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Summary

We studied the variation of soil properties on a six-ha artificial catchment constructed near Cottbus,
Germany, to investigate processes of initial ecosystem genesis. We wanted to see whether spatial
auto-correlation patterns could be identified three years after site construction. Topsoil was sampled
at 192 locations using a balanced nested design involving six spatial scales (0.2 m to >60 m) and
analysed for particle size, organic matter content, pH, soluble P, and various fractions of selected
metals. Variance components were estimated by residual maximum likelihood. The uncertainty of
variance estimates was characterized by the Fisher Information matrix and likelihood joint
confidence regions. The latter approach was used for the first time to characterize uncertainties of
variance estimates in spatial nested sampling. Likelihood ratio tests showed that all variables were
spatially auto-correlated, but the allocation of the variance to specific spatial scales was highly
uncertain. For most variables, at least one variance component could not be estimated precisely
because the profile likelihood was either flat or the maximum lay on the boundary of the parameter
space. Uncertainty estimates derived from the Fisher Information either could not be computed or
were unrealistic in these cases. Likelihood joint confidence regions gave more realistic uncertainty
estimates. Joint confidence regions for accumulated variance components showed that the shape of
the estimated variograms was poorly defined for most variables. Simulations indicated that poor
identification of variance components might be a general problem of nested sampling surveys, which
has been under-estimated in the past. Hence, our work provides some incentive for re-examining the
statistical properties of the methodology.

Introduction

Biotic and abiotic processes cause characteristic spatial (and temporal) patterns in terrestrial
ecosystems. Studying these processes is one way to learn about those dominating energy and matter
fluxes and interactions between organisms within an ecosystem. Soil scientists and ecologists have
long since recognized this, but “an explicit focus on understanding spatial heterogeneity — revealing
its myriad abiotic and biotic causes and its ecological consequences — emerged in the 1980s as
landscape ecology developed and spatial data and analysis methods became more widely available”
(Turnerl, |2005]).

One method to investigate spatial patterns is the analysis of variance of data collected in surveys in
which the sampled locations are spatially nested. In soil science this nested sampling approach was
popularized by Oliver & Webster (1986} [1987; see also [Webster & Oliver} 2007). Originally, the
variance components associated with each level of a nested design were estimated from the mean
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squares of analysis of variance tables. More recently, likelihood based estimation methods (Pinheiro
& Bates, [2000) gained acceptance (Webster et all |[2006]). Through these, the scope of nested
sampling could be considerably broadened (Lark, |2005; |Corstanje et al., 2007; [Lark & Corstanje,
2009), as the approach thus became incorporated in linear mixed modelling methodology (Pinheiro
& Bates|, [2000; [Jiang), [2007]).

We used nested sampling to elucidate the spatial scales of variation of chemical and physical soil
properties in a six-ha catchment that was artificially constructed in the Lusatian lignite mining
landscape near Cottbus, NE Germany. The over-arching hypothesis of the consortium of research
groups studying the development of this catchment was that “initial patterns define and shape the
development and later stages of an ecosystem” (Gerwin et al.| [2009). Spatial patterns are assumed
to evolve in the course of ecosystem development as the result of processes such as erosion,
formation of preferential drainage paths on the surface and within the soil, non-uniform chemical
weathering or uneven colonization by organisms.

In order to detect the formation of spatial patterns, a comprehensive characterization of the initial
state of the soil and of its variation across the catchment was a prerequisite. For this purpose, two
surveys were conducted: first after completion of construction a survey in which soil was sampled at
two depths (0 — 30 cm, 30 — 100 cm) on a 20-m x 20-m grid (Gerwin et al., 2009)), and in summer
2008 a nested sampling survey, in which only the topsoil (0 — 3 cm) was sampled. The second survey
was delayed for reasons not under our control. This is unfortunate, because water and wind erosion
have shaped the soil surface since autumn 2005 (Gerwin et al., [2009)) and plants quickly started to
colonize the catchment. Thus, the nested sampling survey did not capture the state of the ecosystem
at time zero, although still at a very early stage of its development.

Here, we report a detailed analysis of the data collected by the nested sampling campaign in 2008.
The survey had the following objectives: We wanted to explore whether selected physical and
chemical topsoil properties varied in a purely random way across the catchment or whether they
showed spatially structured variation (auto-correlation). In the latter case, we were interested to
estimate the scales of variation, i.e. the distances over which the measurements were spatially
dependent, and to compare the estimated scales with recorded patterns of the construction process.
We used maximum likelihood methods for estimating the variance components associated with the
levels of the nested design. In the course of the analyses, we discovered that rather often we could
determine the magnitude of the variance components with only unsatisfactory precision. Therefore,
we complemented the statistical analyses by performing simulations which suggested that the poor
precision of variance estimates might be a general problem of the nested sampling methodology.
Cole| (2009) remarked that uncertainties of variance component estimates have rarely been reported
in the ecological literature. Here, we investigate the uncertainty of variance component estimates
and the related identification problems for the first time in an application of nested sampling in soil
science. We are currently aware of only one study (Rawlins et al.l [2009) which has reported
standard errors of variance component estimates.

Material and methods

‘Chicken Creek’ catchment

The artificial catchment was constructed in 2004 — 2005 by the company Vattenfall Europe Mining
AG in collaboration with the Brandenburg University of Technology Cottbus as headwaters of a
stream named “Chicken Creek”. It is located SE of the city of Cottbus, NE Germany, in an area
where lignite is extracted by open-cast mining. Kendzia et al.|(2008) and |Gerwin et al.| (2009)
describe the site and the construction of the catchment. Here we summarize the aspects which are
important for our analysis.

The catchment was constructed from coarse-textured over-burden sediments (sand, sandy loam) of
the Pleistocene (terminal moraine of Wolstonian stage). This material was removed by bucket wheel
excavators from the outcrop side of the open-cast mine and delivered by conveyer belts to stackers
that deposited it on a clay layer that seals the catchment at its base. During this process the
material was deposited in form of slightly bent and elongated spoil heaps, looking from above like
rows of connected cones (Figure[l} inset A). The majority of these heaps were 20 — 50 m long and
2 — 5 m wide. At the points where the cantilever started to swing back the heaps became wider (up
to 10 m wide, Figure |1} inset B). The heaps were then levelled by pushing material from the ridges



into the voids between them (Figure (1} inset C). Thereafter the surface was further graded by pulling
rails over the terrain. No further amelioration (fertilizer addition, liming, erosion control) took place.
The material of the SW and NE parts of the catchment was not deposited at the same time (NE:
July 2004, SW: September 2004). Since its properties varied with the location from where it was
taken and since it was not stored and mixed, the SW and NE part of the catchment were not built
from exactly the same material. Some heterogeneity in the dumped substrate is visible in Figure
as differences in the grey shading. Since the completion of the construction works in September
2005, human interferences have been kept to a minimum. The catchment has an area of about 6 ha
and faces SE with a mean slope of about 3.5% along its main axis (Figure |2] left panel).

Nested sampling survey

A total of N = 192 locations for soil sampling were selected using a balanced nested design (Webster
& Oliver, |2007)). Available resources and the wish to minimize disturbances by soil sampling limited
the sample size.

At the first level of the nested classification, three pairs of clusters were purposively selected in the
SW and NE part of the catchment, each cluster consisting of 16 locations. Two pairs of clusters lay
in the upper part of the back slope area, two in its middle and two in the transition zone to the
steeper foot slope area (Figure [2] left panel). The distance between two clusters of a pair was 20 m.
This corresponds to the mesh width of the 2005/2006 grid survey (Gerwin et al., [2009).

The grouping of locations within each cluster is schematically depicted in Figure [2f (right panel):
There were two groups of eight locations (octuples), separated by a distance of 6 m, each consisting
in turn of two quadruples, spaced 2 m apart. The locations within quadruples were grouped into
doubles, 0.6 m away from each other. Finally, the two locations of a double were separated by 0.2 m.
This resulted in a total of 6 cluster pairs, 12 clusters, 24 octuples, 48 quadruples and 96 doubles.
The spatial arrangement of octuples, quadruples, doubles was the same within all clusters.

The observations of a response variable, Y ximn, collected by this design, can be represented by a
linear mixed-effects model (Pinheiro & Bates| 2000):

Yijkimn = X;ijlmn B+ P; + Cij + Oyji + Qijkt + Dijkim + €ijkimn, (1)

where T denotes transpose; Xij..n and B are p-vectors of covariates and regression coefficients
representing the fixed effects; €;;..,, is the residual error (n = 1,2); and the remaining terms denote
the nested random effects for cluster pairs (P;,i = 1,2, ..., 6; spatial scale >60 m), clusters

(Cij,7 =1,2; 20 m), octuples (O;;i, k = 1,2; 6 m), quadruples, (Qi;..;,{ = 1,2; 2 m), and doubles,
(Dij...m,m =1,2; 0.6 m). The random effects and the residual errors were assumed to be normally
distributed with zero mean and variances 02 4., (P;), 030m (Cij)s 0om (Oijk)s 05m (Qij..1)s 08.6m
(Dij...m) and 08 om (€i5..n). At a given level of the design, the random effects were further assumed
to be independent for different indices, independent of the random effects of other levels and of the
residual errors. The number of degrees of freedom (df) associated with the various levels of this
balanced nested design are listed in Table [1f (first row).

Three points are worth noting: firstly, Equation implies (see also Figure [2| right panel) that an
observation is modelled as the sum of the spatial trend, plus the random deviation of the mean of a
cluster pair from this trend, plus the random difference of the cluster and the cluster pair means,
etc. Secondly, the variance of the observations is:

Var [Yij. .n] = 05 om + 0b.6m + - -+ + 260m> (2)

by virtue of the independence of the random effects across different levels. Thirdly, the
auto-correlation between two observations is equal to the intraclass correlation (ratio of the sum of
variances of the ‘shared’ random effects to Var[Y;; .|, compare for example Pinheiro & Bates,
2000). As an example, the correlation of two observations within a given octuple, say Yjximn and
Yijktrmm, L # U, is equal to:

2 9 2
O6m T 020m T 0S60m

3 3 7 -

Ogom T 00.6m T -+ T 0360m

3)

Corr [Yijklmna )/ijkl/m’n’] =

Clearly, the correlation increases with an increasing number of ‘shared’ random effects. In spatial
sampling this means that (i) the auto-correlation increases with decreasing distance between two



sampled locations and that (ii) there is no spatial dependence if all variances except o2 ,,, vanish.
The semivariance, ¥(-), is usually preferred over the correlation or covariance to characterize
auto-correlation. In nested sampling, the semivariance of two observations is equal to the sum of the
variances of the ‘non-shared’ random effects (Mieschl [1975; [Webster & Oliver], [2007). Since the
average spacing between two locations within an octuple is equal to about two metres (Figure
right panel), we obtain for our example:

1
7(2 m) ~ ivar [Y;‘jklmn - Yijk:l'm’n’] = 0(2).2m + U%.Gm + U%m' (4)

Field work and laboratory analyses

The sampling points were located in the field by tape measure from the nodes of a 20-m x 20-m grid
of reference points that was set up at the outset of the project. Sampling took place in August 2008.
The two cores (height 3 cm, volume 40 cm?) collected at each location next to each other were
bulked and filled into plastic bags. In the laboratory the soil samples were dried for 48 hours at

40° C, plant fragments were manually removed, and the soil was passed through 2-mm sieves.

For the analysis of the particle size distribution, subsamples were pretreated with HoO5 at 80° C
overnight to destroy the organic matter. We did not dissolve carbonates by an acid pre-treatment.
The remaining mineral soil was dispersed in 6 ml of a 0.2% sodium-hexametaphosphate solution by
overhead shaking for two hours, followed by one minute exposure to low energy (15 kHz, 75 W)
ultrasonic vibration. The particle size distribution of the resulting suspension was analysed for the
size range 0.04 ym — 2 mm by using laser diffractometry (LS13320 instrument, Beckman Coulter
Inc., Brea CA, USA). The following particle size fractions were used in the statistical analyses: clay
(0.04 — 2 pm), silt (2 — 63 pm), sand (63 — 630 ym) and coarse sand (0.63 — 2 mm).

Soil pH was measured in a 1:2.5 water-to-soil suspension using a pH-electrode (SenTix41 electrode,
WTW Wissenschaftlich-Technische Werkstatten GmbH, Weilheim, Germany). The organic matter
content (OM) was determined as the weight loss after combustion at 430° C in a muffle furnace.
Oxalate extractable metal concentrations (Fe,, Mn,, Al,) were determined using the procedure of
Schwertmann| (1964)). Total Fe in oxides (Feq) was determined by a dithionite-citrate extraction
using the method of Mehra & Jackson| (1960). Soluble phosphorus (P..) was estimated from resin
extractable P (Saggar et al.,|1990). Phosphorus concentrations in solution were determined
photometrically according to [Van Veldhoven & Mannaerts| (1987)). The total concentrations of K,
Ca, Fe, Mn and Al in the soil samples were measured by XRF spectroscopy using a Spectro X-lab
2000 instrument (SPECTRO Analytical Instruments GmbH, Kleve, Germany). These measurements
are missing for four soil samples because a first analysis failed and we had not enough soil sample to
repeat this.

Statistical analyses

We used the software environment R (R Development Core Team, 2009)) with the add-on packages
‘robustbase’ (computation of robust summaries) and ‘nlme’ (linear mixed-effects modelling, [Pinheiro
& Bates, [2000)). For data exploration, we employed robust algorithms: robust standard deviations
were computed by the Qn-estimator (Rousseeuw & Crouxl, 1993). Using these as fixed dispersion
parameters, we estimated the means robustly using a Huber M-estimate (Maronna et al., [2000,

sec. 2.6.1) with the Huber constant k = 1.5.

The variance components were estimated by residual maximum likelihood (REML, also called
restricted maximum likelihood; |Pinheiro & Bates, 2000; [Webster et al.l [2006)). Models were fitted by
the R function Ime, which maximizes the residual log-likelihood unconstrainedly with respect to the
logarithms of the variance components (Pinheiro & Bates| 2000), and thus always returns positive
variance estimates, say 03 o1, 0¢.6ms - - -+ 0 gom- FOr comparison, we estimated the variance
components also by our own REML code that maximizes the residual log-likelihood unconstrainedly
with respect to the untransformed variances. The latter estimates, say o4 o, 04 6m» - - - 75i60m, may
become negative, which is permissible as long as the covariance matrix of the data remains positive
definite (Webster et al.l 2006]). Webster et al| argue that negative variance components arise in
spatial nested sampling “if there is some underlying regular feature in the landscape, such as ancient
ploughing patterns”.



Initially, we used terrain attributes (gradient, curvature, etc.) derived from a laser scan of the
ground surface of the catchment recorded in April 2009 (Figure [2| left panel) as fixed effect
covariates. However, none of the response variables showed any significant dependence on these
covariates. A factor for the SW and NE parts of the catchment was the only fixed effect covariate
that we eventually used. We fitted the model first to the untransformed response variables and
then to transforms of these. The transformations were selected on the basis of customary residual
diagnostic plots (Pinheiro & Bates, [2000). In more detail, we plotted the Pearson residuals against
predictions of doubles (ﬁij,.,m), quadruples (é)\ij,,,l), ..., cluster pairs (]Sl) to check the assumption
of homoscedastic €;;.. »,, and we used normal quantile-quantile plots to verify that random effects
and residual errors were approximately normally distributed. Transformation to natural logarithms
was found to be appropriate except for soil texture and OM that were transformed by arcsine (v/+).
As well as the ‘full’ model (cf. Equation [1)) we also fitted ‘reduced’ models by omitting some random
effects. In these cases, the number of groups was expanded accordingly at the next level of the nested
design. For example, if C;; was omitted, we used k£ = 1,2, 3, 4 instead of £ = 1,2 at the level of the
octuples O;. We fitted all 32 models with up to six levels of nested random effects and retained the
model that minimized the Akaike information criterion (AIC, Pinheiro & Bates| 2000, sec. 2.4).
Likelihood ratio tests (e.g. |Pinheiro & Bates| 2000; [Webster et al.l 2006; Lark & Corstanjel 2009)
were used to see whether the ‘best-fit reduced’ model fitted the data less well than the ‘full’ model.
We did not use adjusted versions of the likelihood ratio tests as suggested by |Stram & Lee| (1994)) for
testing the significance of variance components. Thus, our test results are conservative in the sense
that we have occasionally favoured the alternative (6 > 0) over the null hypothesis (02 = 0).
Confidence intervals for the estimated variance components were computed in two ways, firstly, we
used the asymptotic multivariate normal distribution of the REML estimates as a basis. To compute
confidence intervals from the output of Ime, |Pinheiro & Bates (2000) assume that

In 63 oy, - - -, 1In 520, follow an asymptotic Gaussian distribution. For our own REML code, we
adopted the same assumption for 62,,,...,026m- In either case, the covariance matrix of the
(logarithms of the) estimated variances was computed by inverting the observed Fisher Information
matrix J. The function Ime, as an example, computes the covariance matrix of In 525, ...,

In 52 4, by inverting J(In 63 o, - - ., In 52(,,), i-e., the negative Hessian of the residual
log-likelihood function with respect to In 08 o, .. .,In 024, and evaluated at 03 5, - -, 0260m- J
thus characterizes the curvature of the log-likelihood surface at its maximum

Linax = L(03 o - - -, 0260m), and it measures how strongly ‘peaked’ the surface is at the REML
estimate.

Secondly, we computed joint confidence regions for several variance components simultaneously on
the basis of the likelihood ratio test. To do so, we had to compute the residual profile log-likelihood
for model . The residual profile log-likelihood, say Lp(aizl,aé, .. ,U?q), of a set of ¢ variance

2

components, 02 , o2 i1

s Tigs oo afq, is obtained by maximizing the residual log-likelihood for given o

ol ., ofq with respect to the remaining variances, 0%, j ¢ (i1, . . .,iq). The likelihood ratio test
states that under the null hypothesis o7 = ¢, ..., a?q = ¢4, the difference:
2 _ 2 _
2[Limax — Lp(07, = c1,..., 05 = ¢q)]; (5)

follows a Xﬁ-distribution with ¢ df. Thus, ¢-tuples, U?l,. .. ,ofq, satisfying the inequality:

Q[Lmafop(O—ina-"aO—zzq)] < Xg(l 705)7 (6)
where x2(1 — a) is the (1 — a)-quantile of the x2-distribution, form a joint (1 — a)-confidence region
for 01‘21’ cee afq). Of course, in the case of equality, the g-tuples lie on the boundary of this region.
By accumulating the variances of g-tuples satisfying [6] starting with the variance component of the
smallest spatial scale and adding step-by-step the components of the next smallest scales, a joint
confidence region for the semivariances associated with the levels of the nested design, and thereby a
confidence region for an approximate variogram, is obtained.

We used Equation @ to compute univariate confidence intervals of the six variance components. In

more detail, we used bisecting to compute the roots of:

2[Limax — Lp(05)] = xi(1 — o), (7)



where j € (0.2m, ..., >60m) and 032- was constrained to be positive. For clay, Al, Ca and pH we also
computed 6-tuples on the boundary of the 6-dimensional joint confidence region of 02, . . ,aiﬁom.
To this end, we placed a grid into a hyper-rectangle in the 5-dimensional parameter space spanned
by 02 gms - -+ 0260m- The grid had 20 nodes in each direction, resulting in 205 = 3.2 - 10° nodes in
total. For each grid node (with fixed values for 6., ..., 0240m) We then computed the roots of:

Q[Lmax - LP(J%.QIU? 08.6m7 ce ’UEGOm)] - X%(l - a)’ (8)

with respect to o2 ,,,. The resulting 6-tuples lie on the boundary of the joint confidence region of
08 9ms - - - » 02 6om- Further details are given in the appendix.

We simulated data from the model in Equation to compare the precision of variance component
estimates obtained from balanced and various unbalanced nested designs. To simulate one
realization of the 32 values of one cluster pair (see Figure 2] right panel), we drew one random
number, p;, from the normal distribution A(0, aiﬁom). Then we drew two random numbers, ¢;1, ¢;2,
independently from N(0,03,,,), four numbers, 0;11, 012, 0421, 0i22, from N'(0,02,.), eight numbers,

G111, Gi112, Gi121, - - - 5 Gizze from N(0,03,,), 16 numbers, di1111, .. ., digzez from N(0, 03 ), and
finally 32 residual errors, €;11111, - - - , €i22222, from N (0, 0'(2)_2m). The 32 simulated observations,
Yill111l, - - - » Yi22220 were then obtained from:

Yijklmn = Pi + Cij + 04k + Qijkt + dijkim + €ijkimn- (9)

A simulated data set comprised 32 independently simulated cluster pairs, each consisting of 32
simulated values, yielding 1024 observations y;jkimn, ¢ = 1,2,...,32; j, k,l,m,n € (1,2) in a data
set. In practice, we simulated 1000 such data sets from the variance components estimated for Ca
(08 om = 0.0654, 53 ¢, = 0.0082, 53, = 0.0379, 53, = 0.0158, 53, = 0.0179, 524,,, = 0.0819). For
some designs, less than 32 cluster pairs were needed. In these instances, we selected the required
number of cluster pairs randomly from a data set. Furthermore, the unbalanced designs did not
include all 32 values of a cluster pair. Again, we selected the required observations randomly within
a cluster pair. We fitted the model with a fixed effect for the SW/NE contrast, although we did not
add any such effect in the simulations. The statistical properties of the estimated variance were
characterized by the bias:

BIAS — —— 3 62 — o? (10)
1000 = ! ’
and the root mean square error:
RMSE — || —— 1i?(a 22 (11)
1000 = ‘ ’

where 02 denotes an arbitrary variance component and &7 its estimate computed from the ith
simulated data set.

Results and discussion

Ezxploratory data analysis

Figure [3] shows the histograms of the observations for selected variables, along with kernel
probability density estimates, computed separately for the SW and NE parts of the catchment. The
histograms of some variables were either bimodal (OM, Fe,, Al) or platykurtic (sand, K, Fe, P..).
The density curves differed for most variables between the SW and NE parts of the catchment
(possible exceptions are pH and Mn). The substrate of the NE part had more sand and P, and less
clay, silt (not shown), OM, Fe and Al. The SW/NE differences in the sand and OM content agree
with results reported by |Gerwin et al.| (2009).

Figure [] displays the spatial distribution of the measurements for selected variables. The
geographical coordinates of the sampling points were rotated and shifted to allow for observing
individual values. The differences between the SW (clusters 22, 23) and NE parts (clusters x5, x6)
dominated the distributions patterns of clay, sand, OM, Fe, and, to a lesser extent, also those of Fe
and K. By contrast, there was no systematic trend in the measurements in the orthogonal direction



NW — SE along the slope of the catchment. Furthermore, there were no evident relationships
between the distribution patterns of the variables and topographical terrain attributes (not shown).
The patterns suggested that the observations were spatially auto-correlated across several levels of
the nested design, as the two measurements of a double very often were more similar to each other
than to the values of the second double of the quadruple (see Figure [2| for grouping of locations to
doubles, quadruples, etc.). Some of these doubles are marked in Figure 4| by dotted rectangles.
Similarly, it was quite common that the observations of quadruples within octuples (short-dashed
rectangles) and, less frequently, also of octuples within clusters (long-dashed rectangles) were more
alike. For some variables (Fe, Al, Mn), also clusters appeared more homogeneous than cluster pairs
(dot-dashed rectangles), suggesting that some of the variance components o2 g, to 03y, were
non-negligible.

Estimating the spatial scales of variation by REML

The REML fits confirmed that the means of the texture variables, of OM, Fe, and Al differed
significantly (P < 0.05) between the SW and NE parts of the catchment. For the other variables, the
apparent differences visible in Figures [3] and [4] were not statistically significant.

Figure [5| shows for a selection of variables the estimated contribution of the various levels of the
nested design (Figure 2| and Equation [1]) to the total variance. Both the individual and the
accumulated variance components (starting the summation from 2 , ) are shown for the estimates
computed by the function Ime (constrained to positive values). For comparison, we also show the
accumulated components for the unconstrained estimates 2.

For most variables, the variance of the residual errors (532 ,,,,) Was the largest variance component:
72 5, generally amounted to 1/3 to 1/2 of the total variance, except for sand and pH (3/4 and 1/10
of the total variance, respectively). As suspected, some variance components associated with the
larger spatial scales of the design were of the same order of magnitude as 63 ,,,. There seemed to be
three groups of variables with similar patterns of variation: for the textural variables, OM and Fe,,
only the variance components associated with the scales 0.6 m and 2 m contributed substantially to
the total variance in addition to 2 ,,,. For most of the total, dithionite and oxalate extractable
metal contents (some variables not shown) also 72, and/or 63, did not vanish. Finally, for pH, Ca
and Py, also the variance component o2, contributed noticeably to the total variance.

In many instances, the unconstrained and constrained estimates were identical. Negative variances
were occasionally estimated for the scales > 2 m, most often for >60 m, followed by 6 m. The
covariance matrices, computed from the unconstrained estimates, were always positive definite, and
the negative estimates were thus permissible. The unconstrained estimates fitted the data equally
well or slightly better than the constrained lme estimates, but the differences in the maximized
residual log-likelihood were small, except for the sand content. When negative variances were
estimated then the estimates differed also for the adjacent levels of the design as observed by
Webster et alf(2006). Nevertheless, the total variance of the observations hardly differed between
unconstrained and constrained estimates.

The moduli of the negative estimates were mostly small. Figure [] did not show any periodicity at
the scale of 6 m (octuples) in the patterns of variation of the respective variables (OM, Fe,, Al, Py).
Furthermore, the design had only four df for the scale >60 m (Table . Hence, we cannot safely
conclude that there were regular features in the spatial distributions, apart from the SW/NE
contrasts. Rather, we believe that the negative estimates signal zero contributions to the total
variance at the respective levels of the nested design.

The uncertainty of some variance estimates was very large, as indicated by the partly unbounded
confidence intervals, also shown in Figure[5] These confidence intervals were estimated from the
Fisher Information matrix J(In 62 5., 10 52 g - - -, 10 0260 ). For OM, Feq, Al and Mn, J was not
positive definite, i.e. the log-likelihood surface did not have a well-defined maximum, and the
covariance matrix of In 62 ,,, to In 524, could not be computed from

J(In 53 5., 0 53 6, - -, In 520,,)- For the other variables J was positive definite, but some diagonal
elements were very small, resulting in very large standard errors for the respective variance
components. When we estimated the unconstrained variance components, the Hessian

J(08 9ms 08 6ms - - - » 02 Gom) Was not positive definite for OM, K, Fe,, Al, Mn, Py, and for some of the
remaining variables (clay, silt, Feq), the standard errors of 62,,, 5y,and 624, Were again large.
This means that for all the variables except pH and Ca, the log-likelihood surface either did not have



a well-defined maximum or that the maximum occurred close to the boundary of the parameter
space.

Figure [0] illustrates this for the clay and the Al content. For clay, the profile log-likelihood surface
had a small peak at 02, ~ 1075 along the abscissa, but there was no well defined maximum along
the ordinate. For Al the maximum of the profile log-likelihood occurred very close to the origin. In
both cases, the likelihood confidence regions had only well-defined upper bounds. The lower bounds
coincided with the boundaries of the (constrained) parameter space. The weakly curved, straight
shape of the contour lines implies that a (weighted) sum of the two variance components fitted the
data roughly equally well. Thus, the data contained enough information to estimate the sum of the
variances, but the information was insufficient to apportion it unambiguously to the two spatial
scales.

To further explore the uncertainty of the variance estimates, we approximated 95% joint confidence
regions for 63 5, - .., 02g0m numerically. This is computationally quite demanding, and we did it
therefore only for the Al and clay content, as these variables had posed identification problems, and
for Ca and pH, which had well-defined peaks in their log-likelihood surfaces. Using a 20° grid to
span the parameter space of the variance components 03¢, ..., aiﬁom, we found between 593 847
(clay) and 1077864 (pH) 6-tuples on the boundary of the respective joint confidence regions. We
accumulated the variances for all the 6-tuples, starting again with o3, and progressing with o3 g,
etc., and computed for each level of the design the minimum and maximum of the accumulated
variances. These extremes approximate a joint confidence region for the semivariances associated
with the spatial scales of the nested design. The confidence regions are shown by the grey areas in
Figure [/l Each panel shows, apart from the accumulated variance components of the constrained
REML estimate (black curve), the accumulated components for six 6-tuples that ‘touched’ the upper
bound of the confidence region at the six spatial scales (grey curves). We can see considerable
variation in the shape of these curves. For the Al and clay content, a curve with a dominant nugget
effect and curves implying an increase of the semivariance up to 0.6 m, 2 m, 6 m, 20 m or even over
all the considered scales all lay within the confidence region and were thus compatible with the data
at a 5% significance level. For pH and Ca, the shape of the curves varied less, especially at the short
scales. Most curves suggested an increase of the semivariance up to >60 m. For all four variables,
the width of the confidence regions increased with increasing spatial scale, in particular for pH and
Ca. For these variables, the width spanned more than an order of magnitude at the scale >60 m,
illustrating the large uncertainty of the estimated semivariance. However, unlike the confidence
intervals derived from the asymptotic Gaussian distribution assumed for In 53 ., . .., In 52, the
confidence regions were always bounded, even when some variance components could not be
identified well (Al, clay).

As a means of mitigating ill-determined estimates, we fitted ‘reduced’ models (selected by AIC) that
contained only a subset of the random effects of the full model . Table [2[lists the estimated
variances, along with likelihood confidence intervals. For four variables, the confidence intervals are
also shown in Figure [§] along with intervals computed from the Fisher Information of constrained
and unconstrained estimates.

In general, the variances fitted for the ‘reduced’ models matched the respective estimates of the ‘full’
models fairly well. Likelihood ratio tests showed that the ‘reduced’ models fitted the data as well as
the ‘full’ models and that they fitted the data significantly better than models with just the residual
errors. Thus, all the variables, except the coarse sand content, were spatially auto-correlated, some
even strongly.

For 02 5., the three types of confidence intervals matched quite well, but for the other variance
components, there were some discrepancies: Intervals derived from J(6Z 5., .. 02 gom) Were
consistently the shortest, had the smallest lower and upper bounds, and were symmetrical about the
REML estimates. The likelihood confidence intervals and intervals computed from

J(In 53,5, ..., In524,,) were asymmetrical and, except for 03, (pH) and 024, (Ca), had similar
width.

Precision of variance components estimated from balanced und unbalanced nested designs

Figures [5| and 7] suggest that in particular the variance components associated with the larger spatial
scales were hard to estimate. Balanced designs always have a much smaller number of degrees of
freedom at the larger than at the smaller spatial scales. |Oliver & Webster| (1986) and later [Khattree



et al|(1997) remarked that this imbalance in the allocation of df either leads to unnecessary
precision at the shorter spatial scales or to unreliable estimates at the larger scales, and therefore
recommended unbalanced designs for variance component estimation. These designs allocate the
degrees of freedom more evenly over all levels.

In order to see how much improvement might have been possible by using an unbalanced nested
designs, we performed simulations in which we compared the balanced design of the survey

(Figure |§|, left panel) with three unbalanced staggered designs (Webster & Boag] [1992; Pettitt &
McBratney|, (1993; Khattree et al., [1997). The first unbalanced design was staggered within cluster
pairs (Figure @ left panel) and involved only six observations per cluster pair. The second was
staggered within octuples and had 16 observations per pair (solid black and dashed lines in

Figure @7 and the last unbalanced design was staggered within quadruples with 24 observations per
pair. For all designs, the sample size was 192, we used 32 (staggered within cluster pairs), 12
(staggered within octuples), eight (staggered within quadruples) and six (balanced) cluster pairs,
respectively, to get the right sample size. Table [[] lists the degrees of freedoms associated with the
six spatial scales in the four designs. The staggered-within-pairs design evenly distributed 32 df
across all scales. The staggered-within-octuples had 48 df at the three shortest scales and still 10 df
for >60 m. The staggered-within-quadruples design assigned the df more unevenly, only the
distances 0.2 m and 0.6 m had the same df (64). Finally, the balanced design allocated many more
df to the short than to the large distances. Since we estimated two fixed effects, just 4 df remained
for the scale >60 m in the balanced design.

As set out above, we simulated 1000 data sets, estimated the variance components for each design
and data set by REML, and characterized the statistical properties of the estimates by bias and root
mean square error. The bias was always quite small: BIAS? /RMSE2 was at most 8% and often
smaller (0 — 2%). Thus, the REML estimators were (practically) unbiased for all the designs, but
they differed in their RMSEs (Figure [J] right panel). As to be expected, the variance components of
the two smallest scales (02 5,,, 02 1) Were most precisely estimated by the balanced design, while
the most precise estimates of aimm (largest scale) were obtained with the staggered-within-pairs
design. The RMSE of 02, was more than twice as large for the balanced than for the
staggered-within-pairs design. Conversely, the staggered-within-pairs design ranked last for o2, to
o2,.- The two other staggered designs, which were less strongly unbalanced, were best at the
intermediate scales (02 o, to 02,,), with staggered-within-quadruples better at the short (o2 5, to
02.,) and staggered-within-octuples at the two largest scales (03, 02gom)- If We compare the
RMSEs with the magnitude of the variances used for simulating the data (the latter are shown by
horizontal lines in Figure @ the relative precision of the variance estimates, as expressed by
RMSE/o?, deteriorated with decreasing o2. Irrespective of the design, the worst relative precision
was found for 02, 02, and 03,,,. This shows that it is more difficult to estimate a small than a
large variance component with the same relative precision.

The reversed ranking of the designs with respect to RMSE agreed only for o3 5, and JiGOm with the
allocated degrees of freedom (Table [1)). For the other variance components, this was not the case. In
particular, the staggered-within-pairs design gave the largest RMSE for 02 and 03, although its
df were largest there. Thus, one cannot infer the precision of variance estimates at a given level of a
nested design solely from the degrees of freedom allocated to this particular level. We suspect that
the magnitude of the variances associated with the various levels of the design might have some
influence.

As a further way to compare the merits of the designs, we counted the number of simulated data
sets for which the moduli of the diagonal elements of J(In 53 5, - - - ,

In 52 4y,,) Were < 1074, The log-likelihood surface was then flat with respect to

Ing2,,,...,In 8%60“1. This happened in particular when the maximum of the likelihood lay very
close to the boundary of the parameter space. Table [3|lists the number of times this occurred for the
various variance components. Irrespective of the design, o2 5, was always unambiguously estimated.
The balanced design was best for estimating o3 ., and 03,,, but worst for the other components,
especially for 02, and 02,,. The staggered-within-pairs design was best for o2, but worst for
o3, The staggered-within-octuples design was best for 02, and ¢3,,, and worst for o3 ¢,,, but
performed quite well at the other scales. On average, this design was best. The
staggered-within-quadruples design did not perform much better than the balanced design which
produced on average the largest number of ill-determined estimates. The largest percentages of
ill-determined estimates were found for the small variance components (03 4.1, Tan, T50m), Which is



in agreement with their large relative RMSEs.

On the whole, taking both the RMSE and the tendency to yield ill-determined estimates as criteria,
the staggered-within-octuples design performed best. This suggests that neither a completely
balanced, nor a very strongly unbalanced design may be optimal. This result contrasts the practice
of nested sampling in soil science where either balanced or very strongly unbalanced designs seem to
have been favoured (see examples in Webster et al., [2006} [Lark, 2005; |Corstanje et al., [2007; Lark &
Corstanjel, 2009)). However, the evidence presented here relates to just one simulation scenario, and
more work is required before wider generalizations can be made.

Relevance of the results for the ‘Chicken Creek’ ecosystem research project

All response variables, except for the coarse sand content, were, apart from a possible SW/NE
contrast, spatially auto-correlated. For coarse sand, 03, was by far the largest variance
component, and the other variances were jointly not significantly different from zero (p = 0.04). But
for all the other variables, likelihood ratio tests clearly refuted models that pre-supposed spatial
independence and assumed that all variance components except 03 5., were equal to zero. However,
it was not possible to say which components were actually non-vanishing. Soil pH and Ca were the
only variables for which we could estimate all variance components with reasonable precision. Even
for these variables, the uncertainty of the estimated semivariances remained considerable (Figure [7)).
For the other variables, the log-likelihood did not show a well-defined maximum with respect to the
logarithm of the variance components. Thus, the 192 available observations in general lacked the
necessary information to apportion the total variance to the various spatial scales. We therefore
cannot soundly relate the results of our analysis to the spatial information that we have about the
construction of the ‘Chicken Creek’ catchment.

Our simulations indicate that somewhat more reliable estimates could have been obtained, had we
used a staggered unbalanced design, but very likely, the gain would have been limited. Thus, a
marked improvement could have been achieved only by increasing the sample size substantially. To
see what sample size would be required, we ran the simulations with larger data sets and estimated
the variance components with the balanced and staggered-within-octuples design from 512 and and
1024 observations, respectively. The average percentage of simulated data sets with ill-determined
estimates decreased to 3.9% (1.3%) for the balanced and 3.3% (1.8%) for the staggered design for
estimates computed from 512 (1024) observations. Thus, it appears that far more observations
would have been required to estimate the spatial variance components reliably. The sample size and
the number of levels of our survey are not unusual in comparison to other nested sampling studies
published in the literature. As examples, for a design with five levels |Oliver & Webster| (1987 used
108 observations, and Webster & Boag| (1992) chose 107 and (Oliver & Badr, |1995|) 105 observations
for seven levels. |Cole| (2009) was dissatisfied with the precision of variance component estimates
obtained by a staggered design and pointed out that confidence intervals of variance components
were rarely reported in ecological studies. This might explain why the apparently poor precision of
variance component estimates in nested sampling surveys have passed largely unnoticed so far.

Our results suggest that the development of the ecosystem in the ‘Chicken Creek’ catchment did not
start from a horizontally unstructured soil. For most variables, we found substantial spatial
variation, the coefficient of variations ranged from about 15% for the sand to more than 70% for the
Ca content, and strong auto-correlation three years after the construction of the catchment. While
the spatial distribution patterns of some soil characteristics may have changed during the first three
years after construction of the catchment, for example the organic matter content, soluble P, etc.,
substantial change in spatial patterns is rather unlikely for others, (such as total metal contents). It
is therefore likely that the spatial structures are primarily related to the initial heterogeneity
resulting from the construction process.

Conclusions

Our study shows how standard likelihood inference tools (Fisher Information, profile likelihood,
likelihood confidence regions) can be used to assess and estimate the uncertainty of spatial variance
components in nested sampling. To our knowledge, this has not been done before in an application
of nested sampling in soil science.

This is rather surprising, because our case study shows that it may be difficult or even impossible to
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identify variance components with acceptable precision. We showed that the joint confidence regions
for the semivariances associated with the levels of the nested design were wide and did not allow us
to identify unambiguously the spatial scales over which the observations were correlated. This is
unfortunate because we wanted to characterize the scales of spatial variation of soil properties at the
onset, of ecosystem development in the artificially created ‘Chicken Creek’ catchment, and we hoped
that our study would provide a sound basis for detecting changes in the auto-correlation patterns
later on. Compared with other nested sampling studies, the sample size (192) and the number of
nested levels (six) of our survey were not untypical. Using an unbalanced survey design would have
provided somewhat more precise estimates of variance components at the larger scales, but estimates
with acceptable precision would have required a much larger sample size. We suspect that the
difficulties that we encountered are a general problem of nested sampling. Thus, we see a need for a
comprehensive assessment of the merits and disadvantages of the nested sampling methodology. The
following questions should be addressed:

i) What sample size is required to estimate a given number of nested variance components with
sufficient precision?

ii) What degree of imbalance of a design is optimal?

iii) Does the choice of an optimal design depend on the number of levels and on the relative size of
the variances associated with the various levels?

iv) How well do confidence intervals derived from the asymptotic normal distribution of the
REML estimates characterize the estimation uncertainty? Should likelihood-based confidence
regions be preferred?

The methods proposed here may provide a basis to tackle some of these questions.
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Appendix

To compute a joint confidence region for a set of ¢ variance components we chose ¢’ = g — 1 variance
components, say Ufk, k=1,2,...,¢, and placed a grid into a hyper-rectangle in the ¢’-dimensional
parameter space spanned by the J?k. For each Ufk, k=1,2,...,¢, the values of the grid nodes were
bounded by the roots of:

2[Linax — Lp(07,)] = x3(1 — ). (A1)

ik
Occasionally, the above equation had no lower root. When this happened we set the lower bound of
o7 too? /10™ with m > 3 (the value of m depended on OL, /807 ). The nodes of the grid were
equally spaced between these bounds on the scale of the standard deviations. Next we checked
whether the inequality:
2[Linax — Lp(07,, -, 07 )] < xg(1 = @) (A2)
held. If this was not the case then we moved to the next node, because any g¢-tuple, irrespective of
the chosen value for the gth variance component, say 03, lies then outside of the joint confidence
region. If the inequality of Equation was satisfied then we computed for the values 01»21 R, afq, of
the current node the roots of:
2[Lmax — Lyp(02507,....07 )] = xe(1 - a) (A3)

IR TR 3
q 11 Lgt

with respect to O'g. The resulting g-tuples 037 0?1, ...,02  lie on the boundary of the joint confidence
q
region. We implemented this algorithm in an R function, which is available upon request from the

corresponding author.
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Figure |1} Areal view of the artificial catchment ‘Chicken Creek’ during construction in April 2005.
The points mark locations chosen in 2008 for nested sampling (position of quadruples). The solid
line is the final boundary of the catchment. The insets show enlarged views of sections A, B and C
(mesh width of insets: 5 m). Source: Vattenfall Europe Mining AG.

Figure[2% Position of the 12 clusters of sampled locations in ‘Chicken Creek’ catchment (left) and
schematic view of the arrangement of the 16 locations within a cluster (right). The grey level in the
left panel codes the elevation, measured in April 2009 by means of a laser scan. The shaded
rectangles of the right panel illustrate the grouping of locations to clusters (C;;), octuples (O;jx),
quadruples (Q;;...;), and doubles (D;;. ). Source of elevation data: Vattenfall Mining Europe AG.

Figure[3} Histograms of selected variables and probability density estimates of observations collected
in the SW (dashed) and NE (solid line) parts of the catchment. The density estimates were
multiplied by 0.5 so that the areas under both curves sum to one.

Figure[f} Spatial distribution of the measurements, ¢, of selected variables within the 12 clusters
(D2 — N6) of the nested sampling design (disc area o (¢ — min(c))/(max(c) — min(c)), coordinates of
sampled locations rotated and shifted).

Figure @ Variance components estimated by R function Ime (e, estimates constrained to be
positive) with approximate 95% confidence intervals (vertical grey lines), plotted against the spatial
scales of the nested design. The accumulated variance components are shown by the black solid lines
(Ime estimates) and the dashed grey lines (unconstrained estimates). The maximized residual
log-likelihood of the constrained and unconstrained estimates are listed in the top right hand part of
each panel (the upper number refers to the constrained, the lower to the unconstrained estimates).
For some variables, the confidence intervals could not be computed (see text for an explanation).

Figure [ Contour plots of the profile log-likelihood as a function of two variance components, for
the total Al and clay content (¢ REML estimate; thick grey line: upper bound of joint 95%
confidence region).

Figure EF Approximate 95% log-likelihood confidence regions for the accumulated variance
components (semivariances) plotted against the spatial scales of the nested design for four variables.
The solid black lines are the REML estimates, shown also in Figure [5 the grey lines show
semivariance curves that hit the upper bounds of the confidence regions at the six spatial scales. For
Al clay a curve with a dominant nugget effect (solid grey line) and curves implying an increase of
the semivariance up to 0.6 m (short-dashed), 2 m (dotted), 6 m (dot-dashed), 20 m (long-dashed) or
even over all the considered scales (dot-dot-dashed) all lay within the confidence region.

Figure @ 95% confidence intervals for the variance components of the ‘reduced’ models computed
from the Fisher Information matrices of the unconstrained (grey lines with black dots), the
constrained estimates (grey lines) and based on likelihood ratio tests (black lines; ¢ REML
estimates).

Figure @ Schematic representation of the (un-)balanced nested sampling designs for a cluster pair
(left) used in the simulations to assess the precision of variance component estimates (grey lines:
balanced design; solid black lines: staggered-within-pairs design; solid black and dashed black lines:
staggered-within-octuples design; solid black, dashed and dotted lines: staggered-within-quadruples
design) and root mean square errors of variance component estimates (right; horizontal lines:
variances used to simulate the random effects).
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Table 1: Number of degrees of freedom at the various levels of the nested designs used in the
simulations to assess the precision of variance component estimates (a further two degrees of freedom
were associated with the fixed effects).

DeSign 0(2)42111 0(2).6111 a%m Ugm 0%01!1 02>60m
Balanced 96 48 24 12 6 4
Staggered within quadruples 64 64 32 16 8 6
Staggered within octuples 48 48 48 24 12 10

Staggered within cluster pairs 32 32 32 32 32 30
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Table 3: Percentage of simulated data sets for which the diagonal elements of the Fisher Information

were very small (average: mean percentage for o3 .. t0 02 40)-

Design 08 om Ob6m Oam  Oém  Ohom OZgom Average
Balanced 0 109 0.0 219 231 7.9 12.8
Staggered within quadruples 0 155 0.2 19.0 23.2 2.5 12.1
Staggered within octuples 0 16.8 1.0 144 184 0.7 10.3
Staggered within cluster pairs 0 16.6 2.7 174 193 0.2 11.2
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