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Abstract

This thesis investigates the performances of various estimators in one-phase (purely
terrestrial) two-stage forest inventories, where trees in the first-stage are selected by
concentric circles (approximate PPS) and a subset thereof are selected by Poisson
sampling for further measurements to get an accurate estimation of the timber
volume. Poisson sampling is used because it is easy to implement in field work.
However, this comes with the drawback of a random second-stage sample size that
can drive up the variance. The widely accepted remedy in analogous situations in
survey sampling is to add a stabilizing factor to the estimator that compensates for
this randomness and presumably lowers the variance. In this paper the effectiveness
of three formulations of such stabilizing factors are examined in the context of
timber density estimation. These factors are applied to the residual component of
a generalized two-stage density estimator and tested using data from the 3rd Swiss
National Forest Inventory taken in 2003. These factors introduce a negligible bias.
Contrary to empirical findings in general survey sampling and asymptotic results,
the adjusted estimators did not perform really better than the original unadjusted
two-stage estimator.
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Chapter 1

Introduction

In many applications costs to measure the response variable Y; are high. For in-
stance, in forest inventory a good determination of the volume may require that
one records the diameter at breast height, DBH (1.3m above ground), as well as
the diameter at 7m above ground (D7) and total height (H) in order to utilize a
three-way yield table. However, one could rely on a coarser, but cheaper, approx-
imation of the volume based only on DBH. Nonetheless, it may be most sensible
to assess those three parameters only on a sub-sample of trees. We now formalize
this simple idea.

For each point x € so trees are drawn with probabilities ;. The set of selected
trees is denoted by so(x). From each of the selected trees i € so(x) one gets an
approximation Y; of the exact value Y;. From the finite set sa(x) one draws a sub-
sample s3(x) C sa2(x) of trees. For each tree i € s3(x) one then measures the exact
variable Y;. Let us now define the second stage indicator variable

B 1if i € s3(x)
Jile) = { 0if i & s3(z) (L)

In our context, the sub-index 1 refers to the first phase in which one collects the
auxiliary information in the large sample s; (this will not be discussed here). The
sub-index 2 refers to the second phase, when one gathers the terrestrial information
from first-stage trees. Finally, the sub-index 3 refers to the sampling procedure
of the second-stage trees out of the first-stage trees. We shall use the notation
E23(.),Va3(.), Egp2(.), V3j2(.) for the overall expectation and variance under the
random selections (2, 3), as well as for the conditional expectation and variance of
the second stage procedure, given the second-phase and first-stage selections. We
recall that we can calculate the expected value and variance of an arbitrary random
variable Z depending on a random selection (2, 3) with

E23(Z) = Ea(Es2(2))
Vos(Z) = Ea(Vs2(2)) +Va (Eg2(2)) (1.2)

Hence, because I;(x)J;(x) = J;(z), we arrive at

Eo3(Ji(x)) = EoEgo(Ji(z)li(x))
= Eoli(2)E32(Ji(2)|L;())
= P(Ji(x) =1|Li(z) = YPI;(z) = 1) :== pim; (1.3)
™ = % are the first-stage inclusion probabilities such that A(K; N F') is the

inclusion area of the i-th tree, possibly adjusted for boundary effects ( A(G) denotes



the surface area of any subset G in the plane). The second-stage conditional
inclusion probabilities are p; = P(J;(z) = 1|I;(z) = 1).

We assume that trees in so(z) are sampled independently of each other,
so that p;; = P(J;(x)Jj(x) = 1|I;(z)I;(z) = 1) = p;p;. Thus, we have Poisson
sampling at the second stage. The advantage of this proposed scheme is that a field
crew can collect the required information on first-stage trees one by one, then enter
these data in a portable computer. Using a software generating appropriate random
numbers, the crew can then determine immediately whether further measurements
will be taken. Of course, other schemes are possible, but these are not necessarily
better nor as easily implemented because one needs a list of all first-stage trees at
point z and, possibly, at others too.



Chapter 2

Point estimates

To construct better point estimates, we must use the residuals R; = Y; — }7} which
are known only for trees i € s3(x). The true local density corresponds formally
to exhaustive second stage sampling, i.e. p; = 1, and is given by

Y () = - 3 LY (2.1)

Note that ﬁ is the tree extrapolation factor f; with dimension h—la

The local density based solely on the approximation Y; is defined as

L
Yo(r) = —= 3 L) (2.2

N
Rlz) = — Z L) Rs (2.3)

which plays a purely theoretical role because it is not directly observable (though
it can be estimated).
We shall consider three procedures to estimate R(z)

N

Zi]\il I;(x)p;
SNy L) Ji(x)

i=1 pi

RQ(I) = R1 (ZZ?)

R3($) = R1 ({E)

and the corresponding adjusted estimates at point « for k =1,2,3
Yi(z) = Yo(z) + Re(x) (2.5)

Yi(x) is the generalized local density introduced by D. Mandallaz (2008). The
other two estimates are adapted from suggestions of Grosenbaugh (see e.g. H.T
Schreuder et al. 1968) and Sarndal et al. (2003) in the context of one-stage sam-
pling. It is understood that the residual terms Ry (z) are set to zero whenever



na(z) = > Ii(z)J;(xz) = 0, i.e. when no second-stage trees are drawn, which usu-
ally occurs if all trees at z have very small DBH because the optimal schemes rest
upon A(F)m;p; | R; | (Probability Proportional to Error, D. Mandallaz (2008)).
One drawback of Poisson sampling is that the random sample size inflates the vari-
ance: for exact PPE the variance of R;(z) depends only on the sample size. Several
theoretical and empirical investigations in one-phase one-stage sampling suggest
that the variance of the modified estimate Rqz(x) and Rs(x) can be expected to be
smaller. The correction term for Ya(x) is intuitively appealing, as it adjusts for the
difference between expected and observed sample sizes at the second stage. It is less
intuitive for Y3(z) because one estimates the first-stage population’s size, which is
Z?Ll I;(z) and therefore known!

Since ¥; = Y; + R;, one clearly has EoEy,Y7(z) = ﬁ SN Y, =Y, so that
Yi(x) is an unbiased estimate, even if the prediction model is not correct, i.e. if
ﬁ J R(x)dx # 0. This is generally not the case for Yp(z), which can be severely
biased, particularly for small area estimation because the prediction model for the
Y;* can lead locally to substantial overestimation as well as underestimation.

Given a sample so of ny points uniformly and independently distributed in F,
we define the following point estimates

N 1
k no Z k(l’) k Oa 3 73 ( 6)

TES2

2.1 Bias

We shall show that Y3(z) and Y3(z) have a bias, which can be expected to be
negligible in practice. In the following, we shall primarily use heuristic arguments
as exact calculations are not available. In particular, we will frequently use the
first order Taylor approximation E( %) ~ % for the expectation of the ratio of
random variables and likewise for a product E(XY') = E(X)E(Y), particularly with
respect to Ep, and also second order Taylor expansions for Egj. For Rp(z) and
R3(z) we have to work conditionally on the events {na(x) > 0} = {I, = 1} and
{na(x) =0} = {I, = 0}. I, = 0 is thus notation for the situation where no second
stage trees are selected at point x.

One has P(I, = 1) = 1 — TI¥ (1 — p;)"s®) =: 1 — py(z). We shall need the
approximation 1 — p; & exp(—p;) which can be expected to be good if the majority
of the p; is not too large. This leads to 1 — pp(z) ~ 1 — exp(— Zf\il I;(x)p;) and
EoP(I, =1) = 1 — e ™2, where mg = Zi\; m;p; is the expected number of second
stage trees per plot. We note that we have the conditional inclusion probabilities
B(Ji(e) = 1| L, = 1) = (s = p} and P(Jp(@)Ji(a) = 1 | L, = 1) = ply =

1_17557(1%). This leads for k = 2,3 to

]E3|2)Im:1Rk(1') ~ )\(;) Z IZ(:—Z)RZ _ R(.I‘)

=1

because the 1 — pg(z) in numerators and denominators cancel. Furthermore,

Bz Ry () = 0-P(I; = 0) + E3)2 7, —1 Rk (2)P(I; = 1) = R(z)(1 — po(7))



Using Eo ((1 — po(z)) Ry (x)) ~ Eo(1 — po(z))Eo Rk (), we obtain

N
Eo(Rp(z)) ~ (1-— e*mz)ﬁ ZRi =(1—e™)R (2.7)
1 N _ =1 )
Eo(Yi(z)) = 03 Y Y;=Y-e ™R (2.8)
=1

Therefore the bias can be expected to be negligible in practice.
For completeness let us consider the second order approximation for the bias.
u

With f(u,v,) = % and the second-order Taylor expansion for f(u,v) at the point
f(EU,EV) we obtain for E() = Egj2,7,-1()

U, _EU

2
)~ g7 *% 5

TRy

Using exactly the same techniques as those leading to (3.11) below we get for
EQ]P(IT = I)Eg‘ng:le(.’I) the result

BaByafu(e) ~ (1= ™)R(1-(1-e ™) - o))

= (1-e™)R

Hence, the 1st order approximation for the bias is equivalent to the 2nd order ap-

proximation. Using R = n—12 D eess Ef\il L@@ R o 1y = niz D s, Zf\il Ii(z)J;(x)

TiDi
the estimate of e™™2R for the Swiss National Inventory is ~ —0.13, which corre-
sponds to an absolute relative bias of less than 0.04%. More accurate analytical
results seem to be out of reach. One can of course question the validity of these
asymptotic considerations as the number of second-stage trees per plot is small (2
on average for the Swiss NFI). This is the motivation behind the pooled estimate
to be introduced in chapter 4.



Chapter 3

Variances

3.1 Asymptotic variances

The variance of Y7 (z) variance can be obtained readily from (1.2) and is given by

N
Z (1—pi)R? (3.1)

V2?3Y1 (CL’) = VQY(.’E) + 2 iD;

A (F)

This is simply the variance of the true local density augmented by the second-stage
variance.

The calculation of the variances of Y3(z) and Y3(x) is a bit more cumbersome.
First note that

VosYi(z) = EoVspYi(x) + VaEs)oYi ()
= E2V3‘2Rk($) + V2E3‘2Yk($) k= 2, 3 (32)
By conditioning on I, = 1 we have
E32Yi(z) = Yo(z) + (1 = po(x))Esj2,7,=1 Rk ()
~ Yo(z) + (1 = po(x))R(z) = Y (2) — po(x) R(x)
With (2.7) we get
Vg9 Yy (z) = Eo (Y () — po(as)R(Jc))2 —(Y - e_m"’R)2

For the second term in (3.2) we get after some algebra

Vo312V (z) = VoY (2) + (e7™2)?VoR(z) k=2,3 (3.3)

and for the first term in (3.2) we obtain as two terms P(I, = 1)(Eg)2,7,—1 Rx(x))
cancel

VaoRi(z) = Er, Vg Re(x) + Vi, Eg o1, Rie(x)
= P, = )Vyp2.1,1Ri(2) + Ex, (Esjo.r, Ru(2))?) — (Er, Esjor, Bi(x))’
~ P(I, = )E;sp,1, -1 Re(2)* — (P(I, = 1)) R*(2) (3.4)

which leads to
EoVsoRi(2) & (1 — e ™) EoEg)n 1,1 R (z) — (1 — e ™2)°E, R? () (3.5)
Therefore, we obtain by using (3.2,3.3,3.4)
VosYi(r) = VoY(2)+ (e7™2)*VyR(2)
+ (1= e ™)EsByp 1 Ri(x) — (1— e ™) EuR2(2) (3.6
The last step is therefore to calculate E3|2,II:1Ri (x) for k= 2,3.



Using 1st Order Approximation to Estimate E3‘2’1$:1R§(x)

We now limit ourselves to the case k = 2. Using the denominator of the stabilization
term found in (2.4), we get

o 2 1 1
E3|2,11:1<;Ii<x)Ji(x)) = 1@ ;Ii($>pi + T o) ;Ii(x)fj(w)pipj
N
= o (S L@n = p) + (L))
i=1 i=1
If we set
(z) = (Ef\il Ii(m)pi)Q
Esjo,r,=1( > iy Ii(l“)Jz(x))Q
then
. (Sl L@p)* (S Li(@)pi)*
3|12,I,=1 N 5 N 2
(> iz Li(z)Ji(z)) Egja,1,=1((>_i= Liz)Ji(2))
= (1—po(z))a(z) < (1 —po(z)
We have

Esj2,7, =1 R3(2) = E3j2,1, 10(2) B(2) < B(x)

because the 1 — py(z) cancel out. We have

EoEsp 1,1 R5 () = Eoa(z)B(z) < ExB(z)
N
R2 7Tij
= Z mpz F) Z p— R;R; (3.7)
i=1 £

Recall that by the properties of the Horwitz-Thomson estimator one has

N
1 (1—m)R? 1 Tij — TiTj
VoR(z) = t RiR;
2fi(z) )\Q(F); m +>\2(F); P
and consequently
N
1 WiniRj . 12
R?
= EoR*(x Zi
T4
i=1

Using (3.7) we obtain

XN: (1=pi) (3.8)

.
el iPi

EoBg)p,r,—1 B3 (z) < EoR?(x )\2

With (3.6,3.8) we obtain after some elementary algebra the result

N
1 RZ(1—p;
Va3Ya(z) < V2Y(x)+(1_e_m2)>\2(F)Z z(wp'p)
P iDi

+ e ™EyR*(x) — R*(e7™2)? (3.9)



The last two terms in (3.9) can be expected to be much smaller than the leading
2 .
term of the second stage variance, i.e. (1 —e~™2) Zil %;p‘). In any case, for

large mao, Yi(x) and Y3(z) are, as intuitively expected, asymptotically equivalent.

Using 2nd Order Approximation to Estimate E3|27[1:1R%(Z)

The above result is primarily based on the approximation Eg—z ~ %—gz where U =

ﬁF)Zﬁv 1 % V =N, I(z)Ji(z) and where E stands for Egp,7,=1-

We now look at the 2nd order Taylor expression for f(u,v) = %. We will need
the following partial derivatives

6u?

2u 2
fu:ﬁ»fuu:ﬁafuv: 3 afv* ,fvvzi

The second-order Taylor expansion for f(u,v) at the point f(EU,EV) for the ran-
dom variables U and V is

f(U, V) = fEUEV)+ (U-EU)f(EU,EV)+ (V —EV)f,(EU,EV)
+ %((U —EU)2fuu(EU,EV) + 2(U — BU)(V — EV) fuo (RU,EV) 4+ (V — EV)? £, (EU, EV))

After some simple algebra, this leads to the 2nd order approximation

(%) = (%) (ESU - (]EEI)JE‘EV) H@/v +1) (3.10)
One has
—_— 1 1 i Ii(x) R R@
1 —po(z) MF) = 1 —po(x)
N

EV = ——— e ;L
(@)2 I (O N
EV (T, Li(2)p:)?

After tedious but simple algebra one obtains the terms

1 EN Ii(z)(1—pi)R]

EU? N2(F) £ui=1 m2p;

i (1 —po(x))(l + R2(2)

EV2 > Li(z)pi(1 — pi)

gy~ (1wl N+ (Sin, Li()p:)? )
EUV 1 B Ay Sres
ey = OO Er e ST e

To calculate the expectation Ey we shall use approximations of the form EQA(x)B(J;) ~

EsA(x)E2B(x) and Eqy ggg ~ %igg; Furthermore note that Z TPt = vazl TPiDs =

N i m xr .
mg TP o 2 — ,,T and that 5l Y1, Llo)fups o~ ma R(y). Collecting the

mi ™
pieces together we end up with

N

— 1_pz R2
EsEspp 1,1 R3(z) = (1—e ™) Z
/\ 221 TiPi
1—e ™)1+ — — —)EsR? 11
FAmem 0 e OER ) (31)



Using (3.6) we finally obtain the result

_ —ma\2 1 al R?(l — pl)
Vos(Ya(w)) = Va(Y(2))+ (1—e ™) N2(F) ; D

_ (1 _ e—m2)2(mi — mi)EQR2((E)

+ (e7™2)2EqR?(z) — (e7™2)%R? (3.12)

Using 2nd Order Approximation to Estimate E3|27[1:1R§(Z)

The techniques for deriving the asymptotic variance formula for Y3(z) is exactly the
same. Picking up at (3.6), we can easily estimate all the terms except E3|2,II:1R§ (z).
For this we will focus only on applying a second order approximation. Again refer-
ring to (3.10), we need the following pieces

U =
A(F =1 TiPi =1 pi
L)
1 —po(z)
D Sy 10
1 —po(x)
(@)2 _ R
EV (CE, Li(x))?
1 N ILi(z)(1—p;)R?
EUR (1—p<x>>(1+”<“2i L T
E2U 0 R%(z)
Li(z)(1—ps)
EV?2 P
—= = (1—po(x)(1+ =—F2—
E2V (O, Li(w)?
1 N I,-(x)Ri
EUV 1 X(F) 2oi=1 ",
= (I—po(x))(1~ +
EUEV ( S Li(x) Rx)ZﬁLL-(x))

We can use similar approximations as those that were used to derive (3.11). In

particular, 27{\;1 }; ~ ml Zz 1 R and that Zz 1 ﬂrl(i)i = ~ :'2; Zz lﬁl( pl)
We get

N U, N (1= py)R?
EoEgjo, 1,1 R3(x) = ]Ez(zfi(x))z]E:slzIFl(V) ~(1—e"™) )\2 Z sz
i=1 i=1 [y
1 1
EsR%2(2)(1 — e ™2)(1 4+ — — — 1
+ EaR*(z)(1 — e ™)( +m1 mQ) (3.13)

Thus, the 2nd order taylor approximation in (3.13) leads to the same result as
presented in (3.11). Consequently the asymptotic variance formula of Y3(x) is ex-
pected to be the same as in (3.12). It is worthwhile to point out that for large mq
the estimators Y;(z), Ya2(z) and Y3(z) are equivalent.



Anticipated gain over VY;

Another noteworthy point is that within (3.12) we can estimate all the terms to
give us an idea of the anticipated gain in Vo 3Yj(2), k = 2,3 over Vo 3Y7(x). Let us
denote the second-stage variance at x by

N
Ii(z)(1 —p, R2
ViR (z) = Z s )

z=1

which can be unbiasedly estimated by

. 1 K L) Ji(x)(1 — ps)R?
V0= e T

According to (3.1) we have also

. 1 1
V273(}/1) = ngY(x) + fEQV(x) (314)
n2 n2
which as shown in Mandallaz (2008) can be unbiasedly estimated by

V() = nz(ni -1) Z (@) - 12)*

This yields at once the following unbiased estimate for the variance of the unob-
servable true density Y(x)

Vo (Y (2)) = na V(Y5 ni ; (3.15)

R can be estimated by
2 1
R=— E
"2 e

where R(z) = —ZN Li@)Ji(@) By

AMF TiDi
We also have

_nQZZI plor—ZZI

rESse 1=1 z652 =1

These alternative methods of estimating ms correspond to the average expected
second stage sample size per plot and the average observed second stage sample size
per plot respectively. Analytically there does not seem to be any advantage to using
one version over the other so we have chose the latter for simplicity. However, it
should be noted that empirically this was not the case. We forego discussion about
the effect of this until Chapter 5.

Let us set
o R (x Z R(z

asesz

We then have
E2’3R2($) = V2,3R(‘T) (EQ 3R )
= E2V3|2R( ) + V2E3\ R( ) 2
= E2V3|2R($) + VQR( ) +R
N
= Bty 3 ) o

=1

10



Consequently the intuitive estimate EoR2(z) of E;R2(x) has a bias equal to

This bias can be estimated by

1 1 Li(w) Ji(x)(
ne 2 A2(F) T2p?

"2 s, i=1 il
and then removed. Hence, we can estimate all the components of the asymptotic
variance formula given in (3.12).

From this approximation we can get a rough idea of what relative decrease in
variance to expect from using Y3 (x) over Y7 (z). For the 3rd Swiss National Inventory
this relative improvement is expected to be ~ 1.75%. Note that this estimate is not
a substitute for a suitable variance estimator and it is difficult to see if the second
order approximation (3.12) is better than the first order one (3.9).

For Y3, the anticipated gain is expected to be the same Y, at least asymptoti-
cally. However, we will see that this is not supported by empirical evidence where
Ys produced consistently lower variances. Let us also emphasize that the most

important term is
N

1 RY(1—pi)
RGPl

which is obtained without further approximations in the second order expansion
(3.10).

For those interested in assessing the validity of the asymptotic variance formula,
refer to tables A.7 and A.8. Table A.8 displays relative differences of the variance
estimates of Yk, k = 2,3 to the variance estimate Yl as well as their anticipated
gains based on (3.12) while Table A.7 presents a simple comparison of the asymp-
totic variance formulae to the empirical ones (to be defined in the next section).
On the bright side, we see that the asymptotic variance formulae roughly match
the empirical results implying that the 2nd order approximation was somewhat ad-
equate. However, the estimates for the anticipated gain predicted improvement in
the variance. This was frequently not observed with the empirical variance esti-
mates, especially as the first stage sample size was reduced. There also seems to be
evidence that the asymptotic variance formula is somewhat more appropriate for
Ys than for Y3 and for Jura than for other, more mountainous, regions.

3.2 Empirical variances

The estimated variances of the Y, can be obtained by using the standard formulae

PPN 1

V(Yk) = m Z (Yk(l’) - Yk)Q s k= 0, ]., 2, 3 (316)

TES2

This result is obvious for Yy and somewhat surprising for Vi k= 1,2,3 (Mandallaz
(2008)).

11



Chapter 4

The Pooled Estimator

The small number of second-stage trees at point x suggests to pool observations
across the ng points x € s. First, let us note that we can rewrite the point
estimate Y] as

- 1
Y

(4.1)

where we have set

T;=)Y L), Si= Y Ii(z)Ji(z)

TES2

Note that Y7 is the mean of ny generalized Horwitz-Thomspon (HT) estimators and
not a HT estimator itself because it is not based on inclusion probabilities such as
1— (1 —m)™. It can be viewed as an Hansen-Hurwitz estimator under sampling
with replacement (see problem 4.5 in Mandallaz (2008)). Although, in practice,
inventories are usually performed with systematic grids of points, we shall proceed
as if the points are independently uniformly distributed in F', which is justified for
extensive inventories. In this theoretical framework a tree can be sampled many
times and we have after simple algebra the following important relations

E>sT;, = nom;
E328; = Tip;
E2,3Si = MN2T;P;
Es1257 = Tipi(1 —pi) + T7p;
E325:8; = T;Tipipj
EoT? = nomi(l —m;) 4+ nin?
E.T;T; = n%wmj + no(mi; — mimy) (4.2)

It is a tedious, but simple, exercise to check that the above equations lead of course
to the same overall variance for Vo 3(Y7) based on (3.1), namely Vs 5(Y(z)). We
consider the pooled version of Ry(x), that is

Ryp =

no

(4.3)

N  SiR;
(nz)\(F) Z’L 1 m;p;

s )&
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and the corresponding point estimate

N
- 1 T;Y;
Yop = oA (E) > T2y (4.4)

i=1

The justification is that the overall number of second stage trees Zf\il S; is large and
that therefore the validity of the asymptotic calculations is better. The probability
that the overall sample has no second stage trees is

N
pols2) =P(S; =0,Vi| sy) = [ po(x) = [] JJ(@ - pi)"
r€sa I

TES2 =1

which is approximately the same as

N
[ et =e S5t

x€s2 I=1
Therefore, we have on average for the probability of an empty second stage sample
Ep()(SQ) ~ e "2 Zi\[:l TiPi — o~ N2Mm2

This probability is so small that it can be considered to be zero for all practical pur-
poses. A nice consequence of that is that we can bypass the conditional expectation
and variance (on the event sy # () ).

The first order approximation yields at once

N
1 T:R;
E3|2R2,p =~ o E i (45)

and hence also Y3, ~ Y; and likewise for the variances. Tedious second order

calculations similar to those presented previously show that the bias of Yz’p is of

order R-O(ny ') instead of R-e~™2, so that it is negligible in large samples. The first

2 . EXx? EX?2
~ EY? = E2Y>

order approximation for the variance yields, by noting that E(%)

1 N SR\ 2 1 SLTiR\2
Vg‘ng’p %3 E3|2<n2/\(F) Z 7Tipi> B (ng/\(F) ; 5 )

=1

Taking the expectation with respect to Eo and using (4.2) we see after tedious
algebra that

1

o
()

1 —pi) R}

i Pi

~ 1 ~
V273}/27p %S anQY(J?) = V2,3Y1 (46)
2

=1

Again, the second order Taylor approximation confirms that the above equality is
correct up to terms of order O(ny 1). This is, of course, a somewhat disappointing
S, Tipi
Z?’:l Si
be very close to 1. Nonetheless it is a worthwhile exercise in that even negative
results are worth knowing.
To estimate the variance of Y3, we have used the jackknife.

result due primarily to the fact that the correction factor is expected to

13



Chapter 5

Results

Table A.1 displays the results from the 3rd Swiss National Forest Inventory (2003).
Notice that all point estimates are well within 2 standard deviations of each other.
Since the sample size is large and Y; is design unbiased, we confirm that the biases
of YQ, Y3 and 172)1, are in fact negligible. Therefore, it should be sufficient to compare
these estimators based on their variances alone. Figure B.1 allows us to visualize
standard errors presented in Table A.1 together.

There appeared to be no dramatic improvement of the any of the estimators
when compared to Yi. Ys consistently performed the same or slightly better than
Yl across most regions and for the total. }73, on the other hand, consistently pro-
duced slightly higher standard errors when compared to Y; and Ys. The pooled
estimator, )727,), was virtually identical to Y; in all regions except for the Alps and
the South Alps. It was the only estimator that did not consistently rank the same
across all regions. It should be noted that the delete-one jackknife estimator can
be expected to have a positive bias when the 2nd stage sample size is small. Fuller
(2009) discusses the possible adjustments to correct this; however, in the present
circumstance it seems unnecessary since the motivation behind the pooled estima-
tor was to compensate for the bias of Y, and Yg, which is most certainly negligible.
In any case, this is a possible explanation for the apparently worse performance of
1724, in regions with smaller m..

It is worth pointing out that Yy is included in the Table A.1 as a point of refer-
ence to gauge the size of the R compared to the point estimates. While its variance
is lower than the other estimates, its MSE is higher than that of }71, especially in
local estimation because it can be biased. If this was not the case the second stage
in the Swiss National Forest Inventory would be unnecessary and wasteful.

Adjusting the Sample Size

In addition to comparing the performance of these estimators for the Swiss National
Forest Inventory, we are also interested in assessing the influence of sample size. To
do this we need to create subsamples from the original full sample that mimic the
same geographical structure. Figure B.2 is an overview of all first stage plots. Notice
that the outline of Switzerland is visible and upon close inspection so is the outline
of out-of-forest areas such as lakes and the highest parts of the Alps. Our goal
was to thin the plot density in such a way that we can still make out the largest
features visually. For simplicity, the target sub-grids correspond to a 1/2 sample,
a 1/4 sample, a 1/8 sample and a 1/16 sample. With every successive reduction
of half the remaining sample, a set of plots was generated to check the geographic
structure of the overview and of an arbitrary zoomed view. Figure B.3 illustrates

14



this by example for the 1/2 sample.
The final thinning procedure that was selected was as follows:

1. Divide all X and Y coordinates by 1000.

2. Remove every odd X coordinate. This is incidentally the same as removing
every even Y. The result is approximately a half sample size selection of the
full sample. From now on this is will be referred to as the Half Sample.

3. Using the Half Sample from the previous step, sort the Y coordinates in
ascending order and remove every 2nd item. This is the Quarter Sample.

4. Using the Quarter Sample, sort the X coordinates in ascending order and
remove every 2nd item. This is the Eighth Sample.

5. Using the Eighth Sample, sort the Y coordinates in ascending order and re-
move every 2nd item. This is the Sixteenth Sample.

Figure B.4 shows the same zoomed snapshot with selected sample for all sub-
samples. Figure B.5 shows the geographic overview for all subsamples selected. The
first stage selection from any of these samples is treated as if it were selected under
simple random sampling. It is widely considered that this is acceptable as long as
the forest does not show any periodicity that interacts with the systemic sampling
structure to produce sampling bias. Given the plot overviews of the subsamples
selected, this seems unlikely to be the case.

Tables A.2 - A.5 give the results of the estimators in question while Figure
B.6 gives a more visual comparison. It is more clear now that none of the proposed
estimators provide any reliable improvement to Y; for this data. Y consistently pro-
duces larger standard errors than Yl and ?2 and the pooled estimator }724, seems
to have problems specifically in the South Alps region. In any case, it is clear
that the stabilizing factors that were applied when using 572, Y3 and ng have very
limited practical advantage over the standard two stage estimator Y7 in this context.

Interpretation

To gain further insight concerning the usefulness of the second stage, one should
look at the trade-off between variance and costs. Set

VMi(z)) _ V(Y (2)) + Es(V(z)) _

SIv@) T VW) V(Y ()

0 is the expected increase in variance using Y3 (z) compared to the variance we
would have gotten had we selected ALL trees to be in the second stage (represented
by V(Y (z))). Equivalently, one can consider the proportion of the second-stage
variance with respect to the total variance, i.e.

- Ex(V(z)) _ VMi(2) -V(Y(2)) _, 1
V(Y1 (2)) V(Y1 (x)) 0
Therefore 1
9 = ﬂ

According to (3.15) 1 can be estimated by

7%2 Zzész V(I)

— * 100
TLQV(Yl)

’]7:
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Remark that the no is part of the denominator because we are looking at the
total variance over all plots which decreases at a rate of n% Table A.6 contains the
estimates of 7. With n ~ 0.03 we have 6 ~ 1.03. The ratio of standard errors is
V0 ~ 1.015, i.e. an increase of ~ 1.5%.

Let’s have a look at the costs within plots (travel and installation costs are
independent of the m; and p;). We have for the first-stage costs ¢o1 &~ 2 min per tree
and for the second-stage coa &~ 5 min per tree (total time for a crew of 2 persons,
D. Mandallaz (2008)). With m; = 11.5 and mg = 2.2 we have the cost ratio for the
SNI

micCo1 + MaCa2

~ 43%
ma(ca1 + C22)

That is: we can reduce the costs within plot by 67% by taking an increase in
standard error of 1.5% into account. However, the total costs for estimating the
timber volume is roughly only 10% of the total costs in the second SNI. Note that
travel and installation costs contribute to roughly 80% of the total costs and that
the field crews record numerous other data than volume. However, using Y;(z)
instead of Y'(x), results in saving = 6000 hours or roughly 600’000 SFr. Thus, the
second-stage variance is indeed small but not without practical relevance. Using Yj
saves further 2000 hours, but at the costs of local biases.

It is now intuitively clear from Table A.6 that the proposed estimators, which
attempt to improve Y, by reducing variance arising from the randomness of the
second stage sample size, will at best have only a small impact on the total variance.

It may also be helpful to examine the stabilization factors for each plot to see if
they give any insights. Y[ is equivalent to a one phase two stage estimator whose

residual term has a stabilization factor always equal to O. Y; has the constant 1. Y
SN, Li(x)ps ’ Y, L)
m and Yg equal to W fOI‘
Zivzl Si?
all plots but it is random since it is generated from the data. These factors are

presented graphically in Figure B.7.

It is immediately clear that the magnitude of the stabilization factors of Ys is
much larger than those of Y as seen by the different scales of the Y-axes of the
plots. This may suggest that Ys overcompensates when it attempts to correct for
variability of the second stage sample size, which leads to slightly higher variances
overall when compared to Ys. Vs also appears to be somewhat more prone to
extreme stabilization factors in the Alps region which was a region that it did not
test well under reduced sample size.

We also see that )72,17 seems to have an larger than average stabilization factor in
the South Alps. This implies that more trees on average were expected to be selected
than were actually measured for the second stage. Recall that two alternative
methods for estimating msy were presented in section 3.1: L3 SN Lix)ps
and rle Y s, Zfil Ii(z)Ji(z). The stabilizing factor for Y5, is in fact equal to
a ratio of these two methods. Analytically we expect this ratio to be around 1
on average but the empirical results presented in Figure B.7 seem to be paint a
different picture. Figure B.8 shows the stabilizing factors for just }7271, by region
under various sample size alongside a graph depicting the percentage of percent of
plots where no second stage trees were selected. This indicates that in the South
Alps and Alps there is a persistent tendency to expect more second stage trees than
were actually observed. This can be attributed to a practical problem in the field
where a tree can be selected for the second stage but not actually measured for it.
This can happen, for instance, if a tree is not 7 meters tall or unmeasurable for some
other reason beyond the control of the field technician. In any case, this difference

has stabilization factors equal to

each plot x. The pooled estimator’s factor, will also be constant across
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between the theory and practical application of the sampling scheme seems to cause
a slight inflation of the average stabilizing factors in regions with smaller trees. This
may also help to explain the breakdown of the Y3 , in the South Alps.
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Chapter 6

Conclusions

Several theoretical and empirical investigations in the context of one-stage Poisson
sampling suggest that adjusting estimators with a stabilization factor will lead to
a reduction in variance, particularly if PPS sampling techniques are used, in which
case a large part of the variance is due to the random sample size. It was hoped that
similar adjustments could also be useful in the slightly different context of forest
inventory, where Poisson sampling is used for second-stage sampling to estimate
timber volume with three-way yield tables (based on height and two diameter mea-
surements), as is the case in the Swiss National Forest Inventory. All three of the
proposed estimators, Yg, Y3 and ng, had negligible biases. However, they failed to
consistently improve the variance as compared to the unadjusted two-stage Hansen-
Hurwitz estimator Y7, although the asymptotic variances suggested that this should
be the case. In large samples Y, was slightly better than the original unadjusted
estimator Y;. The stabilization factors are very sensitive to the variability of the
number of second-stage trees (on average around 2 per plot, which is much smaller
than sample sizes generally considered in survey sampling). This was particularly
apparent for Ys;. In any case, the proportion of the total variance accounted for
by the second-stage variance is relatively small so that only a modest improvement
could be expected. Considering that Y; is simpler to implement, unbiased and
tends to lead to the lowest variance when the first stage sample size is reduced,
it remains an excellent choice, followed by Y. It also has an advantage over the
one-stage estimator Y (based on DBH alone) which can be severely biased for small
area estimation, while keeping costs much lower than would be incurred by using
the three-way yield table for all trees selected in the first-stage. It is intuitively
clear that the same findings will also hold under cluster sampling and two-phase
sampling.
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Table A.1: Point Estimates and Errors, in (), for Timber Volume in %i

Full Sample
Region U mi mo YO Yl }A/Q )73 5}2,[)
JU 949 11.6 2.3 383.00 382.75 380.94 380.36 382.75
(7.02)  (7.55)  (7.46)  (7.70)  (7.54)
SP 1103 11.1 2.3 411.37 408.76 408.94 406.68  408.68
(8.12) (8.39) (8.38)  (8.55)  (8.40)
PA 1012 122 2.6 464.38 461.53 460.75 459.12  461.42
(9.88) (10.24) (10.25) (10.40) (10.26)
AL 1676 11.4 2.0 330.20 32886 326.23 324.10 328.67
(5.97)  (6.31)  (6.26)  (6.48)  (6.40)
SA 662 11.2 1.3 25294 248.93 245.67 242.09 246.88
(7.15)  (7.55)  (7.33)  (7.83)  (8.05)
CH 5402 11.5 2.2 37172 369.70 368.06 366.09 369.51

(3.56) (3.72) (3.70) (3.80) (3.75)
Swiss National Forest Inventory, 2003.

Legend:

ng: number of plots, mi: average number of first-stage trees, mo average num-
ber of second-stage trees, Y3 and Ya,, point estimates given by (2.5) and(4.4), in
parentheses the estimated standard errors according to (3.16), and obtained via the
delete-one jackknife for Vs .

Table A.2: Point Estimates and Standard Errors, in (), for Timber Volume
3

in 7.
Half Sample Size

Region n2 Yo 3}1 Yfz YS Yz,p
JU 448 37725 376.41 373.92 371.03 376.44
(9.49)  (10.44) (10.09) (10.22) (10.39)
SP 532  409.70  400.81 402.43 398.75  400.44
(11.74) (12.05) (12.04) (12.20) (12.05)
PA 512  444.19 442.58 442.46 441.64 442.51
(12.55) (13.25) (13.25) (13.60) (13.30)
AL 806 335.66  330.81  329.15 325.57 330.04
(8.95) (9.30) (9.31) (9.73) (9.43)
SA 342 255.29  252.24  246.57 241.95  250.55
(9.14) (10.15) (9.96) (10.58) (11.16)
CH 2640 368.27 364.15 362.79 359.71  363.74

(4.92)  (5.17)  (5.15)  (5.30)  (5.22)

Swiss National Forest Inventory, 2003.
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Table A.3: Point Estimates and Standard Errors, in (), for Timber Volume
3

in 7.
One Quarter Sample Size

Region  no Yy Y, Vs V3 Yo,
JU 230 369.12 367.38 365.21 361.41 367.43
(12.85) (14.31) (14.01) (14.08) (14.25)
SP 269  407.27  400.58 40291 397.93 400.46
(16.74) (17.02) (17.26) (17.29) (17.00)
PA 270 452.13 444.66  443.89  441.31 444.09
(16.62) (17.04) (17.27) (17.85) (17.14)
AL 405 337.01  329.41 329.27 326.25 328.10
(12.82) (13.33) (13.50) (14.24) (13.55)
SA 167  267.20 267.67 258.10 255.18  267.95
(14.52) (15.78) (15.55) (16.13) (17.13)
CH 1341 371.10 365.71 364.42 360.97 365.11

(6.92) (7.19)  (7.25)  (7.46)  (7.26)

Swiss National Forest Inventory, 2003.

Table A.4: Point Estimates and Standard Errors, in (), for Timber Volume
3

in 7-.
One Eight Sample Size

Region na )A/O Yl YQ ?3 }A/Q,p
JU 112 378.26 372.80 370.03 363.25 372.92
(19.89) (20.75) (20.61) (20.62) (20.70)
SP 130 395.29 389.63 391.24 383.93  389.28
(25.47)  (26.08) (26.72) (26.63) (26.11)
PA 133 464.56  467.77  467.57 470.56  467.99
(24.06) (26.37) (26.80) (28.05) (26.58)
AL 217 341.60 333.65 334.12 330.06 332.28
(18.72)  (19.64) (20.09) (21.46) (19.97)
SA 83  290.62 284.29 273.97 272.16  280.72
(20.98) (22.80) (22.59) (22.98) (24.87)
CH 675 375.98 371.28  369.98 366.50  370.70

(10.20) (10.77) (10.96) (11.36) (10.90)

Swiss National Forest Inventory, 2003.
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Table A.5: Point Estimates and Standard Errors, in (), for Timber Volume
3

in 7.
One Sixteenth Sample Size

Region N9 Y/Q Yl YQ Y/g }A/27p
JU 61 400.56 398.51 395.90 390.29 398.51
(26.76) (27.93) (27.87) (28.17) (27.92)
SP 66  414.07 397.12 402.41 396.40 396.40
(38.84) (38.58) (38.38) (38.19) (38.36)
PA 62 44550 443.05 440.15 437.33  442.83
(32.86) (35.21) (35.80) (36.98) (35.56)
AL 113 336.98 324.54 324.30 321.00 321.60
(25.98) (25.89) (26.74) (29.98) (26.31)
SA 45  317.10 312.66 296.60 300.78  310.52

(33.59) (36.28) (36.02) (36.36) (38.86)
CH 347 379.63 370.98 368.85 365.69 369.73
(14.35) (14.67) (14.86) (15.58) (14.81)

Swiss National Forest Inventory, 2003.

Table A.6: Estimated Influence of Second Stage Variance as Proportion
of Total Variance of Y;* For Different Sample Sizes

Region Full 1/2 1/4 1/8 1/16

JU 0.052 0.066 0.078 0.053 0.041
SP 0.026 0.037 0.036 0.030 0.025
PA 0.028 0.043 0.038 0.037 0.035
AL 0.025 0.031 0.029 0.025 0.022
SA 0.025 0.036 0.030 0.031 0.023
CH 0.028 0.038 0.037 0.031 0.027

Swiss National Forest Inventory, 2003.
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Table A.7: Ratio of Empirical Variances to Asymptotic
scribed in (3.12) For Different Sample Sizes.

Estimator

Vs

Legend:

Ratios are derived from

Region

JU

SP

PA

AL

SA

CH

Full

0.9965
1.0636

1.0098
1.0524

1.0132
1.0420

0.9982
1.0696

0.9586
1.0918

1.0044
1.0585

1/2

0.9548
0.9778

1.0117
1.0375

1.0131
1.0680

1.0165
1.1088

0.9783
1.1038

1.0077
1.0674

1/4

0.9809
0.9901

1.0407
1.0448

1.0405
1.1116

1.0382
1.1555

0.9825
1.0577

1.0310
1.0912

1/8

1.0038
1.0051

1.0623
1.0550

1.0437
1.1436

1.0593
1.2086

0.9942
1.0289

1.0471
1.1249

Swiss National Forest Inventory, 2003.

VY2 (x)

VY3 ()

VYa(x)asymptotic

VY3 (x)asymptotic

asymptotic variance formula is described in (3.12).

24

Variances De-

1/16

1.0105
1.0320

1.0013
0.9918

1.0466
1.1167

1.0806
1.3583

0.9948
1.0136

1.0395
1.1429

respectively where the



Table A.8: Empirical Relative Differences of Variance Estimates For Ys

and Y3 Compared to Y;, with Anticipated Gain in ().

Estimator Region

Yy Ju
Yy
Y, Sp
Y3
Y, PA
Yy
Y, AL
Y3
Yo SA
V3
Yy CH
Y3
Note:

Anticipated gains are calculated using

Full

—2.37%
4.20%
(—2.03%)

—-0.21%
3.99%
(—1.19%)

0.20%
3.04%
(—1.11%)

~1.60%
5.44%
(—1.42%)

—5.55%
7.57%
(—1.47%)

—0.90%
4.43%
(—1.34%)

1/2

—6.58%
—4.32%
(—2.16%)

—0.04%
2.51%
(—1.19%)

—-0.01%
5.40%
(~1.31%)

0.34%
9.45%
(—1.29%)

—3.67%
8.69%
(—1.53%)

—-0.62%
5.26%
(—1.38%)

(vasyy(x) - (
VYl (I)

1/4

—4.14%
—3.24%
(—2.27%)

2.81%
3.21%
(—1.21%)

2.74%
9.77%
(~1.25%)

2.55%
14.13%
(—1.22%)

—3.00%
4.44%
(—1.26%)

1.72%
7.66%
(—1.34%)

Swiss National Forest Inventory, 2003.

1/8

—1.35%
—1.23%
(—1.73%)

4.97%
4.25%
(—1.19%)

3.26%
13.14%
(—1.07%)

4.62%
19.38%
(—1.23%)

—1.82%
1.61%
(—1.25%)

3.44%
11.12%
(—1.22%)

1/16

—0.43%
1.68%
(—1.46%)

—1.06%
—2.00%
(1.19%)

3.39%
10.32%
(—1.21%)

6.69%
34.10%
(—1.27%)

—1.43%
0.43%
(—0.91%)

2.68%
12.89%
(—1.23%)

) where Vasy Y () is calcu-

lated in accordance to the asymptotic variance formula described in (3.12). The
anticipated gain is therefore the same for both Yj(z) for & = 2, 3 since the 2nd order
approximation of Vs, 3Yj(x) yielded the same result. The relative difference for a

variance estimate is given by

(VY () T3 (2))
VYl (I) :
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Figures
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Figure B.1: Visual Comparison of Estimators

Standard Error

Region

Note: 5}2,1) is represented with a dotted line because it was calculated using the
jackknife. In survey statistics, the jackknife is typically applied to the largest sam-
pling units, in this case entire plots. Since the stabilization factors in estimators Yi,
Y, and Y3 are unaffected when a plot is deleted from sample, there is no advantage
to calculating jackknife estimates because, on the plot-level, the statistic is simply
the mean. For more information regarding the implementation of the jackknife in
design based survey data refer to Wolter (2003).
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Figure B.3: Example of Diagnostic Set of Plots Used to Choose Subsam-

ples
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Standard Error

Standard Error

Standard Error

Figure B.6: Comparison of Estimators Under Varying Sample Size
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Stabilizing Factor

Figure B.7: Visual Comparison of Stabilization Factors

Stabilization Factor
Y1 "
— — Pooled by region
—— Pooled for total
Y2 for Jura
Y2 for Plateau
= Y2 for Prealps
= Y2for Alps
Y2 for South Alps

33

Stabilizing Factor

25

20

15

10

Stabilization Factor
Y1

Pooled by region
Pooled for total

Y3 for Jura

Y3 for Plateau

Y3 for Prealps

Y3 for Alps

Y3 for South Alps

" .
' -
. . .
an om .
=am o - s
"
s 2 2 m s mma
.
' = ma mms
.
.
T LY . .
.
u
= s & asgma mmEm
O




Figure B.8: Stabilization Factors by Region for Pooled Estimator and

Percentage of Plots With No 2nd Stage Trees In Last Panel
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Appendix C

R Functions

library(survey)
library(bootstrap)
library(boot)
library(wle)

B s s S
## FUNCTIONS section begins ##
R

HERHHHHH R R R
###### 1 Phase 1 Stage Density Estimate YO ######
HERHHHHHHH R R R R

Y_OneStage_X <- function(data){
sum(data$FI*data$VMRD)
}

YOneStage <- function(dat){

plot <- factor(dat$PLOT_ID)

loc.density.est <- by(dat,plot, Y_OneStage_X)

n <- nrow(loc.density.est)

density_est <- mean(loc.density.est)

density_var <- (1/(n*(n-1)))*sum((loc.density.est-density_est)"2)

out <- list(density_est=density_est, n=n, density_var=density_var) # n is number of plots
return(out)

}

HHHHEHHEHBEHEREREHEEEEHEEEEHHREERHEEEREEEE
###### Generalized Density Estimate Y1 ######
IR

Y1_X <- function(data){
sum(data$FI*data$VMRD) + sum(data$FI*data$VPPS)
}

Y1 <- function(dat){
plot <- factor(dat$PLOT_ID)
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loc.density.est <- by(dat,plot,Y1_X)

n <- nrow(loc.density.est)

density_est <- mean(loc.density.est)

density_var <- (1/(n*(n-1)))*sum((loc.density.est-density_est) ~2)

out <- list(density_est=density_est, n=n, density_var=density_var)
return(out)

}

HHHEEHEHEEHHBEHRHHEEEHEEREHHREREEEEE
#H##### Density Estimate Using Y2 ########
fEss s s s s s s s s s S s

Y2_X <- function(data){

ifelse(sum(data$J_i)==0,

stab_factor2 <- 0 ,

stab_factor2 <- sum(data$p_i_2)/sum(data$J_i))

#set residual to zero if Ix=0

sum(data$FI*data$VMRD) + (sum(data$FI*data$VPPS)*(stab_factor2))
}

Y2 <- function(dat){

loc.density.est <- by(dat,factor(dat$PLOT_ID),Y2_X)

n <- nrow(loc.density.est)

density_est <- mean(loc.density.est)

density_var <- (1/(n*(n-1)))*sum((loc.density.est-density_est)"2)

out <- list(density_est=density_est, n=n, density_var=density_var)
return(out)

}

BB
####### Density Estimate Using Y3 ########
IR

Y3_X <- function(data){

ifelse(sum(data$J_i)==0,

stab_factor3 <- 0 ,

stab_factor3 <- sum(data$I_i)/sum(data$J_i/data$p_i_2))

#set residual to zero if Ix=0

sum(data$FI*data$VMRD) + (sum(data$FI*data$VPPS)*(stab_factor3d))
}

Y3 <- function(dat){

loc.density.est <- by(dat,factor(dat$PLOT_ID),Y3_X)

n <- nrow(loc.density.est)

density_est <- mean(loc.density.est)

density_var <- (1/(n*(n-1)))*sum((loc.density.est-density_est)"2)

out <- list(density_est=density_est, n=n, density_var=density_var)
return(out)

}

HEHFHH B H B H R R R R R
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##### Density Using Pooled Estimate with Y4 ######
I

Y4 <- function(dat){

n2 <- length(levels(factor(dat$PLOT_ID)))
stab_factord4 <- sum(dat$T_i*dat$p_i_2) / sum(dat$S_i)
density_est <- (sum(dat$FI*dat$T_ixdat$VMRD)/n2)

+ (sum(dat$FI*dat$VPPS*dat$J_i)/n2)*stab_factord

out <- list(density_est=density_est)
return(out)

}

s S s s s s
###### 2nd Stage Variance Estimate ######
S s g

V_x <- function(data){

R_i <- ifelse(is.na(data$R_i), R_i <-0, R_i <- data$R_i) # Change R_i with NA to O
sum(((data$FI*R_i) "2)*(1-data$p_i_2)/(data$p_i_2)"2)

# Defined according to Mandallaz page 72

}

B g g g g R g G g g e g
###### 1st Stage and 2nd Stage components of total Variance Estimate HHHHHH
##t#### NOTE: Input Y1 as "func". Defined according to Mandallaz (4.33) on p. 72 #
B g g s s s i

V_Y_x <- function(data,func=Y1){

loc.within.plot.var.est <- by(data,factor(data$PLOT_ID),V_x)
n2 <- nrow(loc.within.plot.var.est)

run_desired_function <- func(data)

expected_second_stage_component <- mean(loc.within.plot.var.est)
# estimate of E[V(x)] which is (1/n2)*sum(V(x))

first_stage_component <- (n2*run_desired_function$density_var)
- mean(loc.within.plot.var.est) # estimate of V[Y(x)]

second_stage_percentage_of_total_var <-
(expected_second_stage_component/n2) /run_desired_function$density_var
#refer (Mandallaz (4.29))

out <- list(expected_second_stage_component = expected_second_stage_component,
first_stage_component = first_stage_component,
second_stage_percentage_of_total_var =

second_stage_percentage_of_total_var, n2=n2)

return(out)

}

HEHSFHH B H B H R AR R R R R R R
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### Jackknife APPROACH adapted to estimators 1,2,3 for faster computing ###
### Forest_jack works too but will recalculate all plot densities again ###
### for every iteration of the cross-validation. #Hi#
#HHEE##E NOTE: Input function is Y2_X not Y2 etc. ####HHHHHEEERHHEHH
s s s s s g

HHHAHBHHAH B HBHHAH R HEHHAHBEHAH B HBHHAH B HBHHAH RS H R AR B HAH R R B HAH B R R RAHH
### Generic Jackknife Function For Swiss National Forest Inventory SLOW!! ###
HERHHHHHHH R R R R R R R R R R R
Forest_jack <- function(data,func,trace=TRUE){

index <- levels(factor(data$PLOT_ID))

n <- length(index)

d_minus_i <- rep(NA,n)

d <- func(data)$density_est

j<-1

if (trace) {cat(" i = ")}

for(i in 1:n){

if (trace) {cat(ifelse(j %% (u %/% 10) == 1,paste(j, ""), "."™))}
d_minus_i[j] <- func(datal[data$PLOT_ID!=index[i],])$density_est
j <- j+t

}

dji <- (n*d)-((n-1)+*d_minus_i)

jack_est <- mean(dji)

jack_var <- (1/n)*(1/(n-1))*sum((dji-jack_est)"2)
jack_bias <- jack_est-d

out <- list(jack_est=jack_est, jack_var=jack_var, jack_bias=jack_bias)
return(out)

}

#Fast jackknife function streamilned for estimators YOneStage, Y1, Y2 and Y3#
fast_jack <- function(dat,func){

plot <- factor(dat$PLOT_ID)

loc.density.est <- by(dat,plot,func)

n2 <- nrow(loc.density.est)

d <- mean(loc.density.est)

d_minus_i <- rep(NA,n2)

for(i in 1:n2){ d_minus_i[i] <- mean(loc.density.est[-i]) }
dji <- (n2%d)-((n2-1)*d_minus_i)

jack_est <- mean(dji)

jack_var <- (1/n2)*(1/(n2-1))*sum((dji-jack_est)"2)

jack_bias <- jack_est-d

out <- list(jack_est=jack_est, jack_var=jack_var, jack_bias=jack_bias)
return(out)

}

g g g g
#####H#HH##E  Test for different sampling sizes ##########H#H

#### NOTE: HiHHH
### This function returns point ests, std errs, and #####
### jackknife bias estimates 22220

HAHHHHFHHAFHH B HHAFH R H RS H B GHH B H B RS R R RS R
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#input subsample data set and this function will call all functions
sample_size_test <- function(data){

cat("calculating YO... ")

YOneStage_tot <- YOneStage(data)
YOneStage_reg <- by(data,factor(data $REG), YOneStage)

## fast_jack verification of above results
YOneStage_jack <- fast_jack(data, Y_OneStage_X)

#Jackknife by Region
YOneStage_reg_jack <- by(data, factor(data$REG), fast_jack, func=Y_OneStage_X)

cat("calculating Y1... ")

Yi_tot <- Yi(data)
Y1_reg <- by(data,factor(data $REG),Y1)

## fast_jack verification of above results
Y1_jack <- fast_jack(data,Y1_X)

#Jackknife by Region
Y1_reg_jack <- by(data, factor(data$REG), fast_jack, func=Y1_X)

cat("calculating Y2... ")

Y2_tot <- Y2(data)

Y2_reg <- by(data,factor(data$REG),Y2)

Y2_jack <- fast_jack(data,Y2_X)

Y2_reg_jack <- by(data, factor(data$REG), fast_jack, func=Y2_X)

cat("calculating Y3... ")

Y3_tot <- Y3(data)

Y3_reg <- by(data,factor(data$REG),Y3)

Y3_jack <- fast_jack(data,Y3_X)

Y3_reg_jack <- by(data, factor(data$REG), fast_jack, func=Y3_X)

cat("calculating Y4... ")

Y4_tot <- Y4(data)

Y4_reg <- by(data,factor(data$REG),Y4)

cat("calculating slow Forest jackknife routine for total... ")

Y4_jack <- Forest_jack(data,Y4,trace=FALSE)

Y4_jack_est <- Y4_jack$jack_est

Y4_jack_var <- Y4_jack$jack_var

Y4_jack_sd <- sqrt(Y4_jack$jack_var)

cat("calculating slow Forest jackknife routine by region... ")

Y4_reg_jack <- by(data, factor(data$REG), Forest_jack, func=Y4, trace=FALSE)

HE#HHHHHHT Aggregate Results #######H###H

#gather estimate results in table
est_table <- matrix(c(
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YOneStage_reg$Jura$density_est, Y1_reg$Jura$density_est,
Y2_reg$Jura$density_est, Y3_reg$Jura$density_est, Y4_reg[1],
YOneStage_reg$Plateau$density_est, Y1_reg$Plateau$density_est,
Y2_reg$Plateau$density_est, Y3_reg$Plateau$density_est, Y4_regl2],
YOneStage_reg$Prealps$density_est,Y1_reg$Prealps$density_est,
Y2_reg$Prealps$density_est, Y3_reg$Prealps$density_est, Y4_reg[3],
YOneStage_reg$Alps$density_est,Y1_reg$Alps$density_est,
Y2_reg$Alps$density_est, Y3_reg$Alps$density_est, Y4_regl4],
YOneStage_reg$SouthAlps$density_est,Y1l_reg$SouthAlps$density_est,
Y2_reg$SouthAlps$density_est, Y3_reg$SouthAlps$density_est, Y4_regl[5],
YOneStage_tot$density_est, Y1_tot$density_est,
Y2_tot$density_est, Y3_tot$density_est, Y4_tot$density_est)
,arow=6,ncol=5,byrow=TRUE)

#make vector of Attach N to matrix (note that n here is number of plots)
N_vector <- c(Yl_reg$Jura$n, Y1_reg$Plateau$n, Y1_reg$Prealps$n, Y1_reg$Alps$n,
Y1_reg$SouthAlps$n, Y1_tot$n)

est_table <- cbind(N_vector,est_table)

#input estimates in data.frame and name rows/columns
point_estimates <- as.data.frame(est_table)

row.names (point_estimates) <-
c("Jura","Plateau","Prealps","Alps","South Alps","Switzerland")
names (point_estimates) <- c("N", "YO", "yi", "y2", "y3", "Y4")

#VIEW POINT ESTIMATES
print (point_estimates)

#gather std. error results in table
make_tab_var <- matrix(c(
YOneStage_reg$Jura$density_var,Y1l_reg$Jura$density_var,
Y2_reg$Jura$density_var, Y3_reg$Jura$density_var,
Y4_reg_jack$Jura$jack_var, YOneStage_reg$Plateau$density_var,
Y1_reg$Plateau$density_var, Y2_reg$Plateau$density_var,
Y3_reg$Plateau$density_var, Y4_reg_jack$Plateau$jack_var,
YOneStage_reg$Prealps$density_var, Y1_reg$Prealps$density_var,
Y2_reg$Prealps$density_var, Y3_reg$Prealps$density_var,
Y4_reg_jack$Prealps$jack_var, YOneStage_reg$Alps$density_var,
Y1_reg$Alps$density_var, Y2_reg$Alps$density_var,
Y3_reg$Alps$density_var, Y4_reg_jack$Alps$jack_var,
YOneStage_reg$SouthAlps$density_var, Yi_reg$SouthAlps$density_var,
Y2_reg$SouthAlps$density_var, Y3_reg$SouthAlps$density_var,
Y4_reg_jack$SouthAlps$jack_var, YOneStage_tot$density_var,
Y1_tot$density_var, Y2_tot$density_var,
Y3_tot$density_var, Y4_jack_sd"2)
,arow=6,ncol=5,byrow=TRUE)

#make std. error
std_err_table <- sqrt(make_tab_var)

#input std. err in data.frame and name rows/columns
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standard_errors <- as.data.frame(std_err_table)

row.names (standard_errors) <-
c("Jura","Plateau","Prealps","Alps","South Alps","Switzerland")
names (standard_errors) <-

c("std(YO)", "std(Y1)", "std(Y2)", "std(Y3)", "std(Y4)_jk")

#VIEW STANDARD ERROR OF POINT ESTIMATES
print (standard_errors)

#gather bias results in table
bias_table <- matrix(c(
YOneStage_reg_jack$Jura$jack_bias,Y1l_reg_jack$Jura$jack_bias,
Y2_reg_jack$Jura$jack_bias, Y3_reg_jack$Jura$jack_bias,
Y4_reg_jack$Jura$jack_bias, YOneStage_reg_jack$Plateau$jack_bias,
Y1_reg_jack$Plateau$jack_bias, Y2_reg_jack$Plateau$jack_bias,
Y3_reg_jack$Plateau$jack_bias, Y4_reg_jack$Plateau$jack_bias,
YOneStage_reg_jack$Prealps$jack_bias,Y1_reg_jack$Prealps$jack_bias,
Y2_reg_jack$Prealps$jack_bias, VY3_reg_jack$Prealps$jack_bias,
Y4_reg_jack$Prealps$jack_bias,YOneStage_reg_jack$Alps$jack_bias,
Y1_reg_jack$Alps$jack_bias, Y2_reg_jack$Alps$jack_bias,
Y3_reg_jack$Alps$jack_bias, Y4_reg_jack$Alps$jack_bias,
YOneStage_reg_jack$SouthAlps$jack_bias,Y1l_reg_jack$SouthAlps$jack_bias,
Y2_reg_jack$SouthAlps$jack_bias,Y3_reg_jack$SouthAlps$jack_bias,
Y4_reg_jack$SouthAlps$jack_bias,YOneStage_jack$jack_bias,
Y1_jack$jack_bias, Y2_jack$jack_bias,
Y3_jack$jack_bias, Y4_jack$jack_bias)
,nrow=6,ncol=5,byrow=TRUE)

#input bias in data.frame and name rows/columns

bias_estimates <- as.data.frame(bias_table)

row.names (bias_estimates) <-
c("Jura","Plateau","Prealps","Alps","South Alps","Switzerland")
names (bias_estimates) <-

c("bias(Y0)", "bias(Y1)", "bias(Y2)", "bias(Y3)", "bias(Y4)")

#VIEW BIAS ESTIMATES OF POINT ESTIMATES
print(bias_estimates)

out <- list(point_estimates=point_estimates, standard_errors=standard_errors,
bias_estimates=bias_estimates)
return(out)

}

I
###### The function displays the mean second stage variance component as ######
###### percentage of empirical total variance. 222221
#i##### It is not clear whether running V_Y_x with other estimators than  ###H###
###### Y1 makes any sense since V_x will be fixed according to the definition ##
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HEHHHA R R R R R R

second_stage_percentage_of_total_variance_table <- function(data){
Y1_percent <- V_Y_x(data,Y1)
Y2_percent <- V_Y_x(data,Y2)
Y3_percent <- V_Y_x(data,Y3)

Y1_reg_percent <- by(data, factor(data$REG), V_Y_x, func=Y1)
Y2_reg_percent <- by(data, factor(data$REG), V_Y_x, func=Y2)
Y3_reg_percent <- by(data, factor(data$REG), V_Y_x, func=Y3)

percent_matrix <- matrix(c(
Y1_reg_percent$Jura$second_stage_percentage_of_total_var,
Y2_reg_percent$Jura$second_stage_percentage_of_total_var,
Y3_reg_percent$Jura$second_stage_percentage_of_total_var,
Y1_reg_percent$Plateau$second_stage_percentage_of_total_var,
Y2_reg_percent$Plateau$second_stage_percentage_of_total_var,
Y3_reg_percent$Plateau$second_stage_percentage_of_total_var,
Y1_reg_percent$Prealps$second_stage_percentage_of_total_var,
Y2_reg_percent$Prealps$second_stage_percentage_of_total_var,
Y3_reg_percent$Prealps$second_stage_percentage_of_total_var,
Y1_reg_percent$Alps$second_stage_percentage_of_total_var,
Y2_reg_percent$Alps$second_stage_percentage_of_total_var,
Y3_reg_percent$Alps$second_stage_percentage_of_total_var,
Y1_reg_percent$SouthAlps$second_stage_percentage_of_total_var,
Y2_reg_percent$SouthAlps$second_stage_percentage_of_total_var,
Y3_reg_percent$SouthAlps$second_stage_percentage_of_total_var,
Y1_percent$second_stage_percentage_of_total_var,
Y2_percent$second_stage_percentage_of_total_var,
Y3_percent$second_stage_percentage_of_total_var)

, nrow=6, ncol=3, byrow=TRUE)

#input percents in data.frame and name rows/columns
second_stage_variance_proportion_of_total_variance_table

<- as.data.frame(percent_matrix)

row.names (second_stage_variance_proportion_of_total_variance_table)

<- c¢("Jura","Plateau","Prealps","Alps","South Alps","Switzerland")

names (second_stage_variance_proportion_of_total_variance_table) <- c("Y1i", "y2", "Y3")

#VIEW PERCENT ESTIMATES OF POINT ESTIMATES
print (second_stage_variance_proportion_of_total_variance_table)

out <- list(second_stage_variance_proportion_of_total_variance_table =
second_stage_variance_proportion_of_total_variance_table)

return(out)

}

##H A S S S
### Asymptotic Variance function #Hit#
### NOTE: This function can be used with estimator Y2 #i##

HHHHHAFHHBHHHBRFHHBSH BB HHA SR B F RS H BB R B SH RS R B R
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asy_variance_first <- function(data,func){

m2 <- mean(by(data$J_i,factor(data$PLOT_ID),sum))

# mean number of 2nd stage trees observed per plot
E2Po_x <- exp(-m2)

# Expected value of exp(-sum(Ii(x)*pi))

R_i <- ifelse(is.na(data$R_i), R_i <-0, R_i <- data$R_i)
#Change R_i with NA to O

V2_Y_x <- V_Y_x(data,Y1)

#Return object with average 2nd stage variance

#and first stage variance

R_x_vector <- sum((data$FI)*R_i/data$P_i_2)

#weighted up sum of residuals

Rbar <- mean(R_x_vector)

ER_x_squared <- mean(R_x_vector~2)-V2_Y_x$expected_second_stage_component
asy_var <- (V2_Y_x$first_stage_component

+ (1-E2Po_x)* V2_Y_x$expected_second_stage_component

+ E2Po_x*ER_x_squared

- E2Po_x*Rbar~2) /V2_Y_x$n2

out <- list(asy_var = asy_var, m2 = m2, E2Po_x = E2Po_x)
return(out)

}

B S s

## Second order aymptotic variance calculation for Y2 and Y3 ##
HAHHHAFHHBHHHBRFHHBHH BB FH RS H BB H RSB BB R AR H R R RS H
asy_variance_second <- function(data,func){

m2 <- mean(by(data$J_i,factor(data$PLOT_ID),sum))

# mean number of 2nd stage trees observed per plot

ml <- mean(by(data$I_i,factor(data$PLOT_ID),sum))

# mean number of 1st stage trees observed per plot

E2Po_x <- exp(-m2)

# Expected value of exp(-sum(Ii(x)*pi))

R_i <- ifelse(is.na(data$R_i), R_i <-0, R_i <- data$R_i)

#Change R_i with NA to O

V2_Y_x <- V_Y_x(data,Y1)

#Return object with average 2nd stage variance

#and first stage variance

data$residual <- (data$FI)*data$R_i/data$p_i_2

#temporarily append vector of weighted up residuals

R_x_vector <- by(data$residual,factor(data$PLOT_ID),sum, na.rm=TRUE)
#residual estimate by plot

Rbar <- mean(R_x_vector)

#Average residual estimate

ER_x_squared <- mean(R_x_vector~2)-V2_Y_x$expected_second_stage_component
asy_bias_estimate <- exp(-m2)*Rbar

#first and second order asymptotic bias estimate of Y2 and Y3
asy_var <- (V2_Y_x$first_stage_component + (E2Po_x"2)*(ER_x_squared-Rbar~2)
+ ((1-E2Po_x)"2)*V2_Y_x$expected_second_stage_component

- ((1-E2Po_x)"2)*((1/m2)-(1/m1))*ER_x_squared

+ (1-E2Po_x)*E2Po_x*ER_x_squared) /V2_Y_x$n2

out <- list(asy_var = asy_var, m2 = m2, ml = ml, E2Po_x = E2Po_x,
asy_bias_estimate = asy_bias_estimate)
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return(out)

}

B S s s s S S s s s s s s
## Compare different methods for estimating avg 2nd stage sample size m2 ##
g s
m2_calculator <- function(data){

expected_m2 <- mean(by(data$p_i_2,factor(data$PLOT_ID),sum))

#expected avg number 2nd stage trees per plot

observed_m2 <- mean(by(data$J_i,factor(data$PLOT_ID),sum))

#observed avg number 2nd stage trees per plot

out <- list(expected_m2 = expected_m2, observed_m2 = observed_m2)
return(out)

}

HHHHHR R R R R R R R
## This function outputs a table displaying the relative differences between ##
## variance estimates #it
## 1i.e.comparing var(Y2)-var(Y1l)/var(Yl) and the asymptotic variance estimate ##

HAHHSHBHHAHHEHBHHAFHEHBEHAFHEHBHHEH RS H SRR RS HEFHEH B SR AF R R B HAH R SRR H AR RS H SRR 2
relative_difference_table <- function(data, fun){

asy_var_second_for_fun <- asy_variance_second(data, fun)

asy_var_second_reg_for_fun <- by(data,factor(data$REG), asy_variance_second, func=fun)
fun_reg <- by(data,factor(data$REG),fun)

Y1_reg <- by(data,factor(data$REG),Y1)

fun_tot <- fun(data)

Y1_tot <- Yi(data)

#Relative difference of empirical variance to empirical variance
empirical_improvement_fun <-

round (matrix(c((fun_reg$Jura$density_var-Y1_reg$Jura$density_var)
/Y1_reg$Jura$density_var,
(fun_reg$Plateau$density_var-Y1_reg$Plateau$density_var)/Y1_reg$Plateau$density_var,
(fun_reg$Prealps$density_var-Y1_reg$Prealps$density_var)/Y1_reg$Prealps$density_var,
(fun_reg$Alps$density_var-Y1_reg$Alps$density_var)/Y1_reg$Alps$density_var,
(fun_reg$SouthAlps$density_var-Y1_reg$SouthAlps$density_var)
/Y1_reg$SouthAlps$density_var,
(fun_tot$density_var-Y1_tot$density_var)/Y1_tot$density_var)

,nrow=6,ncol=1),4)

#Relative difference of asymptotic variance (23) to empirical variance
estimate_improvement_fun <-
round(matrix(c((asy_var_second_reg_for_fun$Jura$asy_var-Y1_reg$Jura$density_var)
/Y1_reg$Jura$density_var,
(asy_var_second_reg_for_fun$Plateau$asy_var-Y1_reg$Plateau$density_var)
/Y1_reg$Plateau$density_var,
(asy_var_second_reg_for_fun$Prealps$asy_var-Y1_reg$Prealps$density_var)
/Y1_reg$Prealps$density_var,
(asy_var_second_reg_for_fun$Alps$asy_var-Y1_reg$Alps$density_var)
/Y1_reg$Alps$density_var,
(asy_var_second_reg_for_fun$SouthAlps$asy_var-Y1_reg$SouthAlps$density_var)
/Y1_reg$SouthAlps$density_var,
(asy_var_second_for_fun$asy_var-Y1_tot$density_var)/Y1_tot$density_var)
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,nrow=6,ncol=1) ,4)

#Table of Relative Differences

rel_difference_fun <- as.data.frame(cbind(estimate_improvement_fun,
empirical_improvement_fun))

names (rel_difference_fun) <- list("estimated","empirical")

row.names (rel_difference_fun) <- list("JU","SP","PA","AL","SA","CH")
rel_difference_fun

}

R
#Intermediary function for Ix_0O function used to find no 2ns stage trees exist in Plot #
i g g g S s s s s s T
ind_prod <- function(d){

prod(d$Ix)

}

i g g g s s s
## This function returns a percentage of plots with no 2nd stage selected in data file ##
B g g g g G e g
Ix_0 <- function(data){

test_dat2 <- datal,c(1,8)]

test_dat2$Ix <- ifelse(is.na(test_dat2$wV),1,0)

#if NA then 1, if number then O

ind <- by(test_dat2,factor(test_dat2$PLOT_ID),ind_prod)
table(ind==1) [2]/ (table(ind==1) [1]+table(ind==1) [2])
#True means all WV values are NA in given plot

}

g L g g s s
## Combined with a by statement the following two functions ##
## calculate stabilization factors for Y2 and Y3 ##

HEFHHAFHH AR HH B HHASH BB H RS H B HH RS H RS RS HH RS R R
stabilizing_factor2 <- function(data){

stab_fact <-(sum(data$p_i_2)/sum(data$J_i))

stab_fact [stab_fact==Inf]<-0

stab_fact

}

stabilizing_ factor3 <- function(data){

stab_fact <-(sum(data$I_i)/(sum((data$I_ixdata$J_i)/data$p_i_2)))
stab_fact [stab_fact==Inf]<-0

stab_fact

¥

stabilizing_factor_pooled <- function(data){
stab_fact <-(sum(data$T_ixdata$p_i_2)/sum(data$S_i))
stab_fact[stab_fact==Inf]<-0

stab_fact

}

#Average expected 2nd stage sample size over Average observed 2nd stage sample
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compare2ndstagesamples <- function(data){

reg <- by(data, factor(data$REG), m2_calculator)

JU <- reg$Jura$expected_m2 / reg$Jura$observed_m2

SP <- reg$Plateau$expected_m2 / reg$Plateau$observed_m?2

PA <- reg$Prealps$expected_m2 / reg$Prealps$observed_m2

AL <- reg$Alps$expected_m2 / reg$Alps$observed_m2

SA <- reg$SouthAlps$expected_m2 / reg$SouthAlps$observed_m2

CH <- m2_calculator(data)$expected_m2 / m2_calculator(data)$observed_m2
c(JU,SP,PA,AL,SA,CH)

}

HEHH
# #
# et A #
# # FUNCTIONS section ends #### #
# R #
# #
HEHH

HEHHHH B H B R AR R R R
H#kokokokokokokokokokok sk okokokosk ok ok ok sk ok ok skok ok kok sk okokok sk sk ok ok sk sk okokok sk skokokskokokockok sk kokokskkokok ok #
H#okokokokokoskokokokokokskokok ok sk ok ok sk ook ok sk ok ok ok koo ok sk sk ok kok sk okokok sk okokok sk skokokokskokkok sk kokokok - #
H#kokokokokokokokok ok ok okok ok sk ok ok sk ok ook sk ok ok sk okokokosk sk ok kok sk okokok sk skokokskskokokokskokokokokkokokok -
HHHHHAFHHBHHHRRFHHRHH BB HRA SRR H RS R B H RS H RS H R RS H RS

HERHHHHHH R R R R
## Start Section: LOAD DATA SET AND CREATE VARIABLES ##
HHH R R R R

#Master Data Set
SNFI3 <- read.csv2("/Users/alexandermassey/Desktop/Masters Thesis/1fi3.txt",
dec=".", strip.white=TRUE)

#Designation for Master Data Set with numerical variable codes
NUMERIC_SNFI3 <- read.csv2("/Users/alexandermassey/Desktop/Masters Thesis/1fi3.txt",
dec=".", strip.white=TRUE)

#Numeric region variable for color coding plots
SNFI3$NUM_REG <- NUMERIC_SNFI3$REG

#Data set containing the X, Y coordinates for each PLOT_ID
COORDINATES <- read.csv2("/Users/alexandermassey/Desktop/Masters Thesis/koordinaten.txt",
dec=".", strip.white=TRUE)

#Dump coordinates for plots unused in SNFI3

COORDINATES <- COORDINATES[COORDINATES$PLOT_ID %in% SNFI3$PLOT_ID,]
SNFI3$X <- NA

SNFI3$Y <- NA
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#second_stage_tree_counter vector counts how many trees are in each plot
second_stage_tree_counter <- by(SNFI3[order (SNFI3$PLOT_ID),],factor (SNFI3$PLOT_ID) ,nrow)
COORD_SORT <- COORDINATES [order (COORDINATES$PLOT_ID),]

#Create matching lengthed coordinate variable
X_Coord_sorted <- rep(COORD_SORT$X, second_stage_tree_counter)
Y_Coord_sorted <- rep(COORD_SORT$Y, second_stage_tree_counter)

#Add Coordinates to SNFI3
SNFI3[order (SNFI3$PLOT_ID),]$X <- X_Coord_sorted
SNFI3[order (SNFI3$PLOT_ID),]$Y <- Y_Coord_sorted

SNFI3$PLOT_ID <- as.factor (SNFI3$PLOT_ID)
SNFI3$REG <- as.factor (SNFI3$REG)
SNFI3$H <- as.numeric(SNFI3$H)
SNFI3$ST <- as.factor (SNFI3$ST)
SNFI3$SPEC <- as.factor (SNFI3$SPEC)
SNFI3$SG <- as.factor (SNFI3$SG)
SNFI3$D13 <- as.numeric(SNFI3$D13)
SNFI3$WV <- as.numeric (SNFI3$WV)
SNFI3$VMRD <- as.numeric(SNFI3$VMRD)
SNFI3$FI <- as.numeric(SNFI3$FI)
SNFI3$VPPS <- as.numeric(SNFI3$VPPS)

#Assign Levels

levels(SNFI3$REG) <- c("Jura", "Plateau", "Prealps", "Alps", "SouthAlps")
levels (SNFI3$SPEC) <-

c("Spruce","Fir","Pine","Larch","Pinus cembra","other conifers","beech","aple",
"ash","oak","chestnut","other deciduous trees")

levels(SNFI3$SG) <- c("deciduous", "conifer")

str (SNFI3)
### NEW VARIABLE CREATION ###

#Create Residual Variable
SNFI3$R_i <- SNFI3$WV - SNFI3$VMRD

#Create 1nd stage indicator variable
SNFI3$I_i <- rep(l,nrow(SNFI3))

#Create 1nd stage count variable for pooled estimate (equal to I_i in systematic sampling)
SNFI3$T_i <- SNFI3$I_i

#Create 2nd stage indicator variable
SNFI3$J_i <- ifelse(is.na(SNFI3$R_1i),0,1)

#Create 2nd stage count variable for pooled est (equal to J_i in syst sampling)
SNFI3$S_i <- SNFI3$J_i
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#Create 2nd stage inclusion probability p_i
SNFI3$p_i <- (SNFI3$R_1i)/SNFI3$VPPS

SNFI3$p_i_measurable <- 0.91

SNFI3$p_i_selection <- ifelse(0.000015%(SNFI3$D13"2)*SNFI3$FI >= 1,
SNFI3$p_i_selection <- 1,
SNFI3$p_i_selection <- 0.000015%(SNFI3$D13°2)*SNFI3$FI)

SNFI3$p_i_sector <- ifelse(SNFI3$D13 < 60, SNFI3$p_i_sector <- 150/400, 1)

#Create 2nd stage inclusion probability p_i
SNFI3$p_i <- (SNFI3$R_1i)/SNFI3$VPPS

# THIS IS THE GO-TO variable for the 2nd stage prob because it is defined for all trees
SNFI3$p_i_2 <- SNFI3$p_i_selection*SNFI3$p_i_measurable*SNFI3$p_i_sector

#SORT SNFI3 BY REGION AND THEN PLOT_ID
ii <- order (SNFI3$REG, SNFI3$PLOT_ID)
SNFI3 <- SNFI3[ii,]

NUMERIC_SNFI3 <- NUMERIC_SNFI3[ii,]

#Create Region Subfiles

Jura <- SNFI3[SNFI3$REG=="Jura",]

Plateau <- SNFI3[SNFI3$REG=="Plateau",]
Prealps <- SNFI3[SNFI3$REG=="Prealps",]
Alps <- SNFI3[SNFI3$REG=="Alps",]

SouthAlps <- SNFI3[SNFI3$REG=="SouthAlps",]

#Create Subsamples files of SNFI3 that preserve geographic structure
#NOTE: If X coordinate / 1000 is odd then Y/1000 is even and vice versa

SNFI3_X <- (SNFI3['duplicated(SNFI3$X),]1$X / 1000) #List of all X coordinates
SNFI3_Y <- (SNFI3['duplicated(SNFI3$Y),]1$Y / 1000) #List of all Y coordinates

SNFI3_X <- SNFI3_X[order(SNFI3_X)] #0rder X Coordinates
SNFI3_Y <- SNFI3_Y[order(SNFI3_Y)] #0rder Y Coordinates

#H##

#Select every other even X Coordinate (74.33}, of original SNFI3 sample)
SNFI3_Every_4th <- (SNFI3$X / 1000) %in) SNFI3_X[as.logical(SNFI3_X %} 4)]
SNFI3_3Quarter_sample <- SNFI3[SNFI3_Every_4th,]
length(SNFI3_3Quarter_sample$PLOT_ID)/length (SNFI3$PLOT_ID)

# percentage of original plots

#H##

#Select even X Coordinates (corresponds to 48.47% of original SNFI3 sample)
SNFI3_Every_2nd <- (SNFI3$X / 1000) %in% SNFI3_X[as.logical(SNFI3_X %% 2)]
SNFI3_half_sample <- SNFI3[SNFI3_Every_2nd,]
length(SNFI3_half_sample$PLOT_ID)/length(SNFI3$PLOT_ID) # percentage of original plots
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#H##

#Select every other Y Coordinate from SNFI3_half_sample (24.94799% of sample)
SNFI3_half_sample_Y <- (SNFI3_half_sample[!duplicated(SNFI3_half_sample$Y),1$Y / 1000)
#List Y coord of half_sample

SNFI3_half_sample_Y <- SNFI3_half_sample_Y[order (SNFI3_half_sample_Y)]

#0rder Y Coordinates

SNFI3_half_half <-

(SNFI3_half_sample$Y / 1000)

%ind

SNFI3_half_sample_Y[seq(from = 1, to = length(SNFI3_half_sample_Y), by = 2)]
SNFI3_half_half_sample <- SNFI3_half_sample[SNFI3_half_half,]
length(SNFI3_half_half_sample$PLOT_ID)/length(SNFI3$PLOT_ID) # percentage of original plots

###

#Select every other X Coordinate from SNFI3_half_half_sample (0.1269252) of sample)
SNFI3_half_half_sample_X <-
(SNFI3_half_half_sample[!duplicated(SNFI3_half_half_sample$X),]1$X / 1000)

#List X coord of half_half_sample

SNFI3_half_half_sample_X <- SNFI3_half_half_sample_X[order (SNFI3_half_half_sample_X)]
#0rder Y Coordinates

SNFI3_one_eighth <-

(SNFI3_half_half_sample$X / 1000)

hin%

SNFI3_half_half_sample_X[seq(from = 1, to = length(SNFI3_half_half_sample_X), by = 2)]
SNFI3_one_eighth_sample <- SNFI3_half_half_sample[SNFI3_one_eighth,]
length(SNFI3_one_eighth_sample$PLOT_ID)/length (SNFI3$PLOT_ID) # percentage of original plots

H###

#Select every other Y Coordinate from SNFI3_one_eighth_sample (0.06375292% of sample)
SNFI3_one_eighth_sample_ Y <-

(SNFI3_one_eighth_sample[!duplicated (SNFI3_one_eighth_sample$Y),1$Y / 1000)

#List Y coord of one_eighth_sample

SNFI3_one_eighth_sample_Y <- SNFI3_one_eighth_sample_Y[order (SNFI3_one_eighth_sample_Y)]
#0rder Y Coordinates

SNFI3_one_sixteenth <-

(SNFI3_one_eighth_sample$Y / 1000)

hind,

SNFI3_one_eighth_sample_Y[seq(from = 1, to = length(SNFI3_one_eighth_sample_X), by = 2)]
SNFI3_one_sixteenth_sample <- SNFI3_one_eighth_sample[SNFI3_one_sixteenth,]
length(SNFI3_one_sixteenth_sample$PLOT_ID)/length (SNFI3$PLOT_ID)

# percentage of original plots

HERHHHHH R R R R
## End Section: LOAD DATA SET AND CREATE VARIABLES ##
B S S s R
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