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Abstract

Although shown to be a very powerful tool in computer vision, existing higher-order
models are mostly restricted to computing MAP configuration for specific energy
functions. In this thesis, we propose a multi-class model along with a variational
marginal inference formulation for capturing higher-order log-supermodular interac-
tions. Our modeling technique utilizes set functions by incorporating constraints that
each variable is assigned to exactly one class. Marginal inference for our model can
be done efficiently by either Frank-Wolfe or a soft-move-making algorithm, both of
which are easily parallelized. To simutaneously address the associated MAP problem,
we extend marginal inference formulation to a parameterized version as smoothed
MAP inference. Accompanying the extension, we present a rigorous analysis on the
efficiency and accuracy trade-off by varying the smoothing strength.

We evaluate the scalability and the effectiveness of our approach in the task of nat-
ural scene image segmentation, demonstrating state-of-the-art performance for both
marginal and MAP inference. In addition, we also conduct experiments on the efficiency-
accuracy trade-off to verify our theoretical analysis.
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1 Introduction

Probabilistic inference is a powerful mechanism allowing for making decisions under
uncertainty. There are many standard inference techniques that have been successfully
applied to a plethora of domains (Wainwright & Jordan, 2008; Hazan & Shashua,
2012). However, these techniques are usually limited to low-order interactions as
complexity grows exponentially in the order of the largest clique. In recent years,
higher order modeling has drawn a significant attention in the vision community. It
demonstrates superior performance over conventional pairwise MRF in various tasks
such as segmentation (Kohli et al., 2009), scene understanding (Zhang et al., 2013)
and stereo matching (Woodford et al., 2009). Although exhibiting appealing expres-
siveness, these higher-order models also exert challenges on the inference techniques.

To do inference over the higher-order models, the alternating approach (Sun et al.,
2014; Valgaerts et al., 2010) divides variables into groups. In each iteration, a cer-
tain group of variables is fixed and the model is reduced to a lower order one. The
algorithms then iteratively alternate the fixed group and do lower order inference. Be-
sides this approach, three main classes of rigorous multi-class inference methods are
developed. The first class is based on belief propagation. Zhang et al. (2014) utilize
parallelization to achieve constant acceleration for both MAP and marginal inference,
but it suffers from the exponential complexity in computing messages. Tarlow et al.
(2010) propose a polynomial time message updating approach for special forms of
higher order interactions. However, it only works for MAP inference. The second
class uses max-flow/min-cut solver as the underlying engine. Representative works
like (Kohli et al., 2009) make use of expansion/swap moves for robust Pn model. A
recent primal/dual method (Fix et al., 2014) does move-making-like MAP inference
for arbitrary higher order potentials while the iteration-wise complexity is still pro-
hibitively exponential. The most recent fashion is based on filtering which serves
for both MAP and marginal inference. It is first introduced to image segmentation
by (Krähenbühl & Koltun, 2012) and later generalized to solving special forms of
higher order CRFs (Vineet et al., 2014).

Submodular functions are a family of set functions with the property of dimin-
ishing gains. It is an natural tool modeling utility in different inference and learning
settings such as clustering (Narasimhan et al., 2005), structured norm (Bach, 2010b)
and variable selection (Krause & Guestrin, 2012). Specifically in the vision literature,
techniques based on graph-cut (Boykov et al., 2001) are used for regular (submodular)
energy minimization. Recent work (Djolonga & Krause, 2014) initiates the study of
submodularity in the Bayesian binary settings. The log-supermodular inference for-
mulation can incorporate higher order binary interactions with polynomial iteration-
wise complexity. Djolonga & Krause (2015) connect the binary marginal inference
problem to the well-studied min-norm problem which inspires scalable parallel in-
ference algorithms. These inference approaches have been successfully applied to
problems such as fore/background segmentation.

In this thesis, we propose a novel multi-class log-supermodular model together
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2 Higher-order Inference for Log-supermodular Models

(a) (b) (c)

(d) (e) (f)

Figure 1.1: Applying our inference technique to an image from the MSRC-21 dataset.
(a) Original image. (b) and (c) are two layers of mean-shift superpixel generated
with different parameters. (d) MAP result from our formulation. (e) Entropy of the
marginal from our formulation. (f) Ground truth.

with a marginal inference approach for capturing any log-supermodular higher-order
interactions. With minor modifications, our approach also solves approximated MAP
inference with guarantees on approximation error and convergence rate. Our frame-
work has polynomial iteration-wise complexity for both approximated marginal and
MAP inference.

In Figure 1.1, we demonstrate an example of applying our inference framework to
segment an image from MSRC-21 dataset. We generate multiple layer of superpixels
from mean-shift algorithm with different parameters. Together with unary potentials,
we use the higher-order prior that pixels in a single superpixel tend to share the same
label. By running our marginal inference algorithm, we estimate not only marginals
but also MAP results from the associated smoothed MAP inference formulation. We
show in Figure 1.1e the entropy from the estimated marginals. The high entropy values
around semantic boundaries shows MAP estimation is more uncertain where objects
interact. In other words, our formulation support Bayesian analysis on uncertainty in
addition to point-wise decision-making.

Contributions.

• A new Bayesian modeling framework together with a marginal inference formula-
tion for multi-class log-supermodular distribution.

• Efficient and parallelizable algorithms for approximate marginal inference.

• We propose and analyze an smoothed MAP inference formulation which has deep
connections with our marginal inference problem. We also present a rigorous treat-
ment of the efficiency-accuracy trade-off in controlling smoothing strength.

• We demonstrate the scalability and effectiveness of our approach on natural scene
segmentation.



2 Preliminaries: submodularity

Submodular functions are set functions with diminishing gains. Given a set function
F : 2V → R with finite ground set V , we define F (i|A) = F (A∪{i})−F (A) as the
gain of adding i ∈ V to A. F is submodular if F (i|B) ≤ F (i|A) for ∀A ⊆ B ⊆ V
and i /∈ B. Set function F is supermodular if−F is submodular. One simple example
of submodular function is the cut function. Given a graph G = (V,E), a cut function
is defined as

F (A) =
∑

(u,v)∈E
wi,j |1(u ∈ A)− 1(v ∈ A)|

which is the sum over weights of edges connecting A and V \A. Another example
is the concave cardinality function. Let g(x) be an arbitrary concave function. With
ground set V , for ∀A ∈ V , we define a concave cardinality function as

F (A) = f(|A|).

It can be shown concave cardinality function is also submodular.
Modular functions are a special class of submodular and supermodular functions

simultaneously. By associating real value sv with v∈V , modular function s : 2V→R
is defined as s(A)=

∑
v∈Asv, ∀A⊆ V . Another essential notion related to submod-

ularity is the base polytope. The base polytope of submodular function F is defined
as

B(F )=
{
s ∈ R|V |: s (V )=F (V ), s (A)≤F (A), ∀A⊂V

}
.

There has been extensive investigation such as (Bach, 2011)[§9.1] and (Jegelka et al.,
2013) on convex optimization over the base polytope. One of the frequently referred
problem is evaluating Lovász extension for a given submodular function. Formally
the Lovász extension of submodular function F is defined as

f(w) = max
s∈B(F )

〈w, s〉.

Though the feasible set B(F ) is defined with exponentially many linear constraints,
linear optimization over B(F ), i.e. evaluating Lovász extension, can be achieved effi-
ciently in O(|V | log |V |) time (Edmonds, 1970).
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3 Log-supermodular modeling with sets

3.1 Approach

Let X =
(
X1, X2, ..., X|I|

)
be a vector of random variables with index set I =

{1, 2, ..., N}. Correspondingly x =
(
x1, x2, ..., x|I|

)
is a possible configuration of

X . For simplicity we assume xi ∈ L = {1, 2, ..., L}1 and aim at associating a
probability with all the feasible configurations. In the binary setting with L = 2,
each configuration x can be equivalently represented by a set. More specifically, we
define ground set U = {u1, u2, ..., uI} with ui corresponding to xi, x is equivalently
represented by Ax ∪i : xi=2 {ui}. However, this method does not apply to multi-class
settings where |L| ≥ 3. Let Vi = {vi,1, vi,2, ..., vi,L}, we instead model with ground
set V = ∪Ni=1Vi and utilize Ax = ∪Ni=1 {vi,xi} to represent configuration x.

To filter subsets corresponding to valid configurations, we define setM which is
the basis of a partition matroid (Welsh, 2010)[§2.1].

M={B ⊆ V : ∀i ∈ I, |B ∩ Vi| = 1} .

With function F : 2V → R, we define the following probability for every A ⊆ V .

P (A) =

{
1
Z exp(−F (A)) if A ∈M
0 if A /∈M

As a concrete example to illustrate the modeling methodology, we consider a
pixel-wise labeling problem in Figure 3.1(a). Assume i is the index of a pixel while
j is the index for a possible label. xi = j indicates pixel i is assigned with label j,
which is equivalently represented by vi,j ∈ A. Ag, which is represented by the region
with green boundaries, assigns exactly one label to every pixel. Thus Ag ∈M. How-
ever, Ar assigns 2 labels to pixel 3 as shown with the region with green boundaries. It
implies Ar /∈ M. We can verify setM includes exactly every feasible subset A ∈ V
which respects the fact that every pixel has exactly one label.

In most applications, the energy function is a sum over functions whose scopes
are subsets of V , i.e. F (A) =

∑R
r=1 Fr(A ∩ Vr) with Vr as the scope of Fr. If we

do not have any restrictions on Fr, our model essentially reflects a general graphical
model represented by a factor graph. The complexity of updates in the correspond-
ing message-passing algorithms is exponential with respect to |Vr|, i.e. the order of
the interaction modeled by Fr. One possible way to get around the obstacle is to
utilize submodularity. More specifically, we assume Fr to be submodular so that the
probability P (A) becomes a log-supermodular distribution.

1By replacing L with a proper integer function of i, our modeling approach also extends to cases
where random variables have different numbers of possible values.
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6 Higher-order Inference for Log-supermodular Models
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(a) A representation example.
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(b) A concave cardinality function.

Figure 3.1: Examples for illustrating modeling approach.

3.2 Examples

In this section, we discuss three examples to illustrate our method in modeling pair-
wise and higher-order interactions. The first example is modeling Potts pairwise po-
tential with cut function while the other two are about modeling label consistency and
elements diversity which are both higher-order interactions.

Potts energy and cut function. Assume a graphical model is represented by
graph G(U,E), we define discrete random variable xi ∈ L = {1, 2, ..., L} , ∀i ∈ U .
A pairwise potts energy is defined as

φ(x) =
∑

(i,j)∈E
φi,j(xi, xj) =

∑
(i,j)∈E

λi,j [xi 6= xj ].

Let Vk = {vk,1, vk,2, ..., vk,L} for ∀k ∈ V . For each component φi,j(xi, xj), we
define submodular cut function

Fi,j(A) =
∑
l∈L

1

2
λi,j |1 (vi,l ∈ A)− 1 (vj,l ∈ A) |. (3.1)

There is a corresponding set representation Ai,j(xi, xj) =
{
vi,xi , vj,xj

}
for every

configuration x with Fi,j(Ai,j(xi, xj)) = φ(xi, xj). We can verify that

∀Ai,j ∈Mi,j = {Bi,j ∈ Vi ∪ Vj : |Bi,j ∩ Vi| = 1, |Bi,j ∩ Vj | = 1} ,

i.e. Fi,j(Ai,j) is an equivalent representation of component φi,j . As sum of submod-
ular functions is still submodular, we have F (A) =

∑
(i,j)∈E Fi,j (A ∩ (Vi ∪ Vj)) is

submodular. With the constraintA ∈M = ∪(i,j)∈EMi,j = {B : |B ∩ Vi| = 1, ∀i ∈ U},
we can then conclude submodular function F (A) is equivalent to φ(x).

Higher-order consistency and concave cardinality function. Given a ran-
dom vector X = (X1, X2, ..., XI) with configuration components xi ∈ L, we want
to model the prior that components in x tends to have the same label. With vi,j indi-
cating xi = j, we define Vi = ∪l∈L {vi,l} and V l = ∪i∈I {vi,l}. Based on a collection
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of concave functions gl(x), each of which corresponds to a label class, we define the
corresponding concave cardinality function as

g(A) =
∑
l∈L

gl(|A ∩ V l|).

Function g(A) tends to have smaller value when labels concentrate into a single class
and larger value when labels scatter in different classes. As a concrete example with
|I| = 9 and |L| = 3, we plot gl(|A ∩ V l|) = |A ∩ V l|0.5 in Figure 3.1b. When
all the labels concentrate into a single class, we have g(A) = N0.5 = 3. If values
of random variables are uniformly distributed into different classes, we have g(A) =
|L| (N/|L|)0.5 ≈ 5.196 > 3. Thus the concave cardinality function indeed advocates
sharing the same label and models our higher-order consistency prior.

Diversity and group coverage function. Let {G1, G2, ..., GN} be a set of
groups with Gi being subsets of ground set V . To measure the diversity of a set
A ⊆ V , we define the following group coverage function

D(A) = | {i : A ∩Gi 6= ∅} |

which is easy shown submodular. It counts the number of groups covered by elements
in setA. We can utilizeD(A) with our probabilistic framework as a prior to encourage
less diverse sets, i.e. sets covering less groups.





4 Marginal inference

4.1 Formulation

Marginal inference reasons about the marginal probability of every random variable
in graphical models. As exact marginal inference involves exponentially complex
marginalization and is #P -hard in the general setting, approximated inference is the
way to get around the obstacle. Our approximated inference formulation for log-
supermodular models is a variational one. We approximate submodular the function F
with modular function a s and associate with s an approximated probability P̂ (A) =
1
Ẑ exp(−s(A)). Under the constraint that s(A) ∈ B(F ), the log-partition functions

of P (A) and P̂ (A) respects

logZ = log
∑
A∈M

exp−F (A)≤ log
∑
A∈M

exp−s(A) =
∑
i∈I

log
∑
j∈L

exp−si,j = log Ẑ

The equality is a consequence of the fact that
∑

A∈Mexp−s(A) =
∏
i∈I
∑L

j=1exp−si,j .
The inequality results from s(A) ≤ F (A) because s ∈ B(F ). Our inference formu-
lation utilizes the relation and minimizes a upper bound of the exact log partition
function. More specifically, we use the following program

min
s∈B(F )

∑
i∈I

log
∑
j∈L

exp−si,j (4.1)

to find the optimal modular function which minimizes the gap between log partition
functions of the exact and approximated probability. With the optimal solution s∗,
approximated marginal probability can be computed efficiently with

P̂ (si,j ∈ A) =
exp(−si,j)∑
j∈L exp(−si,j)

,∀i ∈ I, j ∈ L.

Fenchel Duality. Interestingly, Equation (4.1) can also be interpreted as entropy
maximization which is regularized by Lovasz extension. This fact becomes clear by
considering the Fenchel dual of the marginal inference problem. With wi ∈ R|Vi|
and w being the concatenation of all wi, we now denote f(w) = maxs∈B(F )〈w, s〉
as the Lovasz extension of F , Hi(wi) as the entropy of a multinomial distribution
and ∆i =

{
wi ∈ R|Vi| : wi ≥ 0,1Twi = 1

}
as the probabilistic simplex. Using the

above notations, the Fenchel dual problem is derived in Claim 1. Assume (s?,w?) is
a optimal primal/dual pair, the dual optimum w? is exactly our desired approximated
marginal associated with primal optimum s?. The proof of Claim 1 is delayed as an
special case of Claim 6.

Claim 1. The Fenchel dual of the marginal inference problem in Equation (4.1) is

min
w∈R

f(w)−
∑
i∈I

Hi(wi)

s.t. wi ∈ ∆i

(4.2)

9



10 Higher-order Inference for Log-supermodular Models

Zero duality gap is achieved at pair (s?,w?) if and only if 〈s?, w?〉 = f(w?) and
w?i,j =exp(−s?i,j)/

∑
j∈L exp(−s?i,j), ∀i∈I, j ∈ L.

4.2 Algorithms

In the following, we assume the energy function is a sum over functions whose scopes
are subsets of the ground set V , i.e. F (A) =

∑R
r=1 Fr(Ar) with Ar as the scope of

Fr. This setting enables us to demonstrate the parallelization of our algorithms.

Inference with Frank-Wolfe. As evaluating Lovász extension, i.e. solving lin-
ear programs over a base polytope, requires only O(|V | log |V |) computation, Frank-
Wolfe algorithm is a natural choice for convex optimization over the base polytope. It
repeatedly solves linear programs over the base polytope with a O(1/k) convergence
rate (Jaggi, 2013). In addition, the base polytope of a sum over submodular functions
is the Minkowski sum of the corresponding base polytopes (Fujishige, 2005)[§4.2]. As
shown in Claim 2, in each iteration, we can divide the linear programming problem
into multiple smaller problems and solve them in parallel. The global optimum can be
acquired by simply summing up optima from the smaller problems. These facts give
rise to an efficient parallel solver in Algorithm 1 for problems in the sum-of-function
setting.

Algorithm 1 Parallel Inference via Frank-Wolfe

1: Input F =
∑R

r=1Fr, g(s)=
∑

i∈I log
∑

j∈L exp−si,j

2: Initialize s = s0 ∈ B(F )
3: for k = 1 : M do
4: xr = argminy∈B(Fr)〈∇g(s),y〉 in parallel for r
5: x =

∑R
r=1 xr

6: s = s + γ (x− s) with γ = 2/ (k + 2)
7: end for
8: return P̂ (si,j ∈ A) ∝ exp(−si,j)

Claim 2. Let c ∈ R|V | and x̂r = argminy∈B(Fr)〈c,y〉, x̂ =
∑R

r=1 x̂r is an optimum
of miny∈B(F )〈c,y〉

Proof. Let B(F ) be the base polytope of F =
∑R

r=1 Fr and B(Fr) is the base poly-
tope of submodular components Fr. As proven in (Fujishige, 2005)[§4.2],B(F ) is the
Minkowski sum of the base polytopesB(Fr). Assume x? = argminy∈B(F )〈c,y〉, on
the one hand, we know x̂ ∈ B(F ) and thus 〈c, x̂〉 ≥ miny∈B(F )〈c,y〉 = 〈c, x?〉.
On the other hand, x? can be decomposed as x? =

∑R
r=1 x

?
r with x?r ∈ B(F ). As

〈c, x?r〉 ≥ 〈c, x̂r〉, we have 〈c, x?〉 ≥ 〈c, x̂〉. It implies that 〈c, x̂〉 = 〈c, x?〉 and
x̂ is an optimum of miny∈B(F )〈c,y〉.

Inference with soft-move-making. Move-making algorithms such as α-β-swap
and α-expansion (Boykov et al., 2001) have been extensively applied for MAP infer-
ence. α-expansion expands or reduces the region associated with a single label in
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each iteration. Our soft-move-making approach is a block coordinate descent algo-
rithm sharing the same intuition with α-expansion. We define sl as a vector collecting
si,l,∀i ∈ I and s is actually the concatenation of sl. Correspondingly, V l is de-
fined as V l = ∪i∈I {vi,l}. If F can be decomposed as F (A) =

∑
l∈L F

l(A ∩ V l),
we can derive an efficient block coordinate descent algorithm for our inference task.
In Algorithm 2, we iteratively descent over sl for all the possible values of l. Our
sub-problem in each iteration is proven to be equivalent to min-norm problem (Djo-
longa & Krause, 2015) which can be efficiently solved via the Divide-and-Conquer
algorithm in (Bach, 2011)[§9.1]. We derived the min-norm form of our block coordi-
nate descent sub-problem in Claim 3. The subproblem solver can be parallelized with
standard dual decomposition technique as described in (Jegelka et al., 2013).

Algorithm 2 Parallel Inference via Soft-move-making
1: Input submodular F , set L of all possible labels
2: Initialize sl = 0,∀l = 1, 2, ..., L
3: repeat
4: for l = 1 : |L| do
5: Update tl with tli = log

∑
j 6=l exp−si,j

6: sl = argmin
r∈B(F l)

1
2 ||r − tl||2

7: end for
8: until Convergence
9: return P̂ (si,j ∈ A) ∝ exp(−si,j)

Claim 3. Let F l : 2V
l → R be submodular functions with base polytopes B(F l).

Assume V l ∩ V l′ = ∅ if l 6= l′ and F (A) =
∑

l∈L F
l(A ∩ V l), the block coordinate

descent sub-problem of the program in Equation (4.1) is equivalent to

min
r∈B(F l)

1

2
||r − tl||2 (4.3)

where tl collects tli = log
∑

j 6=l exp−si,j ,∀i ∈ I .

Proof. We first prove B(F ) is the Cartesian product of B(F l). For ∀A ∈ V , we
define F̂ l(A) = F l(A ∩ V l) as the extension of F l from 2V

l
to 2V with B(F̂ l) as

the corresponding base polytope. From the definition of base polytopes, B(F̂ l) is a
polyhedron in R|V | while B(F l) is in R|V l|. For ∀ŝ ∈ B(F̂ l), ŝi,j ≤ F̂ l({vi,j}]) =
F l(∅) = 0 when j 6= l. On the other hand, ŝ(V \ V l) + ŝ(V l) = F̂ l(V ) = F l(V l).
If for any j 6= l, ŝi,j < 0, we have ŝ(V l) > F̂ l(V ) = F l(V l), which contradicts
the constraint ŝ(V l) ≤ F̂ l(V l) = F l(V l) in B(F̂ l). Thus for ∀ŝ ∈ B(F̂ l) and
j 6= l, ŝi,j = 0. In addition, as the base polytope B(F ) is the Minkowski sum of
base polytopes B(F̂ l), we have B(F ) is the Cartesian product of B(F l), i.e. B(F ) =∑

l∈LB(F̂ l) =
∏
l∈LB(F l).

AsB(F ) is the Cartesian product ofB(F l), the block coordinate descent subprob-
lem is simply a constrained problem over B(F l) when sl is variable. When updating
sl and fixing other variables, our formulation in Equation (4.1) turns into

min
sl∈B(F l)

∑
i∈I

log
(

exp
(
−tli
)

+ exp (−si,l)
)

(4.4)
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where tl collects tli = log
∑

j 6=l exp−si,j , ∀i ∈ I. From Lemma 3 in (Djolonga
& Krause, 2015), we can derive that the problem in Equation (4.3) shares the same
optimum with the problem in Equation (4.4).



5 Smoothed MAP inference

MAP inference gives point estimation on the (approximate) global optimal configu-
ration of random variables in graphical models, i.e. the configuration maximizing the
joint probability of all the random variables. In Section 5.1, we present a tractable
continuous relaxation of the combinatorial MAP problem. We also discuss about a
smoothing technique to improve efficiency, which is tightly connected to our marginal
inference formulation. In Section 5.2, we analyze the interaction among convergence
rate, approximation error and smoothing strength, presenting an efficiency-accuracy
trade-off in the smoothing technique.

5.1 Relaxing and smoothing MAP inference

We first formulate the discrete MAP problem in Equation (5.1). It has an equivalent
form stated in Claim 4. In order to design efficient algorithms for MAP inference, we
switch to look at a continuous relaxation of the combinatorial problem in Claim 4, i.e.
to replace the discrete constraints with ∆i =

{
wi ∈ R|Vi| : wi ≥ 0,1Twi = 1

}
. To

connect MAP problem with marginal inference formulation, we derive in Claim 5 the
Fenchel Dual of the continuous relaxation. The proof of Claim 5 is presented with
details in Appendix A.2

min
A⊂V

F (A)

s.t. |A ∩ Vi| = 1, ∀i ∈ I
(5.1)

Claim 4. Let f(w) be the Lovasz extension of submodular function F (A), the prob-
lem in Equation (5.1) is equivalent to minwi∈{0,1} f(w) with constraints 1Twi = 1.
The continuous relaxation of this equivalent problem is

min
w∈R

f(w)

s.t. wi ∈ ∆i

(5.2)

Proof. For all A in constraintM, we define wA with (wA)i,j = 1 when vi,j ∈ A and
0 otherwise. From Proposition 3.1 (f) in (Bach, 2011), we have ∀A ∈ M, F (A) =
f(wA). In addition, every feasible set A in Equation (5.1) has a corresponding wA

in Equation (5.3) and vice versa. With the equivalent feasible set and objective func-
tion, we can conclude the problem in Equation (5.1) and the one in Equation (5.3) are
equivalent.

min
wi∈{0,1}

f(w)

s.t. 1Twi = 1 ∀i ∈ I
(5.3)

By relaxing wi ∈ {0, 1} to wi ∈ [0, 1], we can derive the continuous relaxation
in Equation (5.2).

13
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Claim 5. The Fenchel dual of the continuous relaxation in Equation (5.2) is

min
s∈B(F )

∑
i∈I

max
j∈L

(−si,j) (5.4)

By comparing Equation (4.2) with Equation (5.2), we can find the additional en-
tropy term turns the corresponding dual from the non-smooth problem in Equation
(5.4) to the smooth one in Equation (4.1). Thus we can alternatively interpret marginal
inference as smoothing the dual form of the relaxed MAP problem in Equation (5.4).
However, the marginal inference formulation in Equation (4.2) lacks flexibility in
controlling the smoothing strength. It naturally inspires the parametric formulation
in Equation (5.5) of which the non-smooth relaxed MAP problem is an limit when
ε→ 0.

min
w∈R

f(w)− ε
∑
i∈I

Hi(wi)

s.t. wi ∈ ∆i

(5.5)

To adapt our algorithms from marginal inference to the parametric formulation,
we consider in Claim 6 the Fenchel dual of the program in Equation (5.5) when ε > 0.
With the formulation in Equation (5.6), we can directly apply Algorithm 1 and Algo-
rithm 2 by dividing the input F (A) with ε. For ε = 0. We also present an algorithm
based on Frank-Wolfe in Appendix A.1. As the hard-max function maxi si is a limit of
the soft-max function ε

∑
i log (si/ε) when ε→ 0, the non-smooth objective in Equa-

tion (5.4) is also an extreme case of the formulation in Equation (5.6) when ε→ 0. It
aligns well with our intuition that the non-smoothed problem should be a limit of the
smoothed problem in both primal and dual domains.

Claim 6. When ε > 0, the parametric formulation in Equation (5.5) is the Fenchel
dual of

min
s∈B(F )

∑
i∈I

ε log
∑
j∈L

exp−
si,j
ε (5.6)

Zero duality is achieved at (s?, w?) if and only if w?i,j =
exp(−s?i,j/ε)∑
j∈L exp(−s?i,j/ε)

and

〈w?, s?〉 = f(w?).

Proof. From (Boyd & Vandenberghe, 2004)[Ex.3.25], the convex conjugate of hi(si) =
log

∑
j∈L

expsi,j is

h?i (pi) = −Hi(pi) =


∑
j∈L

pi,j log pi,j
∑
j∈L

pi,j = 1, pi,j ≥ 0

+∞ otherwise
(5.7)

It implies εh?i (−pi) = −εHi(−pi) and εhi(−si
ε ) are convex conjugate to each other.

For i 6= j, hi and hj are independent. Thus

h?(p) =
∑
i∈I

εh?i (−pi) = −ε
∑
i∈I

Hi (−pi)

is the convex conjugate of

h(s) =
∑
i∈I

εhi(−
si
ε

) =
∑
i∈I

ε log
∑
j∈L

exp−
si,j
ε .
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In addition, the convex conjugate of indicator I(s ∈ B(F )) is the Lovasz exten-
sion f(p) (Bach, 2010a)[§3]. Thus g(s) = −I(s ∈ B(F )) is the concave conjugate
of Lovász extension g?(p) = −f(−p). From the Fenchel duality theorem in (Nedic
et al., 2003)[Prop. 7.2.2], we have

max
p∈R

g?(p)− h?(p) = max
p∈R

− f(−p) + ε
∑
i∈I

Hi(−pi)

s.t. − pi ∈ ∆i s.t. − pi ∈ ∆i

. (5.8)

is the Fenchel dual problem of

min
s∈R|V |

h(s)− g(s)⇔ min
s∈R|V |

ε
∑
i∈I

hi(−
si
ε

) + I (s ∈ B (F )) (5.9)

According to Theorem 1 in (Rockafellar et al., 1966), as g(p) is continuous on the
whole domain and ∃p0 where g(p0) and h(p0) are both finite, strong duality holds
for the primal-dual pair at some (s?, p?). As proven in Theorem 2 in (Rockafellar
et al., 1966), zero duality gap is achieved if and only if ∃p? ∈ ∂h(s?) ∩ ∂ (−g(s?)).

As h(s) is differentiable, we have p?i,j = − exp(− s?i,j
ε )/

∑L
j∈L exp(− s?i,j

ε ). To ensure
p? ∈ ∂ (−g(s?)), we also need 〈p?, s?〉 = g(s?)+g?(p?), i.e. 〈p?, s?〉 = −f(−p?).

By replacing−p with w, we can verify the equivalence of the problem in Equation
(5.5) and the one in Equation (5.8). The optimality condition is 〈w?, s?〉 = f(w?)

and w?i,j = exp(− s?i,j
ε )/

∑L
j∈L exp(− s?i,j

ε ).

5.2 Accuracy-efficiency trade-off

For typical smoothing techniques, the stronger the smoothing term is, the faster the
underlying solver usually converges. However, when the smoothing term is too strong,
the optimum may be significantly different from the non-smooth optimum. E.g. for
the program in Equation (5.5), the optimum will be biased to uniform distribution if
entropy terms dominate. To rigorously analyze the balance together with the behavior
of Frank-Wolfe based algorithm, we present the relation between convergence rate
and ε in Claim 7 as well as the one between approximation error and ε in Theorem
1. On the one hand, if we evaluate the original relaxed MAP objective at the optima
from original and smoothed relaxed problem, the difference is linearly bounded by ε.
On the other hand, the convergence rate of Frank-Wolfe is linearly dependent on the
reverse of ε. We present the proof of Claim 7 here and delay the one for Theorem 1
to Appendix A.3.

Empirically, we observe dramatic slowing down for Frank-Wolfe algorithm with
very small ε. Non-differentiable MAP formulation is the case of ε → 0 which also
suffers from the slowing down. In our analysis, we can see the the convergency rate
O(1/(εk)) is inversely proportional to ε, which supports our empirical observations.
Thus when using our framework for approximated MAP inference, optimality can be
traded for better efficiency by tuning the smoothing strength with ε.

Claim 7. Let ε be the parameter in Equation (5.5) and k be the number of itera-
tions, the convergence rate of solving the program in Equation (5.5) with Frank-Wolfe
Algorithm is O

(
1
εk

)
.
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Proof. We first consider the negative entropy term hε(w) = −ε∑i∈I Hi(wi) =∑
i∈I
∑

j∈Lwi,j logwi,j over domain D = {w : 0 ≤ wi,j ≤ 1, ∀i ∈ I, j ∈ L}. As
the hessian is

Hε(w) = ε


H1

H2

. . .
H|I|

 with Hi =


1
wi,1

1
wi,2

. . .
1

wi,|L|

 ,
we know that Hε(w) ≥ εI , i.e. hε(w) is ε-strongly convex in the interior of D. In
other words, ∀u,v in the interior of D, we have

hε(u) ≥ hε(v) + 〈∇hε(v),u− v〉+
ε

2
||u− v||22.

With ∆̂i =
{
wi : 1

Tw = 1,wi > 0
}

, we have hε(w) is ε-strongly convex over∏
i∈I ∆̂i which is a subset of the interior of D. Let ĥε(w) = hε(w) with domain∏
i∈I ∆̂i. From the definition of convex conjugate, we can derive the conjugate of

ĥε(w) is still
h?ε (s) = ε

∑
i∈I

log
∑
j∈L

expsi,j/ε

with domain R|V |. From (Borwein & Vanderwerff, 2010)[§5], we know that the con-
jugate of a ε-strongly convex function is 1/ε-smooth. In our setting, we have h?ε (s) is
1/ε-smooth, i.e.

h?ε (y) ≤ h?ε (x) + 〈∇h?ε (x),y − x〉+
1

2ε
||y − x||22 ∀x, y ∈ R|V |.

Considering the fact that h?ε (−s) is still 1/ε-smooth, we have that the objective func-
tion in Equation (5.5) is 1/ε-smooth with respect to L2 norm. Lemma 7 in (Jaggi,
2013) implies the curvature parameter for Algorithm 1 is Ch?ε ≤ diam||·||2 (B(F ))2 /ε

for h?ε (−s). Thus the convergence rate is O(Cgε/k) = O( 1
εk ).

Theorem 1. Let w?(ε) be the optimal solution of the program in Equation (5.5) with
ε > 0, and w?(0) is the optimal solution when ε = 0, i.e., the optimal solution for the
non-smooth relaxed MAP formulation. For arbitrary submodular function F with its
Lovász extension being f(w), we have

f(w?(ε))− f(w?(0)) ≤ ε|I| log |L|.

And given ∀ε, I and L, we can construct a submodular function F̂ with Lovász exten-
sion f̂(w) so that f̂(w?(ε))− f̂(w?(0)) = 1

2ε|I| log (|L|).



6 Experiments

6.1 Experiment setup

We evaluate our inference approach on MSRC-21 dataset for pixel-wise multi-class
image segmentation. The MSRC-21 dataset contains images in portrait format of
size 213 × 320 or landscape format of size 320 × 213. The image samples range
from outdoor views to indoor scenes containing 21 classes of objects such as cow,
car, book and human. As shown in Figure 6.1, the original dataset only has coarse-
grain annotations with unlabeled ambiguous regions. The annotation typically inflates
the foreground objects and does not preserve boundaries properly. In addition to the
original dataset, a fine-grain annotation is created as part of the work in (Krähenbühl
& Koltun, 2012). The new annotation covers 93 images from MSRC-21 dataset. It
preserves the boundaries emerging from complex interactions among objects and pro-
duces pixel-wise labeling in high quality. In order to reliably evaluate our higher-order
inference technique over the segmentation model, we run experiments on the subset of
MSRC-21 with fine-grain annotations. For all our experiments, we use TextonBoost
unary features designed in (Krähenbühl & Koltun, 2012). It uses 17-dimensional filter
bank suggested by Shotton et al. (Shotton et al., 2009) and is augmented with color,
pixel location and HOG features.

Higher-order segmentation model. Oversegmentation methods such as SLIC
(Achanta et al., 2010) and mean-shift (Comaniciu & Meer, 2002) generate superpix-
els which are typically used to construct superpixel-wise model. The superpixel-wise
models are more efficient as the scale is dramatically reduced from pixel-wise model.
Although superpixel typically can not directly produce high-level semantic segmenta-

Figure 6.1: Samples from MSRC-21 dataset. Left: image. Middle: coarse-grain
annotation. Right: fine-grain annotation.

17
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tion, it generates oversegmentation from low-level image features like colors. As se-
mantic boundaries usually align with boundaries of homogeneous regions, superpixels
can be employed to enforce pixel-level label consistency within a single superpixel.
This consistency prior usually emerges as interaction of extremely high order because
a single superpixel may contains tens to thousands of pixels. Besides modeling con-
ventional Potts pairwise interaction with cut function, we also utilize the higher-order
prior in our experiments. More specifically, we generate multiple layers of superpix-
els with the mean-shift algorithm and softly enforce the label consistency of pixels in
each single superpixel with concave cardinality fucntions. Let sp be the spatial band-
width parameter, sr be the range bandwidth parameter and mr be the minimum size
of regions, we consider the following different configurations of our model:

- Submodpair: A grid Potts pairwise model using cut function.

- Submod2-layer: It generates 2 layers of superpixels with (7, 4, 500) and (7, 10, 100)
for the parameter (sp, sr,mr). Only higher-order consistency prior is utilized.

- Submod2-layer-pair: It utilizes the same superpixel as Submod2-layer. Higher-order
consistency prior is employed together with pairwise interaction modeled with cut
functions.

- Submod3-layer: It generates 3 layers of superpixels with (7, 4, 500), (7, 7, 300) and
7, 10, 100 as the parameter (sp, sr,mr). Only higher-order consistency prior is
utilized.

Along with our models, we do experiments with grid pairwise model with lib-
dai (Mooij, 2010) Belief-Propagation and Mean-Field solver. In addition, we present
performance of Robust-Pn model (Kohli et al., 2009) and CRFfully (Krähenbühl &
Koltun, 2012) for MAP inference as reported in (Krähenbühl & Koltun, 2012). Algo-
rithms for log-supermodular inference are parallelized with 4 threads on an Intel Core-
i5 quad-core 3.2 GHz processor while those with libdai solvers run on a single core of
the same processor. Using the submodular function in Section A.4 and the parameter
grid shown in Table A.1, all the experiments are done in 5-fold cross-validation with
grid search. The estimation are evaluted using finely annotated dataset of 93 samples.
For Submod2-layer-pair which combines pairwise and higher-order interactions, we fix
the pairwise parameter to the one most frequently selected in cross-validation exper-
iment of Submodpair and then perform cross-validation on the grid of higher-order
parameters.

6.2 Marginal inference evaluation

In order to demonstrate the performance in a finer-grain fashion, we adopt the trimap
concept from (Kohli et al., 2009). A trimap with bandwidth h is the union of (2h +
1)×(2h+1) neighborhoods of all the boundary pixels. As classification error usually
happens around the boundaries while most of the pixels are non-boundary pixels,
performance on trimap may helps better comparing the ability to distinguish classes.
Thus we report results on trimaps with different bandwith.
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(a) Trimap bandwidth = 0.

0.0 0.2 0.4 0.6 0.8 1.0

false-positive-rate

0.4

0.5

0.6

0.7

0.8

0.9

1.0

tr
ue

-p
os

it
iv

e-
ra

te

Unary
Submodpair
BP
MF
Submod2-layer
Submod2-layer-pair
Submod3-layer

(b) Trimap bandwidth = 5.
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(c) Trimap bandwidth = 10.
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(d) Trimap bandwidth = 20.

Figure 6.2: Overall ROC curve over trimaps with different bandwidth.

Receiver operating characteristic. Receiver operating characteristic (ROC) is
a plot illustrating the performance of binary classifiers. It measures the relationship
between false-positive-rate and true-positive-rate. In our multi-class setting, we per-
form a macro average over ROC curves of each class. Specifically, we first generate
ROC curves per class in a 1-vs-all binary setting. The overall ROC curve is then pro-
duced by averaging those curves. Together with the overall ROC curve, we use the
area under the curve (AUC) to illustrate the quality of marginal probabilities. Higher
AUC value typically corresponds to classifiers with higher true-positive-rate at the
cost of a certain fixed false-positive-rate. It implies better marginal probability us-
aually produces higher AUC values. As demonstrated in Figure 6.2 and in Table 6.1,
both our pairwise and higher-order model improve AUC from Unary model. For
different trimap bandwidth, either Submod3-layer or Submod2-layer-pair, which are
both higher-order, achieves the best AUC among all the models. We can observe that
all the higher-order models dramatically improve AUC from Unary while pairwise
model Submodpair gains little over Unary. We can also notice that MFpair and BPpair
degenerate the ROC curve comparing with Unary.

KL divergence. KL-divegence is a conventional measure of the similarity between
two probabilities. We also evaluate the pixel-wise average KL divergence DKL(q||p)
between the estimated marginal p and the ground truth marginal q. The ground truth
marginal is a vector with 0/1 entries where a single 1 indicates the ground truth label.
In Figure 6.3, we can observe all the higher-order models with our log-supermodular
inference engine uniformly outperform unary and any pairwise models. Comparing
with pairwise model Submodpair, our higher-order models achieves substantial de-
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bandwidth 0 5 10 20

Unary 0.8254 0.8602 0.8841 0.9112
Submodpair 0.8443 0.8708 0.8905 0.9119

BPpair 0.7727 0.8034 0.8245 0.8504
MFpair 0.7663 0.8006 0.8226 0.8499

Submod2-layer 0.8735 0.9035 0.9132 0.9233
Submod2-layer-pair 0.8886 0.9184 0.9278 0.9371

Submod3-layer 0.8904 0.9173 0.9264 0.9355

Table 6.1: AUC for macro-average ROC w.r.t. bandwidth of trimap.

bandwidth 0 5 10 20

Unary 3.01 2.39 2.00 1.55
Submodpair 2.82 2.22 1.86 1.45

BPpair 12.03 9.66 8.14 6.34
MFpair 9.71 8.62 7.37 5.77

Submod2-layer 1.68 1.16 0.99 0.79
Submod2-layer-pair 1.62 1.14 0.97 0.78

Submod3-layer 1.57 1.11 0.95 0.77

Table 6.2: Pixel-wise KL divergence w.r.t bandwidth of trimap.

crease of KL divergence from Unary. As the marginals from BPpair and MFpair are
substantially more confident than those from other models, an marginal from BPpair
or MFpair with its peak in a wrong class will contribute larger KL divergence. Thus we
again observe degenerated performance of BPpair and MFpair comparing with Unary
in Table 6.2 and Figure 6.3.
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(a) Pixel-wise KL divergence between esti-
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mated and ground truth marginal of all models
based on log-supermodular inference solver.

Figure 6.3: Pixel-wise KL divergence w.r.t. bandwidth of trimaps.
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Method Pixel-wise accuracy running time(s)

Unary 83.71%± 1.81% –
Submodpair 83.92%± 1.81% 12.58

BPpair 83.91%± 1.81% 25.64
MFpair 83.83%± 1.82% 203.53

Submod2-layer 88.55%± 1.80% 12.53
Submod2-layer-pair 88.48%± 1.68% 20.10

Submod3-layer 88.61% ± 1.70% 15.86
CRFfully

1 88.2%± 0.7% 0.2
Robust-Pn2 86.5%± 1.0% 30

Table 6.3: Average Pixel-wise accuracy and average running times of the 93 sam-
ples. Note the error and running times of CRFfully and Robust-Pn are reported
by Krähenbühl & Koltun (2012) and not from experiments on our machines.

6.3 MAP inference evaluation

Pixel-wise accuracy and running time. In this section, we evaluate our ap-
proach as smoothed MAP inference on the finely annotated subset of MSRC-21. We
use smoothing strength ε = 1 for models using our log-supermodular inference en-
gine. In Table 6.3, we demonstrate the average accuracy with standard derivation in
5-fold cross-validation. Comparing with Unary model and all the grid pairwise ones,
models with more complex interactions achieves approximately 3% to 5% improve-
ment in pixel-wise accuracy. Among these complex models, Submod3-layer achieves
the best result of 88.61%. Robust-Pn is the only higher-order baseline whose un-
derlying max-flow engine is not easy to parallel. Submod2-layer, Submod2-layer-pair
and Submod3-layer, which are easy to parallel, uniformly achieves 2% improvements
over Robust-Pn. The running time of our inference approach is in the same magni-
tude with the one of Robust-Pn. However, our inference engine produces marginal
and MAP estimation simultaneously while Robust-Pn only generates MAP results.
CRFfully achieves achieves the second best results in a fraction of second. As filtering-
based inference engine CRFfully only deal with gaussian pairwise interaction while
log-supermodular engine supports higher-order models, the running time is not di-
rectly comparable. We can see that Submodpair, BPpair and MFpair achieves similar
accuracy over the same model. Submodpair naively assigns jobs to cores according
to the index ordering of pairwise interactions. It can be substantially accelerated with
a variant of greedy coloring in (Felzenszwalb & Huttenlocher, 2006), which assigns
pairwise interactions to multiple cores and avoid memory race-conditions in paral-
lelization. Note the running time of MFpair varies dramatically with the parameters of
pairwise interactions. For those parameters which produce good results, MFpair runs
approximately 10× slower than Submodpair and BPpair. In Figure 6.4, we demon-
strate pixel-wise error with respect to the bandwidth of trimap. we can see error
decreases when bandwidth increases and the error happens more frequently near se-
mantic boundaries. It indeed shows improvement from higher-order priors is stronger
when we evaluate over a trimap with smaller bandwidth.
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Figure 6.4: Pixel-wise error w.r.t. the bandwidth of trimap. Left: Comparison of all
the models. Right: Zoom in for models based on log-supermodular inference engine.

Efficiency-accuracy trade-off. To empirically verify our theoretical analysis on
efficiency-accuracy trade-off, we monitor inference process of Submod3-layer model
and do collective analysis over all of the 93 samples. As different samples produce
monitored value from different energy, we need to first normalize them before aver-
aging. For each single sample, we monitor its inference process with different ε. To
normalize the primal gap, we pick the largest primal gap in the union of monitoring
data of this sample for all ε. The picked largest gap is then rescaled to 1. In order
to normalize the value of the Lovász extension, we pick for each sample the largest
and smallest value of Lovász extension in the union of monitoring data. The largest
value is rescaled to 1 while the smallest value to 0. To get the discrete value, we
compute the dual value corresponding to the current primal point in Equation (5.6).
As discussed in Claim 6, the dual variable corresponds to a marginal probability. We
generate point estimation for every variable with the peak of this marginal probabil-
ity. We normalize the discrete objective value using the same procedure for Lovász
extension. The average curves are produced by averaging the individual normalized
curves. Corresponding to Claim 7, we reported the number of iterations needed for
the average primal gap curves to achieve a certain primal gap. Note we omit points if a
certain primal gap is not yet reached by a curve after 100 iterations. In Figure 6.5a, we
can observe the relationship roughly follows the shape of inverse function when ε is
relatively large. However, in Figure 6.5b, the relationship between ε and needed num-
ber of iterations fluctuates. Conventional Frank-Wolfe convergence rate analysis treat
the feasible set and objective function separately with the diameter of feasible set and
curvature parameter (Jaggi, 2013). When smoothing strength becomes smaller, the in-
teraction between objective and feasible set might contribute to curvature parameter.
We leave finer-grain analysis as future work. According to Theorem 1, the optimum
with smaller ε produces smaller Lovász extension value. As shown in Figures 6.5c
and 6.5d, for those ε producing well converged curves, smaller ε value produce curve
lower in their ending phase. Exceptions are ε = 0.001 and ε = 0.01. We believe
it is because for these two cases, Frank-Wolfe algorithm is still not close enough to
convergence. We also show discrete objective values along with the values of Lovász
extension. The variation of discrete objective curves with varying ε aligns with the
variation tendency of Lovász extension curves.
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(a) Number of iterations needed to achieve
certain primal gaps with different ε. Range
of ε is limited from 0 to 200 for clearness.
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(b) The same curves with Figure 6.5a but only
focus on very small ε values.
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(c) Lovász extension value (linear scale) w.r.t.
number of iterations for different ε.
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(d) Lovász extension value (logarithm scale)
w.r.t. number of iterations for different ε.
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(e) Discrete objective value (linear scale) w.r.t.
number of iterations for different ε.
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(f) Discrete objective value (logarithm scale)
w.r.t. number of iterations for different ε.

Figure 6.5: Experiment results on the efficiency-accuracy trade-off.
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Image Unary Submodpair Submod3-layer Groundtruth

Figure 6.6: Qualitative MAP results.

6.4 Qualitative results

We visualize Qualitative MAP estimation from model Submod3-layer along with re-
sults from pairwise model Submodpair in Figure 6.6. Pairwise models are able to
eliminating small noisy spots but can not smooth out relatively larger regions of noise.
E.g. in the second row, the region of noise at the root of tree keeps there even with
pairwise smoothing. On the contrary, these relatively larger regions can be eliminated
by our higher-order consistency priors. As the oversegmentation from mean-shift
usually preserves semantic boundaries in high quality, our higher-order priors is intu-
itively stronger than the local pairwise smoothing prior. Thus Submod3-layer can still
produce qualitative segmentation even the unary potentials does not align well with
object boundaries.

The entropy from marginal estimation of Submod3-layer as well as those from
baselines Submodpair and BPpair are visualized in Figure 6.8. Entropy value is lin-
early rescaled so that the largest possible entropy equals the strongest brightness of
a pixel. For Unary, high uncertainty with large entropy value typically lies at the
boundary of its MAP estimation. Pairwise model BPpair produces high uncertainty
only in a very narrow band around boundary. It is rather confident about regions other
than the narrow band, which aligns with our analysis on the low AUC value for BPpair.
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Image Unary MAP from Entropy from GT
Submod3-layer Submod3-layer

Figure 6.7: Hard examples with estimation results.

Image Entropy from Entropy from Entropy from Entropy from
Unary BPpair Submodpair Submod3-layer

Figure 6.8: Comparison of entropy from Unary, Submodpair and Submod3-layer.

However, Submodpair preserves uncertainty in a relatively wide band and eliminate
uncertainty in regions corresponding to noise in unary terms. The uncertainty pattern
of higher-order Submod3-layer comes in a different way. Homogeneous regions of
objects usually have similar uncertainty level on pixels within the regions, which may
even provide information about the existence of object or object parts.

Failure cases from Submod3-layer typically result from two reasons. The first
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is strong unary terms which bias MAP to a wrong class such as the first example
in Figure 6.7. The other reason is regions on different objects are grouped into a
single superpixel due to color similarity. E.g. in the second example, the upper part
of the plane and the neighboring sky are actually grouped into a single superpixel by
mean-shift. Both of the reasons tend to produce noisy regions in MAP estimation.
From the visualization, the upper part of plane can be visually separated as a region
with high entropy. It implies the entropy may help to identify regions corresponding
to objects or object parts even if MAP estimation fails on the region. One possible
application of this object part separation ability lies in active learning setting. For
example, machines may ask for label of these objects in crowd-sourcing.



7 Conclusion

In the thesis, we propose the log-supermodular model for multi-class probabilistic
modeling with higher-order interactions. Variational Marginal inference in our model
is formalized as a convex optimization problem over the base polytope. Associated
with the formulation, a Frank-Wolfe-based algorithm and a soft-move-making algo-
rithm are presented. Both of the algorithms are easily parallelized and highly efficient
when the energy comes in the form of sum-of-submodular functions.

In order to simutaneously address MAP inference, we extend our marginal infer-
ence formulation to a parametric one. The extended version act as smoothed approx-
imate MAP inference with a single parameter controling the smoothing strength. By
analyzing the relation among convergence rate, approximation error and smoothing
strength, we present an efficiency-accuracy trade-off in solving the smoothed MAP
problem.

We evaluate our higher-order modeling approach and inference algorithms with
semantic segmentation task over the MSRC-21 dataset. In comparison with multiple
pairwise and higher-order baselines, our log-supmodular model achieves state-of-the-
art performance in both marginal and MAP inference. We also present empirical
analysis on the efficiency-accuracy trade-off in addition to our theoretical proofs. We
believe our multi-class log-supermodular framework is one useful step towards statis-
tically modeling complex dependencies in real world problems.

Future work. On the theoretical aspect, we are very interested in discussing the re-
lationship between binary log-supermodular model in (Djolonga & Krause, 2014) and
the special case of our model in binary setting, i.e. when L = 2. As the exact MAP
configuration of binary log-supermodular model can be recovered by thresholding the
marginal, we are also eager to analyze whether we can derive exact MAP results from
our multi-class model when L = 2. If we can transform our model with L = 2 to
an equivalent binary log-supermodular model, our model may produce exact MAP
estimation with similar thresholding techniques. On the empirical aspect, the com-
parison between Frank-Wolfe-based algorithm and soft-move-making algorithm is an
interesting topic to explore. By analyzing the convergence speed and the accuracy of
outputs, we might be able to provide practical guidelines in choosing algorithms for
specific problems.
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A Appendix

A.1 Algorithm for non-smooth relaxed MAP inference

In order to adapt our algorithm based on Frank-Wolfe to the non-smooth MAP prob-
lem, we only need to replace the gradient with subgradient which is derived in Claim
8. We can pick any point in the subdifferential as the subgradient utilized in our algo-
rithm based on Frank-Wolfe.

Claim 8. The subdifferential of
∑
i∈I

max
j∈L

(−si,j) is a Cartesian product over multiple

convex hulls, more specifically

∂
∑
i∈I

max
j∈L

(−si,j) =
∏
i∈I

conv{−ei,j ∈ R|Vi| : j ∈Mi(si)} (A.1)

with j ∈ Mi(si) if and only if −si,j = maxk∈L(−si,k). ei,j is the indicator vector
with a single 1 in the entry corresponding to element vi,j .

Proof. For a function in the form of maxi fi(s), the subdifferential can be expressed
as

conv{∇fi(s)|i ∈M(s)}
with i ∈ M(s) if and only is fi(s) = maxj fj(s). In our case, the subdifferential
of each function component is ∂maxj∈L(−si,j) = conv{−ei,j |j ∈ Mi(si)}. As si
is independent on sj if i 6= j, the overall subdifferential is the Cartesian product of
component-wise subdifferential.

A.2 Proof of Claim 5

We first prove Lemma 1 to support the argument in proving Claim 5.

Lemma 1. gi(si) = max
j∈L

(−si,j) is the convex conjugate of the indicator funciton

I(−wi ∈ ∆i) where

∆i = {pi|
∑
j∈L

pi,j = 1, pi,j ≥ 0,∀i ∈ I, j ∈ L} (A.2)

Proof. Let I?(s) be the convex conjugate of I (−w ∈ ∆i), from the definition of
conjugate function, we have

I?(si) = max
wi∈R|Vi|

〈si, wi〉−I (−wi ∈ ∆i) = max
wi∈R|Vi|

〈−si, −wi〉−I (−wi ∈ ∆i) .

The maximum can only be achieved when −wi,j is non-negative and sums to 1 be-
cause otherwise function I goes to −∞. Assume k ∈ argmaxj∈L(−si,j), the maxi-
mum can be achieved by setting wi,k to 1 and other entries to 0, which gives I?(si) =
maxj∈L (−si,j).
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Claim 5. The continuous relaxation in Equation (5.4) is the Fenchel dual of

min
s∈B(F )

∑
i∈I

max
j∈L

(−si,j) (A.3)

Proof. We define g(s) =
∑

i∈I gi(si). As ∀i 6= j, gi(si) and gj(sj) are independent
of each other, the convex conjugate of g(s) is

g?(p) =
∑
i∈I

I(−pi ∈ ∆i) = I(−p ∈
∏
i∈I

∆i).

The problem in Equation (A.3) can be reformulated as unconstrained problem

min
s∈R

g(s)− h(s)

where h(s) = −I(s ∈ B(F )) is the indicator function of the base polytope. In addi-
tion, Lovasz extension f(p) is the conjugate of indicator function I (s ∈ B(F )) (Bach,
2010a)[Prop.8]. It implies the concave conjugate of h(s) = −I(s ∈ B(F )) is
h?(p) = −f(−p). Thus the Fenchel dual of the the problem in Equation (A.3) is

max
p∈R

h?(p)− g?(p)⇔ max
s∈R
−f(−p) + I

(
−p ∈

∏
i∈I

∆i

)
w=−p⇔ min

wi∈∆i

f(w)

.

A.3 Proof of Theorem 1

Let w?(ε) be the optimal solution of the program in Equation (5.5) with ε > 0, and
w?(0) is the optimal solution when ε = 0, i.e. the optimal solution for the non-smooth
relaxed MAP formulation. In order to prove Theorem 1, we first construct a resisting
oracle for the upper bound of f(w?(ε)) − f(w?(0)) with given ε, |I| and |L|. With
the oracle, we know there exists a submodular function such that

f(w?(ε))− f(w?(0)) =
1

2
ε|I| log (|L| − 1) .

Lemma 2. Given ε, |I| and |L|, we define modular function F (A) = s(A) : 2V → R
with s?i,1 = −ε log (|L| − 1) and s?i,j = 0, ∀j 6= 1. Then f(w?(ε)) − f(w?(0)) =
1
2ε|I| log (|L| − 1).

Proof. As submodular function F is modular, we know s? is the only feasible point
in B(F ). Thus it is also the optimum. According to Claim 6, we know strong duality
holds and the optimal dual variable in Equation (5.5) is

w?i,j(ε) =
exp(− s?i,1

ε )∑
k∈L

exp(− s?i,k
ε )

=

{
1
2 if j = 1

1
2|L|−2 otherwise

.

From the definition of Lovasz extension, we know f(w) = 〈s?, w〉 is a linear func-
tion for modular functions F . Thus f(w?(ε)) =

∑
i∈I s

?
i,1w

?
i,1(ε). As wi,j ≥ 0 and
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sum to 1, we can also derive f(w?(0)) =
∑

i∈I minj∈L si,j =
∑

i∈I si,1, which
gives

f(w?(ε))− f(w?(0))

=
∑
i∈I

s?i,1w
?
i,1(ε)−

∑
i∈I

s?i,1

=
1

2
ε|I| log (|L| − 1)

Theorem 1. Let w?(ε) be the optimal solution of the program in Equation (5.5) with
ε > 0, and w?(0) is the optimal solution when ε = 0, i.e., the optimal solution for the
non-smooth relaxed MAP formulation. For arbitrary submodular function F with its
Lovász extension being f(w), we have

f(w?(ε))− f(w?(0)) ≤ ε|I| log |L|.

And given ∀ε, I and L, we can construct a submodular function F̂ with its Lovász
extension as f̂(w) so that f̂(w?(ε))− f̂(w?(0)) = 1

2ε|I| log (|L|).

Proof. In the first step, we are to prove f(w?(ε)) − f(w?(0)) ≤ ε|I| log |L|. Under
the probabilistic simplex constraints, w?(0) ∈ argmin f(w) and w?(ε) ∈ argmin f(w)−
ε
∑

i∈I Hi(wi). We have

f(w?(0)) ≥f(w?(0))− ε
∑
i∈I

Hi(w
?
i (0))

≥f(w?(ε))− ε
∑
i∈I

Hi(w
?
i (ε))

≥f(w?(ε))− ε|I| log |L|

The last inequality is derived by maximizing entropy with uniform distribution, i.e.
maxwi∈∆i Hi(wi)=−∑j∈L

1
|L| log 1

|L| . It implies ε|I| log |L| is a valid upper bound
of f(w?(ε))− f(w?(0)) with given ε, |I| and |L|.

In Lemma 2, we construct a resisting oracle and prove that the exact value of
f(w?(ε))− f(w?(0)) is 1

2ε|I| log (|L| − 1), which proves the second statement.

A.4 Details in experiments

Pairwise interaction modeling. Let Ii and Ij be the color feature of pixel i and
j, we define λi,j = γ exp(θ||Ii − Ij ||2/2552) for modeling pairwise interaction with
the cut fucntion in Equation (3.1).

Higher-order consistency modeling. Let V be the ground set and concave
function h(x) = βxα. We model higher-order consistency with concave cardinality
function

g(A) = h(|V \A|)− h(|V |) = β|V \A|α − β|V |α.
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Parameter grid for grid searching. We use the parameter grid in Table A.1 for
grid search in cross-validation

Pairwise Higher-order

θ γ α β

(0.01, 0.1, 1, 10, 100) (0.1, 0.5, 1, 5) (0.8, 0.9) (25, 37.5, 50, 62.5, 75)

Table A.1: Parameter grid for cross-validation based on grid search.
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