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Abstract

The purpose of this diploma thesis is the presentation of some profordals fault tolerant
control of unmanned aerial vehicles (UAV). In the first part, tteeleh reference adaptive
control (MRAC) scheme is utilized to control UAVs susceptibledtuator failures. In the
second part, the multiple model adaptive estimation method (MMAE) is used fote¢lcgade
and isolation of either actuator or sensor failures. In order tonwtite class of detectable
failures, the MMAE method is upgraded with extended Kalmaer$il (EKF) and thus
becomes the extended multiple model adaptive estimation method (EMNMWAtEIS context,
each EKF is used for state vector estimation on the one hand attiefestimation of a
meaningful failure parameter on the other hand.
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Introduction 1

1 Introduction

Unmanned aerial vehicles (UAV) are a topic of major interésth@a Measurement and
Control Laboratory of the Swiss Federal Institute of Technol@gat effort has been put
into the area of control and navigation of UAVs. For their practis&, however, safety
issues need also to be considered. From a control engineer’'s poirgwgfadtuator and
sensor failures are a principal concern, since during aaniisey may lead to catastrophic
closed-loop instabilities. This thesis deals with some approdaohespe with such failures
and hence to improve the reliability of UAVs. The main difficuythe uncertainty of
failures, i.e., it is usually impossible to predict which sensoaatuator may fail during

system operation, or when the failures occur, and their type and values.

In Chapter 2 the model reference adaptive control scheme (MRBAGEd for failure tolerant
control of UAVs with actuator failures. The failures are assiliho be of the “lock-in-place”-
type, i.e., during operation an actuator may get stuck at an unknowiomp@sit thus cause
severe system performance deterioration. The MRAC contrsli@esigned such that it uses
the remaining (redundant) actuator to match the control system o¢aoitiigt output of a (user
defined) reference model, even in the presence of actuator faffumethis model matching,
the control parameters are adapted without any explicit knowlefdtee failure properties.
After the derivation of the control and of the adaptation laws theatlamtis tested on the

nonlinear aircraft model described in Chapter 5.

In Chapter 3 the detection and isolation of actuator as webrsor failures with the multiple
model adaptive estimation method (MMAE) is investigated. The MM&lgorithm is
composed of a bank of parallel Kalman filters, each matchedspafic hypothesis about
the failure status of the system. During system operation the probalwfitdl hypotheses are
computed online. The estimated state vectors of each Kalman filtérearblended through a
probability-weighted average, thus the MMAE algorithm providesta st&iable estimation
of the (failed) system as well as the information about the hke$t hypothesis. The failures
under investigation are assumed to be “hard” failures, which meamalete loss of control
authority in case of an actuator and zero mean white noise outpagerof a sensor. Further
it is assumed that a failed actuator has no more influence alyrtaenics of the system. After
the introduction of some basic facts of the Kalman filtering themiy the derivation of the
hypothesis-testing mechanism, the method is tested on the nomliregaft model described

in Chapter 5.

Rupp Daniel Fault-Tolerant Control and Fault Detection for UAVs 2005



Introduction 2

The main drawback of the MMAE method is the need for prelimikagwledge of the
failure hypotheses. Since every failure needs to be represengeldisnan filter, the number
of predefined hypotheses is limited by the computational powedlabla It is therefore
impractical to use the MMAE method for failures with unknownuf&ilvalues (e.g. actuator-
lock-in-place failures or sensor bias failures). Hence in Chaptdtre MMAE method is
combined with the parameter estimating ability of an extendedhatalfilter (EKF). Where
necessary, the Kalman filter in the Kalman filter bank isaegd with an EKF; with this step
the failure hypothesis of one single filter can cover all contiona of hard failures with a
(slowly varying) bias parameter. After the introduction of som&cbiacts of the extended
Kalman filtering theory and the modelling of appropriate actuand sensor failures, the
method is tested on the nonlinear aircraft model described in Chapter 5.

Chapter 5 provides a short introduction into the basic modelling steps afcaaft. In the
first part, a full six-degree-of-freedom model is derived. For test purposesthigngMIMO
model is then reduced to a SISO model of the lateral dynamighelfmore, an easy way to
add actuator and sensor redundancy to an existing model is shown in this chapter.

Rupp Daniel Fault-Tolerant Control and Fault Detection for UAVs 2005



Model Reference Adaptive Control of Systems with Actuator Failures 3

2 Model Reference Adaptive Control of Systems with Acator Failures

2.1 Introduction

In this chapter the model reference adaptive control method (MRA&)plied on a linear

aircraft model with actuator failures. Consider the linear time-invapiamt described by

(t) = AX(1) + BU )

2.1
y(0) =Cx(Y @Y

where AOR™,B=[h,...]OR™™ , and COR™ are unknown parameter matrices,
x()OR" and y ¢ IR are the state vector and the output vector, respéet and
u(t) :[ul,...,um]T OR™ is the input vector whose elements, representiegactuators, may
fail during system operation. The plant is so cartsed that in the presence of up to any m-q
(1<g<m) actuator failures the remaining actuators calnashieve a desired control objective
In this chapter actuator failures are modeled ek-in-place, i.e., a failed actuator is stuck at
an unknown position and hence is affecting the dyoa of the plant (e.g., a rudder of an
airplane is stuck at an angle of five degrees)uAssthat the'] actuator is stuck at timedt

an unknown position;
ut)=u,tzt, j0{12,...m (2.2)
The failures can be modeled as (see [GSX-04])

u(t) = v(t) + o(u- \(9) (2.3)

wherev(t) is the controller output vector and

G:[ﬁl,ﬁz,...,ﬁmT o =diada, 0, ,..0,} (2.4)
with

(2.5)

{1 if the " actuator fail:
j

0 otherwise

Rupp Daniel Fault-Tolerant Control and Fault Detection for UAVs 2005
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Plant ,

v

Controller

Figure 1: Control system with actuator failures

Assume that the plant with its unknown parametes the (unknown) failure structure in
Figure 1 can be combined into a process with tliegss-parameter vectés. The MRAC
controller shown in Figure 2 consists of a refeeentodel, an adaptation law, and a control
law. The goal of the controller is to (asymptotigaimatch the output signal of the process
(with varying parameter@p) with the output signal of the (asymptoticallyalsie reference
model by adjusting the parameters of the contrel la
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Figure 2: Basic MRAC scheme
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Model Reference Adaptive Control of Systems withuator Failures 5

2.2 MRAC with Output Feedback

2.2.1 Calculation of Model Reference Matching Parameters

Reconsider the system (2.1). The columns of theixnBtrepresent the (redundant) actuators
of our plant. The actuator group, however, is aliyen by a single control signal. This is
called an equal actuation scheme (Figure 3)

V(D) = (0 == v (D)2 () (2.6)

—» Actuator 1 —»

v, (t
0() » Actuator2 —»

3
.
3

—» Actuatorm —

Figure 3: Equal Actuation Scheme

which allows us to treat the actual MIMO systemagsimpler) SISO system. With (2.6) the

transfer function of system (2.1) can be writtema&sim of all single “actuation channels”

m k,Z,
G(g=Y 2 (]s;S) 2.7)

= P
wherek ; is the high-frequency gain (HFG) af(s) the numerator polynomial of th& j
actuator channel. Assuming now that the actuafgrs,j, have failed, this can now be
characterized as

_ KyZi(9 . k Z2(3
€= 2 59 RS (2:8)

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005



Model Reference Adaptive Control of Systems withuator Failures 6

In order to design an MRAC controller, all possifdéure patterns must satisfy the following

conditions:
(C.1) all possible G(s) have the same relative degree
(C.2) all possible G(s) are minimum phase

The first condition implies that the change in thput matrix B due to actuator failures may
not change the general structure of the plant, @dsethe second condition assures that no
unstable zero-pole cancellation takes place. Writlown the reference model in hybrid

notation (mixture of time and frequency domains) as

Y1) = G (9 (D) (2.9
with
G (9 -t (2.10)
"7 P9 '

where B (s) is a stable monic polynomial (i.e. the highesteorcbefficienta. =1) of degree

n (which is equal to the previously defined (constaelative degree of the plant to be
controlled). Note that the specific form of (2.Xnplifies the following derivations on the
one hand, but restricts the design of the deseéetence model on the other hand (e.g., the
static gain in general is not equal to one), thereefthe real reference signal needs to be
prefiltered in order to yield the desired referermatput y_(t) . To derive a suitable

preliminary filter we write the more general case

_kaZo(9 -
)=/ =Tt 2.11
Ym(1) P (9 (t) (2.11)
wherer (t) is the “real” reference signal ari®}(s) is monic stable polynomial. Now (2.11)
can be rewritten in the form (2.10) for sorRg(s) andr(t), provided thatP () Z (9 and
P (9 have the same degree

P.(9 Yol ) :%(;“—r(t) & (1) (2.12)

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005
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Hence the (desired) reference outgyy{t) can still be achieved with (2.10) by prefiltering
(Figure 4) the “real” reference signaft) with the transfer function

KPS Zo( 3
Gy (9= X (2.13)
T 60 |- G [P

Figure 4: Prefiltering of reference signal

In order to match the output of the plant with theput of the reference model a suitable
controller structure needs to be designed. As shoy@&HA-96b], the controller

Vo () = 8 w,(t) + B c,() + 8, y(1) + kr(1) (2.14)

where the auxiliary signals) (t) and w, (t) defined by

29 vitt), @, 0)=27

2.15
A A9 y(®) (2.15)

w(t) =

with a(s) =[1, s$,..., %‘2] and A(s)=S"+A _,$%+..+1, s+ A, being a monic stable
polynomial of degree n-1 and the parameter vediorsR"*,8, 1R™,6, 0R ,k OR matches
the output of the healthy plant (i.e. no failuresa)h the reference output if a suitable set of
parameters, ,d,,d,,K is chosen. The variable represents the ratio of the high frequency

gains of the model and the plant.
K =— (2.16)

However, if at a certain time t, there are p failedctuators, that is
u()=14, j=j,..J,, I= ps m, the plant output may be written as

() =G(9 y(3+ () (2.17)

where G(s) is defined in (2.8) and

yo= >, ‘”P(‘gg‘ (1 (2.18)

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005
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In order to match the output of the “failed” platiie control law needs to be extended by a

constant terng,:
Vo(1) = 6] @, (1) + 85 c0,(t) + O ¥(1) + kr(1) + 6, (2.19)

As a next step we want to calculate the matchingrpatersd,,d,, andg, . With the

definitions

_gT a9 _gt &9
Fl(s)_01 @a Fz(s)_gz m (2.20)

the matching control signaj,(t) = v,(t) can be written as

V() =F(9W(D+ R(S G 3+ 5 E)
+6,G 6N )G,y ) k rt)6,

. s (2.21)
=(F, 6+ F, 6)G(9+6, &9 YO}
+F, 6y (G, YO+ Kr)+d,
which can be solved for,(t)
Vo() =(1- Fy(9)- FZQ q s—*eo G (2.22)
[, 6)y O+ 6,y (O K rt)y+6,)
With (2.17) and (2.22), the closed-loop system is
YO =G(9(1- K(9- B(3 G 36, G} 2.23)

[{F, 6)y O+, Y O+ K r(t)+6,)+y()
which can be rewritten as
Y =G(9(1- F(3- B(3 G -6, G} "kt

21O CACACICER AN (2.24)
{F, 6)y ()+6, 5 (t)+6,)+ V(1)

Now if we compare the reference transfer functib(R®) with the first line of equation (2.24)
we obtain

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005



Model Reference Adaptive Control of Systems withuator Failures 9
" -1, 1
G(9(1- F(9- K(9G 36, G} 25 (2.25)
and with (2.8)
kpza($ _ _ _n* -1 _i
W(l FE)-FR(9E9-6, &3 k= X7 (2.26)
Now with k" = k' from (2.16) we get
Za(s) _ _ _n _1=i
= (1-R()-F(93-6,G § TE (2.27)
With (2.20) and (2.8) the latter equation can pgaded to
Z,(9 (1_0::T ﬁ_g;T a9 kpza(s) _9*0 KJ Z( $j_ _ (2.28)
P(s) A (9 A3 RSB @S
After some algebraic operations we get
(A9 -67a9) R3-(6, & $+OA( N Kk Z)SA()s,Z) sP) (2.29)

Expression (2.29) provides a polynomial equation tfie matching parametet,d,,d,

which can be solved by comparison of coefficiefitse existence of a solution for (2.29) is

shown in 0. With this equation for the matching gmaeters we can investigate the

convergence properties of the control system withrhatching parameters. In particular, we

can show that the second and third lines of egua®a24) go to zero asymptotically. With

(2.25) the overall output equation (2.24) can eriteen as

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs
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Model Reference Adaptive Control of Systems withuator Failures 10
y(t) = P (s )r(t)
+G 6 E K 6)r F (6)G(s6, A§"
{F, 6y O+6,7 )+ 6,)+ V(1)
1
= P (S re¢) (2.30)
1
+o Pm(s)(F 6 6,y M)6,)+ Y1)
_ 1
XTI
1 ©s _
+k*pm(s;((F2‘S)+‘9°+ K B(9)%)+6,)
From (2.25) we have
(1-RE)-FR(9GE9-6,G 3= kGx,R) (2.31)
and with (2.8)
Z,(9 _o Z(9 ) AG X
1-F F 2.32
( 1(8) - (S)kP(S) KR3) Rp " R(9 (2.32)
which can be rewritten as
F(9)+8+K P(9=|1- aTﬁjﬂ 233
(9+6 +K R(9= ( AS) ) Z(3 (2.33)
Substituting (2.33) into (2.30) yields
y(t) = ( S r(t)
L a(9)) K B9 ; (2.34)
0 2| —2y
i3 Fm(( 1 A(sj AU )
and with (2.18)
Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005
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y(t) = ()r(t)
N 1 (1_0*Tﬂjk*P(3 Z PJ 1($— ¢)+9
K'P.(9 ERAEYAVAG Fiwit
1
= ré)
P.(9 (2.35)
1 « a(s) K
_ -6, k,Z g,
Tk Pm($(( A(sj 202,00 SH O
=Yn )
1 cals)) K
: _91 k 8
"k Pm(s)((l /\(gj 205,00 O O

Note that in the last step the (in general unsjgtéynomial P(s) has been cancelled and the
remaining polynomial®, (s), A(9, Z(9 are all stable, therefore a constéptexists such
that

. 1 s a(s)) K _
| _ 1-6 K, Z; g |= 2.36
tmkPm(s)(( /\(gj 25,2, 2990 j (2.36)
Therefore
lim(y(9) - ¥,(9) =0 (2.37)

Note that if no failure has occurred, then fron86}.we get, =0.

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005
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2.2.2 Adaptation Algorithm

In the previous section the matching parametersaf&mown plant configuration (failure

pattern) were derived. However, in general neitiher point in time nor the nature of an
actuator failure is known a priori and hence anpgatéon of the matching parameters is
indispensable. In order to derive a stable adaptdtéiw, an important lemma from adaptive
control theory [SHA-96Db] is needed:

Consider the system in Figure 5

(kg (O (1)

oo (1)

i 70) =sign(KIr¢(9

Figure 5: Nonlinear Feedback Structure of Adaptation Law

Lemma 1: (without proof)

If G.(9) is strictly positive real (SPR) ([SHA-96b]) ardis a constant positive definite
S

diagonal matrix (adaptation gain) then the (nommefeedback structure in Figure 5
globally stable and if additionally (t) is bounded theritim &(t) =0 holds.

To derive an error equation, we define

6 =[6".6,.6,k 6,] O ™
6(1) =[ 6] (1,67 (1,8, ).k (1).6, )] DR

e(t) :[“’f(t),wl (t),y(t),r(t),l]T OR2™
o) =6(t)-6

(2.38)

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005
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The control law (2.19) can now be written as

u(t) =[ @) +6' ] axt)
=¢ twt)+0 wt)

(2.39)

With (2.39) the structure in Figure 6 can be deative

[%d (t)w(t)}

Yp(S)

v

A

Ge(s)

o [so]

Figure 6: Alternative Representation of the Adaptive Control Law.
ASG stands for “auxiliary signal generator”.

Since the parametef® are the “true” ones the output of the structureFigure 6 can be
written as

Y(t) = G(9 () + G s[k—l*qf( oo u} (2.40)

Note that because of the perfect model matchingeakplantG,(s) has been replaced by the
reference modeG,,(s) . Now with

Ym(t) = G (9 1(1) (2.41)
the matching error can be written as
o) = Gm(s)[k—{d( Yo o} (2.42)

However, Lemma 1 can not be applied directly sitneereference model is not necessarily
SPR (the relative order of the plant is in gengrahter than one). In this case the matching
error (2.42) needs to be extended with an additiemar signalu

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005
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e(t) =e() +u(Y)

1 (2.43)
=e()+Gu(IUI[F T3 F L (o)
The expression.™'(s) | implies that every signal of the vectaxt) is filtered through “its
own” transfer functionL™(s) (which is a signal theory issue and not a mathigalabne).
Now with an appropriate choice &f the transfer functiors,,L can be made SPR. In this
work the obvious choice

L(s)=G.(97 = R($ (2.44)
is made such that
G,(9L9=1 (SPR (2.45)
and (2.43) may be written as
£(t)= e(t)+k—1*[<oT (DG.(9 1~ G,(3¢" () ]w() (2.46)

Note thatg(t) is not available in (2.46) but witiat) = 8(t) - (t) we get

(¢ ()G, (9 1-G,(3¢'( b]w(b{[e(o—e*]T G(3 - G( ¥ 6 )t—e*]T}w( X

(2.47)
=[6"t@, «N)-G, €9 (Jw ([ G, 97 -67 G, b (X

and sinced’ (t) is constant

[Gn(96T =67 G,(9 () =0 (2.48)

and hence

(7 (0G(91-G(3¢" () |a(I=[T(Y G,(3 F G( B (W]l X (2.49)

Now the extended error signal can be rewritten as

£(t) =dt)+%[eT(t)Gm(s 1= G,(36"(}]e( ) (2.50)

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005
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However, since the parameter in (2.50) is not known, it is replaced by an aiddial gain

k(9
e) =e()+ k(Y[ 67 (9 G,(3 1= G( 367 (}]aX } (2.51)

where k () can be seen as the sum of the “true” paramietérand the corresponding

parameter errop(t)

k() =K™+p() (2.52)

Hence (2.50) can be written as

ety =e() +(K™+p(9)[ 67 (0 G,(9 - G,(367(}]eo( ) (2.53)

and with (2.42) the expression (2.53) can be résvrias

£(t) =G (9] K™ (D |+( K™+ p(D)[6" (D G(3 - G( B (el X
=G, ) K™ (6" (0)-8T)w®|+(k* +p(0)[6" (VG (3 - G(¥ (N]w()
= G, (K1) -G, (9 K0T 254
+K6T €5, ©)lw t)- K GAsF (T ()

+p )6 (5, 6)-G, 6P (t)w )
=k0" ¢)G, ()l (t)- G, (KO w(d+ o (YT (VG (3 F G( ¥ (Y ()

Using the result of (2.48) the ter@, (9 K6 "w() can be seen ds 6 (t)G, lw(t) and
hence the last line of (2.54) writes

£(t) =K 87 (D (1) + p(t)e,(Y (2.55)

with
() =G,lw(t) (2.56)

and
e()=[6"(VG,!1-G,8"()]aw(D (2.57)

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005
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Now Lemma 1 can be used to compute the adaptatmor ¢(t) and p(t)

o) =6(0) = —sign(k—]:j rZ(9e(
o) =-ye,(He(t)

(2.58)

Note thaty >0 R in the second adaptation law in (2.58) correspoods ande,(t) to {(t) .

In order to guarantee all closed-loop signals toboeinded and hence to ensure that
!im(y(t)—ym(t)):o the adaptaton law needs to be normalized with
1+{7 (t)¢ (t) + € (INAR-89]).

—sign(kl*jl'Z(t)e( 9

At) = 0(t) =

Ay =60 1+T ) )+ € (2.59)
o Ve 0E()

PO T 0+

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005
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2.3 Simulation Results

In this section some simulation results are preskerftor the simulation a nonlinear model of
the vertical dynamics of a model aircraft is ussée(Section 5.3). The nonlinear model is

linearized around an equilibrium point

0.00907714 pitch attitude[ rafi

0 pitch rate[ radfs
67.7244 longitudinal velocity] m/k
0.614761 | normal velocity] m/k

Xoom (1) = (2.60)

In order to apply the failure tolerant control aitfon we add three (redundant) elevators
according to Section 5.2

Culul(t)
ured (t) = Cu2 uz( t) (261)
Cu3u3(t)

where ¢, is the efficiency coefficient of the"ielevator. For our simulation we choose
¢, =1 c,=0.9¢,= 1... The nominal input values are chosen as

U, pom(t) =0.00560317y, o U F Ouy o t(F (2.62)

With these preliminaries and the parameter valums fAppendix A.2 we get the state space

model
0 1 0 0 0 0 0
) 0 -945389 0.0126704 - 139582 | 153.153 137.8388.468
| -9.8096 - 0.614761 - 0.151431- 0.456487 0 0 0 (2.63)
-0.0800455  67.7244 - 0.14478 - 15.9 0 0 0
c=| 1 0 0 0 ]

Obviously the three resulting transfer functions proportional in accordance with to the
efficiency coefficients. Hence we get

2
153" + 2468+ 360.1 _1.3 (2.64)

G(s)=_cC 1=
(9=6 s*+110.78 + 1620¢ + 237.Z+ 3.947
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Based on the transfer functions (2.64) the paramébe the adaptive controller are calculated.
However, various simulations show that the perforoeaof the adaptive control is only
reasonable with very fast reference models. Forftlewing simulations the following
(tuning) parameters are used

1 1 .

G.(9= 0——, A(9=(s+10)(s 10)( s 10

m(S) <750 550 (9=( ) ) .

[ =diag{0.1,0.1,0.1,0.1,0.1,0.1,0.1,p.1 , (2.65)
y=1

With these parameters the model matching contrpieameters (for the no-failure case) can
be calculated. The matching parameter are calcllgith Mathematica.

954.517 -1003.4
6 =|-14.115| .6, =| -508.725 ,
(2.66)
-5.4611 -28.833

6, =-4.43759, k= 0.00217647F, =

Figure 7 shows the result for a step of the pititiiude with and without adaptation of the
controller parameters. Since the matching parameter chosen as initial values, the plant

0 20 40 60 80 100
Time [s]

3 0.4 ‘
o ) _
>
£ 0.2¢ —— Model
= —— Plant
= — - Without Adaptation
8 O | | |
=0 0 20 40 60 80 100
g 0.1 ‘ ‘ ‘ —— With Adaptation
S — - Without Adaptation
- |
5o - o
2
=~ — - Elevator 1
g 01 ‘ : : Elevator 2
= § 0 20 40 60 | Eevator3 0
= 2 ‘ ‘ ‘ — - Without Adaptation
)
S e
< O i
S
cg -2 I I I 1
Q
L

Figure 7: Simulated step of pitch attitude (with Inear model). Elevator 1
fails after 20s and Elevator 2 after 40s.
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matches the model perfectly during the first 20820@s elevator 1 and at 40s elevator 2 fails
and the controller compensates for the respectitigator bias. If we compare the case with
and without adaptation there is only a small défexe. This is due to the high controller gains
shown in (2.66) which keep the tracking error symalen in case of no adaptation. Figure 8

shows the changes of the controller parameterpagdimeters show nearly no changes.

x 10
5
=, i
—_— e11 Starting Value: 955
5 ‘ ‘ — 612 Starting Value: -14.1
- B ____ 9@, Starting Value: -5.46 [
&10° 20 40 6 > 100
0
¥
o — 8, Starting Value: -1e+003
2+ — 922 Starting Value: -509 [
N 923 Starting Value: -28.8
-4 I I | |
9 10™ 20 40 60 an 100
5 — 8, Starting Value: -4.44 |
—— k Starting Value: 0.00218
— 8, Starting Value: 0
0
= I y
-5 | | _ 1 |
0 20 40 Time [s] 60 80 100

Figure 8: Changes of the controller parameters. Alparameters are hardly changed.

The controller developed above is not feasibleréal application due to the high parameter
gains mentioned. Moreover, further simulations shbat any controller designed based on
the transfer function (2.64), tends to be very #mestowards changes of the tuning

parameters; if the reference model is chosen tow she control system even diverges.
Furthermore, if we look at the Bode diagram of ptent and at its poles (2.67), we see that
the bandwidth of 50 rad/s of the reference modathigssen far too high compared to the
bandwidth of the system at 0.0191 rad/s.

5=-00197ad/ s = 0128830 5= -17.1898Y 5 -93.3168/_ (2.67)
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Figure 9: Bode plot of the transfer function G (s) from (2.64).

In order to solve this problem the order of thenples reduced [GEE-99], i.e. unimportant

dynamics are omitted. The joint grammians of thar@ed system are
W, =W, = diag{80.2546,0.9739,0.0125,0.0(}z (2.68)

This implies that the last two state variableshsdf balanced system can be omitted, which

leads to the new transfer functions

1.51%+ 0.2323

i=1... (2.69)
+0.152%+ 0.00254b

Gred,i(s) = QJi 52

If we compare the Bode diagrams of (2.64) and (2(6&e Figure 10) we see that down to the
magnitude of about -30 dB the reduced transfertiongs a good approximation.
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Figure 10: Bode plot of the transfer functionG (s) of (2.64) and the
Bode plot of the order-reduced transfer functionG _ (s) of (2.69).

red,1

Now the controller is designed on the basis ofdtaer-reduced transfer function. Since this
transfer function is SPR, there is no need to ektée matching error as shown in (2.43)
which simplifies the algorithm of the adaptationnsmlerably. For a first simulation we
choose the (tuning) parameters as

1

Gm(s):m, A(9=(st]) (2.70)

I =diag{0.05,0.05,0.05,0.05,0.p
thus the matching parameters for the no-failure @ms calculated as

6, =0.847044,0, = 0.186596J, =— 0.4054!

X (2.71)
k' =0.21946,6, = 0

For the simulations shown in Figure 11 an initiaoe of the matching parameter of +50%
each is assumed, which results in a tracking elwoing the step. The actuator failures result
in a transient response of the pitch attitude. fedi2 depicts the adaptation of the controller

parameters.
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Figure 11: Simulated step of pitch attitude (with ronlinear model).
Elevator 1 fails after 20s and Elevator 2 after 4§
1.02
i
D
1.01
0.23
N
D
0.22
-0.48
o
D
-0.5
0.265 ‘ ‘ ‘ ‘ ‘ ‘
~ W
026 | I | | | I
0.02
G;r 0 L =
_002 | 1 | | | 1
0 10 20 30 40 50 60 70
Time [s]
Figure 12: Controller parameters
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For the next simulation the adaptation gain masrixcreased
I =diag{0.15,0.15,0.15,0.15,0.1 (2.72)

Figure 13 shows that this results in a reduced dagngf the transient response of the pitch
attitude after an actuator failure. The same eftegt be observed in the adaptation of the
controller parameters in Figure 14. In order to pensate for the lack of ample damping the
bandwidths of the auxiliary signal generator aeased. For the simulation in Figure 15 the
denominator of the new auxiliary signals genertaamsfer function is therefore chosen as

A(s) =(s+10) (2.73)
Again assuming the no-failure case, the new magcparameters thus are

6, =9.84704,6, = 21.61230,= -2.380¢

. (2.74)
k" =0.21946,6, = 0
Furthermore the adaptation gain matrix is increasgain
I =diag{0.2,0.2,0.2,0.2,0}: (2.75)

These new (tuning) parameters lead to a considenaproved compensation of the actuator
failures. In the last simulation shown in this ctesp the pitch attitude is to follow the
reference sine signal(t) =0.0873sin(0tl . For the parameters we again use (2.73) and
(2.75). The results of the simulation are depiateligure 17 and 18.

In this section it was shown that an appropriat@aghof the process model is crucial for the
performance of the MRAC method. The relevant dyranshould be characterized by the
model; however, in order to reduce the number o&paters to be adapted the order of the
model is to be kept as small as possible.
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Figure 13: Simulated step ofpitch attitude (with nonlinear model).
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I =diag{0.15,0.15,0.15,0.15,0.}
o 1.02} 1
023 T T T T T T
& 0.22 W
0.21
-0.46
< -0.48 ¢ .
W
_05 1 1 1 L 1 1
0.28
x 0.26 E
0.24
0.05
q;r o L =
_005 | | | | | |
0 10 20 30 40 50 60 70
Time [s]
Figure 14: Controller parameters
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Figure 15 Simulated step of pitch attitude (with nonlinear model).
Elevator 1 fails dter 20s and Elevator 2 after 40s. The bandwidth ofhe
auxiliary signal generator is increased accordingd (2.73) The adaptation
gain is chosen asf” = diag{0.2,0.2,0.2,0.2,0}2
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Figure 16: Controller parameters
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Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005



Multiple Model Adaptive Estimation 27

3 Multiple Model Adaptive Estimation

In this chapter the multiple model adaptive estiomm{MMAE) approach is used to detect
sensor and actuator failures. The MMAE method geHan a parallel bank of Kalman filters,
each of which is matched to a specific hypothesmuathe failure status of the system (fully
functional or a failure in any one sensor or adtatThe conditional probability of each
hypothesis based on the measurement history isulagdd in order to compute the
probability-weighted state estimation of each Kairfiier, which can then be added up to an
estimation of the state vector of the (failed) pléee (3.1)). Hence the MMAE method
provides information about the probability of a gibse failure on the one hand, and on the

other hand, an estimation of the state vector wimay then be used for state feedback

control.
X(1) = Py X+ P X+t B % (3.1)
—————————————— » Kalman Filter X o1
no Failure ; N
nf
“ Kalman Filter | "
e X1 I X
Tty e | ~O—0
1

» Kalman Filter | %,
based on
Failure K T,

lVV

Hypothesis conditional
probability computation

Figure 19: A Scheme of the MMAE algorithm based om
bank of Kalman filters and a hypothesis conditional
probability computation.
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3.1 The Kalman Filter Algorithm

Consider the system with the known parameter véctor

x(t+)=F@)x()+ G @)u()+ GO) (I
x(0)=¢& (3.2)
y(t) = H(@)x(1) + r(t)

and with its known expectations of initial stategdel input, and measurement errors

E{¢}=¢
E{v(t)} =0 fort= ( (3.3)
E{ r(t)} =0 for (

and the initial covariance matrix of the estimatemor as well as the auto-covariance matrix
of both system and measurement noise

E{[¢-&1¢-87} =3, withs, =51 > 0
E{IMOII(D]"} = R§J, with R6)= B(6)=20 fortr=0
E{[r®lr(D]"} =R(§ 3, with R(6) = R(6) >0 fortr>0
{

{

{

(3.4)
E{IMOIL (D]} =R(H 3,
E{[&-Z1 (]} =0
E{[& -1} =0
For our desired estimation we set the following twaditions:
E{et+1t)} =0 (3.5)
with e(t+1 t) being the state estimation error at time t+1, gitree data at time t
e(t+t] ) (t+1)- X (t+1 t (3.6)
and for any,. . (t +1]t)
T aupopt 1)~ E{ e(t+ 1 )€ (t+1 1) 2 C (3.7)
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The following Kalman algorithm complies with thevgn requirements

X(t+11)= F@OX({t-D+ G @)u()+ KON A Y- HBE) X} +1)]

X(0-1)=¢ (3.8)
with the covariance matrix:
Z(t+3t)=F@)Z(|t-1F" ©)+G, @)R 6)G @)~ KO)QA)K ©) (3.9)
2(0-1)=2,
with the Kalman gain
K(t,0) =[F(0)=(t[t-1)H" (8) + G, (O)R, (€)1 Q"(6) (3.10)
and the residual covariance matrix
Q) = HO)=({t-)H" (6)+ R (8) (3.11)
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For implementation purposes the equations above bmrmdecomposed into two more
convenient steps.

Data Update:

(1) = X(§t=1)+ L[ YD~ HO) X1 t=1)]

%0-1=2 (3.12)

Z(t|t) =[1 -~LEOH@IXt]t -D[I ~LEOH (O] +L(HR( L'(Y (3.13)
2(0-1)=%,

L(t) =Z(tt-)HT (@)Q*(t) (3.14)

Q(t) = H@)Z(t[t-HH" (6)+ R (6) (3.15)

Prediction:

X+ =F@)X(Y D)+ G @)UY+ GE) R©6) TON ¥X- HO) &t (3.16)

Z(t+3t)=F @)Z(t)FT (0)+G, )R 6)G (6)
GER &R (R &G E)
FRL(R, €% @)
GER &)L A&F &)

(3.17)
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3.2 Hypothesis Testing

Given a dynamic system with K possible failure @ats which may occur during operation,
let & denote the vector of (uncertain) parameters depjdie failure status of sensors and
actuators of the system. Assume that all K possibladitions can be described by discrete
valuesg, of 8 (for k =1, 2, ..., K). Assume further that a barfkK separate Kalman filters is
given (see Figure 19), each filter representing@othesis for a possible failure pattern of the
system. Now we define the hypothesis-conditionabpbility p, (t) as the probability tha#
assumes the valug conditioned on the observed measurement histagy attime ¢

p(t)=P[6=6Y(1)=Y] (3.18)

In the next step a recursive expression for thelitimmal probability in (3.18) is derived. For
the following calculations, some results of corudial probability theory [JAZ-70] are

presented

The conditional density functiorﬁx‘y(x|y) of X given{Y(a)) = 3& for all x and y such that the
marginal densityf, (y) = ’ffny(x y)dx> 0 is defined by

fxv(XY)

3.19
f, (y) (3:19)

far (X9 =

Note that the roles of X and Y can be reversed wgiges the equivalent result

fev (%)

e (3.20)

fY‘x(y|X) =

Furthermore the well-known Bayes’ rule can be wntin “density form”

fy‘x(y| X) fX(X)

3.21
fy (y) ( )

fx‘y(x| y) =
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With these prerequisites the conditional densitycfion fg‘Ym(Qk |Yi) of 8 given{Y(ti) = Y}
for all 6, andY, can be written as

a.Y(1) (6..Y)

Favey (6 Y = f o 00 (3.22)
where the marginal density is given by
o () = [y @0, V) 9 =2 £, >0 (3.23)
Equation (3.22) can be rewritten as
vy @ ¥) = fovu (B Yia ¥) (3.24)

frp (%)

Now with (3.19) the joint density functiory, (6. Yes ¥) can be written as the
product of the probability density function of tberrent measurement, conditioned on the
particular assumed parameter valeand the observed past measurement hisyory
fy(q)‘B]Y(I_l)(yi |6? ,Y_;) and the joint density functio, . ,(6,,Y.,).

fox ) (@YD) = Frine (Y0 = Ty vine (Vo ¥1,01)

_ (3.25)
= fpin 0|6 Ya) by G Yor)
Hence (3.24) can be written as
f A SR AVEN(- " 4
NCAVE ropnto 0l ¥ b B ) (3.26)
fvi (YD)
Now with equation (3.25), the right side of equat(B.23) is given by
K K
PILMCIRAED IR SRPHNCY I SR WICIN S (3.27)
=1 j=1

Therefore equation (3.26) may be written as
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f e . (Y16 Y0) fg,v(.,l)(ek' Y.,)
oy (G ¥) =< Ko ‘ :
2 Fyiovin 8 Y00) by oy (6, o)

=1

(3.28)

Since the discrete conditional density function ¢an directly related to the conditional
probability with

favey @[Y) =kZ:; R(1)o@-84) (3.29)

K
whered is the Dirac function (e.gfﬂY(g)(ej |Yi) = Z R (1)o@ -46.)= p (1)), equation (3.28)
can be rewritten as =

p (t) = fy(ti)‘e,Y(Ll)(yi |9 ’Yi—l) Q(t—l)
k \ N K
Z;_ fY(g )‘H,Y(Ll)(yi ‘9] ’Yi—l) 9 (it_]_)
J:

(3.30)

which is a recursive representation of (3.26) dngtcan be used in an “online” algorithm.

The conditional densityf |6? ,Y_,) can be computed with the information provided

s
by its assigned Kalman filter

1
(2m)72 deq(Q, ¢, )

Fyoviy (yi |9k’Y—1) = exp(—% FE)QT @) )j (3.31)

where m is the measurement dimensiQ(t,) :yk(t)—Hk(B)f(fk(t|t—1) is the residual, and
Q.(t) is the residual covariance matrix of tHe filter at timet, .
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3.3 Implementation in Matlab/Simulink

The MMAE algorithm has been implemented in Matlai8ink. For the large bundle of
signals which emanate from the Kalman filter baakpus system is used for a more
convenient handling. The bus creator given in Simkulvas used to summon the different
signals (e.g. vector and matrix signals) into ons gystem. Now all the Kalman magnitudes
can be “transported” in one single signal threadalfy the bus selector can be used to extract

the desired signal.

CO——1—>0
u(t) Bus - No Failures - '
Bus - No Failures
1) Py (1)

Kalman Filter Bank - No Failures

—p|u(t)

Bus - Sensor Failures >

Bus - Sensor Failures .
Py (1) Bus- Kalman Filters

Kalman Filter Bank - Sensor Failures

—{u(t)

Bus - Actuator Failures

Bus - Actuator Failures

—pyO

Kalman Filter Bank - Actuator Failures

Figure 20: Implementation of the Kalman filter bank in Matlab/Simulink.
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3.4 Modeling of Actuator and Sensor Failures

This section describes the general nature of &sluvhich can be detected with the MMAE
algorithm. Based on each possible failure hypothesithe system, an appropriate Kalman
filter needs to be designed, i.e., the prior infation of each failure is used to compute
compatible linear models which are then used ferd#sign of the respective Kalman filter. It
has to be emphasized that the MMAE method can detgct failures which are taken into
account by a predefined Kalman filter (hypothedignce all information about the manner
of a specific failure needs to be known. This igesy restrictive requirement since most
failures are not fully known in advance (e.g. adeidof an airplane may be stuck at an
unknown position, which would imply that for everydder position possible a separate
Kalman filter needs to be designed). In this secie deal with “hard” failures, i.e., for
actuators we assume that in case of a failure ¢heair will have no further effects on the
system (e.g., a rudder being stuck at zero anfylegjermore a failed sensor only produces
unbiased (white) measurement noise. With thesengsisans it is easy to derive a (linear)
model of the failed plant, thus a single actuatmiufe can be represented by setting its
associated column in the input matrix to zero andirgle sensor failure by setting its
associated row in the measurement matrix to zero.

Consider the (healthy) system

(t) = AX(1) + BU )

3.32
y(0) =Cx(Y (892

with AOR™, B=[hQ,....5, | OR™" andC:[cl,...,cp]T ORP". In case of a hard failure of
actuatorq, 1< g< mthe input matrix needs to be rewritten Eﬁzs[bl,...,l;;1 = O,...,bn] and in
case of a full failure of sensor 1<r <p the measurement matrix needs to be rewritten as

C :[q,...,q = O,...,q,]T :
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3.5 Simulation Results

The failure detection with the MMAE method was ¢égeisbn the nonlinear model aircraft
model of tenth order described in chapter 5. Fet frirposes two groups of redundant
actuators (two ailerons and two rudders) and tvaugs of redundant sensors (two roll rate
sensors and two yaw rate sensors) are added. &doltbwing simulations, we assume that
only the redundant components may fail. For thegdesf the Kalman filters the nonlinear

model needs to be linearized. The linearization eaamputed analytically with Mathematica.

The set point is chosen to be an equilibrium point

[ x, (1) ] [ p()] 0 roll rate | rad/}
X, (t) q(t) 0 nick rate[ rad/k
X, (t) r(t) 0 yaw rate[ radfs
X,,(t) 0 (1) 1 Euler parametef |-
t t 0 "
Xoom (1) = O 21al0) (3.33)
Xs(t) 0, (1) 0
X, (t) 0, (1) 0
X4 (t) u(t) 38.3988 longitudinal velocity[ m/k
X, (t) v(t) 0 lateral velocity[ m/p
Xyt | [ w(t) | |1.08312] normal velocity] m/b
The inputs are
Fuy(t) ] [E,(t) ] 0 | aileron 1 angle [ra
u,(t) & (1) 0 aileron 2 angle [rac
0 ()= U, (t) s n(t) _ 0.0174073 elevator ahg[rad]. (3.34)
u,(t) 4, (t) 0 rudder langle [rad
ug(t) {,(t) 0 rudder 2 angle [rac
U], LTO® |,. 150 | thrust force [N]

Note that the redundant actuators are assumed“@dmed” actuators, i.e., the ways in which
redundant input signals “enter” the system onlyediby an “efficiency” factor (see Section
5.2).
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The outputs are chosen as

[vi(1)] [p(t)] roll rate sensor { rad/s

Y,(t) | | p(t) | roll rate sensor 2 rad/s

ys(t) | | a(t) | nick rate[ rad/s

()= Ys() [, | r@) | yaw ratesensor 1 rad]s
ys(t) | |r@) | yaw rate sensor P rad/s

Ys(t) | |u(t) | longitudinal velocity] m/k

Y, (1) | | v(t) | lateral velocity] m/b

| Ys(t) | [ w(t) | normal velocity] m/b

11>

(3.35)

The resulting system matrices are listed in Appendi3. Simulations show that the
hypothesis testing algorithm works more reliablyewhthe linear system is normalized
properly so that all orders of magnitude are eqlihé normalization matrices used for the
following simulation can also be found in Appendix3. For the Kalman filters the time

continuous matrices are discretized with the Eideward rule

qo:fﬁi%lfgl (3.36)

S

where the sample time for the following simulationss chosen afg =0.005%. The discrete

system matrices are

F=t A+l
G=tB (3.37)
H=C

For the Kalman filters we define the following paeters, the initial covariance matrix of the
estimation error and the auto-covariance matrikath system and measurement noise

5, =1,
R =0.01_, (3.38)
R =1I,

The measurement noise of the rate sensors is clagsamormally distributed random signal
with a variance of 0.0004 rad/s, the input noiséhefailerons and rudders is assumed to have
a variance of 0.0001 rad/s. For the hypothesisngeste need to define initial probability
values. In order to keep the probability calculatigely the probabilities should not go below
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a given limit, otherwise, due to numerical erraestain probabilities may go (exactly) to zero
and then from (3.30) it can be seen that those ghibbes stay at zero forever. For the
following simulations a lower limit of 0.001 is ukeSince we assume that at the beginning

there is no failure, we choose for the initial \&sdu

Pas1 = 0.001, Pasr = 0.00.
Pats = 0.001, Pasa = 0.00
pSfl = 00011 psfz = OOO]
Psts = 0.001, Psia = 0.00:

(3.39)

where p,;is the probability that the"i actuator fails andpg; is the probability that théhj
sensor fails, the probability that no failure oscoan then be written as

4 4
pnofailure =1- Z pfAi - Z pfsj = 0992 (340)
i=1 i=j

Failure detection and isolation using the MMAE aition requires a stimulus to disturb the
system from a quiescent state. The performancendspgoon the magnitude of the residuals
within incorrect filters having large residual vatu Small deviations from a quiescent state
will be virtually indistinguishable from system ge|, providing poor detection and

identification.

In the first simulation an aileron failure scenai® investigated. In order to show the
influence of the exciting signal on the failure efgion and isolation we choose a low-
frequency sine signal as input to the aileroi{§ & w(t) = 0.0873 sin(0.5t). At 4.5 s aileron 1
fails. Figure 22 shows an immediate detection effthlure; however, since both ailerons get
exactly the same (low frequent) signal the companatof the probability encounters
difficulties in distinguishing between the two (tediant) ailerons. In this case the only reason
why a distinction is possible is the fact that @féiciency coefficients (5.16) of the two
ailerons are not the same<&, ¢=0.6). The lower plot of Figure 21 shows the pralitgb
weighted estimation of the roll rate; the substdrgstimation error can also be attributed to
the lack of sufficient excitation. Figure 23 and 2dow a failure scenario of the second
aileron at 4.5 s with an input frequency of 1 raffiste that the first aileron has a larger
efficiency coefficient and therefore the effecttiog failure is not as significant as in the first
simulation); the estimation of the roll rate as lwak the probability estimation are

considerably improved.
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Figure 21: Aileron input signal and roll rate. Hard failure of aileron 1 at
4.5 s. The estimation is not satisfactory due to swfficient excitation of
the roll dynamics. Inputs: uy(t)=u,(t)=0.0873 sin(0.5t), w(t)=us(t)=
Ug(t)=0, uy(t)= 0.0873 sin(0.5t#). Efficiency coefficients of ailerons: ¢=1,
0220.6.
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Figure 22: Probability that either no failure or a failure of aileron 1 or
2 has occurred. The dots indicate the time of theaflure. Ambiguous
distinction of redundant ailerons due to insufficieit excitation.
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Angle [rad]

Roll Rate [rad/s]

No Failure

Aileron 2 Failed Aileron 1 Failed
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0.1} — Aileron 2
0
0.1+ g
_02 L 1 L 1
0 5 10 15 20 25
0.2 :
Measured
0.1¢ ~ Estimated |
0 /\/\/\/\/
0.1+ g
_QZ | | |
0 5 10 15 20 25

Time [s]

Figure 23: Aileron input signal and roll rate. Hard failure of aileron 2 at
4.5 s. The higher frequency of the input signaind the higher efficiency
coefficient of aileron 1 leads to a better estimatn of the roll rate.
Inputs: u4(t)=.uy(t)=0.0873 sin(t), uy(t)=us(t)= ug(t)=0, uy(t)= 0.0873
sin(t+x). Efficiency coefficients of ailerons: =1, 6=0.6.
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Figure 24: Probability that either no failure or a failure of aileron 1 or
2 has occurred. The failure is instantly detectedrad isolated.
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On the sensor side detection and isolation of (Haitlires is easier since a failed sensor has a
direct influence on the residuals of the Kalmatefs.

Aileron 1
— 0.2 —— Aileron 2
K
= 0.1+ i
Q
g o0
<
c
© .01+ e
Q
< _02 1 L 1 1
0 5 10 15 20 25
Sensor 1
0.2 Sensor 2
™ —— Estimated
S 0.1+ i
©
i /\/\/\/\/
IS
o
= 0.1+ e
04
_02 | | | I
0 5 10 15 20 25

Time [s]

Figure 25: Aileron input signal and roll rate. Hard failure of roll rate
sensor 1 at 4.5 s. Inputs: 1ft)=u,(t)=0.0873 sin(t), y(t)= ug(t)=0, u(t)=
us(t)=0.0873 sin(t+r). Efficiency coefficients of ailerons: ¢&=1, 6=0.6.

Figure 25 shows a scenario of a hard failure offitiseroll rate sensor. After 4.5 s the subject
sensor delivers zero mean white noise. Accordingigure 26, the failure is immediately
detected and isolated.
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=
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Figure 26: Probability that either no failure or a failure of roll rate
sensor 1 or 2 has occurred. The dots indicate tharte of the failure.

However, if we assume that either on the actuat@enathe sensor side lock-in-place failures
may occur, i.e., the residuals of the Kalman fdtare biased, the MMAE method reaches its
limit. We know from Kalman filter theory that we y&ato make allowance for all systematic

errors, however, as lock-in-place failures cannetpoedicted they may have detrimental
effects on the filter performance. Figure 27 andsB8w the possible outcome of the MMAE

failure detection in case of a lock-in-place fagluDue to the biased residual, the Kalman
filter gives a wrong estimation of the state vaeabwhich leads to severe problems with the
probability calculation. Figure 28 shows that dui@ of aileron 1 instead of aileron 2 is

detected, and that even a failure of rudder 1 mpded for a short time, and that the
calculations switch between “failure” and “no fa@(. Therefore, neither the failure detection

nor the failure isolation works properly.

In the next chapter an extended MMAE method is gl which can cope with lock-in-

place failures.
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Figure 27: Aileron input signal and roll rate. Lock-in-place failure of
aileron 2 at 4.5 s. Theestimation is not satisfactory due to the biase
input. Inputs: u(t)=u,(t)=0.0873 sin(t), u(t)=ue(t)=0, u,(t)=us(t)=
0.0873sin(t+r). Efficiency coefficients of ailerons: ¢=1, 6=0.6.
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Figure 28: Probability that either no failure or a failure of aileron 1 or
rudder 1 has occurred. The dots indicate the timefathe failure. The
lock-in-place failure leads to ambiguous probabiliy calculations.
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3.6 Multiple Failures

If we assume that two failures may happen duringragon the MMAE method needs to be
extended with new sets of Kalman filters incorpmigadual failures. To reduce the number of

filters required on line, a hierarchical approaatishown in Figure 29, is employed. To begin

Level 0 Level 1

,,,,,,,,,,,,

! Filter Bank
#1

i

|
|
|
|
|
|
|
Confirmet __| }
Failure #tl |
|
|
|
|
|
|
|
|
|
|
|

Confirmed
— e, o

Filter Bank
#K

|

|

|

|

.

|

|

|

|

|

) Confirmeti__| |
K Failure #I‘< }
|

|

|

|

|

|

|

|

|

|

Figure 29 Hierarchical structure of Kalman
filter bank. If a level O failure is confirmed, the
respective level 1 bank becomes active.

with, only the K single-failure hypothesis filtease on line. Upon declaration of a failure, a
new bank of filters is brought on line from mematorage. This bank contains filters
designed for the declared failure, all dual failucenbinations which include that failure (the
doubly subscripted hypotheses in “Level 1” of Fg@9), and the no-failure hypothesis (to
“back out” of the decision tree if necessary) [BIB}. In this work no simulations were made
with dual failures.
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4 Extended Multiple Model Adaptive Estimation

In this chapter the MMAE algorithm is extended imler to make it accessible to lock-in-
place failures and even to the more general clasarging failures (as long as the varying
part is not too fast). The MMAE algorithm was foutadbe very powerful (only) for fully
known (obviously except the point of time) failurés the following the MMAE concept is
combined with extended Kalman filters (EKF) whiate able to estimate some (unknown)
failure parameters. The resulting method is in taatext called “extended multiple model
adaptive estimation” (EMMAE).

Plant LA

Figure 30: Control system with actuator failures

Consider again the control system with actuatdufes described in Section 2.1 (depicted

again in Figure 30). The actuator failures are nextias

U, (1) = u(t) + o, (W - u( D) (4.1)

whereu(t) is the desired plant input and

U(O) =[ (), L), tn (V] 0, = diad T Ty T ur} (4.2)

with

1 if the {" actuator fail
N ={ J (4.3)

0 otherwise

For the following investigation we assume that oahe failure happens during the entire
simulation period. We assume further that for evpayr of Gi,ai a separate EKF was
designed and used in a MMAE structure instead efattdinary Kalman filters. The MMAE
part of the EMMAE algorithm (see Figure 31) is noged to detect the switch of, from
zero to one and the EKF part is used to estimatentknown actuator positiam (assuming
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that j is not known a priori). With this additiondégree of freedom the EMMAE method can
be used for all actuator failures which can be diesd by the combination of a hard failure

and a (slowly) varying parameter.

Note that the same concept can be similarly apmiethe sensor side of the plant. Consider

—————————————— » Kalman Filter | Xuf
no Failure

Yl ,|EKFbasedon [
Failure 1 (c,=1) | Xn
y |and Bias
Estimation Mty

» EKF based on M
Failure K (5,=1) | **
and Bias

Estimation JT
y

Hypothesis conditional
probability computation

Figure 31 Scheme of the EMMAE method. The ordinary Kalman
filters are replaced by EKF designed for state vasable and
actuator bias estimation.

Plant

Figure 32: Control system with actuator and sensofailures

the control system with actuator and sensor faslgt®own in Figure 32. The sensor failures

can be modeled as

y(O) =g (1) + o5 (Y() - (1) (4.4)

wherey(t) is the actual plant output and
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YO =[ %0, %0, Y, O] 0y = diadog 0g...0 ) (4.5)
with

1 if the jth sensor fail
5= (4.6)

0 otherwise

The next section provides a short introduction thi theory of parameter estimation with an
EKF.
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4.1 Parameter Estimation with an Extended Kalman Filter

Consider the nonlinear discrete system:

x(t+1) = f(x(0), u(0).6())+ G @)UY
x0)=¢ (4.7)
y(t) = h(x(9), u(9,6(1) + (1)

where v(t) andr(t) are the system and measurement noises, and wingrecbvariance
matrices are

E{IMOI (D]} = R 3, with R(16)= R(6)=0 fortr=0
E{[rIl(D] "} =R(§ 3, with R(16) = R(6)>0 fortr>0 (4.8)
E{[MOI(D]"} =R(H 3,

In order to use a Kalman filter to predict the etaariables of the system as well as to
estimate its parameters, we augment the state rveatio the parameters to be estimated

=
( '9)

The augmented state vector leads to the followonginear state space equations

2(t+1) = (9, WP+ G(H\()

(4.10)
y(t) =h(Z9, U9+ (Y
with
_| F(z®),u®)

f,(z(), u(y) = [H(t) } (4.11)

and
_ GV
G, (1) —{ 0 } (4.12)

which implies that the system noise is not actinghe parameters.
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To apply the Kalman filter equations to the nordinsystem above, the system has to be
linearized continuously around its current workpgnt. Since the current working point is
not known at present, we use the prediction basethe data of the preceding time step.
Hence the linear system matrices at time t are

=2 1 (200, u) ={F(év(t),i(t),ua)) M@(t), X(), u(t) (4.13)
0z 2= {+) 0 |
where
F(é(t),&(t),ua)):ai[ f(x(1), u(9,8(1)] 2 (1) (4.14)
X z(t)=Z {t1)
and
M(é(t),)?(t),u(t))=:—6[ f(x(1), u(t),@(t))] £ M(t) (4.15)
z()=2tt1)

The lower-right unity matrix of (4.13) implies thaf(t+1)=6(t) . The linearized
measurement matrix reads

=[G G(]]

H,® =2 h(z(), uy)
0z Z(H)=Z({t1)

where;

C.(0 =2 b, () (4.16)

Z()=Z({t-1)

Cg(t>=;—9h(z(t), (1)

z()=2( tt1)
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Now the Kalman predictor can be applied

Data Update:

200 =Z{t-D+ LYY~ HEfeD), ¢ )]

_ 4.17
20-1=2, )
Z ) =1 -L)H O1Z {t{t =D -L (HH ()] +L YR (H LY (4.18)
zz(o|—1):zzy0
L,(t) = Z,(t[t-DH] ©)Q,* (t) (4.19)
Q,(1) = H,()Z (t|t-1)H’ () + R () (4.20)
Prediction:

20+t = (-1, u(t)+ GOR O QO Y )X~ et (4.21)

Z,(t+1t) = F,(t)Z,{t)F] t)+G (HRHG,(D
G (R (R (R ¢tG © 4.22)

F, (), (R, (5 ©)
G (R, (L (F O

Next L(t,€) and Z(t|t) in equations (4.18) and (4.19) are partitioned ediog to the
dimensions ofx(t) and 4(t)

L,(t) = L) (4.23)
Ly (t)
HRACH AN
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The decomposed filter equations now read
Data Update:
(D) = X({qt-D)+ L (O[Y) - (L 1), U Y)]
B(t|t) = 6(t]t —1)+ L, ©)[y(t) - h(X { t=1), u(D)] (4.25)
200-1=¢,
Q) =C,()Z,(§t-DC; () + C(HZ,(1 =) G ()+ G (L =G (D (4.26)
+C, (X (t— 15 € R () '
L, (t) =[Z,(t|t -1)C; (1) + Z,(f t-1)C; (D]Q™ (Y 4.27)
Lo (t) =[Z3 (|t ~1)C (1) + Zo({] t=1)C; (D] Q () '
Z,(t)t) =[1 -L,OC,OIZ(tt-D[1 =L )T O] + L) CH =L ft-1) Ci( L(D
L (%, (5 (t- DI-L (&, )] (4.28)
“LUE 5 (- DI-L(E, OIT+LER OL ©)
() =l —LC (O] Z(t]t -1) — L C(H Z5(t|t DI CH( D Ly( D
+ [I-L (8, OF, €t-1-L €5, €, (t- DI -L, €, )] (4.29)
+L (R () €)
%, (t]t) = L, ()C, (), ({t-D)C] () L () +[ 1 - L, (1)C, (D] Z, (4 t-D)[ 1 - L, ©)C, ©)]'
L (€, (5 (t- DI-L, (&, )] (4.30)
“ L UL R (t-DI-L, (%, O]
+ L (R (L)
2(0-1D=%, (4.31)
Prediction:
K(e+10) = f (X t-1),ut)+ G (R, (HQ (N ¥ )- ' g[t+1), ()N 4.32)
6(t+1t) = 6(tt) '
S (t+1t) = F O, EFT ) +F EZ,E[t)MT )+ M G t)F " (t)
+M (It M7 H(FG, (R (3 ()
(4.33)
Z(E+1t) = F )=, t[t) + M t)=,(tt) (4.34)
Zy(t+1t) =2, (t|t) (4.35)
Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005




Extended Multiple Model Adaptive Estimation 52

4.2 Failure-Parameter Estimation

In the following sections the actual EKF equati@me derived for the case of failures of
actuators or sensors. For the following sectionsasgume that the healthy plant (without

failure parameters) can be described by the lidsarete-time system

X(t+1) = Fx()+ G u()+ G \()
x(0)=¢& (4.36)
y(t) = Hx(t) + r(t)

This plant, together with the failure structureFigure 32, can be described by the “failure”
parametersr, andu from (4.2) for the actuator failures awmd andy from (4.5) for the

sensor failures as follows

x(t+1) = f(x(0), u(t).0, (), T(0)+ G Y

. (4.37)
y(t) = h(X(1), a5 (1), ¥() + r(9

4.2.1 Actuator Failures

If we only look at actuator failures, we omit trensor parameterg andy; hence with the
system (4.36) the ternfi (x(t), u(t),o, (t),T(t)) can be written as

F(x(1),u(t),0, (). T()) = Fx()+ G[ L,-o (0] ud+ Go (YUY (4.38)

For the derivation of an EKF for a failure hypotisesf the I actuator we define,, =1 and
0, =0,u; =0, j#i. In order to apply an EKF, the state vector israeigted by the' bias

parameter.

X
z:[_} (4.39)

The augmented state vector leads to the followorginear state space equations

2(t+1)= £,(2(9, P+ G(H\()

(4.40)
y() = h(9, L)+ (Y

with
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f(z(t), u(t
fL (200, uy=| | EOHD) (@.41)
g (1)
and
- G
G, (1) =[ } (4.42)
0
Now the linearization of the dynamic matrix yields
F M@ (L), (1), u(t
F(t)_ (a0, () :[ (G (1), X(V) ())}
v=rfrn |0 1 (4.43)
where
A e 0
M (G (t),X(t),U(t)):a—_[ (9, WD)
Y 2(9=%{+1) (4.44)
0
with G representing th&icolumn of G, . The input matrix becomes
0hg
G (t)‘ f(Z(t) u(9) = ) (4.45)
Z()=Z tt1) 0

with ®)G, representing the matri®, with the " column set to zero. The linearization of the

measurement matrix is

H,(t) = —h(Z(t) u9) =[COY GO
Z()=Z {t1)
where:
C, ()= —h(z(o W) = H (4.46)
Z()=Z({t-1)
Co0) =2 (7Y, ) =0
i z()=2 {+1)
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Now the linearized system can be written as

A R
o ol

(4.47)

4.2.2 Sensor Failures

In case of sensor failures we omit the actuatoarpaterso,(t) and t(t) . The output
equation is

h(X(1), 05(1), () =[ 1,~ 0 ()| HX()+ T & HY() (4.48)

and hence the output may be written as

y(t) =[ 1, = 0(t) |HX(t) + T () HY(D) + r(t) (4.49)

For the derivation of an EKF for a failure hypotisesf the " sensor we definer,, =1 and
05=0,y,=0, j#i. In order to apply an EKF, the state vector isnaeigted by the™ bias

parameter.

H
z=| ” (4.50)
y

The augmented state vector leads to the followonginear state space equations

Z(t+1)= 1,(2(9, U9+ G(H\()

(4.51)
y(t) =h(Z9, U9+ ()

with

(4.52)

f (20, u() :[ (), “(t))}

¥i(0)

and

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005



Extended Multiple Model Adaptive Estimation 55

G, (1) = {GO} (4.53)

Now the linearization of the dynamic matrix yields

F0 =2 1,200, u0)
z I

:[F M (¥ (t),%(t),ua))}
2= {t1)

(4.54)
where
- - 0
M (VY (1), X(D),u(t))=—] f ,
(; (1), X(t), u(t)) 637i[ (0, u D) oies (4.55)
= 0
The input matrix becomes
G
Gz(t)=ifz(2(t),U(t)) { } (4.56)
ou (=7 {+1) 0
The linearization of the measurement Matrix is
H,(0) =2 h((), W) =[G GOl
z (=7 {t1)
where
CO=ThaAp U =COH (4.57)
X 2(H)=7 {+1)

=[0 ... 0 1 0 .. 0

W
Z()=2 t+1) i"entry

C, (1) =aiy_h(z(0, )

with ““H representing the matril with the I" row set to zero. Now the linearized system

{;i((tt:?)Hg ﬂ[vxi((tt)HG”}“(‘)

yO)=["HI [0 .. 0 1 0 .. 0] [;(t)}

can be written as

o

(4.58)
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4.2.3 Performance Improvement of Parameter Estimation

Equations (4.11) and (4.12) show that there isaisenacting directly on the parameter part of
the augmented state vector. Thus the covariancexnudtthe parameter errat, converges

to a small value (norm) with increasing time. Hoee\f a failure occurs the small value of
2, prevents the parameter estimation from convergyogekly to its new value. The
parameter convergence rate can be improved by imgdide parameter as a pseudo-noise
processd(t +1) =6(t) +v, (t) [HIB-91], wherev () is a zero mean white noise process with
mean square intensity, ; hence equation (4.10) can be rewritten as

- 0
2(t+1) = (9, W9+ G( | D+[Vp(t)} (4.59)

In order to include this pseudo-noise in the EKRiaipns, only the update step of the
parameter error covariance matrix (4.30) needtmbdified as following

%, (1) = L()C, (OZ,({ t=D)C] () L () +[ 1 = L ()C, (D] Zy (4 t=1)[ 1 - Ly ()G, (1)]'
—L, (&, (%, (t= D[-L, (&, ()]
“ LB (R (- DI-L (8, O]
+ L (R (L1O+Q,

(4.60)

Now with the magnitude o, the “liveliness” of the parameter estimation canimfluenced
in that a “large” value of) leads to a lively, but somewhat inaccurate estonatvhereas a
“small” value of Q, reduces the parameter convergence rate.
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4.3 Simulation Results

The failure detection with the EMMAE method wagéeson the same nonlinear model as the
MMAE method described in Section 3.5. Three actisaemd one sensor were “equipped”
with an EKF (ailerons 1, 2, rudder 1, and roll re¢@sor 1). The parameters for the (extended)
Kalman filters are chosen as

2=, 2,=0LR,= 0.00L, R =1 Q,= 0.0 (4.61)

In a first experiment a lock-in-place failure ofetlsecond aileron at 4.5 s is investigated.
Figure 33 shows that the second aileron is stucthatpeak of the input amplitude. The
actuator bias is estimated by the EKF. Figure 3awshthat the detection of the failure is
delayed by about 1 s. In a further simulation weestigate the same scenario, but this time
the actuator is not just stuck in place but “jumps’another position (see Figure 35). Figure
36 shows that this time the failure is detected admately. However, during the first two
seconds after the failure there is an ambiguityhwiite failure hypothesis of aileron 1. The
immediate detection may be due to the excitatiomfthe jump of the actuator position.
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Figure 33: Aileron input signal and roll rate. Lock-in-place failure of
aileron 2 at 4.5 s. The aileron bias is estimatedybthe EKF. Inputs:
uy(t)=u,(t)=0.2618 sin(t), u(t)=ug(t)=0, uy(t)=us(t)= 0.2618sin(t+).
Efficiency coefficients of ailerons: =1, ,=0.6

1 :
() °
E .
g 05/ : 7
o .
z :
0 . ‘
0 5 10 15
o l ? s
ks :
< .
L .
— 051 . J
S :
= 9 I , € ‘
< 7o 5 10 15
B 1 . :
= :
L [ ]
~ 05 . i
5 :
2 .
< 7o 5 10 15
Time [s]

Figure 34: Probability that either no failure or a failure of aileron 1 or
2 has occurred. The dots indicate the time of theaflure. With a delay
of about 1 s the failureis detected and isolatet

Rupp Daniel Fault-Tolerant Control and Fault Datector UAVs 2005



Extended Multiple Model Adaptive Estimation 59
Aileron 1
_ 05 —— Aileron 2
©
o
2 O//\N\\\\J B
(@]
c
<
-0.5 : :
_ 0 5 10 Measured
© 0.5 —— Estimated
©
&
g 0 /\/\f
[
o
3 .05 ‘ |
T 0 5 10 Actual
‘S 0.5 —— Estimated
2
o O 1
c
o
2 -0.5 : :
< 0 5 10 15
Time [s]
Figure 35: Aileron input signal and roll rate. Excusive lock-in-place
failure of aileron 2 at 4.5 s. The. Inputs: w(t)=u,(t)=0.2618 sin(t),
us(t)=ue(t)=0, us(t)=us(t)= 0.2618sin(t+r). Efficiency coefficients of
ailerons: ¢=1, ¢=0.6.
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Figure 36: Probability that either no failure or a failure of aileron 1 or
2 has occurred. The dots indicate the tim of the failure. The jump in
the angle of aileron leads to an immediate failureletection, however,
the isolation is delayed due to confusion with aiten 1.
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As mentioned above the EMMAE algorithm can alsoecoyth varying failures. In the
following simulation we assume that the second@ildails after 5 s but then still moves in
the manner of a square. Figure 37 shows that theate is estimated quite well despite the
varying failure. In order to accelerate the estiorabf the bias parameter, the mean square
intensity Q, of the pseudo-noise is increaseddp=0.000%. Figure 38 shows that the failure
is detected immediately, however, during the #& s after the failure there is an ambiguity
with the failure hypothesis of the first ailerorhél'reason for this may (again) be the larger
coefficient of efficiency of aileron 1.

In the last simulations of this chapter a varyiegsor failure scenario is assumed. After 4.5 s
the first roll rate sensor emits a sine signal iteatot correlated to the actual measurement
(Figure 39). The sine function was chosema@) =0.5sin(2 ¢ 0.fand in order to get an
accurate estimation of the failure signal the sguiatensityQ, of the pseudo-noise is
increased td@Q, = 0.01. Figure 40 shows an immediate detection and isolaif the sensor
failure.
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Figure 37: Aileron input signal and roll rate. Varying lock-in-place
failure of aileron 1 starting at 5 s. The inputs: y(t)=u,(t)=0.2618 sin(t).
Us(t)=ue(t)=0, u4(t)=us(t)=0.2618sin(t4r). Efficiency coefficients of
ailerons: ¢=1, 6=0.6. The mean square intensity of the pseudo noige
0.0005.
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Figure 38: Probability that either no failure or a failure of aileron 1 or
2 has occurred. The dots indicatelte time of the failure. The failure is
detected immediately, but isolated only after aboud.5 s.
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Figure 39: Aileron input signal and roll rate. Varying lock-in-place
failure of roll rate sensor 1 starting at 4.5 s Sensor failure signal:
hf(t)=0.5+0.5sin(2t). The inputs: y(t)=u,(t)=0.2618 sin(t), W(t)=ue(t)=0,
us(t)=us(t)= 0.2618sin(t+r). Efficiency coefficients of ailerons: ¢1,
¢,=0.6. The mean square intensity of the pseudo noise0.01.
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Figure 40: Probability that either no failure or a failure of roll rate
sensor 1 or 2 has occurred. The dots indicate therte of the failure.
The failure is detected and isolated immediately.
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5 Nonlinear Aircraft Model

In this chapter a nonlinear dynamic model of a raderaft is presented. However, the
resulting model is only needed for benchmark puepaand therefore the modeling process
itself is presented rather briefly. Furthermore, glarameters used for the simulation have not
been identified with data from a real aircraft, lvapresent reasonable guesses only. For
simulation purposes the model is implemented &-amction in MATLAB/Simulink.

5.1 Modeling of the Aircraft

The resulting tenth-order model has the followitegesvariables

[ x,(t) ] [ p)] roll rate[ rad/k

X, (t) q(t) | nick rate[ rad/s

X, (t) rt) | yaw rae [ rad/$

X,(t) | | 0(t)| Euler parametef |-
X(t): Xs (t) q,(t) !

Xs(t) | | ()

X, (1) | | as()
X4 (t) u(t) | longitudinal velocity] m/k
Xo(t) | | v(t) | lateral velocity] m/b
| Xo(t) | | w(t) | normal velocity] m/k

>

(5.1)

The inputs are

u, (t) &(t) | aileron angle [rad]
u,(t) | .| 7(t) | elevator angle [rac
u(t)| | ¢@) | rudder angle [rad]
u,(t) a,(t) | throttle angle [rad

u(t) = (5.2

The outputs are given by the (linear) output equnati

[v,(Y)] [ p(t)] roll rate [ rad/}
Y,(t) | [a(t) | nick rate[ rad/p
| Ys(®) o[ r@®) | yaw rate] radjs
(1)= y.(t) | | u(®) | longitudinal velocity] m/b 3)
ys(t) | | v(t) | lateral velocity[ m/b

| Ys(t) | | w(t) | normal velociy [m/s]
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In practice, the velocities in the body frame canp® measured directly. However, for our
theoretical investigations the velocities are asslito be measurable in order to get an

observable system.

The aerodynamic forces acting on the aircraft gecified in the wind tunnel coordinate

system
X(0)] [1/20v*SG@.B)
WLZ@) 1/2pV*SC (@)
with
. drag force [N] C : lift coefficient [-]
- lateral force [N] G : lateral coefficient [-]
. lift force [N] V =Ju?+v2 +w? : wind velody [m/s]

- projected surface fm Jo = arctan(w/u)  : incidenangle [rad
: air density [kg/m ] B = arcsin(v/V) : sideslip angle [rad]
: drag coefficient [-]

O O N < X

The weight force of the plane in the navigatiomfeais

0
Fu() =0 (5.5)
mg

where m is the overall aircraft mass. The thrustdan the body frame is
Caath
pF(t) =] 0 (5.6)

0

whereC, is a thrust factor. The equations of motion regjaill forces to be transformed into

a body frame description

oF (t) = Cou(a. B) wF (1) + sF(D+Ci(®. 4, . 4) , Rl (5.7)
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whereC,, (a,B) is the transformation matrix from the wind tuntelthe body frame and
C..(%, 9. 0, @) is the transformation matrix from the navigatiortiie body frame.

The moments acting on the aircraft specified inybocabrdinates are

L(t) ] [1/20v2SbG (B, p 1€)
MU= | M@®|=|1/20v2S),G, @, 47) (5.8)
N | |1/2pV2SbG (B, 1)

with
L : roll moment [Nm] G : rolling momentaefficient [-]
M : pitch moment [Nm] G : pitching momenbefficient [-]
N : yaw moment [Nm] C : yawing moment céefent [-]

|, : aerodynamic mean chord [mb  ingspan [m]
With these preliminaries the equations of motion lba derived. The equations of forces are

u(t)

V() (== FO)+ , FOX 0t (5.9)
, m
W)
with
p(t)
pa(t) =| q(t) (5.10)

rt)

The equations of moments are

L0(t) =17 (,M (1) — pot) (1 ,tt))) (5.11)

with | being the inertial tensor. The differentiadjuation for the Euler parameters can be
calculated according to the theory of quaternidtis{03]

0 = % QD) () (5.12)

where the quaternion Q can be written as
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0()
_| @(®
a,(t)
(1)

Q (5.13)

The Euler parameters are normalized such that ohe of the quaternioN(Q) = + g
equals one. Note that(t) can be seen as a quaternion with a real part @f. 2¢ence
according to the multiplication rule of quaterniowe obtain the differential equation in
matrix form

G () —q() -q() —-ad
G0 | 1) &0 -a) | o 5.1
G| 2| w® g® -q(d]|” '

L LGs(1) -0 a(d o)
5.2 Addition of Redundancies

In order to control a system susceptible to seandractuator faults, appropriate redundancies
need to be added. In general, the plant has t® lm®sstructed that in case of any possible
actuator or sensor failures the controller car atihieve a desired control objective. In the
case of our nonlinear model the redundancies atedably “cloning” the required components.
For the actuators in the nonlinear model this 1sedoy substituting a given control signal by a
sum of (redundant) control signals. For instance/ei want to implement redundant ailerons,
the equation for the roll moments acting on the@l¢b.8) needs to be modified as follows:

L(t) =1/20V°SbG (B, B &ey) (5.15)
whereé,, represents a group of m ailerons
g =CEHCE+.HCE (5.16)

with the coefficientc, indicating different efficiencies.

In the case of sensors, redundancies can be addegpending the desired measurement
eqguation. In our case where the measurement eqsatre linear, a sensor can be “cloned” by
inserting a new row into the measurement matrix.
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5.3 SISO Model of Vertical Dynamics

In order to investigate the SISO MRAC algorithme thonlinear model above is reduced to

the vertical dynamics. The state variables are

x,(t)] [6(t)] pitch attitude| rafl
x(t) = X,(t) | .| a(®) | pitch rate[ radjs

X,(t) | | u(t) | longitudinal velocity] m/ ®.17)
X,(t)| | w(t)| normal velocity] m/k
The input is the elevator angle
u(t) £n(t) (5.18)
and the output is the pitch attitude
y(t)26(1) (5.19)

The aerodynamic forces acting on the aircraft gecisied in the wind tunnel coordinate

system

X()] [1/20V?SC (@)
SFO= 1Y@ |= 0 (5.20)
Z(t)| |1/2pV?SC (@)

wt

Note that all lateral forces are of no interestause we are only interested in the vertical
dynamics. Since the pitch attitude is known, théghteforce (5.5) of the plane can be easily
transformed into body frame

-mgsin@)
by Fu(t) = 0 (5.21)
mgcos@ )

The side-slip anglgs is always zero. Hence the transformation of thedgramic forces
from wind tunnel to navigation frame is
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-Xcos(a )+Zsing@ )
LF(t) = 0 (5.22)
-Xsin(a)-Zcosg@ )

For the thrust force we assume a constant value

F

t
nF(t) =10 (5.23)
0
The total force acting on the airplane can thus/ben as

oF (1) = F (1) + ,F(t) + ,F () (5.24)

Since only the vertical dynamics are considered,tftoments acting on the aircraft can be
reduced to the pitching moment

L) 1 [o
MO = | MO |=|1/20v7S,G, @, 1) (5.25)
IN@ | o

Based on the definitions above, the equations adiamacan be derived as in the previous
section.
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6 Conclusions

The MRAC method is a thorough technique for thagitesf a control strategy for systems
with actuator failures. As soon as the conditiamslie existence of a stable MRAC controller
are met, the designer is given a versatile tootldgelop a control system which has the
desired properties. The simulations with the n@dmmodel show some promising results.
As long as the design is based on a carefully ¢chosedel and as long as the number of
parameters to be adapted is kept sufficiently snth# design process is straightforward.
However, the conditions mentioned above may sonastibe quite restrictive. The necessity
of a minimum-phase system can be cumbersome singenknear system is often not
minimum-phase, at least not over the whole operaticea. In the literature on adaptive
control systems nonminimum-phase systems are ystrahted with a different control
design method known as adaptive pole placementhib work only SISO (redundant)
systems are treated. The extension to a practiddNeO theory is far from trivial and is a
topic of current research.

The primary needs for a failure detection mechanisiore than a complete control design
solution, drive the focus of the second part of thiork. With the MMAE method, a
practicable and powerful method for the detectibractuator as well as sensor failures is
presented. The MMAE method is a good choice as lmdhe expected failures can be
hypothesized by a reasonable number of Kalmarrdilt€he simulations with a full-degree-
of-freedom nonlinear model give auspicious resultsyever the results obtained here show
that the kind of addressable failures is rathetricted. In order to release this restriction, the
MMAE algorithm is combined with the parameter-estimg ability of an EKF. The reliable
ability of the MMAE method to detect failures baswda predefined hypothesis and the fact
that each EKF only has to estimate one singleufi@)parameter lead to a formation of a very
fruitful synergy. The simulation results show tregability of the EMMAE method to detect
failures of various kinds. However, both, the MMAEd the EMMAE method require further
investigations, including ways to reduce the coraponhal burden, control strategies and

analysis of the in-the-loop behavior, as well astteatment of multiple failures.
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Appendix
Appendix A.1

Existence of a Solution of the Model-Matching Equation
In order to show the existence of a solution fer¢lxpression

(A®-67a9) R3-(6, & B+OA( Y kZ)SA()S,E) sP) (A1)

we introduce the Bezout Identity given in the fallog Lemma (without proof)

Lemma 2:

()

Let A(s) and B(s) be monic polynomials of degreeend m< n-1, respectively, which ar
relatively prime (no mutual zeros). Then, the polymal Q(s) and the monic polynomial R(s)
of degree n-1 exist such that

AR+ B Qs C) (A.2)

where C(s) is an arbitrary polynomial of degre€l2n-

Now with

A9= R

B(9) = Z(3
R9=A(9-6" &}

Q9 =k (&7 d $+GN( 3)

(A.3)

the (arbitrary) polynomiaC(s) =A(9 Z( $ P( ¥ can be constructed if the polynomials R(s)
and Q(s) can be chosen arbitrarily. With the da&éniof a(s) and\(s) in Section 2.2.1, they
can be written as

R(9= §1+(4,,-6,,,) 8§ +..+(1,-6,) 5+(1,-6,)

U9 =~k [ 6,8 +(6A+6,,,) & +.+(01,46,) 's+(64 #+0,)] -

and hence all desired polynomials can be consttuai¢h the appropriate choice of the
parameter vectorg,, &, ,d, .
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Appendix A.2

Model Parameters

The physical parameters are

m = 28 kgl Weight of the aircraft
224 0 05
I = 0 637 0 [kgf ] Inertial tensor
05 0 6.37
L, = 0.9 [m] Aerodynamic meahard
S = 25 [m?]  Projected surface
_ m : ,
9.81 [ Az] Acceleration ofyravity
p = 1.167 k%g Aif density
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Fault-Tolerant Control and Fault Datatfor UAVsS 2005

(A.5)

71



Appendix 72
The aerodynamical coefficients are
dc, 0.1 [rad" ]
dg
dC
Y -1.0 [rad" ]
dg
CZO 0 '] [
dc, 4.5 [ral ]
da
dc, -0.1 [s rad ]
dg
dC, 01 [
dp
d&, 0.02 s rpd' |
dr
& 0.1 []
dé
CMO 0 '] [
dCy, -0.1 [rad" ]
da
dGy, -0.1 [s rad
dq
dC,,
0.162 -
ar . (A6)
dcy 0.1 [rad" ]
dg
dcy 0.1 [s rad
dr
dCy 0.1 []
d¢
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Appendix A.3
Linearized System

With the parameters from Appendix A.2 the systentrices of Section 3.5 are

[ -88.0302 0 245158 0 0O 0 0 0 - 247149 0
0 -30.4133 0 0 o 0 0 00223235 0 - 0.7914p
6.90975 0 -323376 0 0 ) 0 0.985719 0
0 0 0 o o ) 0 0 0
05 0 0 0o o o o 0 0 0
A=
0 05 0 0o o o o 0 0 0
0 0 05 0o o o o 0 0 0
0 -1.08312 0 0 0 -1962 0 - 00933396 0 0.011741
1.08312 0 -383988 0 1 0 0 0 - 2.05497 0
L o 38.3988 0 0 o 0 0 - 0255015 0 - 90734
[ 880302 528181 0 - 690975 - 4.14585 0|
0 0 49.2696 0 0 0
-6.90975 - 4.14585 0 30.9557  18.5734 0
0 0 0 0 0 0
0 0 0 0 0 0
B =
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0.03571
0 0 0 0 0 0
o 0 0 0 0 o |
1 0 0 0 0 0o 0 0o o o
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
C =

o 0 o O O O O o 1 o (A?)
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The dynamic matrix shows that the fourth and theesth state variable have no influence on
the input/output behavior. Therefore, for our pwgthey may be dropped, leading to the new

system matrices

[ -88.0302 0 24,5158 0 0 0 - 2.47149 0]
0 -30.4133 0 0 0 0.0223235 0 - 0.79140
6.90975 0 -323376 0 0 0 0.985719 0
0.5 0 0 0 0 0 0 0
A=
0 0.5 0 0 0 0 0 0
0 -1.08312 0 0 - 1962 - 0.0933396 0 0.011721
1.08312 0 - 383988 19.62 0 0 - 2.05497 0
. o 38.3988 0 0 0 - 0.255015 0  -9.07353]
[ 88.0302  52.8181 0 - 6.90975 - 4.14585 0]
0 0 49.2696 0 0 0
-6.90975 - 4.14585 0 30.9557  18.5734 0
0 0 0 0 0 0
B =
0 0 0 0 0 0
0 0 0 0 0 0.03571
0 0 0 0 0 0
L o 0 0 0 0 o |
1 0o o o o o o o0
1 0 0 0 0 0 0 O
(A.8)
01 0 0 0 0 0 0
0 01 0 00 0 0
C =
0 01 0 0 0 0 0
00 0 0 0 1 0 0
00 0 0 0 0 1 0
lo o o 0 0 0 0 1
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The normalization matrices have been chosen as

(=]]

0 0 0.1 0 0 0 0
0 0 0 0.02 0 0 (o)
0 0 0 0 003 O (o)
0 0 0 0 0 5 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1]
[0 0o o o o 0
0 01 0 0O 0 0
0 0 01 0 0 0O
0 0 0 01 0 O
0 0 0 0 01 0
Lo o o o0 o0 1
[0 0 o 0o o0 O 0
0 01 0 0 0 0 0
0 0 01 0 0 0 0
0O 0 0 01 0 O 0 (A-9)
0 0 0 0 01 O 0
0O 0 0 0 0 5 0
0 0 0 0 0 O 0
Lo 0 0 0 0 O 1]
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Appendix A.4
Equation for Forces and Moments of the Nonlinear Model

The forces in the wind tunnel coordinate systermaodeled as

X :%pvzs(43.604— 8.47°+ 1.38%+ 0.1887+ o.oz%z%lmj

1, (d,
v =Lpv {dﬁ j (A10)
:%pVZ{QO + aj

and the moments in body frame:

4G | . dC
—pV
2 Sb[ﬁ " +Ed€j
_ 1., dG, . 4G ., dG
M = EpV slu(dqﬂoﬂr rpe + 0 aq +1 dr]j (A.11)

1, e
=Y t(ﬁ dr de

with aircraft velocity V.
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Appendix A.5

Symbols and Abbreviations

Symbols — Chapter 2

Symbol Description

A,B,C State space system matrices

u(t) Input vector

X(t) State vector

y(t) Ouput vector

a(t) Input bias

v(t) Controller output

o Failure variable

Z,(9 Numerator polynomial of'} transfer function

P(9 Denominator polynomial of transfer function

K, High-frequency gain of'j transfer function

G(9) Transfer function

G, (9 Reference transfer function

P.(9 Reference denominator polynomial

y..(t) Reference output

K, Reference high-frequency gain

n Relative degree of transfer function

Z Reference numerator polynomial without prefilter
P Reference denominator polynomial without prefilter
() Unfiltered reference signal

rt) Filtered reference signal

v, (1) Common controller ouput

6,.6,,6,,k,6, Control parameters

g,.6,,6,K 0, Matching control parameters

aw (1), w,(t) Auxiliary signals
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Symbol Description

a(s Numerator vector of auxiliary signal transfer fuoot
N(9) Denominator of auxiliary signal transfer function
y(1) Output due to failure

o(t) Parameter error

aw(t) Control signal vector

a(t) Control parameter vector

e(1) Matching error

£(t) Extended matching error

u(t) Additional error signal

L(s) Auxiliary transfer function

k(1) Estimated high-frequency gain

p(t) Estimation error of high-frequency gain

Uroms Xnorr Nominal values

Ureg Redundant input vector

W, W Joint grammians

ry Adaptation gains

S I'"" pole of transfer function

Symbols — Chapter3

Symbol

Xt

Description

State vector estimation of Kalman filter based orfanlure
Residual of Kalman filter based on no failure
Probability of no-failure hypothesis

State vector estimation of Kalman filter based'dfailure
Residual of Kalman filter based dhfailure

Probability of I" failure hypothesis

Failure parameter
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Symbol Description

F(&) Discrete dynamic matrix

G,(6) Discrete input matrix

G,(6) Input-noise gain matrix

H(6) Discrete measurement matrix

v(t) System noise

rt) Measurement noise

¢ Initial values of state vector

g Expectation of initial value of state vector

K Kalman gain

R(6) Covariance matrix of system noise

R (6) Covariance matrix of measurement noise

R, (6) Cross-covariance matrix of system and measurenuesg n
Qo) Residual covariance matrix

L(t) Kalman update gain

>, () Initial covariance matrix of state prediction error

>(t) Covariance matrix of state prediction error

% cupopi() Suboptimal covariance matrix of state predicticoer

e(1) Estimation error

t, Sample time

., Unity matrix with size nxn
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Symbols — Chapter 4

Symbol Description

Uy “Failed” input signal of actuator i

O, Failure parameter for actuator side

a Actuator bias

Y(t) Plant output

y Sensor bias

O Failure parameter for sensor side

y(t) Sensor output

z Augmented state

f,(z,u V) Augmented system equations

G, (1) Augmented noise input gain matrix

F,(t) Linearized system matrix of nonlinear model funetio
H,(6) Linearized observation matrix of nonlinear modeidtion
C.(t) Linearized observation matrix of nonaugmented stptee
C, (1) Linearized observation matrix of parameter padtafe space

R(1),R(), R () Covariance matrices of augmented state space

Q,(6) Residual covariance matrix
L,(t) Augmented Kalman update gain
Q, Pseudo-noise mean-square intensity
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Abbreviations

UAV Unmanned Aerial Vehicle

MRAC Model Reference Adaptive Control

ASG Auxiliary Signal Generator

SISO Single Input Single Output

MIMO Multi-Input Multi-Output

HFG High-Frequency Gain

MMAE Multiple Model Adaptive Estimation

EMMAE Extended Multiple Model Adaptive Estimation
EKF Extended Kalman Filter

E{} Expectation

x(t+]4t) X at time t+1 based on data at time t

X Estimation of x

A 1™ column of A

CHYN Matrix A with i"" column set to zero

1.0 A Matrix A with i"" row set to zero
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