ñq∑

n=1

(al) j,n(ω)(ψl) j,n (6.13)

and define the corresponding bilinear form BL(·, ·) by

BL(v,w) = E

⎡

⎣

∫

D

aL(ω, x)∇xv · ∇xw dx

⎤

⎦, v, w ∈ L2(�; V ). (6.14)

Then, under the assumption

q ≥ 2p − 2, (6.15)

123



152 A. Barth et al.

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

0

0.5

1

0

0.5

1
−1

−0.5

0

0.5

1

Fig. 2 Ñq = 3 Mother-multi-wavelets in Eq. (6.6) for q = 0 and d = 2

the bilinear forms B(·, ·) in Eq. (3.6) and BL(·, ·) in Eq. (6.14) coincide on the FE
spaces S p,1(D, TL):

∀vL , wL ∈ L2(�;S p,1(D, TL)) : B(vL , wL) = BL(vL , wL). (6.16)

Proof The proof follows from the definition of B(·, ·) and of BL(·, ·), upon not-
ing that by Eq. (6.5) for every vL , wL ∈ S p,1(D, TL) it holds that ∇vL · ∇wL ∈
S2p−2,0(D, TL). The orthogonal sum property of the decomposition in Eq. (6.9) then
implies with Eq. (6.15) the assertion. ��

Remark 6.3 The identity, Eq. (6.16), has the important implication that in the
MLMC-FE method, in one Finite Element simulation at mesh level l the bilinear
form B(·, ·) can be evaluated on the exact stochastic diffusion coefficient a(ω, x) in
Eq. (6.11) with O(Nl) work. This is easily verified from Eq. (6.13) together with the
identity in Eq. (6.16).

Remark 6.4 From Eq. (6.15) and Remark 5.9 we see that for linear scaling MLMC-
FE methods for the most important spatial dimensions d = 2, 3, piecewise constant
(i.e. q = 0 for p = 1) and piecewise quadratic (i.e. q = 2 for p = 2) discontinuous
multiwavelets will have to be used in the wavelet representation, Eq. (6.11), of the
stochastic diffusion coefficient. For q = 0 in spatial dimension d = 2, the Ñq = 3
generating mother-wavelets ψ̂n are shown in Fig. 2.

6.2 Numerical example on D = [0, 1]

In our implementation the mesh Tl at level l is the family of intervals of the form
[(i−1)2−l , i2−l ] for i = 1, . . . , 2l , the mesh width is then given by hl = 2−l h0 = 2−l ,
with 2l elements per level. This results in a 1-shape regular mesh and the family
{Tl}∞l=1 is nested. Here we employ Dirichlet boundary conditions, i.e. S1,0

�D
(D, T0) =

S1,0(D, T0) ∩ H1
0 (D) = {0}, which implies no degrees of freedom on the boundary.
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The hat basis (bl)i at each level l is defined, for i = 1, . . . , 2l − 1, as:

(bl)i (x) = 2l

⎧
⎨

⎩

x − (i − 1)hl for x ∈ [(i − 1)hl , ihl ],
(i + 1)hl − x for x ∈ [ihl , (i + 1)hl ],
0 otherwise.

(6.17)

We consider the following example adapted from [6]

Example 6.5 Let D = [0, 1],Ea(x) = 5 + x, qa(x, x ′) = min{x,x ′}+1
2 ∈ H1(D) ⊗

H1(D). The corresponding eigenpairs in the Karhunen–Loève expansion are given by
λ̃m = 8

π2(2m−1)2
, φ̃m(x) = sin((x + 1)/

√
2λ̃m), for m ≥ 1. The eigenvalues feature

algebraic decay with rate 2. The data f , on the right hand side of Eq. (3.1), is set equal
to 1.

The diffusion coefficient a expressed in the Karhunen–Loève expansion (see
Eq. (6.3)) was truncated after the first term. This is then defined as the exact coefficient,
avoiding an additional error for the truncation of the Karhunen–Loève expansion. So
with an [−1, 1]-uniformly distributed random variable Y1 we define

a1(ω, x) := 5+ x + 2
√

2

π
· Y1(ω) · sin

(
π(x + 1)

4

)

.

To establish the error bounds, proven in the previous chapters, in simulations we
calculate the exact solution of Eq. (3.1). Therefore, we integrate Eq. (3.1), given the
stochastic diffusion coefficient a1 and the right hand side f = 1, to obtain for the first
moment:

E[u(ω, x)] =
∞∑

i=0

2
√

2

π(2i + 1)

x∫

0

c − y

5+ y

⎛

⎝
sin
(
π(y+1)

4

)

5+ y

⎞

⎠

2i

dy,

The constant c is the solution of the above expression set to zero when integrating
over the whole domain D = [0, 1]. The integral was calculated with Mathematica,2

terminating the sum after i = 5, this leads to c ≈ 0.4850. The integration in each
term in the sum is tedious. For the simulations we terminate the series after i = 5.
The L2-norm between the expansion up to i = 4 and to i ≥ 5 is of order O(10−10).
Up to level L = 10, where hL ≈ 10−3 we can neglect the remainder of the series.
This error is insignificant given the accuracy of the approximation for simulations up
to level L = 10 for point estimates and for the L2-norm on the domain D = [0, 1].

The error estimates are calculated in the first order Sobolev semi-norm accordingly,
given in Eq. (3.5). The mth order Sobolev semi-norm, for m ∈ N, for sufficiently
smooth u : D → R is defined as

|u|2Hm(D) :=
∑

α∈Nd ,|α|≤m

∫

D

|Dαu|2 dx .

2 Wolfram Research, Inc., Mathematica, Version 7.0; Champaign, IL (2008).
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For ul ∈ Vl = S1,1
�D
(D, Tl) we have

|ul |2H1(D) =
∫

D

⎛

⎝
2l−1∑

i=1

(ul)i∇(bl)i (x)

⎞

⎠

⎛

⎝
2l−1∑

i=1

(ul)i∇(bl)i (x)

⎞

⎠ dx .

If we denote by Sl the stiffness matrix of the Laplace operator with respect to the nodal
hat basis bl at level l we may write

|ul |H1(D) = (u l Slul)
1/2 (6.18)

The simulation was carried out on a Computer with a 2 GHz processor with one
GB RAM using MATLAB.3 As a solver we used the backslash operator, mldivide, in
MATLAB.

6.2.1 MLMC-FE method for the approximation of E[u]

Our aim is to verify the theoretical approximation error for the MLMC-FE method
‖E[u] − E L [u]‖L2(�;V ), given in Theorem 4.5. Therefore, we consider the nested
family {Tl}Ll=1 of meshes and the FE spaces Vl = S1,1(D, Tl) with basis functions

{(bl)i }2l−1
i=1 , defined in Eq. (6.17), on each level l = 1, . . . , L . Each level is constructed

by adding the mid points between two vertices to the mesh of the previous level. Thus,
we get 2(l−1) additional linear independent basis functions passing from Vl−1 to Vl .

To construct the single scale basis {(bl)i }2l−1
i=1 , we transform each basis function of

level l− 1 into the basis function of level l plus 2(l−1) additional basis functions. This
allows us to calculate E L [u], since we need to subtract the solution in Vl−1 from the
solution in Vl (see Eq. (4.9)). For each sample of the stochastic coefficient on each
level we assemble the stiffness matrix and solve the deterministic system of equations,
given in Eq. (3.6), to obtain ui

l . With this and the exact solution we get with Eq. (6.18)
the desired error.

The rate of convergence of the MLMC-FE approximation, depending on the level
L , is displayed in Fig. 3a. The asymptotic convergence rate predicted by Theorem 4.5,
O(hL), is visible in the simulation (as indicated by the reference slope). Figure 4a
shows the total CPU-time needed to calculate E L [u] for different levels L . It reflects
the calculated expected behavior of the total work Work(L) ≤ CεN 2

L in Theorem 4.5
for d = 1. In Fig. 5a is the CPU-time per sublevel l, for l = 1, . . . , L , depicted. For
sample sizes Ml as in Theorem 4.5 the CPU-time at each sublevel l is of rate O(l2 2−l).

Remark 6.6 We remark that for the numerical results we calculated ‖E[u]− E L [u]‖V

instead of ‖E[u] − E L [u]‖L2(�;V ). The order of the convergence rate is obviously
identical. If we approximate E‖E[u] − E L [u]‖2

V by 1
η

∑η
i=1 ‖E[u] − E L [u]i‖2

V one

calculates with P( 1
η

∑η
i=1 ‖E[u] − E L [u]i‖2

V > ε) ≤ C the η for a given confidence

3 MATLAB, version 7.9.0.529 (R2009b); Natick, MA: The MathWorks Inc., 2009.
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Fig. 3 Rate of convergence of the MLMC-FE method with respect to the H1-semi-norm for the approxi-
mation of E(u) in (a) and M2(u) in (b) in dimension d = 1 against the level
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Fig. 4 Total CPU time for the MLMC–FE approximation of E L (u) in (a) and M2(u) in (b) in 1d against
the level

level C , here ε is an upper bound for the total error, i.e. the combined statistical and
discretization error.

6.2.2 MLMC-FE method for the approximation of M2[u]

The calculation of the second moment M2u is performed in three steps. First, com-
pute the Finite Element solution in a standard nodal hat basis for a given level l, as
described above, to compute ui

l . In a second step, we transform the result into a hier-
archic B-spline linear wavelet basis. Finally, in a third step, we generate the sparse
tensor product by implementing Eq. (5.6), the sparse tensor projection. This algorithm
is repeated for each level and, according to Eq. (5.8), this leads to the MLMC-FE
approximation Ê L((uL)

2) of M2u.
In Fig. 3b we compare the sparse tensor product solution to the sparse tensor

product of the solution Ê L((uL+4)
2). The error resembles the theoretical results of
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Fig. 5 CPU-time per sublevel for different levels for the MLMC-FE approximation of E(u) in (a) and
M2(u) in (b) in dimension d = 1

Theorem 5.7, as the reference slope indicates. The total CPU-time in dependence of
the degrees of freedom has quadratic growth as stated in Eq. (5.11), is displayed in
Fig. 4b. Figure 5b shows the CPU-time on all sublevels l, for l = 1, . . . , L for a
fixed level L . Theoretically this is, for fixed level L ,Ml Nl = O(l 2−l), with Ml as in
Theorem 4.5.

6.3 Numerical example on D = [0, 1]2

We consider the unit square and define level l = 0 to be the space of the boundary basis
functions with four vertices P1 = (0, 0), P2 = (1, 0), P3 = (1, 1) and P4 = (0, 1),
the triangulation of the unit square is given by the triangles P1 P2 P4 and P2 P3 P4.
Given the Dirichlet boundary condition the simulation on this level is superfluous.
The nested family Tl+1 is constructed by dividing each triangle of level l into four
congruent triangles of the same size. The resulting mesh is then (2−√2)-shape regu-
lar. Figure 6a shows the T2 mesh. Similar to the example in one space dimension, we
apply Dirichlet boundary conditions. We adapt Example 6.5 to R

2 as follows:

Example 6.7 Let D = [0, 1]2 and choose the sequence {φmn}m,n≥1, given by
φmn(x, y) = φ̃m(x)φ̃n(y)with φ̃m as in Example 6.5, ordered by the magnitude of the
corresponding eigenvalues {λmn}m,n≥1. The eigenvaluesλm are chosen asλm = (λ̃m)

θ

with θ = 2.5, such that the algebraic decay of {λ}m≥1 is of rate 5/2.

The simulation in dimension d = 2 was carried out on a cluster compute server
with AMD Opteron Processors, between 2.4 and 2.8 GHz per core. We used here, as
in the case d = 1, the backslash operator to solve each linear system.
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Fig. 6 Grid for level 2 (d = 2) in (a) and degrees of freedom versus CPU time for the MLMC-FE
approximation of M2(u) in 2d (b)

6.3.1 MLMC-FE method for the approximation of E[u]

For d = 2 we did not calculate the exact solution E[uL ] as before. In this case the refer-
ence solution is either the solution of a Monte Carlo simulation with high sample count
(10,000 samples) or the solution of the MLMC-FE simulation on level L+1. Further,
we did not integrate the entries of the stiffness matrix, B given in Eq. (3.6), exactly.
Here we use a seven point Gaussian quadrature rule of order 6. Figure 7a shows the
error of the MLMC-FE approximation for the mean field in dependence of the level.
The theoretical results from Theorem 4.5 are resembled. For the total computational
costs we calculated in Theorem 4.5, for d = 2,Work (L) = O(NL(log NL)

3+ε). This
is also apparent in Fig. 8a. We deduce that the MLMC-FE method has log-linear com-
putational time, whereas the convergence is the same as in the Monte Carlo method.
The results can be compared to those in Fig. 4a for d = 1, where the CPU-time was
quadratic. The work load on each sublevel l, for l = 1, . . . , L can easily be computed
as O(l2), matching the results of the simulation in Fig. 9a.

6.3.2 MLMC-FE method for the second moment

For the calculation of the error of the MLMC-FE method for M2[u] we proceed
as in the one-dimensional case. Results in Fig. 7b reflect the theoretical error for the
MLMC-FE approximation of rate O(hL(log hL)

3/2) as stated in Theorem 5.7 for k = 2
and s = 1. Equally the simulation results on the total CPU-time pictured in Fig. 8b
for the asymptotic bound on the overall work, Eq. (5.11) (Ŵ (L) = O(NL(log NL))),
slight differences in the rate of convergence are due to the non-optimal complexity
of the backslash operator for large systems. This points to the use of a Multigrid
method to achieve optimal results for large L . For the CPU-time on the sublevels l,
for l = 1, . . . , L , we have a linear growth with increasing sublevel. This can be easily
calculated with Ml as in Eq. (5.10) and Nl = 22l . The results shown in Fig. 9b are
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Fig. 7 Rate of convergence of the MLMC-FE method with respect to the H1-semi-norm for the approxi-
mation of E(u) in (a) and M2(u) in (b) in dimension d = 2 against the level
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Fig. 8 Total CPU time for the MLMC-FE approximation of E L (u) in (a) and M2(u) in (b) in 2d against
the level

influenced the most by the generation of the sparse tensor product (see Fig. 6b), such
that the linear scaling is not fully visible here.

Remark 6.8 The serial Monte Carlo and therefore the MLMC-FE simulations can
easily be implemented for parallel computing. No communication between processes
is needed during execution if available memory allows for the handling of one sample
on one processor. This means load balancing can easily be achieved without the need
for communication between the processors during execution. However, the random
number streams for each processor should exhibit low correlation between streams.
The results are gathered at the end of the computation. In the case of a single-level
MC-FE method each result can be added independently to the result of any other pro-
cessor and data loss only leads to a reduction in the convergence speed. In the case of
a MLMC-FE method the correct order of summation of the final result on each level
has to be respected. This means that the MLMC-FE simulation is much more sensitive
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Fig. 9 CPU-time per sublevel for different levels for the MLMC-FE approximation of E(u) in (a) and
M2(u) in (b) in dimension d = 2

to data loss then is the MC-FE simulation. In our example the sample size of the finest
level was normalized to one. In dimension d = 1 for the calculation of the mean field
and the second moment we have decreasing load with increasing mesh refinements
(see Fig. 5). If the calculation on the finest sublevel (normalized to one sample) can
be performed on one processor, we can balance the work load for the other sublevels,
with higher work load due to higher sample sizes, by splitting the sampling streams
to more than one processor. In the case of spatial dimension d ≥ 2, however, the
complexity of sampling on the finest mesh usually exceeds the capacity of a single
processor. In this case, load balancing and linear scaling can only be achieved by
domain decomposition, or, depending on the number of processors available, both,
domain decomposition and sample splitting (see [26]).

For all the simulations we truncated the sum in the Karhunen–Loève expansion
after the first term. This truncation could be coupled to the degrees of freedom of
the spatial approximation as well, or it could be fixed to some higher term. This
leads to a more complex calculation of the exact solution and the stiffness matrix, but
also to an error reduction in the approximation of the exact moments of the solution.
An algorithm to generate correlated Gaussian random fields is given in [23].

7 Conclusions

Our error and complexity analysis reveals that for low order Finite Element discretiza-
tions in the physical domain D, the proposed MLMC-FE method achieves an approx-
imation of the mean field of the random solution and its kth moments with efficiency
(i.e. error versus computational work) which is comparable to one solve of a linear
complexity Finite Element method for a deterministic elliptic problem of the same
type.

Our error and complexity analysis also shows that preservation of increased conver-
gence rates of higher order Finite Element methods for the approximation of stochastic
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solutions with higher spatial regularity entails corresponding increase of the MC sam-
ples at each mesh level. This implies a loss of the overall log-linear complexity of the
MLMC-FE scheme. For problems with random solutions that exhibit high spacial
smoothness as well as high summability, higher convergence rates of the overall dis-
cretization scheme will require apart from high order Finite Element methods in the
physical domain also improved discretization strategies in the stochastic domain such
as spectral, polynomial chaos based discretizations (see, e.g. [1,2,6,7,11,12,29,30]).

Therefore, the MLMC-FE method proposed here is competitive for stochastic PDE
problems whose solutions have low smoothness in physical space, and moderate sum-
mability inω ∈ � as, e.g. finite second moments. This is typically the case in Gaussian
models of porous media where realizations of a are, roughly speaking, Hölder con-
tinuous with exponent at most 1/2.

In closing, we emphasize that the presently proposed MLMC-FE method does
not require stationarity or Gaussianity of the stochastic diffusion coefficient a in any
way. For stationary, Gaussian random inputs, linear scaling simulation methods can
be built on tensorized Fast Fourier Transform algorithms (see, e.g. [14] and the refer-
ences therein). Both methods proposed here, the Karhunen–Loève based and the wave-
let based parametrization of a(ω, x), allow for non-stationary and irregular random
inputs.

The representations in Eqs. (6.11) and (6.13) can, due to the L2(D) orthogonality
in Eq. (6.12) of the (multi) wavelets be utilized directly in scenario generation based
on a stream of “coefficient realizations” of a, possibly in digital form with uniform
pixel resolution ≥ L . In this case, Eq. (6.16) implies that a “forward” MLMC-FE
simulation on mesh TL can account for all available data on a exactly.

Finally, we indicate that the MLMC approach is rather general: for an application
to hyperbolic conservation laws, see [25,26].
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