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Abstract. In this paper we address the problem of autonomous navigation seen 
from the neuroscience and the robotics point of view. A new topological mapping 
system is presented. It combines local features (i.e. visual and distance cues) in a 
unique structure – the “fingerprint of a place” - that results in a consistent, compact 
and distinctive representation. Overall, the results suggest that a process of 
fingerprint matching can efficiently determine the orientation, the location within 
the environment, and the construction of the map, and may play a role in the 
emerging of spatial representations in the hippocampus 

1. Introduction 

In all our daily behaviors, the space we are living and moving in plays a crucial role. 
Many neurophysiologists dedicate their work to understand how our brain can create 
internal representations of the physical space. Both neurobiologists and robotics 
specialists are interested in understanding the animal behavior and their capacity to 
learn and to use their knowledge of the spatial representation in order to navigate. The 
ability of many animals to localize themselves and to find their way back home is 
linked to their mapping system. Most navigation approaches require learning and 
consequently need to memorize information. Stored information can be organized as 
cognitive maps – term introduced for the first time in [31]. Tolman’s model advocates 
that the animals (rats) don’t learn space as a sequence of movements; instead the 
animal’s spatial capabilities rest on the construction of maps, which represent the 
spatial relationships between features in the environment.  

Several methods, each with its advantages and drawbacks, have been proposed to 
construct maps in the framework of autonomous robot navigation, from precise 
geometric maps based on raw data or lines to purely topological maps using symbolic 
descriptions. To mention only a few papers in the vast SLAM (Simultaneous 
Localization and Mapping) literature, Leonard and Durrant-Whyte introduced for the 
first time the concept of SLAM as the construction of maps while the robot moves 
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through the environment and the localization with respect to the partially built maps 
[15]. Many works in space representations are based on metric maps. The stochastic 
map technique to perform SLAM [3, 7, 15] and the occupancy grids approaches [28] 
are typical examples belonging to this kind of space representation. More recent vision-
based metric approaches use SIFT features [24]. However, metric SLAM can become 
computationally very expensive for large environments. Thrun in [29] proposes 
probabilistic methods that make the metric mapping process faster and more robust. 
However, one of the main shortcomings of metric maps is that they are not easily 
extensible so as to be useable for higher level, symbolic reasoning. They contain no 
information about the objects and places within the environment. 

Topological approaches to SLAM attempt to overcome the drawbacks of 
geometric methods by modeling space using graphs. Significant progress has been 
made since the seminal papers by Kuipers [13, 14]; Kortenkamp and Weymouth in [12] 
have also used cognitive maps for topological navigation. They defined the concept of 
gateways which mark the transition between two adjacent places in the environment. 
Their work has been an amelioration of Mataric’s approach [17], contributing towards 
the reduction of the perceptual aliasing problem (i.e. observations at multiple locations 
are similar). They have used the data from sonars combined with vision information in 
order to achieve a rich sensory place-characterization. A model by Franz, Schölkopf 
and Mallot [8] was designed to explore open environments within a maze-like structure 
and to build graph-like representations. The model described in [5] represents the 
environment with the help of a Generalized Voronoi Graph (GVG) and localize the 
robot via a graph matching process. This approach has been extended to H-SLAM (i.e. 
Hierarchical SLAM) in [16], by combining the topological and feature-based mapping 
techniques. In [30], Tomatis et al. have conceived a hybrid representation, similar to 
the previously mentioned work, in which a global topological map with local metric 
maps associated to each node for precise navigation is described. Topological maps are 
less complex, permit more efficient planning than metric maps and they are easier to 
generate. Maintaining global consistency is also easier in topological maps compared to 
metric maps. However, topological maps suffer from perceptual aliasing (i.e. 
observations at multiple locations are similar) and the difficulty in automatically 
establish a minimal topology (nodes). 

Our method uses fingerprints of places to create a cognitive model of the 
environment. The fingerprint approach, by combining the information from all sensors 
available to the robot, reduces perceptual aliasing and improves the distinctiveness of 
places. The main objective of this work is to enable the navigation of an autonomous 
mobile robot in structured environments without relying on maps a priori learned and 
without using artificial landmarks. A new method for incremental and automatic 
topological mapping and global localization [26] using fingerprints of places is 
described. The mapping method presented in this paper uses fingerprints of places to 
create a cognitive model of the environment. The construction of a topological 
mapping system is combined with the localization technique, both relying on 
fingerprints of places. This fingerprint-based approach yields a consistent and 
distinctive representation of the environment and is extensible in that it permits spatial 
cognition beyond just pure navigation. 

 



2. Navigation Framework 

Navigation strategies are based on two complementary sources of information 
(available on the mobile agent: animal, robot): idiothetic and allothetic. The idiothetic 
source yields internal information about the mobile agent movements (e.g. speed, 
acceleration) and the allothetic source provides external information about the 
environment (e.g. the cues coming from the visual, odor, laser range finders, sonars, 
etc.). Idiothetic information provides a metric estimate of the agent’s motion,   
suffering from errors accumulation, which makes the position estimation unreliable at 
long-term. In contrast, the allothetic (sensory) data is stationary over the time, but is 
susceptible to perceptual aliasing (i.e. observations at multiple locations are similar) 
and requires non-trivial processing in order to extract spatial information.  

The map-based navigation needs map-learning and localization. Map-learning is 
the process of constructing a map representing the environment explored by the mobile 
agent and localization is the phenomenon of finding the mobile agent’s location 
(position) in the map. Localization and mapping are interdependent – to localize the 
robot, a map is necessary and to update a map the position of the mobile agent is 
needed. This is usually known as Simultaneous Localization and Mapping (SLAM) 
problem that is of a “chicken and egg“ nature. While navigating in the environment, the 
mobile agent first creates and then updates the map.  

3. Fingerprints of Places and Space Cognition 

The seminal discovery of place cells, by O’Keefe and Dostrovsky [20], in the rat 
hippocampus – cells whose firing pattern is dependent on the location of the animal in 
the environment – led to the idea that the hippocampus works as a cognitive map of 
space [21]. It was shown in [4] (for a review see e.g. [23]) that the lesion of the 
hippocampus impairs the performance of rodents in a wide variety of spatial tasks 
indicating a role of the hippocampus in map-based navigation.  

The framework for topological SLAM (Simultaneous Localization and Mapping) 
(see Figure 2) that we propose here organizes spatial maps in cognitive graphs, whose 
nodes correspond to fingerprints of places, and may be seen as a possible mechanism 
for the emergence of place cells. The computational model describes how a mobile 
agent can efficiently navigate in the environment, by using an internal spatial 
representation (similar to some extent to hippocampal place cells). This model builds a 
topological (qualitative) representation of the environment from the sequence of visited 
places. Many visual based systems for place fields based on metric information have 
been extensively discussed in literature (e.g. [10], [11] and [1] are just some of them).  

In this work, places in the environment are characterized by fingerprints of places. 
This characterization of the environment is especially interesting when used within a 
topological framework. In this case the distinctiveness of the observed location plays 
an important role for reliable localization and consistent mapping. A fingerprint of a 
place is a circular list of features, where the ordering of the set matches the relative  
ordering of the features around the robot. We denote the fingerprint sequence using a 
list of characters, where each character is the instance of a specific feature defining the 
signature of a place. In this work, we choose to extract color patches and vertical edges 
from visual information and corners (i.e. extremity of line-segments) from laser 
scanner. The letter ′v′ is used to characterize an edge, the letters ′A′,′B′,′C′,...,′P′ to 



represent hue bins and the letter ′c′ to characterize a corner feature (i.e. in this work, a 
corner feature is define as the extremity of a line-segment extracted with the Douglas-
Peucker algorithm). An ′empty space′ between features is also denoted by the character 
′n′ in the sequence, providing the angular distance between the features, which is some 
kind of very rough metric information. Figure 1 depicts how a fingerprint of a place is 
generated through an example. More details about the fingerprint approach can be 
found in [27].  

With our fingerprint based-approach, the allothetic sensors are used (e.g. this 
choice has been made because similarly the animals are using multimodal sensory 
information). The fingerprints of places are integrating the information from the 
omnidirectional camera and the laser range finder, characterizing different places and 
being used to map (model) the environment. The relative angular position of the local 
features is also enclosed in the fingerprint of a place. A fingerprint of a place is 
associated to each distinctive place within the environment and so the result given by 
the fingerprint matching algorithm is strongly correlated to the location of the mobile 
agent in the environment, giving high or the highest probability to the correct place 
associated to the fingerprint. The firing of place cells units can be seen as the 
manifestation of fingerprint matching.  The closer to the center of the place field the 
animal is, the higher the rate of neural firing.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1:  Fingerprint generation. (a) panoramic image with the vertical edges and color patches detected, 
denoted by ′v′ and ′A′…′P′, respectively ; (b) laser scan with extracted corners ′c′; (c) the first three images 
depict the position (0 to 360°) of the  colors (I-light blue, B- orange and E-light green), vertical edges and 
corners,  respectively. The forth image describes the correspondence between the vertical edge features and 
the corner features. By regrouping all these results together and by adding the empty space features, the final 
fingerprint is:  cIfvnvcvfnvvncvnncvBnvBccE 
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Similarly, the nearer the new observation of the robot (i.e. the new observed fingerprint 
of a place) will be with respect to the registered (learned) place (i.e. a known 
fingerprint of a place), the higher the probability of the mobile agent of being in an 
already explored place.  

One of the main issues in topological map building is to detect when a new node 
should be added in the map. Most of the existing approaches to topological mapping 
place nodes periodically in either space (displacement, Δd) or time (Δt) or alternatively 
attempt to detect important changes in the environment structure. Any of these methods 
cannot result in an optimal topology. In contrast, our approach is based directly on the 
differences in the perceived features. Instead of adding a new node in the map by 
following some fixed rules (e.g. distance, topology) that limit the approach to indoor or 
outdoor environments, our method introduces a new node into the map whenever an 
important change in the environment occurs. This is possible using the fingerprints of 
places. A heuristic is applied to compare whether a new location is similar to the last 
one that has been mapped. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: The spatial representation framework encodes the topological relationships between places, by 
comparing the actual observation (fingerprint of a place) of the mobile agent with the previously mapped 
places. 

 
The process of introducing a new node in the topological map is split into several 

sequences of steps as follows: 
1) Start with an initial node (i.e. fingerprint f0) 
2) Move and at each Δt (time) or Δd (distance), take a new scan with the laser 

scanner and a new image with the omnidirectional camera and generate the 
new fingerprint fi 

3) Calculate the probability of matching, prob_matching, between the 
fingerprints fi-1 and fi respectively. Compute the dissimilarity factor, 
dissimilarity. 
        prob_matching = P (fi ⎟ fi-1) 



dissimilarity(fi , fi-1) = 1- prob_matching 
4) If  dissimilarity(fi , fi-1) <θ then 

a. Add fingerprint fi to the current node nk 
b. Calculate the new mean fingerprint of the node nk 
Else 
a.  A new node nk+1 is inserted (added) in the map 
b. Add fingerprint fi to the node nk+1 

5) Repeat from step 2) 
In step 4), we defined a threshold θ as the maximum allowable dissimilarity  

(i.e. 1- prob_matching) between the fingerprints of places. The value of prob_matching 
is calculated with the "global alignment with uncertainty" algorithm [26]. This method 
is an extension of the global alignment algorithm (usually used for comparing D.N.A. 
sequences, introduced by Needleman and Wunsch [18]) that also includes the 
uncertainty of features. The value of the threshold is determined experimentally. The 
incremental nature of the approach permits incremental additions to the map and yields 
the most up-to-date map at any time. The basic process is depicted in Figure 3. A node 
is composed of several similar fingerprints that will be regrouped at the end in a mean 
fingerprint. By choosing a suitable threshold θ, the mean fingerprint enables clustering 
of places in nodes. In this way, the mean fingerprints are analogous with the 
hippocampal place fields. As soon as a new fingerprint is added to the current node nk 
the mean fingerprint is updated by constructing the new mean fingerprint between the 
previous mean fingerprint and the new introduced fingerprint. With the mean-
fingerprint, a unique identifier (i.e. a fingerprint of a place) for each node is computed 
enabling the construction of a very distinctive and compact representation of the 
environment. 

 

 

 

 

 

 
 

Figure 3: Adding a new node automatically to the topological map by moving in an unexplored environment. 
The image is composed of seven measurement points (i.e. fingerprints of places) represented by the black 
points. The blue points depict the data given by the laser range finder and they are used only for reference.  
The mapping system includes all the fingerprints of places in a node until a significant change in the 
environment occurs and the dissimilarity between the fingerprints is greater than the threshold θ. 

Closing the loop problem (i.e. the identification of a place previously visited, if the 
robot returned to it) is an important problem in SLAM. Thus, for topological maps, this 
means that if a place (i.e. a node) has been visited before, and the robot returns to it, the 
robot should detect it. Contrary to other methods used for solving this problem, based 
usually on the perception, in our case, loops are identified and closed with the help of 
the localization technique using POMDP (Partially Observable Markov Decision 
Processes). In order to accomplish consistency of the topological map, a method similar 
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to the one described in [30] is used. Our method for closing the loops with fingerprints 
of places is detailed and fully described in [27].  

Experiments were performed in a typically indoor environment (i.e. a portion of 
our institute building; see Figure 4). The resulting map is composed of 20 nodes. Each 
node is represented by a mean fingerprint which is a characterization of all the 
fingerprints composing the respective node. Nodes are automatically placed in 
locations where either a very salient landmark was present, or a door or another 
obstacle creates very different visual environments on its two sides (reflecting an 
intuitive notion of “place”). In fact, the doors of some rooms remained closed at the 
time of experimentation, and no node was placed in front of the respective rooms (see 
Figure 4). The representation obtained reproduces correctly the topological structure of 
the laboratory (see Figure 4). It is important to mention that the map is realized by 
using local features only, organized in fingerprints of places. The topological structure 
of the environment emerges in the map as a result of the computation, even though was 
not an input to the algorithm.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4:  Floor plan of the environment where the experiments have been conducted. The robot starts at the 
point S and ends at the point E. The trajectory length is 75 m. During this experiment, the robot collected 500 
data sets (i.e. images and scans) from the environment. The extracted topological map is superimposed on an 
architectural sketch of the environment. The second image shows the extracted topological map given by our 
method, superimposed on the raw scan map. 



The quality of the topological maps obtained with our fingerprint-based technique 
can be easily estimated by testing the localization on it. To test the localization, more 
than 1000 fingerprint samples, acquired while the robot was traveling a new path of 
250 m in the indoor environment shown above, were used to globally localize the 
robot. The results, obtained with the fingerprint matching algorithm (i.e. global 
alignment with uncertainty), have given a percentage of successful matches of 81%. 
However, false-classified nodes have delivered high probability (2nd or 3rd highest 
probability) and can be used with a POMDP (Partially Observable Markov Decision 
Processes). The POMDP localization improves the results obtained with the fingerprint 
matching approach. Adding the motion of the robot enables to decrease further the pose 
uncertainty to a level that could never be reached by fingerprint matching alone. A 
success rate of 100% was obtained for the tests performed in this work. More details 
about our indoor localization approach using POMDP and results can be found in [27].  
The closing the loop problem has also been tested. The robot succeeded all the times to 
close the loops. As explained earlier, due to the fact that the offices are quite small, the 
fingerprints of places are very similar, and thus a single node per room is enough. Since 
a node contains a posterior knowledge about its environment and is the aggregation of 
all the fingerprints of places between the last node and the current place where an 
important change into the environment occurred, closing the loop problem does not 
appear in these cases (i.e. when one node per office is sufficient). 

4. Hippocampal Place Cells as Fingerprints of Places? 

The method presented here can efficiently create representations of places in an 
environment and locate the robot/animat in the environment. The place cells in the 
hippocampus accomplish the same task: the activation of a place cell, or perhaps better, 
of an assembly of place cells connected to each other, indicates that the hippocampus is 
locating the animal in a certain place.  It can be suggested here that the hippocampus 
may indeed extract place from its sensory input by constructing fingerprints of places 
similar to that described in this work. Indeed, in environments rich in landmarks, or 
features, the hippocampal cognitive map is dominated by the sensory inputs (see e.g. 
[19], [9], [2]). Changing the relative position of landmarks can cause a complete 
change in place cells activity (“remapping”) so that a new set of place cells gets an 
assigned to a given place, just as it would be the case for our fingerprint algorithm [6].  
Many theoreticians have proposed models of place cells based on visual inputs, where 
the visual stream is encoded in metric terms, that is, in terms of the distances between 
the landmarks, and between each landmarks and the agent (e.g. [1], [10], [11]). 
Fingerprint representations are based on the relative angular position of the landmarks 
from a given point of view, a much simpler and robust measure, and may be able to 
explain many of the experimental evidences on place cells, at least those in which 
multiple landmarks were available to the animal. It is also to be remarked that some 
kind of metric information is contained in the fingerprint representation, through the 
“empty space” symbols in the fingerprint sequence, and that that information may 
allow the explanation of a larger class of experimental results.  

For the brain to perform the fingerprint matching, several building blocks are 
necessary: first, the identification of the landmarks, which may take place for example 
in the inferotemporal cortex, second, the determination of the relative position of 
multiple landmarks, which probably takes place in the parietal lobe ([6], [22]). The 



hippocampus may gather this information and produce a unitary representation (which 
would correspond to a fingerprint), presumably in terms of an attractor configuration of 
the CA3 module (which is very rich in recurrent synaptic connections and is thought to 
work as an attractor network module).  At the moment of localization, the current input 
may be fed into the attractor dynamics, and, if the fingerprint matches one of the 
previously stored ones, the corresponding attractor is recalled. In the case of a failed 
match, the attractor dynamics will not produce an attractor state, and this fact may be 
use to signal a novel situation, and trigger the plasticity processes that allow the storage 
of a new memory.  

This vision of hippocampal space representations highlights the role of the 
hippocampus as a processor of combinatorial information, whose importance 
transcends the purely spatial domain. In the case of space computation the 
hippocampus would process combinations of landmark identity and relative position 
information, and produce an index, which can be attached to a physical location.  It is 
important to remark here that in our scheme the place representation does not entail any 
notion of Euclidean space, contrarily to what hypothesized in [21] and in a number of 
more recent works (see review in [23]). 

In our view, the computation of place from sensory input (through a fingerprint-
like procedure), could be integrated in the hippocampus by the idiothetic information, 
which plays an important role especially in conditions in which only poor sensory input 
is available (for example, in the dark), and  to disambiguate situations of perceptual 
aliasing (see e.g. [25]). 

5. Conclusions 

Here, we tried to present our research framework, underlying the interest of mutual 
inspiration between robotics, biology and neurophysiology. Our computational model 
has some foundation in neurobiology, being similar with the hippocampus, which plays 
a crucial role in spatial representation. In order to validate our model experimentally, 
we have tested it with a real autonomous mobile robot. The mobile agent continuously 
interacted with the environment and thereby accumulated information about its space. 
Thus, an incremental and dynamic navigation framework was built, allowing the 
mobile agent to cope with unknown situations. The proposed spatial representation is 
an incrementally learned representation, based on fingerprints of places; the fingerprint 
place modeling being comparable with the place coding model in the animals (rats) 
hippocampus. 
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