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Abstract

In recent years, Internet usage has changed dramatically. The bandwidth of Internet connec-
tions offered by Internet Service Providers (ISPs) as well as the number of households with
a broadband connection has grown rapidly. Based on this development, large ISPs already
foresee high-definition (HD) media with high bit rates becoming the predominant format for
media streaming in the near future. Compared to standard definition this causes about a 10
times higher bit rate. Additionally, there is a new trend in disseminating the content: instead
of streaming it by broadcast after a fixed schedule, it is expected that in the near future the
more flexible video on demand, which requires one separate unicast stream per user, will be
the predominant way. As a result, the aggregate throughput on the server side will increase
dramatically and will challenge the server infrastructure. Our experiments show that conven-
tional stream dissemination methods such as RTP over UDP or HTTP over TCP result in
high server load due to excessive local data copy operations, context switching and interrupt
processing overhead.
This work presents a new approach based on zero-copy protocol stack implementations in
software as well as using dedicated RDMA hardware. Performance experiments indicate that
these optimizations allow servers to scale better and remove most of the overheads caused by
current approaches.
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Kurzfassung

In den letzten Jahren hat sich die Nutzung des Internets stark verändert. Sowohl die Anzahl
Haushalte mit einem Breitbandinternetanschluss als auch die Bandbreite, welche die Internet
Service Provider (ISP) ihren Kunden anbieten, ist stark gewachsen. Aufgrund dieser Entwi-
cklung gehen grosse ISPs davon aus, dass High-Definition (HD) Media mit hoher Bitrate in
naher Zukunft das vorherrschende Format für Media-Streaming sein wird. Verglichen mit
Standard-Definition (SD) führt dies zu einer ca. 10-fach höheren Bitrate. Zusätzlich gibt es
einen neuen Trend in der Art wie Inhalte verbreitet werden: Anstatt sie per Broadcast nach
einem festen Zeitplan zu senden, wird erwartet, dass schon bald das flexiblere Video on De-
mand, welches einen separaten Unicast-Stream pro Nutzer benötigt, die beliebtere Variante
sein wird. Die Folge wird eine enorme Erhöhung des gesamten Datendurchsatzes auf Server-
Seite sein, was eine ernst zu nehmende Herausforderung für die Serverinfrastruktur darstellt.
Unsere Experimente zeigen, dass konventionelle Streaming-Methoden wie RTP über UDP
oder HTTP über TCP hohe Serverlast, hervorgerufen durch mehrfaches redundantes Kopie-
ren von Daten, Context Switches und Interrupt-Processing Overhead, verursachen.
Diese Arbeit präsentiert einen neuen Ansatz basierend auf zerocopy Protokoll-Stack Imple-
mentationen in Software und dedizierter Hardware. Performance Tests zeigen, dass mit die-
sen Optimierungen die Server besser skalieren und die meisten Overheads von heutigen Sys-
temen eliminiert werden.
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1
Introduction

1.1 Motivation

Since 2002, the number of households accessing the Internet through broadband connec-
tions has increased by roughly 7 millions every year (USA only). By December 2008, about
23.5% of the world’s population was connected to the Internet. Not only the number of users
increases rapidly but also the bandwidth offered by Internet Service Providers (ISPs) [34].
Driven by this development the bit rate of video streams is constantly increasing. According
to Comcast [39], the largest cable television company and second largest ISP in the United
States, the next step in the evolution of the Internet will be a shift from standard-definition
(SD) towards high-definition (HD) media content with an improved media quality which re-
quires about 10 times higher data rates.
Furthermore, Comcast predicts a new trend in video dissemination from broadcast to unicast
requiring one stream per user instead of one stream per video. Various video on demand
platforms providing a wide range of videos have become popular. E.g. YouTube which pro-
vides short clips with rather low bit rate or Hulu.com providing movies in higher resolutions.
Unicast streaming as well as video-on-demand over the Internet is typically offered either
over the connectionless UDP transport with the Real-time Transport Protocol (RTP [40]) on
top or over the widely used Hypertext Transport Protocol (HTTP [8]) which is based on the
connection-oriented TCP transport. The TCP protocol needs several data copies on its way
through the protocol stack from the application memory until it is finally sent over the net-
work. Experiments of a research group from the Intel Corporation with 1 Gbps Ethernet links
presented in [16] suggest that the 1 GHz / Gbps rule of thumb is still valid, which means that
1bps of network link requires 1Hz of CPU processing. Our experiments show that a 10 Gbps
link can be saturated with TCP only under high CPU load. The bandwidth can not be fully
saturated when the standard system settings are used.
Therefore, it is desirable to have a more efficient way to stream HD media. The RDMA pro-
tocol is especially designed for minimal demands on memory bus bandwidth and CPU pro-
cessing overhead during data transfers. iWARP is a standardized protocol stack of the RDMA
protocol for Ethernet. RDMA not only solves performance problems, but it also offers one-
sided operations allowing for the design of a communication model with a fundamentally
different new semantic. This work will present a new approach based on zero-copy protocol
stack implementations in software as well as using dedicated RDMA hardware. Performance
experiments indicate that these optimizations allow servers to scale better and remove most
of the overheads caused by current approaches.
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2 1.2. GOAL AND SCOPE

1.2 Goal and Scope

The goal of this master thesis is to answer the following questions: Is iWARP/RDMA suitable
for implementing a High Definition Video on Demand service? And how does an iWARP-
based system scale compared to current systems?
It analyzes the suitability of iWARP as a transport for High Definition VoD using unicast.
High Definition videos pose serious requirements to traditional streaming systems:
First, the data throughput must be large enough to serve the clients with a massively increased
bit rate compared to standard definition streaming. Second low latency and high responsive-
ness must be supported for convenient media control.
For this reason, the work focuses on analyzing the existing streaming systems, comparing
them with detailed performance measurements and exploring how an iWARP enabled strea-
ming system can be implemented. Subsequently, a fully functional iWARP-based streaming
system offering VCR-like media control will be compared to traditional systems. It is as-
sumed that the video data is already encoded in the memory and that there is either enough
memory available to store all video data or an appropriate caching algorithm is used to pro-
vide the required data.

1.3 Structure of the Thesis

First, some background information about RDMA, zerocopy mechanisms and video strea-
ming related subjects is given in chapter 2. Related work from other research projects is
summarized in chapter 3. Next, in chapter 4, a detailed evaluation based on experimental
results of the performance of traditional streaming systems is given and it is shown why they
are inadequate for HD VoD.
Based on these findings and the RDMA background, the benefits RDMA offers are analyzed
and a RDMA based protocol is proposed in chapter 5. In the same chapter the implementa-
tion of the protocol is compared through extensive experiments to the previously discussed
systems. Finally the 6th chapter gives an outlook about what is to come and discusses future
work.



2
Background

2.1 RDMA

In order to understand the new possibilities offered by RDMA, we give a short introduction
to the basics. The main purpose of RDMA is to address the issue of network I/O in high
speed networks which causes significant overhead of host processing. This is referred to as
the I/O bottleneck. As we will see later on in the performance measurements, it turns out
that not only local data copies, but also TCP/IP processing consume a considerable amount
of system resources when large amounts of data are transmitted (an estimate can be seen in
Figure 2.1). Looking at the procedures involved in receiving and sending data with TCP the

Zurich Research Laboratory

© 2007 IBM Corporation4 Philip Frey 2/25/2009

I/O Bottleneck
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Figure 2.1: I/O Bottleneck

high processing overhead can be explained as follows: When data is received with TCP, first,
it is copied from the NIC to the socket buffer pool via DMA. From there it is copied again
within the kernel space with the CPU while processing the TCP/IP stack. Finally, it is copied
into the application memory (user space) also via the CPU. After all, there are three copies
involved and two of them are done by the CPU.
As depicted in Figure 2.2 sending data stored on the disk involves even more overhead: The
data is copied from the disk through a temporary kernel buffer into a user buffer; then it
is copied back into another kernel buffer; and finally it is copied to the network interface
card (NIC). Overall the process involves 2 DMA copies, 2 CPU copies and several context
switches. With RDMA in contrast data on the disk must only be copied once into the main
memory. Afterwards, RDMA allows fetching data directly from local memory and placing it
into the application memory of a remote host, without involving the operating system. This
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Figure 2.2: I/O Bottleneck - TCP copies

is typically performed by a specialized RDMA enabled NIC (RNIC).
With this mechanism, the CPU load, the end-to-end latency and the memory bus load is
reduced significantly due to the elimination of redundant copy operations. Especially with a
network bandwidth of 10 Gbit/s this can result in considerable performance enhancements as
shown in [17].

2.1.1 RDMA Operations

Besides mechanisms for data transmission with less CPU load, RDMA gives also a new
communication semantic. Additional to the RDMA Send and Receive which have only little
differences to the traditional send() / receive() operations, it provides the two so called
one-sided operations RDMA Write and RDMA Read. Send and Receive are similar to the
Socket API, but allow for multiple outstanding operations. The one-sided operations restrict
application involvement to the side issuing the Write or Read operation. At the remote host,
the data transfer is handled completely by the RNIC, fetching or placing the data with Direct
Memory Access (DMA) and thus without involving the OS or the application. As a result, the
data transfer is executed asynchronously which is key to enhance application performance.
A further difference between the RDMA operations and the traditional operations is that
RDMA does not create a continuous data stream. With TCP you can simply read an arbitrary
amount of data from the socket and process it as long as the server keeps sending data. With
RDMA the Receive operations must know how big the incoming data chunk will be at most.
Otherwise, the connection will terminate with an error. RDMA Read/Write do not allow
a continuous stream either. The reading/writing host has to specify a read/write size. The
data does not necessarily arrive in order at the data sink. This is why it should wait until
the whole operation is completed before it begins to read the data from the memory. This
means you either have to issue many data transmissions of small size to simulate a continuous
stream, which could defeat the performance advantage of RDMA or you issue few bigger
data transmissions which could pose a problem for a streaming solution. This problem will
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be discussed in detail later on in section 5.2.3.

2.1.2 Memory Management

To use RDMA and profit from its performance increase, a RDMA enabled Network Interface
Card is required. It is accessed over the RNIC Interface (RI), specified in [20]. The RNIC
has to be able to read data directly out of the application memory. A special mechanism is
required to specify areas in the application memory which an RNIC can access: The me-
mory regions (MR). A MR describes a set of locations in the main memory represented by a
Physical Buffer List (PBL) which has been registered at the RNIC. The MR is identified by
a STag, a base Tagged Offset (TO) and a length. It can be assigned different access rights
such as local read/write and remote read/write. Registered MRs are pinned into the main me-
mory which prevents the OS from swapping it out on the disc. This is necessary to have the
data instantaneously available for the RNIC and to prevent data corruptions due to reading a
memory location which is currently swapped out.

2.1.3 Queue Pairs

In order to interact with a RDMA Stream, a queue pair is needed. It consists of a send and
a receive work queue and a posting mechanism to submit RDMA operations to the RI. The
RDMA Stream can only be accessed over the QP. The send and receive queue store Work
Queue Elements which describe RDMA operations as introduced in 2.1.1. WQEs can be
posted by submitting Work Requests to the QP. Before data transmission is possible the QP
must be set with the appropriate connection setup (described in 2.1.6) to the RTS state (ready
to send). If an error is generated the QP will terminate the connection and go back to the idle
state.

2.1.4 Protection Domain

Since a data transfer coming from a QP may only be placed into a memory region associated
with the QP, it is necessary to have a mechanism to track these associations. The Protection
Domain (PD) is dedicated for this purpose. When creating a memory region or QP a Pro-
tection Domain Identifier (PD ID) must be specified. When a data transfer takes place, the
RNIC can validate the PD ID of the memory region, which the Steering Tag (STag) refers to
against the PD ID of the QP.

2.1.5 Completion Queue

The purpose of the completion queue (CQ) is to indicate the status of posted work requests
upon completion. A work request can either be signaled or unsignaled. Signaled work re-
quests create upon completion a work completion (WC), which contains information about
the status (e.g. success, error) of the completed WR. The completion queue consists of entries
to hold this WCs. When a WC is added to the CQ an event can be triggered to inform the
application.
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2.1.6 Connection Management

In order to initialize a RDMA connection the transport connection has to be established first.
The passive host acting as server has to create an event channel and a connection ID. After-
wards, the RDMA ID has to be bound to the source address, before it can listen for incoming
connections. After having received an inbound connection request, the server creates a PD
and a completion channel for completed work requests. After this, the CQ and QP for the
connection can be created. At this point, the RDMA connection can be accepted. It is im-
portant that the client cannot send a connection request before the server is in this state. Any
connection request would result in an error on the client side.
The active host taking the role of the client also has to create an event channel and a connec-
tion ID. Afterwards, the server address and route must be resolved. Finally, the PD, CQ and
QP have to be created. At this point the client can connect to the server.
Contrary to socket communication the active host (client) must wait until it received at least
one RDMA message from the passive host. Otherwise, the host could go into the error state.
Any error results in a termination of the connection. It is also important to notice that posted
RDMA work requests must be completed and cannot be discarded without a transition to the
error state which leads again to the tear down of the connection. These restrictions will be-
come important while designing the communication protocol later on.
The RDMA connection setup is much more complex than setting up a traditional TCP connec-
tion and thus takes more time.

2.1.7 iWARP

The RDMA protocol to be used in Ethernet networks is provided by the Internet Engineering
Task Force (IETF) through the Internet Wide Area RDMA Protocol (iWARP). As can be seen
in Figure 2.3 the iWARP stack contains 3 protocols: RDMAP over DDP on top of MPA/TCP
or on top of SCTP. An important component is the Data Direct Placement Protocol (DDP)
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Figure 2.3: The iWARP protocol stack

[33], which provides information to place incoming data directly into the main memory. On
top of DDP there is the RDMA protocol (RDMAP) [37] which enables the RDMA Read and
Write operations. For the data transmission itself usually the MPA (Message PDU Aligned)
[11] in combination with the Transport Control Protocol (TCP) is used. It is also possible to
replace MPA/TCP with Stream Control Transmission Protocol (SCTP) [31]. As stated in [38]



CHAPTER 2. BACKGROUND 7

SCTP is the better architectural choice since SCTP has frames and RDMA requires frames,
but TCP is byte oriented. However, TCP is more widely deployed and RDMA protocols can
be added to TOE NICs more easily.
Several implementations of the iWARP protocol are available for Microsoft Windows and Li-
nux operating systems. An implementation for Linux offered by the OpenFabrics Enterprise
Distribution (OFED) [3] is used in this thesis.

2.2 Sendfile

Besides RDMA there is another way to reduce the data copies and CPU load on the sen-
ding host: The Linux system call sendfile(). It is offered by the Linux kernel since
version 2.1. In contrast to read()/write(), it allows the data to be sent directly from the
temporary kernel buffer onto the network. Since a modern NIC is equipped with a DMA en-
gine (like the Chelsio T3 adapter which is used later on in the experiments), the CPU copies
are avoided altogether. Furthermore, the number of context switches and necessary system
calls are reduced. The Apache HTTP web server can directly apply this mechanism to re-
duce the CPU load and improve scalability. Figure 2.4 shows the procedures involved in a
sendfile() call, assuming the NIC has got a DMA engine (which is realistic for 10 Gbps
NICs). First, the content of the file is copied via DMA from the hard disk into a kernel buffer.
Descriptors pointing to the kernel buffers containing the data to be sent are appended to the
socket buffer. Another DMA copy writes the data into the kernel buffer of the protocol engine
which finally sends the data over the network. Although still two copies are involved none of
them is executed by the CPU.

user

kernel

kernel buf

NIC

socket buf

hard drive

DMA copy

user

kernel

sendfile()

append descriptors

DMA copy

Figure 2.4: Sendfile zerocopy mechanism
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2.3 Network Processing and NAPI

To understand better the results presented later, some information about network processing
is helpful to interpret them correctly.
[25] describes the Linux interrupt handling mechanism as follows: When the network card
receives data, an interrupt is generated. The kernel asynchronously executes an interrupt
handler. In Linux kernel 2.4 the handler pulls the packet descriptors and enqueues them in
a backlog queue. Afterwards, a soft interrupt (softirq) is raised and the execution of the
remaining processing is done at the next available opportunity. The softirq handler dequeues
the packets from the backlog and takes appropriate action.
With the Linux kernel 2.6, the one used in the experiments presented later, a new mechanism
is introduced which aims at reducing the latency and packet/interrupt ratio. It eliminates
the backlog queue. Instead, a reference to the device is put into a poll-list attached to the
interrupted CPU, a softirq is scheduled and the interrupt reception disabled. The softirq
handler polls all devices registered in the poll-list to get the packets until a quota is reached.
If that happens and the device has still packets to offer, it is put at the end of the poll-list. If
the device has no more packets it is taken off the poll-list and allowed to interrupt again. This
leads to an interrupt driven system under low load, when the kernel has time to process the
packets until the next arrive. Under heavy load devices are polled and interrupts disabled. As
shown later with the experiments this can lead to an unintuitive development of the interrupt
rate where fewer interrupts are measured although the network load is increasing.

2.4 Codecs

To be able to stream a media file, an appropriate codec is needed. Not all of them are equally
suitable for HD video streaming. Since this work does not focus on codec specific details, it
is not important to look at codec details. However an appropriate codec has to be chosen to
obtain meaningful results from the experiments. In this work Quicktime H.264/AVC codec
standard implementation in a mov-container will be used. As described in [42] H.264 is an
advancement of the well known MPEG2 (which can also be used for SD and HD encoding)
and H.263 video compression standards aiming at higher coding efficiency. H.264 codecs
are widely used for streaming High Definition Media over the Internet and it is a mandatory
codec for Blu-Ray Players [9]. Videos compressed with H.264 can easily be streamed with
the prevalent media servers. Most of the streaming clients are able to decode it. With its
different profiles it supports a wide variety of bit rates, which is important to analyze the
impact of this factor on the streaming performance. It has a maximal data rate of 10 Mbps
for 420p and ”Baseline Profile” with 30 fps (frames per second) and up to 50 Mbps for 1080p
and ”High Profile” with 60 fps (explained in [42]). The average rate is usually about a factor
of 2-3 smaller. Other codecs for HD media like On2’s VP8 [30] focus on higher compression
resulting in lower image quality with a data rate of usually about 1-5 Mbps for a 1080p
movie. BBC’s Dirac [7] and Microsoft’s VC-1 [21] video compression would also allow
high bit rate streaming in HD resolution. Because the H.264 video compression standard is
more established [32] it is considered to be most appropriate for the experiments with the
predominant media streaming systems.
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2.5 Streaming Protocols

Typically Video on Demand uses either the connectionless User Datagram Protocol (UDP) as
transport protocol in combination with the Real Time Transport Protocol (RTP) or the widely
used Hypertext Transport Protocol (HTTP) on top of the connection-oriented TCP transport.

2.5.1 RTSP/RTP on top of UDP

RTP defines a standardized packet format for delivering audio and video over the Internet.
Most commonly UDP is used to transport the RTP payload. Although it is possible to have
TCP as underlying protocol, it is rarely used. Since UDP is non-reliable, RTP is used in
combination with the Real Time Control Protocol (RTCP). RTCP adds a feedback channel
to the stream, which monitors the data transmission and carries out-of-band control infor-
mation. For VoD the user has to be able to remotely control the media streaming through
operations like seeking, pause/resume. This is taken care of by the Real Time Streaming Pro-
tocol (RTSP).
Since RTP was designed with the focus on streaming media and other real-time data, it seems
like a good choice for VoD. With the use of UDP, unnecessary retransmissions of data are
avoided. Missing parts can be skipped directly instead of having to stop the media stream and
wait for the retransmissions. However it is important to notice that opposed to Live Strea-
ming, with VoD it is often more desirable to wait a few seconds if data is missing and see the
whole movie instead of skipping parts of the video in order to avoid waiting times.

2.5.2 HTTP on top of TCP

In VoD it can be desirable to have retransmissions with highly compressed media where the
loss of a key frame can cause severe playback disruption. For this reason TCP may be a
good choice as transport protocol. Streaming media over HTTP assures good interoperability
and server efficiency (as later experiments will show). E.g. YouTube as the leading video
platform in the Internet (according to a survey of comScore [10]) uses HTTP-based video
dissemination. Even though HTTP was designed for document exchange which seems to be
contrary to a continuous stream, it offers some convincing advantages:
First of all, no special software is needed; any state-of-the art web browser will do. Fur-

thermore, HTTP port 80 is allowed on most firewalls whereas other ports potentially used by
RTP are often blocked.
The play, pause and seek requests provided by RTSP to remotely control the media server
can be simulated (as shown in figure 2.5) with HTTP by stopping to read data from the TCP
buffer and thus delaying TCP window updates. This causes the sender to stall the stream.
For short stops the stream can be cached locally. Seeking can be done by converting the time
offset within the movie to a byte offset and requesting the according byte range. In the RTSP
case the server will do this conversion to send the requested data to the client. In the HTTP
case, the client has to do it.
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GET /foo.mov
Range: bytes=offset-

206 Partial Content

Client Server

ACK

ACK
window=0

send()

send()

window=n

send()

send()

PAUSE

Figure 2.5: HTTP VoD

Server Platform RTSP/RTP/ RTSP/RTP/ HTTP
UDP TCP

Quicktime Streaming Server Mac yes yes noa

Darwin Streaming Server Linux yes yes noa

VideoLAN Linux/Windows/Mac yes no yesb

Apache Web Server Linux/Windows/Mac no no yes
Adobe Flash Media Server Linux/Windows noc no yes
RealNetworks Helix Server Linux yes yes yes

Table 2.1: Video Servers - Supported Platforms and Protocols
aRTSP/RTP over TCP can be bound on port 80. Apple describes this with HTTP streaming.
bVLC does not support VoD using HTTP. Only one to one streaming is supported over the HTTP protocol
cRTMP/RTP/UDP is supported instead.

2.6 Video Streaming Servers

Today’s prevalent media servers specialized in streaming media are Apples Quicktime Strea-
ming Server for Mac OS X [6] / Darwin Streaming Server [5] for Linux (both sharing the
same code base), VideoLANs VLC [1], RealNetworks Real Server / Helix Server [36]. An
overview of the servers is given in 2.1

In this thesis experiments are performed on a Linux Operating system, which excludes
the Quicktime Streaming Server from the tests. The Helix Server is not applicable due to
its restriction to the Real Networks own video file formats (.rm, .ra, .rv). The Adobe Media
server is restricted on its own flv video-format and thus not considered for the experiments.
The Apache HTTP Server, which is the de facto standard, is used to test the HTTP strea-
ming performance. The VLC server and DSS serve as media sources for RTSP/RTP video
dissemination.
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2.7 TCP Throughput Limitations

In the introduction it was mentioned that the 1 GHz per Gbps rule is still appropriate for
1 Gbps networks. Before we start looking at real video streaming systems, it is good to
know what throughput is possible with TCP. For this reason, experiments measuring the TCP
throughput between two BladeServers with 2.3 GHz quad core CPUs connected through 10
Gbit/s network are performed. More details on the test bed are provided in section 4.1.
In a first experiment 2 GB main memory are allocated on a BladeServer and continuously
sent over the network to the second BladeServer. The sending host executes the send()
operation in a loop until the whole 2 GB are transmitted. The receiving host counts the amount
of data received and discards it afterwards. In the standard setting the TCP NODELAY option
is activated which means that the Nagle algorithm [27] is deactivated. If packets smaller than
the TCP Maximum Segment Size (MSS) are being sent, the Nagle algorithm would send them
only if all previously transmitted packets have been acknowledged. Otherwise it optimizes
throughput by sending several smaller ones as one packet. The TCP NODELAY option is
deactivated to ensure valid results for throughput measurements with small packet sizes. The
SO SNDBUF is set on 28416 Bytes and the SO RCVBUF on 87380 bytes per default. The
size of the application buffers sent in the loop is varied during the experiments from 64 Bytes
up to 8024 Bytes. With the default settings only a throughput of roughly 6 Gbps is possible.
In a second series of experiments the sender and receiver spawn 8 send / receive threads
transmitting data in parallel to optimize for 4 cores. The experiments show the impact of
changing the SO SNDBUF and SO RCVBUF to different values between 16 KB and 8 MB.
The data is still sent from the 2 GB of allocated main memory. The impact of changing these
parameters is shown in Figure 2.6. For each experiment the SO SNDBUF and SO RCVBUF
are set to the same value (indicated in the legend). Although it is possible to send with a
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Figure 2.6: TCP Throughput - Communication Buffer Size

throughput of more then 9 Gbps if the SO SNDBUF and SO RCVBUF are set to 256 KB
or more, the CPU is under heavy load as shown in Figure 2.7 (measured with 8192 KB
SO SNDBUF / SO RCVBUF). The full bandwidth can only be used when 4 KB or more is
sent as one application buffer.
A further optimization of throughput can be achieved if all the data being sent is small enough
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to be cached within the L2 cache. For this reason the same experiment was executed using
a 1 MB buffer which is sent repeatedly. The result is shown in the third curve of Figure 2.8.
It shows the difference between sending the data from memory with standard settings (blue
curve), sending it from memory with optimized settings (red curve) and sending it from L2
cache with optimized settings (green curve). Sending out of the L2 cache results again in
significant performance improvements. The CPU load is reduced and the full bandwidth can
already be used by sending application buffers of about 512 KB size. This measurements
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show clearly that TCP has a serious impact on the CPU load. Sending data which does not
fit into the L2 cache uses all 4 cores to capacity on the sending side and on the receiving
side 1 core is fully loaded and 3 cores are loaded 60% - 80%. Since video files are typically
larger than the L2 cache, the last optimization which puts everything in the L2 cache is not
realistic in a VoD scenario. Without optimizations the full bandwidth cannot be used. With
optimizations the full bandwidth can be reached but only under full CPU load. Hence four
times 2.3 GHz is needed to send with 10 Gbps, meaning that still about 1 Hz per bps is
necessary. Concluding one can say that the 1 GHz per Gbps rule of thumb can still be used
in a 10 Gbps network as a rough estimate, but it also depends heavily on the settings and the
transmission pattern.



3
Related Work

This work uses methods and discusses problems of several related research areas such as
zero copy and copy avoidance mechanisms, data streaming systems (and in particular video
streaming) and caching mechanisms.

3.1 Zero Copy and Transport Offloading

Already in the early 90s, Fall and Pasquale have seen the need to shortcut data paths within
the operating system. In [13] they have proposed an extension to the UNIX system calls re-
ferred to as splice which moves data between two file descriptors without copying between
kernel address space and user address space. Splice is able to avoid unnecessary data copies,
provides asynchronous operation and supports concurrent I/O which all helps in reducing the
CPU load as well as the number of context switches. Splice is closely related to the sendfile
mechanism we applied. In [14], the same authors have shown the applicability of the splice
system call to continuous-media playback over a UDP transport. Later, it will be shown that
UDP used to be a valid choice for media transmissions at those low data rates. [19] presents
a copy avoidance solution for media-on-demand servers as part of the INSTANCE project. A
shared memory region is used between the hard disk drive where the media data reside and
the network interface in order to create a specialized zero-copy data path from the storage
medium to the communication system. This shared buffer is created at stream setup time and
remains statically allocated throughout the transmission. The proposed zero-copy mechanism
only assures that the data is not copied until it is handed over to the network subsystem. The
further steps are outside the scope of this work. Although the purpose of their work is similar,
solutions presented in it are fundamentally different. They suggest UDP as a suitable trans-
port layer and restrict their applicability to non-live media content since the system assumes
the data are not being altered on the stable storage. Furthermore the data is sent out only in
fixed periodic intervals.
An acceleration of HTTP using RDMA has been proposed in [12]. An iWARP Apache mo-
dule was presented which extends the HTTP protocol with RDMA support. While HTTP
is push-based, this work proposes a completely new protocol which is pull-based and inde-
pendent of HTTP. [26] explains why general TCP offload engines have had only little success.
It describes its performance and deployment issues and discusses why transport offloading is
justified with RDMA. Based on its rationale, it conjectures that RDMA might be useful for
video on demand.

13
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3.2 Streaming Systems

[24] discusses data streaming on a variety of levels not limited to network communication.
The abstraction of I/O channels is used to describe the link between any pair of I/O devices
within the operating system kernel. This work aims at minimizing data copies for an embed-
dable, real-time operating system with the ultimate goal of providing a zerocopy architecture
due to its improved performance. For this purpose, a global buffer cache is suggested. [43]
reviews media dissemination methods, video compression techniques and streaming proto-
cols.

Much work has been done on optimizing data streaming for bandwidth efficiency. Among
these schemes there is a mechanism called batching [15]. When the server receives multiple
requests for the same video, it services them all by multicasting the video to the whole group
only once. Another proposed mechanism is Staggered Broadcasting [4], which starts a new
stream for a video after a fixed interval and all clients requesting the video have to wait until a
new stream starts. They can cache already started streams in order to jump at another position
within the movie. Pyramid broadcasting [2] is a variation of staggered broadcasting. The
video is divided into different segments in multiplicatively increasing size. For each segment
there is one stream which always plays it in a loop. The client must cache the streams in
order to have the data from the next stream ready when the previous stream ended. The
waiting time for the first stream to begin is reduced heavily with this scheme. [23] discusses
the changes needed in TCP to use it for real-time network applications and describes a slightly
changed TCP protocol, the TCP-RPM protocol, which provides special support for real time
applications while preserving the benefits of TCP. [22] analyzes the TCP overhead. It divides
the overheads into the two categories ’scale per byte’ and ’scale per packet’ and provides
measurements for the time spent in different stages of the TCP stack processing.

3.3 Caching

The issue of loading video content from disks in a video-on-demand server into main memory
is addressed in [18]. A per-device rather than a per-stream buffer allocation scheme is pro-
posed to improve the scalability of the server in terms of number of clients served. Enough
network and computing resources are assumed to be available since the proposed allocation
scheme is slightly more demanding than the per-stream buffering. Our work on the other
hand assumes that the data-rate at which the content can be read from disk is high enough
(e.g. by using a RAID system) to saturate the network link even for frequently changing
client requests.

An overview of the many aspects in which the operating system can influence the perfor-
mance of multimedia applications is given in [34]. The considered aspects include resource
management and quality of service guarantees such as a short response time or a minimum
throughput, CPU scheduling algorithms and disk management. In the context of memory ma-
nagement, data-centered allocation (memory is allocated to data objects) versus user-centered
allocation (memory is allocated to a process) is discussed. In the same context, data replace-
ment and prefetching mechanisms are listed. Finally, I/O tuning is considered which is what
our work focuses on in order to avoid major system bottlenecks. [35] evaluates resource sha-
ring techniques in different VoD usage scenarios. It provides a statistical approach for cache
management to reduce disk I/O and shows how design parameters can be tuned optimally.



4
Scalability of Current Systems

This chapter shows the scalability of a VoD system with the Darwin Streaming Server and
VLC Server using RTSP/RTP and the Apache web server using HTTP. It describes the test se-
tup and performance indicators. Experiments show the impact of different service parameters
on the media servers.

4.1 Test Setup

The server performance is examined through a series of experiments on a 10 Gb Ethernet fa-
bric. To avoid disk access overheads, the whole movies are preloaded into the main memory.
The test bed consists of an IBM BladeCenter containing six HS21 Blade-Servers. Each of
them is equipped with a quad core Intel Xeon CPU (2.33 GHz), 8 GB of main memory and
a Chelsio T3 RDMA-enabled 10GbE RNIC. The BladeServers are running a Fedora Linux
2.6.27 kernel with the OpenFabrics Enterprise Distribution v1.4 [3] for iWARP support. One
BladeServer acts as the server (media source) and the other five are connecting to it as clients
(media sink). As explained in more detail in section 2.4, the test videos are encoded with
the predominant H.264 HD media codec. The following indicators are used to determine the
performance of the media server: CPU load, interrupts per second, cycles per byte and quality
of service experienced on the client side (frames/sec. arriving in time).
The main criterion of media dissemination efficiency is the maximum number of clients a
single server is able to serve concurrently without service degradation (frame loss or late
frames). There are many different scenarios possible in terms of access patterns and ser-
ver/client settings. To find out which parameters have an impact on the server performance
when changed, the influence of VoD service parameters such as offering different numbers of
movies, movies of different length, movies with different bit rates, changing the client-side
cache size, as well as jumping within the movie to another position is being investigated. The
impact of a single parameter is analyzed by setting it to different values and leaving all other
parameters at the default value. Table 4.1 lists the default value for each parameter, as well
as the minimal and maximal tested value.

4.2 Evaluation Method

The tests are executed using the VideoLAN client version 0.9.5. To simulate hundreds of
clients requesting movies from the BladeServer acting as media server, several VLC ins-
tances are executed on each of the other five BladeServers acting as clients. Since it is not

15
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Service parameter Default value Min. Value Max. Value
Number of movies 1 1 8
Movie length 56 min. (3.8 GB) 2:21 min. (160 MB) 56 min. (3.8 GB)
Bit rate 8.7 Mbps 1 Mbps 8.7 Mbps
Cache size 400 ms 100 ms 6400 ms
Jumps no jumps avg. after 30 sec. avg. after 240 sec.

Table 4.1: Test parameters and values

feasible to fully decode all arriving data, it is only demuxed and the dummy decoder is activa-
ted. With this setting the incoming video stream goes through the demuxer which extracts the
video and audio stream and passes them along to the dummy decoder module. The dummy
decoder just performs basic sanity checks, but does not extract and reconstruct the real frame.
For our tests the dummy decoder was slightly modified to count and log frames which ar-
rive in time and frames which arrive late or not at all. The clients are started sequentially.
After waiting one second in-between one more client is prompted to request a movie from
the server. Because the CPU load indicated by /proc/stat is not reliable, it is measured as
described in [28] with OProfile. Opcontrol is set to collect 1’000 samples per second of the
CPU CLK UNHALTED events. Afterwards, the CPU load can be determined by dividing
the number of samples where the CPU was busy by the CPU frequency. The CPU load is
averaged over 20 seconds. The number of requests is held constant during that time, no new
clients request a video and no clients stop playing their video. The interrupt rate is also mea-
sured with OProfile, collecting samples of the event HW INT RCV. OProfile is set to measure
each 1’000th sample. Cycles per byte are calculated from the CPU load and the amount of
data which all clients receive. The number reflects the cycles needed at the server to transmit
a byte which the client actually receives.

4.3 Initial Performance Evaluation with Default Parameters

A first experiment tests the performance of the VLC and DSS using the RTP/RTSP protocols
(Figure 4.1) and the Apache web server using the HTTP protocol (Figure 4.2). The perfor-
mance indicators are measured against an increasing number of clients. In order to determine
the effect of the zero-copy sendfile mechanism, the HTTP server is tested twice, with and wi-
thout the sendfile option enabled. The following section explains the most important results
from the measurements. The left two charts in Figure 4.1 depict the CPU load (upper chart)
and interrupt rate (lower chart) measured on the server side. They both indicate that the VLC
server starts having problems with more than 160 clients. At this point the CPU load hits the
limit of nearly 400% (100% on each core). On the client side one can clearly correlate this
limit with the sharply dropping frame rate after 160 clients as shown in the lower charts. Up
to 160 clients the frame rate curve increases linearly with an increase of 24 frames/sec. per
additional client, which indicates that on the client side no frames are missing or late.
The Darwin Streaming Server tests reveal a scalability of up to 110 clients. Up to this point
the increase in the frame rate is also linear by 24 frames/sec. per new client. The CPU load
only goes up to 250% - 300%. It seems as if there was more capacity free. We contacted the
developers of DSS and tried to optimize to take advantage of the unused 100% CPU capacity.
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Figure 4.1: RTP results with default values

All efforts led to the result that it stopped between 250% and 300%.
The cycles per byte measurement (upper right chart) shows for the VLC and DSS a linearly
increasing curve. The VLC is slightly more efficient using only 80 cycles per byte to serve
10 clients with an increase of about 2 cycles/byte per additional client whereas the DSS starts
with 200 cycles per byte serving 10 clients and drops down to roughly 100 cycles per byte
later on. The erratic shapes of the curves beyond the scalability limit (dashed parts of the
plots) are caused by non deterministic, non reproducible behavior of the server due to the
high CPU load. They indicate severe service degradation.

The HTTP results (see Figure 4.2) evidence a significantly better scalability than the
RTSP/RTP results. Even without using the sendfile feature, the server scales up to 800 nodes.
After this point it also hits the CPU limit and is not able to handle any more clients. Due
to the behavior of the VLC clients which disconnect and try to reconnect when they do not
receive the requested data in time, the HTTP server is not able to serve any client with en-
ough frames allowing the VLC client to continue playing the video. With sendfile enabled
the Apache server can support up to at least 1’000 clients with only about 70% CPU load.
Because the bandwidth is getting saturated at this point, it is not possible to test beyond 1’000
nodes. As expected the sendfile option has no impact on the number of interrupts. Up to the
point where they both are able to provide all clients with the full frame rate there is no signi-
ficant difference between the curves of both HTTP tests. The interrupt rate stops to increase
at about 15’000 interrupts/sec. One can see once more the effect of the Linux Kernel 2.6
switching under heavy load from the interrupt-based system more and more to a poll-based
system. While the HTTP server with sendfile() enabled has a linearly increasing CPU
load, resulting in a constant cycles/byte rate of about 4 cycles/byte, the HTTP server without
sendfile() has an exponentially increasing CPU load and cycle/byte rate.
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Figure 4.2: HTTP results with default values

The performance differences between the RTSP/RTP servers and the Apache HTTP server
are remarkable, considering that TCP is known to have a higher overhead than UDP. Both
RTSP/RTP induce exponentially increasing CPU load which leads to severe frame loss al-
though only about 15% of the network bandwidth is used. The bigger overhead could be
due to the larger protocol stack and the fact that RTSP/RTP usually uses RTCP. The main
purpose of RTCP is to provide a feedback channel, which can force retransmitions of lost
packets. This means that with RTSP/RTP there can be retransmissions as well. Furthermore,
the HTTP server is well established and highly optimized.

4.4 Performance Critical Service Parameters

Having tested the performance using default values, this section will analyze the impact on
the performance when changing different service parameters. First, the number of movies
provided by the media server is varied between 1 and 8. Afterwards, it is measured what dif-
ference the movie length does make. The next section shows the difference between caching
only 100ms of the video on client side and caching several seconds. Another service para-
meter is the bit rate of the videos offered by the server, which also indicates the difference
between SD and HD movies. Finally, it is shown how a user jumping to different positions
within the video can have an impact on the server performance.

4.4.1 Number of Movies

The impact of the number of offered movies is measured with all movies being requested
equally often by clients. In this case the movie size is reduced to 7:03 min. (480 MB), to be
able to load all movies into the main memory for the tests. Figure 4.3 shows the performance
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Figure 4.3: Impact of number of movies

of the VLC streaming server. There is no significant difference recognizable between any of
these tests and the initial experiments with the default values. The DSS and HTTP tests reveal
the same behavior as the VLC test. All performance indicators show for all movie servers no
significant difference until the user limit is hit. The charts for the HTTP server and Darwin
Streaming Server were omitted for simplicity.

4.4.2 Movie Length

The same behavior is observed with the movie length. Tests are executed with movie length
of 2:21 min (160 MB), 7:03 min. (480 MB), 14 min. (960 MB), 28 min. (1.9 GB) and 56
min. (3.8 GB). All four performance indicators for all movie servers signify no difference in
the performance as depicted in Figure 4.4 for the VLC server.

4.4.3 Size of Cached Data at Client

Also for the caching value no different server performance could be measured with different
caching values. It is varied from 100ms up to 6400ms, doubling it with each measurement.
Figure 4.5 illustrates the results of the experiment with the VLC server.

4.4.4 Bit Rate

For the bit rate test, the movie is encoded with the H.264 codec at 1 Mbit/s (SD), 2.5 Mbit
(480p), 5.3 Mbit (720p) and 8.7 Mbit (1080p). As expected the servers scale much higher
with lower bit rates. The VLC server as well as the DSS have no problem to stream the 1 Mbit
and the 2.5 Mbit encoded movies to up to 300 clients. With a bit rate of 5.3 Mbit problems
begin to start after 270 clients with VLC and 230 clients with the DSS. With 8.7 Mbps bit
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Figure 4.4: Impact of movie length
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Figure 4.5: Impact of cache size

rate, the servers stop working properly already at 160 and 110 clients (Figure 4.7). In the tests
with default values it was already noticed that the DSS does not make use of the full CPU
capacity. The same is true for the 5.3 Mbps movie. CPU load stops increasing at about 250%
load. In general the VLC server not only makes use of the full capacity, but also induces
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Figure 4.6: RTSP/RTP - Server Impact of bit rate (VLC left side, DSS right side)

less CPU load for the same amount of users as the DSS. The frames/sec. charts (fourth row)
confirm this. They show a sharp decline in received frames on the client side in both cases
where a CPU limit is hit (8.7 Mbps and 5.3 Mbps) for both servers.
Although the video with 8.7 Mbps bit rate scales worse in terms of the maximum number of
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clients, the cycles/byte indicator (second row) shows a better throughput efficiency. The 8.7
Mbps and the 5.3 Mbps videos need about 80 cycles per byte, going up to 150 in case of the 1
Mbit video. This means that the worse scalability is not due to less efficient data throughput
with higher bit rates, but due to the bigger data volume which has to be transferred.
The impact of different bit rates on the interrupts/sec. (third row) is not as big as on the CPU
load. The savings using the 1 Mbit movie instead of the 8.7 Mbit movie are only about 25%.
While the interrupt rate of the VLC server increases linearly up to 35’000 interrupts/sec., it
increases only little with the DSS to about 10’000 interrupts/sec and remains constant at this
rate.
In this respect the HTTP server reveals its strength in handling a high number of clients once
again. Even without sendfile support it scales up to the full 1’000 clients with 5.3 Mbps
and lower bit rates. Only in the case of 8.7 Mbps movie, clients begin to experience frame
loss after 800 clients (fourth row). Comparing the cycles per byte curves from the HTTP
server without sendfile enabled with each other, one can clearly recognize the effect of the
exponential CPU load. At the beginning, the 8.7 Mbps movie is streamed most efficiently
in terms of CPU cycles per byte. As more clients request a video it gets more and more
inefficient. Since the other movie curves increases by a smaller factor, the 8.7 Mbps movie
is the most inefficient from all bit rates with about 20 cycles / byte after 650 clients. The bit
rate has most impact on the HTTP server with sendfile disabled. For the 1 Mbps movie the
CPU load is constantly bellow 50% whereas the 8.7 Mbps movie is limited to 800 clients due
to the CPU limitation.
Comparing the RTSP/RTP servers with the HTTP servers there is only the interrupt rate of
the DSS which is on the same level as those of the HTTP servers. All other indicators show
a significantly worse performance. Overall both RTSP/RTP servers have similar limits.

4.4.5 Seek Rate

The seek rate is the second factor which has an impact on the server performance for the
HTTP server. In a first measurement YouTube like behavior is simulated by letting the clients
jump to another position in the movie after an average waiting time of 30 seconds. The
RTSP/RTP servers show no different behavior using different seek rates (Figure 4.8). This is
a strength of the RTP servers compared to HTTP. Due to the waiting times between jumps
where no frames are transmitted they scale slightly better. However the HTTP server can
handle at least twice as much clients despite its performance losses. Looking at the HTTP
server without the sendfile mechanism shows that the limit, where clients experience heavy
frame loss, is reached after 400 clients (fourth row of charts), which is half of the limit without
any jumps. Increasing the average waiting time between two jumps to 60 seconds, improves
the server performance up to 700 clients.
The clients have to wait after a jump until they can continue to play the movie, which reduces
the frame rate as depicted in the lower charts. This is not due to lost frames, but to a lower
demand of frames from client side. Because of the resulting reduction of server load, the
server scales up to 1’000 clients with an average waiting time between two jumps of 120
and 240 seconds. The charts in the first two rows indicating the CPU load and cycles/byte
confirm this by showing double the CPU load with one jump every 30 seconds compared
to one jump every 240 seconds. With the sendfile mechanism turned on and two jumps per
minute the server is still able to support the full 1’000 clients, but the CPU load is a factor 3
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Figure 4.7: HTTP - Server Impact of bit rate (sendfile disabled left side, sendfile enabled
right side)

higher compared to the initial measurements without any jumps. Decreasing the seek rate to
1 jump per minute reduces the CPU load to 140% which is still double the initial value. The
differences to the initial measurements begin to fade out as the jump rate is lowered further.
The lower chart indicate also no frame losses.
Section 2.3 describes the mechanism which can lead to a seemingly contradictory interrupt
rate, where the number of interrupts is reduced although more clients connect to the server
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Figure 4.8: RTP - VLC Server Impact of seek rate

and the network load increases. This can be seen in the third row. In both cases with sendfile
enabled and disabled the interrupt rate begins to drop after about half of the maximum sup-
ported users connected.

4.5 TCP Offload Engine

A TCP Offload Engine (TOE) is used to offload the processing of the TCP/IP stack from the
CPU to the NIC. Especially NICs designed for high data rates (10 Gbit/s) come with an in-
tegrated TOE. In terms of performance savings it differs from a RNIC in respect of the copy
operations and the context switches which are still necessary and occupy the CPU. In section
2.1 a chart indicates an estimate of the overhead introduced by TCP/IP processing and other
factors. An estimate of the effect of the TOE is depicted in the middle column of Figure 2.1.
The following experiments show the exact impact on the server performance caused by the
processing of the TCP/IP stack. It evaluates the HTTP server streaming a video using default
values. The NIC was used with TOE activated. In order to activate TOE another driver had to
be installed. The charts on the left show the performance evaluation using the HTTP server
without the sendfile feature enabled. Although, as expected, the top chart shows reduction of
the CPU load, its degree is remarkable. Even without the sendfile feature enabled the server
is able to handle up to at least 1’000 clients with only 150% CPU load without any frame
losses (which can be seen in the lower charts). The CPU load is still exponentially increa-
sing which suggests that once the bandwidth grows further it could pose a problem again.
Although today, it seems sufficient as long as the data is sent using a TOE. Section 2.7 has
shown that without TOE or the sendfile() mechanism, TCP alone would load all 4 cores
to capacity. The interrupt rate increases first slower than without TOE enabled. But it in-
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Figure 4.9: HTTP - Server Impact of seek rate (Sendfile off left side, sendfile on right side)

creases up to more than 20’000 interrupts/sec. whereas the test without TOE enabled stops
at about 14’000 interrupts/sec. This could be due to the different drivers installed. Since the
Linux kernel 2.6 switches from the interrupt-based system to the poll-based system when in-
terrupts are not handled before the next ones arrive, the TOE driver could handle them more
efficiently than the driver with TOE disabled. This would allow the system to remain longer
in the interrupt-based state, leading to a higher interrupt rate. Looking at the charts on the
right side showing the experiments with sendfile enabled, one can see a reduction of CPU
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Figure 4.10: HTTP with TOE driver (left side without sendfile enabled, right side with send-
file enabled)

load by a factor of two. It is again possible to support at least 1’000 clients as depicted in the
lower chart.
Overall the TOE improves performance most for HTTP without sendfile() enabled. Be-
cause of the exponential increase in CPU load this can result in a reduction of up to a factor
three. Nevertheless it is also a significant improvement if the sendfile() feature is en-
abled.



5
Reducing the Local Data Copy Overhead

The results seen before indicated clear performance improvements using the sendfile()
mechanism. However an iWARP-based approach potentially eliminates all server CPU invol-
vement during video data dissemination. This chapter discusses the benefits for VoD offered
by the new RDMA semantics, proposes a protocol based on iWARP and shows the perfor-
mance measurements of an actual implementation of the protocol.

5.1 iWARP-based VoD Protocol

The purpose of an iWARP-based protocol is to reduce the server load to the minimum while
fulfilling the client-side VoD requirements in terms of bandwidth and media access semantics.
One has basically the choice between two new and fundamentally different operations for
streaming data: RDMA Write and RDMA Read.

5.1.1 RDMA Write-based Protocol

Using RDMA Write, the server pushes the data to the client. The clients do not know when
new data was written into their memory because a completed RDMA write does only trigger
an event on the data source, but not on the host where the data was written to. This means
the server has to inform the client about the new data in its memory. Also the client would
have to tell the server where it wants the data to be placed. In general, RDMA Write is more
appropriate when the data source should be in control of the stream. With VoD you have the
exact opposite. The data sink is controlling the stream. This leads to the conclusion that you
could more easily use the RDMA Send/Receive, where the client can specify with its receive
WR where the data should be written to (without having to inform the server about memory
addresses) and the client would get a notification when something was written. In this respect
the write semantic does not give an advantage, but Send/Receive does.

5.1.2 RDMA Read-based Protocol

On the other hand using RDMA Read gives advantages compared to the traditional send() /
receive() operations. The client can control where the data is written to in its memory the
same way, as it can do it with Send/Receive. But additionally, the client can trigger fetching
data completely without any direct interaction with the server application. Whether it just
reads sequentially the movie data or it jumps to another position within the movie, the server
application does not need to take any direct action, because the Reads are handled solely by
the RNIC. This brings the advantage that a server does not need to maintain the state of the

27
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clients. The only part where the server has to interact with the client is during the connec-
tion setup where it has to send information about mappings of the movie data and memory
addresses. Hence the server implementation is extremely short.

The disadvantage is that the whole movie has to be in the main memory of the server.
There are several upcoming solutions to this problem discussed in chapter 6.
For this reason the RDMA Read operations which allow a completely client-driven protocol,
offering a VCR-like media control with at minimum server load will be used in our streaming
system.
The communication protocol depicted in Figure 5.1 starts with the client opening an iWARP
connection to the server. The connection setup allows a small amount of private data to be
attached to the connection request as well as to the connection response message. The client
uses the private data of the connection request to select the movie, whereas the server attaches
a buffer descriptor of the requested movie to its connection response. The buffer descriptor
consists of a triplet containing the starting address of the buffer holding the movie, the length
in bytes and an RDMA steering tag (STag). The client has now all the information at hand to
fetch the movie using RDMA Read operations. Since the whole movie is statically available
in the buffer advertised by the server, the client simply needs to issue continuous RDMA
Read operations from different source offsets in order to get the data required for playback.

CONN_REQ: foo.mov

CONN_RESP: {addr, len, STag}

PAUSE

Client Server

rdma_read()

rdma_read()

Figure 5.1: iWARP-based protocol

In the following sections we will first discuss how this protocol can be used together with
existing streaming clients and then compare a concrete iWARP-based implementation with
the previously analyzed systems.

5.2 Integration of iWARP-based Protocols into Existing Strea-
ming Systems

This section will discuss two ways how iWARP can be combined with existing media strea-
ming clients: Via a local proxy which translates another protocol to RDMA and a direct
implementation into a streaming client.
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5.2.1 iWARP Proxy

Figure 5.2 shows the schematic of the proxy. The iWARP proxy waits on the local port 80 for
incoming HTTP requests. An arbitrary media player which is able to stream via the HTTP
protocol, sends a HTTP GET request to the proxy (e.g. if the user wants to stream the video
foo.mov it sends the request GET /foo.mov). Upon arrival of this request the proxy sets up
a connection to the RDMA server and sends along with the connection request the request
for the video. After the connection setup it can, as explained before, stream the video conti-
nuously via RDMA Reads. Once an RDMA Read completed on the proxy, it can deliver
the video data with a HTTP 206 HTTP Partial Content response to the media player. The
proxy can also handle seeks within the video as described in section 5.1. It would also be
possible to use RTSP/RTP as protocol between the proxy and the streaming client. But HTTP
has the advantage, that the player already translates the positions within the video to a byte
offset. RTSP/RTP provides positions within the video with a time offset and assumes that
the server will translate it into a byte offset. Additionally, HTTP is simpler because there are
fewer commands which have to be translated and there is only one communication channel
between the client and the server.

HTTP

RDMA 10 gbps
Proxy VoD Server

Media Player 

(e.g. VLC)

RDMA Read

GET /xyz.mov206 Partial Content

Figure 5.2: iWARP Proxy

This proxy solution has the advantage of being usable with all streaming clients that support
HTTP. The server can profit from the full performance savings of an iWARP-based streaming
system. However this approach has the disadvantage on the client side. It still has the ove-
rhead from the HTTP protocol and the data is not placed directly into the main memory of
the application, as it would be possible with a direct implementation into the media player.

5.2.2 VLC Extension with an iWARP Module

Another way for an iWARP-based solution is to implement it directly into the streaming
client. This allows taking full control of the used protocol. Once again the VideoLAN client
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as one of the leading open source media players was used to implement the iWARP exten-
sion. This implementation places the data directly to the position in the memory where the
decoder modules of VLC need it to be later on and is thus as efficient as possible also on
the client side. In addition to data copy avoidance, using an iWARP-based protocol with an
RNIC avoids interrupts from the NIC since the CPU is not involved in protocol processing
(see section 5.3). This is highly desirable as it reduces the context switching rate significantly
and therefore leads to less cache pollution. The core of the iWARP module are the functions
Open() / Close(), Block() and Seek(). The Open() and Close() functions take
care of the connection setup, initial video information exchange and tear down as described
in section 5.1.2. The Block() function delivers chunks of video data. The function always
caches blocks in advance according to the specified caching value. The VLC Client calls the
function when the Demuxer is ready to take new data. Upon a Block request the module
checks whether new blocks from previously posted RDMA Read requests already arrived. It
then delivers them and places new RDMA Read requests on the Send Queue. The Seek()
function is called when the client jumps to a new position within the video. Due to iWARP
restrictions all the previously sent RDMA Read requests have first to be polled or the connec-
tion must be reset. Since there are always only few requests pending, this function waits until
all previous RDMA Reads finished and discards the data. It then fills up the Send Queue with
RDMA Read Requests with a total size of the specified caching value.

5.2.3 RDMA Read Size

An open question in both previously described systems is the size of the RDMA Reads.
As described in 2.1.1, iWARP does not transmit data in order which means that one can
only be certain that the first bit of a RDMA Read has arrived after the whole RDMA Read
is completed. This means that one can not simulate a continuous stream by issuing RDMA
Reads of a big size. RDMA is designed for large amounts of data. Issuing many small RDMA
Reads could degrade the throughput. This is why it is important to measure the performance
of RDMA Read with different sizes.
For this reason, we set up a simple server on one of the BladeServers which allocates a
memory region, fills it with random numbers and accepts one client. Another BladeServer
acts as client which reads the whole memory region sequentially by issuing continuously
RDMA Reads. The WRs are posted in parallel, meaning that the client does not wait for
one RDMA Read to complete until the next one is posted. First, there are 64 RDMA Read
requests posted at once. After having posted a series of request the client polls until at least
one RDMA Read has completed and posts immediately afterwards again the same amount of
requests to the send queue. During the experiment only few Read requests complete at once,
meaning that there are always at least 50 RDMA Read Requests outstanding. The Read size
is varied from 1 Byte to 2 GB. Figure 5.3 shows the results of the experiment. It indicates that
reading a page size or more at once (4 KB) is enough to use the whole bandwidth. Before that
point the overhead has a significant impact on the throughput. Since usually media players
cache several hundred milliseconds of the video which is even with an SD bit rate (1 Mbit/s)
at least 12 KB for 100ms, it is possible to simulate a continuous video stream with RDMA.
As shown in section 2.7 sending data packets smaller than 4 KB leads also to performance
problems with TCP.
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Figure 5.3: RDMA Read throughput with different read sizes

5.3 Performance Evaluation

This section gives a short performance evaluation of the iWARP implementation and com-
pares it directly with the other protocols.

5.3.1 iWARP evaluation

The results of the performance evaluation compared to the HTTP server can be seen in Figure
5.4. The chart on the top reflects the CPU load of the iWARP-based solution compared to
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Figure 5.4: HTTP compared to iWARP performance

the HTTP server. The iWARP implementation can saturate the link by serving the required
data to all clients, whereas the HTTP server without sendfile support has an exponentially
increasing CPU load. Although the HTTP server with sendfile() induces up to 70%
CPU load, this is not much load, the savings from the RDMA solution can be important. If
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a Video Server simultaneously has other work to do, like encoding a video stream from an
external source (e.g. a video camera) this extra CPU power is necessary.
Not very surprisingly the tests with the lower bit rates indicate no late or lost frames and a
negligible amount of interrupts and CPU load. Comparing the iWARP-based system to the
RTSP/RTP systems shows an even bigger performance difference. Contrary to the HTTP
server which also induced a high number of interrupts, iWARP is by all indicators by far
superior.
More interesting is whether the RNIC can handle high numbers of jumps within the movie.
Figure 5.5 illustrates the measured indicators with in average one jump every 30 seconds
compared to the HTTP results. As usual iWARP induces negligible CPU load and interrupts
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Figure 5.5: Jumps every 30 seconds - HTTP compared to RDMA performance

on the server side. But the last chart depicts problems with iWARP on the client side. The
result for iWARP indicates that it can only handle up to 400 clients. A manual check was
performed to verify the result. First, 800 clients were started on 4 BladeServers and then one
single client which actually decodes the video and displays it was started on the fifth client
BladeServer. The client was able to stream the video and decode it without problems. It could
also handle jumps within the video at a rate of one jump every 30 seconds and more. The
client BladeServers seem not to be able to handle 200 RDMA enabled VLC clients which
perform a jump every 30 seconds. It was not possible to perform a reliable test with the
available infrastructure.

5.3.2 Direct Protocol Comparison

A VoD server offering HD media based on RTP suffers from a high interrupt- and context
switching rate as well as a CPU overhead exponential to the number of served clients. By
using HTTP instead, the overhead can be reduced by about an order of magnitude (see Fi-
gure 5.6; logarithmic scale; quad core test server). Applying the sendfile() mechanism
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Figure 5.6: Direct Protocol Comparison

to HTTP brings the CPU load down to a linear increase with the number of clients which is
efficient enough to saturate the 10 GbE link as long as the NIC is equipped with a true DMA
engine. The advantage of sendfile() is that it does not necessitate changes in the soft-
ware or application protocols used. Furthermore, since it is based on files, a massive storage
cluster (e.g. RAID) can be used to store all the content while still being able to do zero-copy
data transmission on the server side.

In order to allow for parallel serving of all clients, HTTP requires each stream to be pro-
cessed by a separate thread. This results in a potential waste of system resources and necessi-
tates an increased number of context switches. When using RDMA however, a single thread is
sufficient as the connection multiplexing is performed by the RNIC. With our iWARP-based
protocol, we can reduce the context switching overhead again by an order of magnitude com-
pared to HTTP and bring the CPU load down to a small constant.
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6
Outlook and Future Work

In the previous chapters it was shown how existing media servers perform in a VoD scenario.
By proposing an iWARP-based application protocol, we have seen how an efficient VRC-like
media control can be implemented. Besides VoD, the other popular media dissemination sce-
nario is live streaming where the video content is not prerecorded but generated in real time,
for example by a video camera that continuously writes its output data into local memory.
The following section proposes an iWARP-based Live Streaming system. The implemen-
tation and evaluation of this system is part of future work. Based on this system it will be
shown how one can reduce the disadvantage of having to load the video content into the main
memory.

6.1 Live Streaming

The sendfile() approach can not directly be applied for this scenario as the data would
have to be written to a file first. With our iWARP-based VoD protocol on the other hand, we
can provide an efficient zero-copy solution for live streams. For our extension, we argue that
live streaming can be seen as a special case of VoD where the user does not interact with the
stream. The key difference is that in a VoD environment the client is free to choose when to
fetch the next part of the video since it does not change on the server. Live streaming on the
other hand is driven by the media source at the server and the media buffer is continuously
overwritten.

The server maintains a ring buffer where the encoded data chunks from the source are
kept. The two key parameters are the size of the ring (number of chunks) as well as the size
of the individual chunk. The larger the ring buffer is, the longer a chunk is available before it
is overwritten again. The size of the individual chunks on the other hand have a direct impact
on the delay between the live stream and the client playback time: larger chunks increase the
delay because it takes longer until they are filled. We assume without loss of generality that a
client always reads a whole chunk.

The ring buffer which is continuously updated necessitates an extension of the application
protocol presented before: The server needs to inform the client whenever a new chunk has
become available. The client will then fetch the data as needed. Our extension for live
streaming using the iWARP-based protocol is to add a small notification message sent by the
server to each client via a Send/Receive operation. By experiment we have found that sending
the notification messages has very little impact on the server performance (less than 5% CPU
load for sending notifications to the 1’000 clients). These notifications could even be omitted
if the stream was encoded with a fixed bit rate — the clients could then simply fetch the data
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at the appropriate rate.

6.2 VCR-Like Media Control using Live Streaming

This section presents a way to stream media in a VoD scenario, but in contrast to the pre-
viously presented VoD protocol, it needs only little amount of data in main memory. The
data source is a completely encoded video on the hard disk. As described in the related
work section there has already been done extensive research on how to use several broadcast
live streams of the same video to allow for VCR-like media control while saving bandwidth.
These schemes can also be used to save memory in the iWARP-based VoD scenario. For
example one can use the pyramid broadcast mechanism as shortly described in chapter 3.
Instead of using broadcast to send it over the network the broadcast ends in the memory of
the server. The server divides the video into segments as shown in Figure 6.1. The first seg-

Seg. 1 Seg. 2 Seg. 3 Seg. 4

Disk

Memory

Figure 6.1: Pyramid Broadcast as Caching Mechanism

ment should only consist of a few seconds of video data. Each following segment should be
twice as large as the previous segment. Depending on the video size a logarithmic number of
segments is needed. The server plays all these segments in parallel by streaming them into
the memory and allowing the clients to tune into the stream as described previously in 6.1.
A client who wants to watch the video has only to wait a short amount of time until the first
stream wraps around and begins again streaming the first segment from the beginning. The
client has to wait until that happens. Then it can tune into this stream and watch the video. In
parallel it has to stream all the other segments and cache them locally. When the first stream
finished, the second stream will either be at the end of the second segment or in the middle.
When it is at the end it wraps around and begins to play the second segment again and the
client can just play that stream. When it is in the middle of the second segment the client has
already cached the first half of the second stream (since the first stream takes half as long as
the second stream). This guarantees short waiting times until the client can begin to stream
the video. Furthermore the client can jump forward to one of the other streams or to a part
which it has already cached of these streams. This way, the client would have some advan-
tages of VoD, although it is not true VoD. The server has eliminated its memory problem,
since there is only a logarithmic number of streams necessary per video. The disadvantage is
that the client must have enough bandwidth to read all streams in parallel. For the server the
aggregate throughput is the same, since all clients request all data only once.



7
Conclusions

Through experiments it was shown that RTSP/RTP Video on Demand servers do not scale
with a high aggregate throughput. With current trends of broadband connections the bot-
tleneck is shifting from the bandwidth to the server infrastructure itself. Only 160 clients
requesting a 1080p HD movie can be supported and only about 15% of the full bandwidth
can be used. The limiting factor is the CPU which is fully loaded at that point. Lower bit
rates allow for more users, but estimates predict an increasing demand in high resolution
videos. HTTP performs significantly better than RTSP/RTP. Even without sendfile support
enabled it can support under full CPU load up to 800 clients requesting an 8.7 Mbps movie.
Enabling sendfile support increases the number of clients to 1’000 which is the maximum
allowed by the bandwidth and decreases CPU load to 70%. However the interrupt rate and
context switches are still high.
In contrast our iWARP-based VoD solution using a RNIC is able to significantly reduce the
interrupt- and the context switching rate not only on the server but also on the client. This
is highly desirable as it leads to a much lower cache pollution thus improving local appli-
cation processing performance. Furthermore, a fully offloaded RDMA stack eliminates the
copy overhead on both sides which is important when streaming data at even higher rates
(e.g. several Gbps per client). The drawback of the RDMA solution is that the server must
be equipped with a RNIC. In addition to that, the clients must have RDMA stack support as
well — but here a software RDMA stack may be completely sufficient (e.g. IBM SoftRDMA
driver [29]). Since the RDMA semantic is different from the common Socket API, major ap-
plication adaptations are needed. Furthermore, the physical memory is the limiting factor for
the total size of the data to be transmitted. However, this limitation can be circumvented by
applying local buffer replacement strategies (e.g. a local pyramid broadcast) or by attaching
the server to a RamSan system [41] which offers up to several hundred gigabytes of DDR
memory accessible through RDMA. An important advantage of using RDMA is the possi-
bility to combine client-server control type interaction with the data transfer operation itself.
By issuing RDMA Reads at appropriate offsets, the client is able to seek through the data set
without frequent tear down and reestablishment of the data channel. The server application is
not even involved when the client changes the movie playback position. Using a socket based
approach, each seek would close the current TCP stream on both sides and reopen the media
with the new offset. Another strong server scalability advantage of the RDMA approach is
the complete avoidance of a dedicated control channel between the server and each client
which is otherwise typically implemented by just another peer-to-peer socket connection.
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ABSTRACT
Internet usage has changed dramatically in the last few years.
Content is no longer dominated by static websites but com-
prises an increasing amount of multimedia streams. With
the widespread availability of broadband connections, the
quality of the media provided by video-on-demand as well
as streaming services increases constantly. Even though to-
day most videos are still encoded with a rather low bit rate,
large ISPs already foresee high-definition media becoming
the predominant format in the near future. However, a
larger number of clients requesting media at high bit rates
is a challenge for the server infrastructure. Conventional
stream dissemination methods such as RTP over UDP or
HTTP over TCP result in high server loads due to exces-
sive local data copy operations, context switching, and in-
terrupt processing overhead. Such an overhead causes high
CPU loads and turns the server’s memory bus into a bot-
tleneck. In this paper we illustrate and discuss the problem
in detail through extensive experiments with existing solu-
tions. We then present a new approach based on zero-copy
protocol stack implementations in software as well as using
dedicated RDMA hardware. Our performance experiments
indicate that these optimizations allow servers to scale bet-
ter and remove most of the overheads caused by current
approaches.

1. INTRODUCTION
Today, about 23% of the world’s population are connected

to the Internet — most of them through broadband access.
This number as well as the bandwidth offered by the Inter-
net service providers (ISPs) are rapidly increasing [1]. In
addition, the web content is no longer static but has become
dynamic and far richer. According to Comcast [2], the next
step in the evolution of Internet content will be a shift from
standard-definition (SD) towards high-definition (HD) me-
dia as well as from broadcast towards unicast services.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV ’09 Williamsburg, Virginia
Copyright 2009 ACM XXX-X-XXXXX-XXX-X/XX/XXXX ...$5.00.

1.1 Problem Statement
According to [3], high definition video-on-demand (HD

VoD) poses two orthogonal service requirements:

1. data throughput large enough to deliver the high-definition
content, and

2. low latency as well as a high responsiveness to support
convenient media control.

Transmitting HD media using unicast (the bit rate of a
H.264-compressed HD video is roughly 10x larger than that
of its SD equivalent) to an increasing number of users makes
meeting these requirements quite complex. First, the con-
tent servers must be able to sustain a higher aggregate data
throughput. Second, the clients expect control over the con-
tent at all times (pause, skip or rewind as well as switch to
another movie). The unpredictable behavior of each client
makes it virtually impossible for the server to efficiently pre-
fetch data and to predict the aggregated service rate. The
problem is amplified by the variable bit rate (VBR) typically
used to encode the data.
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Figure 1: Copy Overhead for sending File Content

In this paper we show that traditional video server archi-
tectures are inadequate for HD VoD given the large overhead
caused by redundant data copy operations, excessive inter-
rupt handling, and context switches. Figure 1 illustrates the
process followed to send data stored on a hard drive: The
data is first copied from disk through a temporary kernel
buffer into a user buffer; then it is copied back into another
kernel buffer; and finally copied to the network interface card
(NIC). Overall the process involves 2 DMA copies, 2 CPU
copies and several context switches.

Given these limitations, scalability in existing systems is
achieved by adding more servers. While the approach is
rather simple, it increases the running costs of the server
infrastructure due to higher server and network maintenance
costs, as well as increased power consumption and cooling
demands. HD VoD will make the cost of scaling significantly
higher if the same approach is used.

The problem we address in this paper is how to improve
the scalability of a single video server (its ability to server a



larger number of clients) so that the demands of HD VoD on
the overall server infrastructure are minimized. Such an im-
provement involves removing the overheads encountered in
current systems. For this purpose, we propose a novel pro-
tocol based on Remote Direct Memory Access (RDMA [4]).

The contributions of this paper are three-fold. First, we
analyze the performance of existing solutions and identify
the key bottlenecks. Second, we propose a new protocol
based on iWARP and prove through extensive experiments
that it improves server-side scalability while offering efficient
VCR-like media control, specially when compared with ex-
isting solutions and with using the kernel sendfile() mech-
anism. Third, we outline an extension to our new protocol
to support real-time live media streams.

The paper is structured as follows: Section 2 introduces
iWARP and presents related work, Section 3 compares UDP-
with TCP-based application protocols that enable video-on-
demand services. Section 4 presents a novel iWARP/RDMA-
based protocol for video-on-demand as well as streaming ser-
vices. Section 5 evaluates the proposed solutions and high-
lights their tradeoffs. Section 6 concludes our work.

2. BACKGROUND

2.1 iWARP, Remote Direct Memory Access
over Ethernet

Remote Direct Memory Access (RDMA) is a mechanism
whereby, without CPU involvement, network data is directly
fetched from local application memory and placed into ap-
plication memory of a remote computer. This placement
is typically performed by a specialized RDMA-enabled NIC
(RNIC ). In bypassing the operating system and eliminat-
ing intermediate copying across application and operating
system buffers, RDMA reduces the CPU cost of large data
transfers as well as the end-to-end latency. This makes it
very attractive for transferring high-definition media across
the network. RDMA technology was initially restricted to
specific, often proprietary technology such as InfiniBand [5].
With the advent of 10 Gb Ethernet and the TCP-based In-
ternet Wide Area RDMA Protocol (iWARP), a special in-
frastructure is no longer required. RDMA can now be ap-
plied to applications communicating over the Internet.

A detailed description of the RDMA semantic can be
found in [6]. We focus our discussion on the aspects relevant
for this paper. The RDMA data transfer operations include
Send, Receive, RDMA Read and RDMA Write, which are
all invoked and completed asynchronously. The Send and
Receive operations are similar to the Socket API, but allow
for multiple outstanding operations, whereas RDMA Write
and RDMA Read are semantically different. These so called
one-sided operations restrict active application involvement
to the side issuing the write or read operation. At the other
side, the data transfer is handled solely by the RNIC fetching
or placing data. Neither the operating system nor the ap-
plication gets informed. To allow the RNIC to fetch and to
place data without operating system involvement, concerned
memory buffers have to be preregistered by the applications
as Memory Regions (MR). The associated memory must be
pinned to physical memory by the operating system to be in-
stantly available for the RNIC, if memory access is required.
After local registration, the MRs are referenced by RNIC
and peer applications using unique steering tags (STags).

2.2 Related Work
Already in the early 90s, Fall and Pasquale suggested so-

lutions to shortcut data paths within the operating system.
In [7] they proposed a new UNIX system call: splice() al-
lows moving data between two file descriptors while avoid-
ing copies between kernel- and user address space. Using
splice() helps to reduce CPU load as well as the number
of context switches. In [8], the same authors have shown the
applicability of the splice system call to continuous-media
playback over a UDP transport. As we will see, UDP used
to be a valid choice for media transmissions at those low
data rates but it has to be reconsidered when moving to the
high bit rates required by HD media content.

[9] presents another copy avoidance solution for media-
on-demand servers. A shared memory region is used be-
tween the hard drive where the media data reside and the
network interface in order to create a specialized zero-copy
data path from the storage medium to the communication
system. This shared buffer is created at stream setup time
and remains statically allocated throughout the transmis-
sion. The proposed zero-copy mechanism only assures that
the data is not copied until it is handed over to the net-
work subsystem. The further steps are outside the scope of
this work. Although their goal is similar, our solutions are
fundamentally different. They suggest UDP as a suitable
transport layer and restrict their applicability to non-live
media content. Furthermore the data is sent out only in
fixed periodic intervals whereas we offer a true on-demand
solution with a VCR-like media control.

An acceleration of HTTP using RDMA has been proposed
in [10]. An iWARP Apache module was presented which
extends the HTTP protocol with RDMA support. While
HTTP is push-based, we propose a completely new protocol
which is pull-based and independent of HTTP.

Further extensive research has been conducted on how to
distribute media over the Internet based on the assumption
that the available bandwidth is very limited [11, 12]. De-
tailed discussions of the different challenges posed by de-
signing mechanisms and protocols for Internet streaming
services can be found in [13, 3]. In our work we assume
the bandwidth to be sufficient and investigate server-side
limitations.

3. CURRENT SOLUTIONS
We have examined the performance of existing VoD solu-

tions through a series of experiments on a 10 Gb Ethernet
fabric. To avoid disk access overheads, we preloaded the
complete test data set into main memory. Our test bed
consists of an IBM BladeCenter containing six HS21 Blade-
Servers. Each of them is equipped with a quad core Intel
Xeon CPU (2.33 GHz), 8 GB of main memory and a Chel-
sio T3 RDMA-enabled 10GbE NIC. The BladeServers are
running a Fedora Linux 2.6.27 kernel with the OpenFab-
rics Enterprise Distribution v1.4 [14] for iWARP support.
One BladeServer acts as the server (media source) and the
other five are connecting to it as clients (media sink). The
streamed videos are encoded with the predominant codec
for HD media (H.264). We compare different bit rates from
SD quality with an average of about 1 Mbps up to full HD
(1080p) requiring about 8.7 Mbps on average. Our main cri-
teria of media distribution efficiency is the maximum num-
ber of clients the single server is able to serve concurrently



without service degradation (frame loss or late frames). We
investigated the influence of other service parameters such as
offering different numbers of movies, different sized movies,
movie access through various patterns as well as changing
the client-side cache size. Compared to the actual bit rate,
none of the other parameters showed a significant impact on
scalability. Therefore, they are not further discussed.

3.1 RTP based Solutions
The motivation for using unreliable connectionless ser-

vices such as UDP for video streaming is that media streams
typically tolerate data loss better than delay and, therefore,
the higher reliability of TCP is not needed. UDP is most
often used in combination with the Real Time Transport
Protocol (RTP) which defines a standardized packet format
for delivering audio and video. Since UDP streams are uni-
directional, RTP is typically accompanied by the RTP Con-
trol Protocol (RTCP) which monitors the transmission and
feeds out-of-band control information back to the stream-
ing source as well as by the Real Time Streaming Protocol
(RTSP) which provides control over the stream (i.e. play,
pause, stop, etc.).

In our first test, we explore RTP scalability for various bit
rates with special focus on the high bit rates needed for HD
media content. We have conducted the experiments with the
two most prevalent media servers for Linux that offer video-
on-demand services using RTP: The open source VideoLAN
Server [15] and the Darwin Streaming Server [16].
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Figure 2: RTP Scalability for various Bit Rates

The upper chart of Figure 2 shows the cumulative rate
of frames all clients have successfully received. We have
conducted the experiment with up to 300 clients which the
server can handle with moderate CPU load when using bit
rates up to 2.5 Mbps (see lower chart of Figure 2). When
streaming at 5.3 Mbps and at 8.7 Mbps, the maximum num-
ber of serviceable clients drops to 260 and 160 respectively.
Note, that since we are streaming over a 10 GbE link, the
theoretical maximum of clients for the 8.7 Mbps stream is at
about 1100, a factor 7 larger than what we experience. The
lower chart of Figure 2 clearly reveals that the server CPU
utilization is the limiting factor. When investigating the
reason for the high CPU load using oprofile [17], we found
that most of the CPU cycles are spent in copying data and

RTP packetizing.
The erratic shape of the curves beyond the scalability limit

(dashed parts of the plots) are caused by non deterministic,
non reproducible behavior of the server due to the high CPU
load. They indicate severe service degradation.

3.2 HTTP based Solutions
Streaming media over HTTP assures good interoperabil-

ity and server efficiency. YouTube as one of the main sources
of current Internet media streams for example offers HTTP
based video dissemination. Even though HTTP is based on
connection-oriented TCP and was not specifically designed
to meet media streaming requirements, it offers some advan-
tages.

First of all, no special software is needed; any state-of-the
art web browser will do. Furthermore, HTTP port 80 is al-
lowed on most firewalls whereas other ports potentially used
by RTP are often blocked. Also the TCP reliability feature
can be desirable for highly compressed media where the loss
of a key frame can cause severe playback disruption. Fur-
thermore, the TCP flow control mechanism implicitly allows
for a client-driven media control. Not reading new data and
thus delaying TCP Window updates causes the sender to stall
the stream (see Figure 3). Seeking is done by sending a new
HTTP GET request with the desired offset.

GET /foo.mov
Range: bytes=offset-

206 Partial Content

Client Server

ACK

ACK
window=0

send()

send()

window=n

send()

send()

PAUSE

Figure 3: HTTP-based Stream Control

In the last section we have shown that RTP/UDP does
not manage to fully utilize the 10 GbE link due to the resul-
tant high CPU load when streaming at high bit rates. We
now repeat the above experiment with the 8.7 Mbps data
rate in order to compare our findings with HTTP based
services. Again, the key performance measure is how well
an HTTP server scales in terms of the number of concur-
rent HD streams it can provide. For our experiments we
have chosen the prevalent HTTP server by Apache with the
multi-processing worker module which is needed to be able
to stream to more than 150 clients in parallel as each data
stream needs to be handled by its own thread. To get a
fair comparison with RTP, for the current experiment, the
sendfile() mechanism was disabled (see next section for
sendfile() tests).

As can be seen in Figure 4 the CPU limit (where all
4 CPUs are completely busy) is reached much later with
HTTP compared to RTP due to the reduced packetizing
overhead and simpler connection management. However,
the link can still not be saturated: 30% of the 10 GbE band-
width remain unused and the server CPU load also increases
exponentially, indicating bad scalability properties.

3.3 Kernel Sendfile Support
Since version 2.2, the Linux kernel offers the sendfile()
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Figure 4: HTTP vs. RTP

system call. In contrast to read()/write(), it allows the
data to be sent directly from the temporary kernel buffer
onto the network. Since a modern NIC is equipped with a
DMA engine (like the Chelsio T3 adapter we have used for
our experiments), the CPU copies are avoided altogether.
Furthermore, the number of context switches and necessary
system calls are reduced.

The Apache web server can directly apply this mechanism
to reduce the CPU load and improve scalability. Figure 4
shows its benefit: The number of clients the server can han-
dle is now limited by the link capacity while inducing about
70% CPU load on one core. Although the sendfile() ap-
proach is already a large improvement, we can do even better
by using iWARP/RDMA.

4. IWARP-BASED SERVER-EFFICIENT VOD
While the aforementioned sendfile() mechanisms signif-

icantly improves server performance, an RDMA based ap-
proach potentially eliminates all server CPU involvement
during video data dissemination. To make efficient use of
RDMA semantics, we first had to define a new video stream-
ing application protocol which we will introduce next.

4.1 Client-Driven Protocol
The purpose of our protocol is to reduce the server load

to the minimum while fulfilling the client-side VoD require-
ments in terms of bandwidth and media access semantics.
For that we use the one-sided RDMA Read operations which
allow for a completely client-driven protocol offering efficient
VCR-like media control at minimum server load.

CONN_REQ: foo.mov

CONN_RESP: {addr, len, STag}

PAUSE

Client Server

rdma_read()

rdma_read()

Figure 5: Client-driven RDMA Protocol

Our communication protocol depicted in Figure 5 starts
with the client opening an iWARP connection to the server.
The connection setup allows a small amount of private data
to be attached to the connection request as well as to the
connection response message. The client uses the private
data of the connection request to select the movie, whereas
the server attaches a buffer descriptor of the requested movie
to its connection response. The buffer descriptor consists of
a triplet containing the starting address of the buffer holding
the movie, the length in bytes and an RDMA steering tag
(STag). The client has now all the information at hand to
fetch the movie using RDMA Read operations. Since the
whole movie is statically available in the buffer advertised
by the server, the client simply needs to issue continuous
RDMA Read operations from different source offsets in order
to get the data required for playback. We have implemented
this client-server protocol as an RDMA server application
talking to a VideoLAN client module.

4.2 Server-Efficient Data Dissemination
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Figure 6: iWARP vs. HTTP

Figure 6 shows the performance results of our protocol
compared to plain HTTP and HTTP with sendfile() sup-
port. We have limited the experiment to 1000 clients as this
is enough to fill our 10 GbE link. The chart on the top in-
dicates, that our solution is capable of saturating the link
by serving the required data to all clients. The chart in the
middle reflects the servers CPU load. During data trans-
fer, plain HTTP induces an exponential load and HTTP
with sendfile() a linear load whereas our RDMA protocol
induces no load at all, indicating good scalability. Indepen-
dent of local CPU performance, the RNIC itself is able to
saturate the link by processing the RDMA Read requests
in hardware. In addition to data copy avoidance, using an



RDMA protocol with an RNIC completely avoids interrupts
from the NIC since the CPU is not involved in protocol
processing (see bottom chart of Figure 6). This is highly de-
sirable as it reduces the context switching rate significantly
and therefore leads to less cache pollution [18].

4.3 In-Band VCR-like Media Control
Our fully client-driven video streaming protocol is a very

efficient way of providing VCR-like media control. All effort
to control the connections is done at clients side, thus freeing
the server from almost all application protocol processing.
The advantages of the simple protocol are three-fold:

First, each client is free to read any amount from any po-
sition within the advertised buffer whenever new data for
playback is needed. In case there are several movies avail-
able on a server, a client can watch any of them by simply
switching to another buffer. The server does not need to
keep track of which client is watching which movie. Thus
an expensive stream control protocol with feedback loop as
well as synchronization or packetizing overhead (as in RTP)
are avoided altogether, thereby reducing not only the server
load but also the overhead on the network itself. This is
reflected in Figure 6: The CPU load induced on the server
is negligible (middle chart) while all clients receive their re-
quested data in time (top chart).

Second, the server-side overhead is minimal because the
RNIC hardware takes care of the data transfer. It processes
the inbound Read Requests and sends back the requested
data through corresponding Read Responses without requir-
ing operating system intervention (see bottom chart of Fig-
ure 6). The CPU of the server is only needed for connection
establishment and tear down. This cost is amortized quickly
with the high data rates.

Third, in contrast to the sendfile() approach, copies are
avoided not only on the server but also on the clients. This
feature is particularly interesting as it allows us to extend
our protocol to support even real-time streams.

5. DISCUSSION
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A VoD server offering high-definition media based on RTP
suffers from a high interrupt- and context switching rate as
well as a CPU overhead exponential to the number of served
clients. By using HTTP instead, the overhead can be re-
duced by about an order of magnitude (see Figure 7; log-
arithmic scale; quad core test server). Applying the send-

file() mechanism to HTTP brings the CPU load down to
a linear increase with the number of clients which is efficient
enough to saturate the 10 GbE link as long as the NIC is
equipped with a true DMA engine. The advantage of send-
file() is that it does not necessitate changes in the software
or application protocols used. Furthermore, since it is based
on files, a massive storage cluster (e.g. RAID) can be used
to store all the content while still being able to do zero-copy
data transmission on the server side.

In order to allow for parallel serving of all clients, HTTP
requires each stream to be processed by a separate thread.
This results in a potential waste of system resources and ne-
cessitates an increased number of context switches. When
using RDMA however, a single thread is sufficient as the con-
nection multiplexing is performed by the RNIC. With our
iWARP based protocol, we can reduce the context switch-
ing overhead again by an order of magnitude compared to
HTTP and bring the CPU load down to a small constant.

Our iWARP-based VoD solution using an RNIC is able to
significantly reduce the interrupt- and the context switch-
ing rate not only on the server but also on the client. This
is highly desirable as it leads to a much lower cache pol-
lution thus improving local application processing perfor-
mance. Furthermore, a fully offloaded RDMA stack elimi-
nates the copy overhead on both sides which is important
when streaming data at even higher rates (e.g. several Gbps
per client). The drawback of the RDMA solution is that
the server must be equipped with an RNIC. In addition to
that, the clients must have RDMA stack support as well —
but here a software RDMA stack may be completely suffi-
cient (e.g. IBM SoftRDMA driver [19]). Since the RDMA
semantic is different from the common Socket API, major
application adaptations are needed. Furthermore, the physi-
cal memory is the limiting factor for the total size of the data
to be transmitted. However, this limitation can be circum-
vented by applying local buffer replacement strategies (e.g.
a local pyramid broadcast [20]) or by attaching the server
to a RamSan system [21] which offers up to several hundred
gigabytes of DDR memory accessible through RDMA. An
important advantage of using RDMA is the possibility to
combine client-server control type interaction with the data
transfer operation itself. By issuing RDMA Reads at ap-
propriate offsets, the client is able to seek through the data
set without frequent tear down and re-establishment of the
data channel. The server application is not even involved
when the client changes the movie playback position. Using
a socket based approach, each seek would close the current
TCP stream on both sides and re-open the media with the
new offset. Another strong server scalability advantage of
the RDMA approach is the complete avoidance of a ded-
icated control channel between the server and each client
which is otherwise typically implemented by just another
peer-to-peer socket connection.

Besides VoD, the other popular media dissemination sce-
nario is live streaming where the video content is not pre-
recorded but generated in real time, for example by a video
camera that continuously writes its output to local memory.
The key difference is that in a VoD environment the client is
free to choose when to fetch the next part of the video since it
does not change on the server. Live streaming on the other
hand is driven by the media source at the server and the
media buffer is continuously overwritten. In that context, a
high server-side CPU availability is desirable since the data



typically is processed (e.g. encoding/compression) before it
is transmitted over the network. The sendfile() approach
can not directly be applied to this scenario as the data would
have to be written to a file first. With our iWARP-based
VoD protocol on the other hand, we can provide an efficient
zero-copy solution for live streams. For such an extension
of the protocol, we look at live streaming as a special case
of VoD where the user does not interact with the stream
apart from starting and stopping it. The servers video data
production must now be synchronized with client data con-
sumption (RDMA Read): The server may do that by send-
ing periodic notification messages. Not sending that data
itself but information about data availability has a number
of advantages from a server perspective. As these notifica-
tions are sent to all clients, each client can choose the stream
it currently wants to receive without inducing any coordina-
tion or tracking overhead at the server. The amount of link
bandwidth wasted is very small as the size of the notifica-
tion messages sent are negligible compared to the payload of
the stream. A push-based scheme on the other hand would
require the server to keep track of which client is receiving
which streams and transmit the payload data accordingly.
Sending all streams to all clients using unicast is clearly not
an option.

6. CONCLUSIONS AND OUTLOOK
We have analyzed and shown by experiment why server-

side copy avoidance is key to achieve good scalability when
offering HD media content from a single server to many
clients. By proposing an iWARP-based application proto-
col we have shown how an efficient VRC-like media media
control can be implemented for video-on-demand as well as
real-time streaming services and demonstrated its signifi-
cant performance improvements by experiment. Finally we
have highlighted its advantages and tradeoffs in contrast to
the sendfile() zero-copy mechanism offered by the Linux
kernel.
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