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Abstract 

The purpose of this diploma thesis is the presentation of some proposals for the fault tolerant 

control of unmanned aerial vehicles (UAV). In the first part, the model reference adaptive 

control (MRAC) scheme is utilized to control UAVs susceptible to actuator failures. In the 

second part, the multiple model adaptive estimation method (MMAE) is used for the detection 

and isolation of either actuator or sensor failures. In order to widen the class of detectable 

failures, the MMAE method is upgraded with extended Kalman filters (EKF) and thus 

becomes the extended multiple model adaptive estimation method (EMMAE). In this context, 

each EKF is used for state vector estimation on the one hand and for the estimation of a 

meaningful failure parameter on the other hand. 
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1 Introduction 

Unmanned aerial vehicles (UAV) are a topic of major interest at the Measurement and 

Control Laboratory of the Swiss Federal Institute of Technology. Great effort has been put 

into the area of control and navigation of UAVs. For their practical use, however, safety 

issues need also to be considered. From a control engineer’s point of view, actuator and 

sensor failures are a principal concern, since during a mission they may lead to catastrophic 

closed-loop instabilities. This thesis deals with some approaches to cope with such failures 

and hence to improve the reliability of UAVs. The main difficulty is the uncertainty of 

failures, i.e., it is usually impossible to predict which sensor or actuator may fail during 

system operation, or when the failures occur, and their type and values. 

In Chapter 2 the model reference adaptive control scheme (MRAC) is used for failure tolerant 

control of UAVs with actuator failures. The failures are assumed to be of the “lock-in-place”- 

type, i.e., during operation an actuator may get stuck at an unknown position and thus cause 

severe system performance deterioration. The MRAC controller is designed such that it uses 

the remaining (redundant) actuator to match the control system output to the output of a (user 

defined) reference model, even in the presence of actuator failures. For this model matching, 

the control parameters are adapted without any explicit knowledge of the failure properties. 

After the derivation of the control and of the adaptation laws the controller is tested on the 

nonlinear aircraft model described in Chapter 5. 

In Chapter 3 the detection and isolation of actuator as well as sensor failures with the multiple 

model adaptive estimation method (MMAE) is investigated. The MMAE algorithm is 

composed of a bank of parallel Kalman filters, each matched to a specific hypothesis about 

the failure status of the system. During system operation the probabilities of all hypotheses are 

computed online. The estimated state vectors of each Kalman filter are then blended through a 

probability-weighted average, thus the MMAE algorithm provides a state variable estimation 

of the (failed) system as well as the information about the most likely hypothesis. The failures 

under investigation are assumed to be “hard” failures, which means a complete loss of control 

authority in case of an actuator and zero mean white noise output in case of a sensor. Further 

it is assumed that a failed actuator has no more influence on the dynamics of the system. After 

the introduction of some basic facts of the Kalman filtering theory and the derivation of the 

hypothesis-testing mechanism, the method is tested on the nonlinear aircraft model described 

in Chapter 5. 
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The main drawback of the MMAE method is the need for preliminary knowledge of the 

failure hypotheses. Since every failure needs to be represented by a Kalman filter, the number 

of predefined hypotheses is limited by the computational power available. It is therefore 

impractical to use the MMAE method for failures with unknown failure values (e.g. actuator-

lock-in-place failures or sensor bias failures). Hence in Chapter 4 the MMAE method is 

combined with the parameter estimating ability of an extended Kalman filter (EKF). Where 

necessary, the Kalman filter in the Kalman filter bank is replaced with an EKF; with this step 

the failure hypothesis of one single filter can cover all combinations of hard failures with a 

(slowly varying) bias parameter. After the introduction of some basic facts of the extended 

Kalman filtering theory and the modelling of appropriate actuator and sensor failures, the 

method is tested on the nonlinear aircraft model described in Chapter 5. 

Chapter 5 provides a short introduction into the basic modelling steps of an aircraft. In the 

first part, a full six-degree-of-freedom model is derived. For test purposes the resulting MIMO 

model is then reduced to a SISO model of the lateral dynamics. Furthermore, an easy way to 

add actuator and sensor redundancy to an existing model is shown in this chapter. 
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2 Model Reference Adaptive Control of Systems with Actuator Failures 

2.1 Introduction 

In this chapter the model reference adaptive control method (MRAC) is applied on a linear 

aircraft model with actuator failures. Consider the linear time-invariant plant described by 

 
( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

= +
=

ɺ

 (2.1) 

where [ ]1, ,...,n n n m
mA B b b× ×∈ = ∈ℝ ℝ , and p nC ×∈ℝ are unknown parameter matrices, 

( ) nx t ∈ℝ  and ( ) py t ∈ℝ are the state vector and the output vector, respectively, and 

[ ]1( ) ,...,
T m

mu t u u= ∈ℝ  is the input vector whose elements, representing the actuators, may 

fail during system operation. The plant is so constructed that in the presence of up to any m-q 

(1≤q≤m) actuator failures the remaining actuators can still achieve a desired control objective 

In this chapter actuator failures are modeled as lock-in-place, i.e., a failed actuator is stuck at 

an unknown position and hence is affecting the dynamics of the plant (e.g., a rudder of an 

airplane is stuck at an angle of five degrees). Assume that the jth actuator is stuck at time tj at 

an unknown position ju  

 { }( ) , , 1,2,...,jj ju t u t t j m= ≥ ∈  (2.2) 

The failures can be modeled as (see [GSX-04]) 

 ( ) ( ) ( ( ))u t v t u v tσ= + −  (2.3) 

where ( )v t  is the controller output vector and  

 { }1 2 1 2, ,..., , , ,...,
T

m mu u u u diagσ σ σ σ = =   (2.4) 

with 

 
th1 if the j  actuator fails

0 otherwise
jσ


= 
 (2.5) 
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Assume that the plant with its unknown parameters and the (unknown) failure structure in 

Figure 1 can be combined into a process with the process-parameter vector θP. The MRAC 

controller shown in Figure 2 consists of a reference model, an adaptation law, and a control 

law. The goal of the controller is to (asymptotically) match the output signal of the process 

(with varying parameters θP) with the output signal of the (asymptotically) stable reference 

model by adjusting the parameters of the control law. 

 

1u

mυ

1υ

mu

 
Figure 1: Control system with actuator failures 

 
Figure 2: Basic MRAC scheme 
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2.2 MRAC with Output Feedback 

2.2.1 Calculation of Model Reference Matching Parameters 

Reconsider the system (2.1). The columns of the matrix B represent the (redundant) actuators 

of our plant. The actuator group, however, is only driven by a single control signal. This is 

called an equal actuation scheme (Figure 3) 

 1 2 0( ) ( ) ... ( ) ( )mv t v t v t v t= = = ≜  (2.6) 

which allows us to treat the actual MIMO system as a (simpler) SISO system. With (2.6) the 

transfer function of system (2.1) can be written as a sum of all single “actuation channels” 

 
1

( )
( )

( )

m
pj j

j

k Z s
G s

P s=

=∑  (2.7) 

where pjk is the high-frequency gain (HFG) and ( )jZ s the numerator polynomial of the jth 

actuator channel. Assuming now that the actuators 1,..., pj j  have failed, this can now be 

characterized as 

 
1,...,

( ) ( )
( )

( ) ( )
p

pj j p a

j j j

k Z s k Z s
G s

P s P s≠

= ∑ ≜  (2.8) 

0( )v t

 
Figure 3: Equal Actuation Scheme 
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In order to design an MRAC controller, all possible failure patterns must satisfy the following 

conditions: 

(C.1) all possible G(s) have the same relative degree *n  

(C.2) all possible G(s) are minimum phase 

The first condition implies that the change in the input matrix B due to actuator failures may 

not change the general structure of the plant, whereas the second condition assures that no 

unstable zero-pole cancellation takes place. Writing down the reference model in hybrid 

notation (mixture of time and frequency domains) as  

 ( ) ( ) ( )m my t G s r t=  (2.9) 

with 

 
1

( )
( )m

m

G s
P s

=  (2.10) 

where ( )mP s  is a stable monic polynomial (i.e. the highest order coefficient * 1
n

a = ) of degree 
*n  (which is equal to the previously defined (constant) relative degree of the plant to be 

controlled). Note that the specific form of (2.10) simplifies the following derivations on the 

one hand, but restricts the design of the desired reference model on the other hand (e.g., the 

static gain in general is not equal to one), therefore the real reference signal needs to be 

prefiltered in order to yield the desired reference output ( )my t . To derive a suitable 

preliminary filter we write the more general case 

 
( )

( ) ( )
( )

m m
m

m

k Z s
y t r t

P s
=  (2.11) 

where ( )r t  is the “real” reference signal and ( )mP s  is monic stable polynomial. Now (2.11) 

can be rewritten in the form (2.10) for some ( )mP s  and ( )r t , provided that ( ) ( )m mP s Z s  and 

( )mP s  have the same degree 

 
( ) ( )

( ) ( ) ( ) ( )
( )

m m m
m m

m

k P s Z s
P s y t r t r t

P s
= ≜  (2.12) 
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Hence the (desired) reference output ( )my t  can still be achieved with (2.10) by prefiltering 

(Figure 4) the “real” reference signal ( )r t  with the transfer function 

 
( ) ( )

( )
( )

m m m
pf

m

k P s Z s
G s

P s
=  (2.13) 

In order to match the output of the plant with the output of the reference model a suitable 

controller structure needs to be designed. As shown in [SHA-96b], the controller 

 0 1 1 2 2 0( ) ( ) ( ) ( ) ( )T Tv t t t y t kr tθ ω θ ω θ= + + +  (2.14) 

where the auxiliary signals 1( )tω and 2( )tω defined by 

 1 0 2

( ) ( )
( ) ( ),    ( ) ( )

( ) ( )

a s a s
t v t t y t

s s
ω ω= =

Λ Λ
 (2.15) 

with 2 2( ) 1, , ,..., na s s s s− =    and 1 2
2 1 0( ) ...n n

ns s s sλ λ λ− −
−Λ = + + + +  being a monic stable 

polynomial of degree n-1 and the parameter vectors n-1 n-1
1 2 0, , ,kθ θ θ∈ ∈ ∈ ∈ℝ ℝ ℝ ℝmatches 

the output of the healthy plant (i.e. no failures) with the reference output if a suitable set of 

parameters * * * *
1 2 0, , ,kθ θ θ  is chosen. The variable *k  represents the ratio of the high frequency 

gains of the model and the plant. 

 * 1

p

k
k

=  (2.16) 

However, if at a certain time t, there are p failed actuators, that is 

1( ) ,  ,... ,  1 p mj j pu t u j j j= = ≤ ≤ , the plant output may be written as 

 0( ) ( ) ( ) ( )y t G s v t y t= +  (2.17) 

where G(s) is defined in (2.8) and 

 
1,...,

( )
( ) ( )

( )
p

pj j
j

j j j

k Z s
y t u t

P s=

= ∑  (2.18) 

r my

 
Figure 4: Prefiltering of reference signal 
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In order to match the output of the “failed” plant, the control law needs to be extended by a 

constant term 4θ : 

 0 1 1 2 2 0 4( ) ( ) ( ) ( ) ( )T Tv t t t y t kr tθ ω θ ω θ θ= + + + +  (2.19) 

As a next step we want to calculate the matching parameters * * *
1 2 0, , and θ θ θ . With the 

definitions 

 * *
1 1 2 2

( ) ( )
( ) ,    ( )

( ) ( )
T Ta s a s

F s F s
s s

θ θ= =
Λ Λ

 (2.20) 

the matching control signal *
0 0( ) ( )v t v t=  can be written as 

 ( )

* * *
0 1 0 2 0 2

* * * * *
0 0 0 4

* *
1 2 0 0

* * *
2 0 4

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

           ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )

           ( ) ( ) ( ) ( )

v t F s v t F s G s v t F s y t

G s v t y t k r t

F s F s G s G s v t

F s y t y t k r t

θ θ θ

θ

θ θ

= + +

+ + + +

= + +

+ + + +

 (2.21) 

which can be solved for *0( )v t  

 
( )
( )

1* *
0 1 2 0

* * *
2 0 4

( ) 1 ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( )

v t F s F s G s G s

F s y t y t k r t

θ

θ θ

−
= − − −

⋅ + + +
 (2.22) 

With (2.17) and (2.22), the closed-loop system is 

 
( )

( )

1*
1 2 0

* * *
2 0 4

( ) ( ) 1 ( ) ( ) ( ) ( )

         ( ) ( ) ( ) ( ) ( )

y t G s F s F s G s G s

F s y t y t k r t y t

θ

θ θ

−
= − − −

⋅ + + + +
 (2.23) 

which can be rewritten as 

 

( )
( )

( )

1* *
1 2 0

1*
1 2 0

* *
2 0 4

( ) ( ) 1 ( ) ( ) ( ) ( ) ( )

        ( ) 1 ( ) ( ) ( ) ( )          

         ( ) ( ) ( ) ( )

y t G s F s F s G s G s k r t

G s F s F s G s G s

F s y t y t y t

θ

θ

θ θ

−

−

= − − −

+ − − −

⋅ + + +

 (2.24) 

Now if we compare the reference transfer function of (2.9) with the first line of equation (2.24) 

we obtain 
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 ( ) 1* *
1 2 0

1
( ) 1 ( ) ( ) ( ) ( )

( )m

G s F s F s G s G s k
P s

θ
−

− − − =  (2.25) 

and with (2.8) 

 ( ) 1* *
1 2 0

( ) 1
1 ( ) ( ) ( ) ( )

( ) ( )
p a

m

k Z s
F s F s G s G s k

P s P s
θ

−
− − − =  (2.26) 

Now with * 1
pk k−=  from (2.16) we get 

 ( ) 1*
1 2 0

( ) 1
1 ( ) ( ) ( ) ( )

( ) ( )
a

m

Z s
F s F s G s G s

P s P s
θ

−
− − − =  (2.27) 

With (2.20) and (2.8) the latter equation can (re)expanded to 

 
1

* * *
1 2 0

( ) ( )( ) ( ) ( ) 1
1

( ) ( ) ( ) ( ) ( ) ( )
p a p aT Ta

m

k Z s k Z sZ s a s a s

P s s s P s P s P s
θ θ θ

− 
− − − = Λ Λ   (2.28) 

After some algebraic operations we get 

 ( ) ( )* * *
1 2 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T

p a a ms a s P s a s s k Z s s Z s P sθ θ θΛ − − + Λ = Λ  (2.29) 

Expression (2.29) provides a polynomial equation for the matching parameters * * *
1 2 0, ,θ θ θ  

which can be solved by comparison of coefficients. The existence of a solution for (2.29) is 

shown in 0. With this equation for the matching parameters we can investigate the 

convergence properties of the control system with the matching parameters. In particular, we 

can show that the second and third lines of equation (2.24) go to zero asymptotically. With 

(2.25) the overall output equation (2.24) can be rewritten as 
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( )
( )

( )

1*
1 2 0

* *
2 0 4

* *
2 0 4*

1
( ) ( )       

( )

           ( ) 1 ( ) ( ) ( ) ( )          

            ( ) ( ) ( ) ( )

1
       ( )

( )

1
           ( ) ( ) ( ) ( )

( )

1
       ( )

( )

     

m

m

m

m

y t r t
P s

G s F s F s G s G s

F s y t y t y t

r t
P s

F s y t y t y t
k P s

r t
P s

θ

θ θ

θ θ

−

=

+ − − −

⋅ + + +

=

+ + + +

=

( )( )* * *
2 0 4*

1
   ( ) ( ) ( )

( ) m
m

F s k P s y t
k P s

θ θ+ + + +

 (2.30) 

From (2.25) we have 

 ( )* *
1 2 01 ( ) ( ) ( ) ( ) ( ) ( )mF s F s G s G s k G s P sθ− − − =  (2.31) 

and with (2.8) 

 *
1 2 0* *

( ) ( ) ( )
1 ( ) ( ) ( )

( ) ( ) ( )
a a a

m

Z s Z s Z s
F s F s P s

k P s k P s P s
θ 

− − − =    (2.32) 

which can be rewritten as 

 
*

* * *
2 0 1

( ) ( )
( ) ( ) 1

( ) ( )
T

m
a

a s k P s
F s k P s

s Z s
θ θ 

+ + = − Λ   (2.33) 

Substituting (2.33) into (2.30) yields 

 
*

* *
1 4*

1
( ) ( )

( )

1 ( ) ( )
        1 ( )

( ) ( ) ( )

m

T

m a

y t r t
P s

a s k P s
y t

k P s s Z s
θ θ

=

  
+ − +  Λ  

 (2.34) 

and with (2.18) 
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1

1

*
* *
1 4*

,...,

*
* *
1 4*

,...,

1
( ) ( )

( )

( )1 ( ) ( )
        1 ( )

( ) ( ) ( ) ( )

1
       ( )

( )

1 ( )
        1 ( ) ( )

( ) ( ) ( )

p

p

m

pj jT
j

j j jm a

m

T
pj j j

j j jm a

y t r t
P s

k Z sa s k P s
u t

k P s s Z s P s

r t
P s

a s k
k Z s u t

k P s s Z s

θ θ

θ θ

=

=

=

  
+ − +   Λ  
=

  
+ − +  Λ 

∑

∑

1

*
* *
1 4*

,...,

       ( )

1 ( )
        1 ( ) ( )

( ) ( ) ( )
p

m

T
pj j j

j j jm a

y t

a s k
k Z s u t

k P s s Z s
θ θ

=


=

  
+ − +   Λ  ∑

 (2.35) 

Note that in the last step the (in general unstable) polynomial P(s) has been cancelled and the 

remaining polynomials ( ),  ( ),  ( )m aP s s Z sΛ  are all stable, therefore a constant *
4θ  exists such 

that  

 
1

*
* *
1 4*

,...,

1 ( )
lim 1 ( ) ( ) 0

( ) ( ) ( )
p

T
pj j j

t
j j jm a

a s k
k Z s u t

k P s s Z s
θ θ

→∞ =

  
− + =   Λ  ∑  (2.36) 

Therefore 

 lim( ( ) ( )) 0m
t

y t y t
→∞

− =  (2.37) 

Note that if no failure has occurred, then from (2.36) we get *
4 0θ = . 
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2.2.2 Adaptation Algorithm 

In the previous section the matching parameters for a known plant configuration (failure 

pattern) were derived. However, in general neither the point in time nor the nature of an 

actuator failure is known a priori and hence an adaptation of the matching parameters is 

indispensable. In order to derive a stable adaptation law, an important lemma from adaptive 

control theory [SHA-96b] is needed: 

Consider the system in Figure 5 

Lemma 1: (without proof) 

If ( )G sε  is strictly positive real (SPR) ([SHA-96b]) and Γ is a constant positive definite 

diagonal matrix (adaptation gain) then the (nonlinear) feedback structure in Figure 5 is 

globally stable and if additionally ( )tζ is bounded then lim ( ) 0
t

tε
→∞

=  holds. 

To derive an error equation, we define 

 

* * * * * * 2 1
1 2 0 4

2 1
1 2 0 4

2 1
1 2

*

, , , ,

( ) ( ), ( ), ( ), ( ), ( )

( ) ( ), ( ), ( ), ( ),1

( ) ( )

TT T n

TT T n

TT T n

k

t t t t k t t

t t t y t r t

t t

θ θ θ θ θ

θ θ θ θ θ

ω ω ω

φ θ θ

+

+

+

 = ∈ 
 = ∈ 
 = ∈ 

= −

ℝ

ℝ

ℝ

 (2.38) 

( ) ( )Tk t tφ ζ   ( )tε

( )tφɺ( )k tζ ( ) ( )sign k tζ− Γ( )tφ ∫
 

Figure 5: Nonlinear Feedback Structure of Adaptation Law 
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The control law (2.19) can now be written as 

 
*

*

( ) ( ) ( )

      ( ) ( ) ( )

T

T T

u t t t

t t t

φ θ ω

φ ω θ ω

 = + 
= +

 (2.39) 

With (2.39) the structure in Figure 6 can be derived 

Since the parameters *θ are the “true” ones the output of the structure in Figure 6 can be 

written as 

 
*

1
( ) ( ) ( ) ( ) ( ) ( )T

m my t G s r t G s t t
k

φ ω = +     (2.40) 

Note that because of the perfect model matching the real plant ( )pG s  has been replaced by the 

reference model ( )mG s . Now with 

 ( ) ( ) ( )m my t G s r t=  (2.41) 

the matching error can be written as 

 
*

1
( ) ( ) ( ) ( )T

me t G s t t
k

φ ω =     (2.42) 

However, Lemma 1 can not be applied directly since the reference model is not necessarily 

SPR (the relative order of the plant is in general greater than one). In this case the matching 

error (2.42) needs to be extended with an additional error signal υ  

*

1
( ) ( )T t t

k
φ ω   

 
Figure 6: Alternative Representation of the Adaptive Control Law. 
ASG stands for “auxiliary signal generator”. 
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 1 1
*

( ) ( ) ( )

1
  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T

m

t e t t

e t G s L s t L s I L s t t
k

ε υ

φ φ ω− −

= +

 = + − 
 (2.43) 

The expression 1( )L s I−  implies that every signal of the vector ( )tω  is filtered through “its 

own” transfer function 1( )L s−  (which is a signal theory issue and not a mathematical one). 

Now with an appropriate choice of L  the transfer function mG L  can be made SPR. In this 

work the obvious choice 

 1( ) ( ) ( )m mL s G s P s−= =  (2.44) 

is made such that 

 ( ) ( ) 1  (SPR)mG s L s =  (2.45) 

and (2.43) may be written as 

 
*

1
 ( ) ( ) ( ) ( ) ( ) ( ) ( )T T

m mt e t t G s I G s t t
k

ε φ φ ω = + −   (2.46) 

Note that ( )tφ  is not available in (2.46) but with *( ) ( ) ( )t t tφ θ θ= −  we get  

 

* *

* *

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                           ( ) ( ) ( ) ( ) ( ) ( ) () ( )

T TT T
m m m m

T T T T
m m m m

t G s I G s t t t G s I G s t t

t G s I G s t t G s G s I t

φ φ ω θ θ θ θ ω

θ θ ω θ θ ω

      − = − − −       
   = − + −   

(2.47) 

and since * ( )tθ  is constant  

 * *( ) ( ) ( ) 0T T
m mG s G s I tθ θ ω − =   (2.48) 

and hence 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T T
m m m mt G s I G s t t t G s I G s t tφ φ ω θ θ ω   − = −     (2.49) 

Now the extended error signal can be rewritten as 

 
*

1
( ) ( ) ( ) ( ) ( ) ( ) ( )T T

m mt e t t G s I G s t t
k

ε θ θ ω = + −   (2.50) 
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However, since the parameter *k  in (2.50) is not known, it is replaced by an additional gain 

1( )k t  

 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T
m mt e t k t t G s I G s t tε θ θ ω = + −   (2.51) 

where 1( )k t  can be seen as the sum of the “true” parameter * 1k −  and the corresponding 

parameter error ( )tρ  

 * 1
1( ) ( )k t k tρ−= +  (2.52) 

Hence (2.50) can be written as 

 ( )* 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T
m mt e t k t t G s I G s t tε ρ θ θ ω−  = + + −   (2.53) 

and with (2.42) the expression (2.53) can be rewritten as 

 

( )
( ) ( )

* 1 * 1

* 1 * * 1

* 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

      ( ) ( ) ( )

T T T
m m m

T T T T
m m m

T
m

t G s k t t k t t G s I G s t t

G s k t t k t t G s I G s t t

G s k t t

ε φ ω ρ θ θ ω

θ θ ω ρ θ θ ω

θ ω

− −

− −

−

   = + + −   
   = − + + −  

= * 1 *

* 1 * 1

( ) ( )

          ( ) ( ) ( ) ( ) ( ) ( )

T
m

T T
m m

G s k t

k t G s I t k G s t t

θ ω

θ ω θ ω

−

− −

−

+ −

* 1 * 1 *

          ( ) ( ) ( ) ( ) ( ) ( )

       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

T T
m m

T T T T
m m m m

t t G s I G s t t

k t G s I t G s k t t t G s I G s t t

ρ θ θ ω

θ ω θ ω ρ θ θ ω− −

 + − 
 = − + − 

(2.54) 

Using the result of (2.48) the term * 1 *( ) ( )T
MG s k tθ ω−  can be seen as * 1 * ( ) ( )T

Mk t G I tθ ω−  and 

hence the last line of (2.54) writes 

 * 1
2( ) ( ) ( ) ( ) ( )Tt k t t t e tε ϕ ζ ρ−= +  (2.55) 

with 

 ( ) ( )mt G I tζ ω=  (2.56) 

and 

 2( ) ( ) ( ) ( )T T
m me t t G I G t tθ θ ω = −   (2.57) 



Model Reference Adaptive Control of Systems with Actuator Failures  
  

Rupp Daniel Fault-Tolerant Control and Fault Detection for UAVs 
 

2005 

 

16 

Now Lemma 1 can be used to compute the adaptation law for ( )tφ  and ( )tρ  

 *

2

1
( ) ( ) ( ) ( )

( ) ( ) ( )

t t sign t t
k

t e t t

φ θ ζ ε

ρ γ ε

 = = − Γ  
= −

ɺ ɺ

ɺ

 (2.58) 

Note that 0γ > ∈ℝ  in the second adaptation law in (2.58) corresponds to Γ  and 2( )e t to ( )tζ . 

In order to guarantee all closed-loop signals to be bounded and hence to ensure that 

( )lim ( ) ( ) 0m
t

y t y t
→∞

− =  the adaptation law needs to be normalized with 
2
21 ( ) ( )T t t eζ ζ+ + ([NAR-89]). 

 

*

2
2

2
1 2

2

1
( ) ( )

( ) ( )
1 ( ) ( )

( ) ( )
( ) ( )

1 ( ) ( )

T

T

sign t t
k

t t
t t e

e t t
t k t

t t e

ζ ε
φ θ

ζ ζ
γ ερ

ζ ζ

 − Γ  = =
+ +

−=
+ +

ɺ ɺ

ɺɺ

 (2.59) 
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2.3 Simulation Results 

In this section some simulation results are presented. For the simulation a nonlinear model of 

the vertical dynamics of a model aircraft is used (see Section 5.3). The nonlinear model is 

linearized around an equilibrium point 

 ( )

[ ]
[ ]

[ ]
[ ]

pitch attitude rad0.00907714

pitch rate rad/s0
  

longitudinal velocity m/s67.7244

normal velocity m/s0.614761

nomx t

   =    
 (2.60) 

In order to apply the failure tolerant control algorithm we add three (redundant) elevators 

according to Section 5.2 

 
1 1

2 2

3 3

( )

( ) ( )

( )

u

red u

u

c u t

u t c u t

c u t

  =    
 (2.61) 

where uic  is the efficiency coefficient of the ith elevator. For our simulation we choose 

1 2 31,  0.9,  1.1u u uc c c= = = . The nominal input values are chosen as 

 1, 2, 3,( ) 0.00560317, ( ) 0, ( ) 0nom nom nomu t u t u t= = =  (2.62) 

With these preliminaries and the parameter values from Appendix A.2 we get the state space 

model 

 

0 1 0 0 0 0 0

0 94.5389 0.0126704 1.39582 153.153 137.838 168.468
,  

9.8096 0.614761 0.151431 0.456487 0 0 0

0.0890455 67.7244 0.14478 15.964 0 0 0

          1                 0               

A B

C

− −
= =

− − − −

− − −

=

                  
[ ] 0               0       

 (2.63) 

Obviously the three resulting transfer functions are proportional in accordance with to the 

efficiency coefficients. Hence we get 

 
2

4 3 2

153 2468 360.1
( ) , 1...3

110.7 1620 237.2 3.947i ui

s s
G s c i

s s s s

+ += =
+ + + +

 (2.64) 
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Based on the transfer functions (2.64) the parameters for the adaptive controller are calculated. 

However, various simulations show that the performance of the adaptive control is only 

reasonable with very fast reference models. For the following simulations the following 

(tuning) parameters are used 

 { }

1 1
( ) ,  ( ) ( 10)( 10)( 10)

50 50
0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1 ,

1

mG s s s s s
s s

diag

γ

= ⋅ Λ = + + +
+ +

Γ =
=

 (2.65) 

With these parameters the model matching controller parameters (for the no-failure case) can 

be calculated. The matching parameter are calculated with Mathematica.  

 
* *
1 2

* * *
0 4

954.512 -1003.42

-14.115 ,  -508.725 ,

-5.4611 -28.8334

-4.43759, k 0.00217647, 0

θ θ

θ θ

      = =         
= = =

 (2.66) 

Figure 7 shows the result for a step of the pitch attitude with and without adaptation of the 

controller parameters. Since the matching parameters are chosen as initial values, the plant 
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Figure 7: Simulated step of pitch attitude (with linear model). Elevator 1 
fails after 20s and Elevator 2 after 40s. 
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matches the model perfectly during the first 20s. At 20s elevator 1 and at 40s elevator 2 fails 

and the controller compensates for the respective actuator bias. If we compare the case with 

and without adaptation there is only a small difference. This is due to the high controller gains 

shown in (2.66) which keep the tracking error small, even in case of no adaptation. Figure 8 

shows the changes of the controller parameters; all parameters show nearly no changes. 

The controller developed above is not feasible for real application due to the high parameter 

gains mentioned. Moreover, further simulations show that any controller designed based on 

the transfer function (2.64), tends to be very sensitive towards changes of the tuning 

parameters; if the reference model is chosen too slow the control system even diverges. 

Furthermore, if we look at the Bode diagram of the plant and at its poles (2.67), we see that 

the bandwidth of 50 rad/s of the reference model is chosen far too high compared to the 

bandwidth of the system at 0.0191 rad/s.  

 1 2 3 4-0.0191 ,  -0.1286 ,  -17.1898 ,  -93.3168rad rad rad rads s s ss s s s= = =  (2.67) 
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Figure 8: Changes of the controller parameters. All parameters are hardly changed. 
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In order to solve this problem the order of the plant is reduced [GEE-99], i.e. unimportant 

dynamics are omitted. The joint grammians of the balanced system are 

 { }80.2546,0.9739,0.0125,0.0041c oW W diag= =  (2.68) 

This implies that the last two state variables of the balanced system can be omitted, which 

leads to the new transfer functions 

 , 2

1.519 0.2323
( ) , 1...3

0.1523 0.002546red i ui

s
G s c i

s s

+= =
+ +

 (2.69) 

If we compare the Bode diagrams of (2.64) and (2.69) (see Figure 10) we see that down to the 

magnitude of about -30 dB the reduced transfer function is a good approximation. 
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Figure 9: Bode plot of the transfer function 
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( )G s  from (2.64). 
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Now the controller is designed on the basis of the order-reduced transfer function. Since this 

transfer function is SPR, there is no need to extend the matching error as shown in (2.43) 

which simplifies the algorithm of the adaptation considerably. For a first simulation we 

choose the (tuning) parameters as 

 

{ }

1
( ) ,  ( ) ( 1)

1
0.05,0.05,0.05,0.05,0.05

mG s s s
s

diag

= Λ = +
+

Γ =
 (2.70) 

thus the matching parameters for the no-failure case are calculated as 

 
* * *
1 2 0

* *
4

0.847044,  0.186596,  0.405496,

0.21946,  0k

θ θ θ
θ

= = = −

= =
 (2.71) 

For the simulations shown in Figure 11 an initial error of the matching parameter of +50% 

each is assumed, which results in a tracking error during the step. The actuator failures result 

in a transient response of the pitch attitude. Figure 12 depicts the adaptation of the controller 

parameters. 
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Figure 10: Bode plot of the transfer function 
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( )G s  of (2.64) and the 

Bode plot of the order-reduced transfer function 
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Figure 11: Simulated step of pitch attitude (with nonlinear model). 
 Elevator 1 fails after 20s and Elevator 2 after 40s. 
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For the next simulation the adaptation gain matrix is increased 

 { }0.15,0.15,0.15,0.15,0.15diagΓ =  (2.72) 

Figure 13 shows that this results in a reduced damping of the transient response of the pitch 

attitude after an actuator failure. The same effect can be observed in the adaptation of the 

controller parameters in Figure 14. In order to compensate for the lack of ample damping the 

bandwidths of the auxiliary signal generator are increased. For the simulation in Figure 15 the 

denominator of the new auxiliary signals generator transfer function is therefore chosen as 

 ( ) ( 10)s sΛ = +  (2.73) 

Again assuming the no-failure case, the new matching parameters thus are  

 
* * *
1 2 0

* *
4

9.84704,  21.6123,  -2.38063,

0.21946,  0k

θ θ θ
θ

= = =

= =
 (2.74) 

Furthermore the adaptation gain matrix is increased again 

 { }0.2,0.2,0.2,0.2,0.2diagΓ =  (2.75) 

These new (tuning) parameters lead to a considerably improved compensation of the actuator 

failures. In the last simulation shown in this chapter, the pitch attitude is to follow the 

reference sine signal ( ) 0.0873sin(0.1 )r t t= . For the parameters we again use (2.73) and 

(2.75). The results of the simulation are depicted in Figure 17 and 18. 

In this section it was shown that an appropriate choice of the process model is crucial for the 

performance of the MRAC method. The relevant dynamics should be characterized by the 

model; however, in order to reduce the number of parameters to be adapted the order of the 

model is to be kept as small as possible. 
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Figure 14: Controller parameters 
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Figure 13: Simulated step of pitch attitude (with nonlinear model). 
Elevator 1 fails after 20s and Elevator 2 after 40s. New adaptation gain: 

{ }0.15, 0.15, 0.15, 0.15, 0.15diagΓ =  
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Figure 16: Controller parameters 
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Figure 15: Simulated step of pitch attitude (with nonlinear model). 
Elevator 1 fails after 20s and Elevator 2 after 40s. The bandwidth of the 
auxiliary signal generator is increased according to (2.73). The adaptation 
gain is chosen as: { }0.2, 0.2, 0.2, 0.2, 0.2diagΓ =  
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Figure 17: Simulated sine function of pitch attitude (with nonlinear 
model). Elevator 1 fails after 20s and Elevator 2 after 40s. The 
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Figure 18: Controller parameters 
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3 Multiple Model Adaptive Estimation 

In this chapter the multiple model adaptive estimation (MMAE) approach is used to detect 

sensor and actuator failures. The MMAE method is based on a parallel bank of Kalman filters, 

each of which is matched to a specific hypothesis about the failure status of the system (fully 

functional or a failure in any one sensor or actuator). The conditional probability of each 

hypothesis based on the measurement history is calculated in order to compute the 

probability-weighted state estimation of each Kalman filter, which can then be added up to an 

estimation of the state vector of the (failed) plant (see (3.1)). Hence the MMAE method 

provides information about the probability of a possible failure on the one hand, and on the 

other hand, an estimation of the state vector which may then be used for state feedback 

control. 

 1 1ˆ ˆ ˆ ˆ( ) ...nf nf f f fK fKx t p x p x p x= + + +  (3.1) 

 

ɵ
nfx

ɵx

ɵ
fKx

ɵ
1fx

 

Figure 19: A Scheme of the MMAE algorithm based on a 
bank of Kalman filters and a hypothesis conditional 
probability computation. 
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3.1 The Kalman Filter Algorithm 

Consider the system with the known parameter vector θ 

 

( 1) ( ) ( ) ( ) ( ) ( ) ( )

(0)

( ) ( ) ( ) ( )

u vx t F x t G u t G v t

x

y t H x t r t

θ θ θ
ξ

θ

+ = + +
=
= +

 (3.2) 

and with its known expectations of initial state, model input, and measurement errors 

 

{ }
{ }
{ }

( ) 0        for t 0

E r(t) 0         for t 0

E

E v t

ξ ξ=

= ≥

= ≥
 (3.3) 

and the initial covariance matrix of the estimation error as well as the auto-covariance matrix 

of both system and measurement noise 

 

{ }
{ }
{ }
{ }
{ }

0 0 0

t

t

t

[ ][ ]             with 0

[ ( )][ ( )] ( )     with ( ) ( ) 0   for t, 0

[ ( )][ ( )] ( )     with ( ) ( ) 0   for t, 0

[ ( )][ ( )] ( )

[ ][ ( )] 0

[

T T

T T
v v v

T T
r r r

T
vr

T

E

E v t v R R R

E r t r R R R

E v t r R

E r t

E

τ

τ

τ

ξ ξ ξ ξ

τ θ δ θ θ τ

τ θ δ θ θ τ

τ θ δ

ξ ξ

ξ ξ

− − = Σ Σ = Σ ≥

= = ≥ ≥

= = > ≥

=

− =

−{ }][ ( )] 0Tv t =

 (3.4) 

For our desired estimation we set the following two conditions: 

 { }(t+1 t) 0E e =  (3.5) 

with e(t+1 t) being the state estimation error at time t+1, given the data at time t 

 ˆe(t+1 t)= (t+1) (t+1 t)x x−  (3.6) 

and for any ( 1 )subopt t tΣ +  

 { }T( 1 ) (t+1 t)e (t+1 t) 0subopt t t E eΣ + − ≥  (3.7) 
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The following Kalman algorithm complies with the given requirements 

 
ˆ ˆ ˆ( 1 ) ( ) ( 1) ( ) ( ) ( )[ ( ) ( ) ( 1)]

ˆ(0 1)

ux t t F x t t G u t K y t H x t t

x

θ θ θ θ

ξ

+ = − + + − −

− =
 (3.8) 

with the covariance matrix: 

0

( 1 ) ( ) ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )

(0 1)

T T T
v v vt t F t t F G R G K Q Kθ θ θ θ θ θ θ θΣ + = Σ − + −

Σ − = Σ
  (3.9) 

with the Kalman gain 

 1( , ) [ ( ) ( 1) ( ) ( ) ( )] ( )T
v vrK t F t t H G R Qθ θ θ θ θ θ−= Σ − +  (3.10) 

and the residual covariance matrix 

 ( ) ( ) ( 1) ( ) ( )T
rQ H t t H Rθ θ θ θ= Σ − +  (3.11) 
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For implementation purposes the equations above can be decomposed into two more 

convenient steps. 

Data Update: 

 
ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( ) ( 1)]

ˆ(0 1)

x t t x t t L t y t H x t t

x

θ

ξ

= − + − −

− =
 (3.12) 

 
0

( ) [ ( ) ( )] ( 1)[ ( ) ( )] ( ) ( ) ( )

(0 1)

T T
rt t I L t H t t I L t H L t R L tθ θ θΣ = − Σ − − +

Σ − = Σ
 (3.13) 

 1( ) ( 1) ( ) ( )TL t t t H Q tθ −= Σ −  (3.14) 

 ( ) ( ) ( 1) ( ) ( )T
rQ t H t t H Rθ θ θ= Σ − +  (3.15) 

Prediction: 

 1ˆ ˆ ˆ( 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( )]u v vrx t t F x t t G u t G R Q y t H x t tθ θ θ θ θ θ−+ = + + −  (3.16) 

 
1

( 1 ) ( ) ( ) ( ) ( ) ( ) ( )

                  - ( ) ( ) ( ) ( ) ( )

                  - ( ) ( ) ( ) ( )

                  - ( ) ( ) ( ) ( )

T T
v v v

T T
v vr vr v

T T
vr v

T T
v vr

t t F t t F G R G

G R Q t R G

F L t R G

G R L F

θ θ θ θ θ

θ θ θ θ
θ θ θ
θ θ θ θ

−

Σ + = Σ +

 (3.17) 
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3.2 Hypothesis Testing 

Given a dynamic system with K possible failure patterns which may occur during operation, 

let θ  denote the vector of (uncertain) parameters depicting the failure status of sensors and 

actuators of the system. Assume that all K possible conditions can be described by discrete 

values kθ  of θ  (for k = 1, 2, ..., K). Assume further that a bank of K separate Kalman filters is 

given (see Figure 19), each filter representing a hypothesis for a possible failure pattern of the 

system. Now we define the hypothesis-conditional probability ( )k ip t  as the probability that θ  

assumes the value kθ  conditioned on the observed measurement history Y(ti) at time ti. 

 ( ) ( )k i k i ip t P Y t Yθ θ=  = =    (3.18) 

In the next step a recursive expression for the conditional probability in (3.18) is derived. For 

the following calculations, some results of conditional probability theory [JAZ-70] are 

presented 

The conditional density function ( )X Yf x y of X given { }( )Y yω =  for all x and y such that the 

marginal density ,( ) ( , ) 0Y X Yf y f x y dx= >∫  is defined by 

 , ( , )
( )

( )
X Y

X Y
Y

f x y
f x y

f y
≜  (3.19) 

Note that the roles of X and Y can be reversed which gives the equivalent result 

 , ( , )
( )

( )
X Y

Y X
X

f x y
f y x

f x
=  (3.20) 

Furthermore the well-known Bayes’ rule can be written in “density form” 

 
( ) ( )

( )
( )

XY X

X Y
Y

f y x f x
f x y

f y
=  (3.21) 
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With these prerequisites the conditional density function ( ) ( )
i k iY tf Yθ θ  of θ  given { }( )i iY t Y=  

for all kθ  and iY  can be written as 

 
( ), ( )

( )
( )

,
( )

( )
i

i

i

Y t k i
k iY t

Y t i

f Y
f Y

f Y
θ

θ

θ
θ =  (3.22) 

where the marginal density is given by 

 ( ) , , ( )
1

( ) ( , ) ( , ) 0
i i

K

Y t i Y i Y t j i
j

f Y f Y d f Yθ θϑ ϑ θ
=

= = >∑∫  (3.23) 

Equation (3.22) can be rewritten as 

 
( )

1, ( ), ( ) 1

( )
( )

, ,
( )

( )
i i

i

i

Y t y t k i i
k iY t

Y t i

f Y y
f Y

f Y
θ

θ

θ
θ − −=  (3.24) 

Now with (3.19) the joint density function ( )
1, ( ), ( ) 1, ,

i iY t y t k i if Y yθ θ
− −  can be written as the 

product of the probability density function of the current measurement iy , conditioned on the 

particular assumed parameter value kθ  and the observed past measurement history 1iY− : 

1 1( ) , ( ) ( , )
i i i k iy t Y tf y Yθ θ

− −  and the joint density function 
1, ( ) 1( , )

iY t k if Yθ θ
− − . 

 
1

11

, ( ) ( ), ( ), ( ), 1

1 , ( ) 1( ) , ( )

( , ) ( , ) ( , , )

                                            ( , ) ( , )

i i i i

ii i

Y t k i Y t i k y t Y t i i k

i k i Y t k iy t Y t

f Y f Y f y Y

f y Y f Y

θ θ θ

θθ

θ θ θ

θ θ
−

−−

−

− −

= =

=
 (3.25) 

Hence (3.24) can be written as 

 11 1 , ( ) 1( ) , ( )

( )
( )

( , ) ( , )
( )

( )
ii i

i

i

i k i Y t k iy t Y t

k iY t
Y t i

f y Y f Y
f Y

f Y

θθ
θ

θ θ
θ −− − −=  (3.26) 

Now with equation (3.25), the right side of equation (3.23) is given by 

 
11, ( ) 1 , ( ) 1( ) , ( )

1 1

( , ) ( , ) ( , )
i ii i

K K

Y t j i i j i Y t j iy t Y t
j j

f Y f y Y f Yθ θθθ θ θ
−− − −

= =

=∑ ∑  (3.27) 

Therefore equation (3.26) may be written as 
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 11

11

1 , ( ) 1( ) , ( )

( )

1 , ( ) 1( ) , ( )
1

( , ) ( , )
( )

( , ) ( , )

ii i

i

ii i

i k i Y t k iy t Y t

k iY t K

i j i Y t j iy t Y t
j

f y Y f Y
f Y

f y Y f Y

θθ
θ

θθ

θ θ
θ

θ θ

−−

−−

− −

− −
=

=
∑

 (3.28) 

Since the discrete conditional density function can be directly related to the conditional 

probability with 

 ( )
1

( ) ( ) ( )
i

K

i k i kY t
k

f Y p tθ ϑ δ ϑ θ
=

= −∑  (3.29) 

where δ  is the Dirac function (e.g. ( )
1

( ) ( ) ( ) ( )
i

K

j i k i j k j iY t
k

f Y p t p tθ θ δ θ θ
=

= − =∑ ), equation (3.28) 

can be rewritten as 

 1

1

1 1( ) , ( )

1 1( ) , ( )
1

( , ) ( )
( )

( , ) ( )

i i

i i

i k i k iy t Y t

k i K

i j i j iy t Y t
j

f y Y p t
p t

f y Y p t

θ

θ

θ

θ

−

−

− −

− −
=

=
∑

 (3.30) 

which is a recursive representation of (3.26) and thus can be used in an “online” algorithm. 

The conditional density 
1 1( ) , ( ) ( , )

i i i k iy t Y tf y Yθ θ
− −  can be computed with the information provided 

by its assigned Kalman filter 

 ( )
( ) ( )1

1
1( ) , ( ) 1

2 2

1 1
, exp ( ) ( ) ( )

22 det ( )
i i

T
i k i k i k i k iy t Y t m

k i

f y Y r t Q t r t
Q t

θ θ
π−

−
−

 = −    (3.31) 

where m is the measurement dimension, ˆ( ) ( ) ( ) ( 1)k i k k fkr t y t H x t tθ= − −  is the residual, and 

( )k iQ t  is the residual covariance matrix of the kth  filter at time it . 
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3.3 Implementation in Matlab/Simulink 

The MMAE algorithm has been implemented in Matlab/Simulink. For the large bundle of 

signals which emanate from the Kalman filter bank, a bus system is used for a more 

convenient handling. The bus creator given in Simulink was used to summon the different 

signals (e.g. vector and matrix signals) into one bus system. Now all the Kalman magnitudes 

can be “transported” in one single signal thread. Finally the bus selector can be used to extract 

the desired signal. 

 

1

Bus - Kalman Fi l ters

u(t)

y (t)

Bus - Sensor Failures

Kalman Fi l ter Bank - Sensor Fai lures

u(t)

y (t)

Bus - No Failures

Kalman Fi l ter Bank - No Fai lures

u(t)

y (t)

Bus - Actuator Failures

Kalman Fi l ter Bank - Actuator Fai lures

2

u(t)

1

y(t)

Bus - No Failures

Bus - Sensor Failures

Bus - Actuator Failures

 
Figure 20: Implementation of the Kalman filter bank in Matlab/Simulink. 
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3.4 Modeling of Actuator and Sensor Failures 

This section describes the general nature of failures which can be detected with the MMAE 

algorithm. Based on each possible failure hypothesis of the system, an appropriate Kalman 

filter needs to be designed, i.e., the prior information of each failure is used to compute 

compatible linear models which are then used for the design of the respective Kalman filter. It 

has to be emphasized that the MMAE method can only detect failures which are taken into 

account by a predefined Kalman filter (hypothesis). Hence all information about the manner 

of a specific failure needs to be known. This is a very restrictive requirement since most 

failures are not fully known in advance (e.g. a rudder of an airplane may be stuck at an 

unknown position, which would imply that for every rudder position possible a separate 

Kalman filter needs to be designed). In this section we deal with “hard” failures, i.e., for 

actuators we assume that in case of a failure the actuator will have no further effects on the 

system (e.g., a rudder being stuck at zero angle), furthermore a failed sensor only produces 

unbiased (white) measurement noise. With these assumptions it is easy to derive a (linear) 

model of the failed plant, thus a single actuator failure can be represented by setting its 

associated column in the input matrix to zero and a single sensor failure by setting its 

associated row in the measurement matrix to zero. 

Consider the (healthy) system 

 
( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

= +
=

ɺ

 (3.32) 

with [ ]1, ,...,n n n m
mA B b b× ×∈ = ∈ℝ ℝ  and 1,...,

T p n
pC c c × = ∈  ℝ . In case of a hard failure of 

actuator ,  1q q m≤ ≤  the input matrix needs to be rewritten as 1,..., 0,...,q mB b b b = =   and in 

case of a full failure of sensor ,  1r r p≤ ≤  the measurement matrix needs to be rewritten as 

1,..., 0,...,
T

r pC c c c = =  . 
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3.5 Simulation Results 

The failure detection with the MMAE method was tested on the nonlinear model aircraft 

model of tenth order described in chapter 5. For test purposes two groups of redundant 

actuators (two ailerons and two rudders) and two groups of redundant sensors (two roll rate 

sensors and two yaw rate sensors) are added. For the following simulations, we assume that 

only the redundant components may fail. For the design of the Kalman filters the nonlinear 

model needs to be linearized. The linearization was computed analytically with Mathematica. 

The set point is chosen to be an equilibrium point 

 ( )

1

2

3

4 0

5 1

6 2

7 3

8

9

10

x ( ) p( ) 0

x ( ) ( ) 0

x ( ) ( ) 0

x ( ) ( ) 1

x ( ) ( ) 0

x ( ) ( ) 0

x ( ) ( ) 0

x ( ) ( ) 38.3988

x ( ) ( ) 0

x ( ) ( ) 1.08312

nom

nomnom

t t

t q t

t r t

t q t

t q t
x t

t q t

t q t

t u t

t v t

t w t

                         
= =                           

≜

[ ]
[ ]
[ ]

[ ]

[ ]
[ ]
[ ]

roll rate rad/s

nick rate rad/s

yaw rate rad/s   

Euler parameter -  

        "
 
        "

        "

longitudinal velocity m/s

lateral velocity m/s

normal velocity m/s  

           

 (3.33) 

The inputs are 

 

1 1

2 2

3

4 1

5 2

6

( ) ( ) 0 aileron 1 angle [rad]

( ) ( ) 0 aileron 2 angle [rad]

( ) ( ) 0.0174073 elevator ang
( )  

( ) ( ) 0

( ) ( ) 0

( ) ( ) 50

nom

nomnom

u t t

u t t

u t t
u t

u t t

u t t

u t f t

ξ
ξ
η
ζ
ζ

                    
= =                          

≜
le [rad]

rudder 1angle [rad]

rudder 2 angle [rad]

thrust force [N]

 (3.34) 

Note that the redundant actuators are assumed to be “cloned” actuators, i.e., the ways in which 

redundant input signals “enter” the system only differ by an “efficiency” factor (see Section 

5.2).  
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The outputs are chosen as 

 ( )

[ ]
[ ]

[ ]

1

2

3

4

5

6

7

8

( ) roll rate sensor 1 rad/s( )

( ) roll rate sensor 2 rad/s( )

( ) nick rate rad/s( )

( ) yaw rate ( )
 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

y t p t

y t p t

y t q t

y t r t
y t

y t r t

y t u t

y t v t

y t w t

                  =                     

≜
[ ]
[ ]

[ ]
[ ]
[ ]

sensor 1 rad/s

yaw rate sensor 2 rad/s

longitudinal velocity m/s

lateral velocity m/s

normal velocity m/s

 (3.35) 

The resulting system matrices are listed in Appendix A.3. Simulations show that the 

hypothesis testing algorithm works more reliably when the linear system is normalized 

properly so that all orders of magnitude are equal. The normalization matrices used for the 

following simulation can also be found in Appendix A.3. For the Kalman filters the time 

continuous matrices are discretized with the Euler forward rule 

 ( ) ( ) ( )s

s

x t t x t
x t

t

+ −
≈ɺ  (3.36) 

where the sample time for the following simulations was chosen as 0.005st s= . The discrete 

system matrices are 

 
s n

s

F t A I

G t B

H C

= +
=
=

 (3.37) 

For the Kalman filters we define the following parameters, the initial covariance matrix of the 

estimation error and the auto-covariance matrix of both system and measurement noise 

 
0 1 ,

0.01 ,

1

n

v m

r p

I

R I

R I

Σ =
=
=

 (3.38) 

The measurement noise of the rate sensors is chosen as a normally distributed random signal 

with a variance of 0.0004 rad/s, the input noise of the ailerons and rudders is assumed to have 

a variance of 0.0001 rad/s. For the hypothesis testing we need to define initial probability 

values. In order to keep the probability calculation lively the probabilities should not go below 
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a given limit, otherwise, due to numerical errors, certain probabilities may go (exactly) to zero 

and then from (3.30) it can be seen that those probabilities stay at zero forever. For the 

following simulations a lower limit of 0.001 is used. Since we assume that at the beginning 

there is no failure, we choose for the initial values 

 

1 2

3 4

1 2

3 4

0.001,  0.001

0.001,  0.001

0.001,  0.001

0.001,  0.001

Af Af

Af Af

Sf Sf

Sf Sf

p p

p p

p p

p p

= =

= =

= =

= =

 (3.39) 

where Afip is the probability that the ith actuator fails and Sfjp  is the probability that the jth 

sensor fails, the probability that no failure occurs can then be written as 

 
4 4

1

1 0.992nofailure fAi fSj
i i j

p p p
= =

= − − =∑ ∑  (3.40) 

Failure detection and isolation using the MMAE algorithm requires a stimulus to disturb the 

system from a quiescent state. The performance depends upon the magnitude of the residuals 

within incorrect filters having large residual values. Small deviations from a quiescent state 

will be virtually indistinguishable from system noise, providing poor detection and 

identification. 

In the first simulation an aileron failure scenario is investigated. In order to show the 

influence of the exciting signal on the failure detection and isolation we choose a low-

frequency sine signal as input to the ailerons u1(t) = u2(t) = 0.0873 sin(0.5t). At 4.5 s aileron 1 

fails. Figure 22 shows an immediate detection of the failure; however, since both ailerons get 

exactly the same (low frequent) signal the computation of the probability encounters 

difficulties in distinguishing between the two (redundant) ailerons. In this case the only reason 

why a distinction is possible is the fact that the efficiency coefficients (5.16) of the two 

ailerons are not the same (c1=1, c2=0.6). The lower plot of Figure 21 shows the probability-

weighted estimation of the roll rate; the substantial estimation error can also be attributed to 

the lack of sufficient excitation. Figure 23 and 24 show a failure scenario of the second 

aileron at 4.5 s with an input frequency of 1 rad/s (note that the first aileron has a larger 

efficiency coefficient and therefore the effect of the failure is not as significant as in the first 

simulation); the estimation of the roll rate as well as the probability estimation are 

considerably improved. 
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Figure 21: Aileron input signal and roll rate. Hard failure of aileron 1 at 
4.5 s. The estimation is not satisfactory due to insufficient excitation of 
the roll dynamics. Inputs: u1(t)=u2(t)=0.0873 sin(0.5t), u3(t)=u5(t)= 
u6(t)=0, u4(t)= 0.0873 sin(0.5t+). Efficiency coefficients of ailerons: c1=1, 
c2=0.6. 
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Figure 22: Probability that either no failure or a failure of aileron 1 or 
2 has occurred. The dots indicate the time of the failure. Ambiguous 
distinction of redundant ailerons due to insufficient excitation. 
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Figure 23: Aileron input signal and roll rate. Hard failure of aileron 2 at 
4.5 s. The higher frequency of the input signal and the higher efficiency 
coefficient of aileron 1 leads to a better estimation of the roll rate. 
Inputs: u1(t)=.u2(t)=0.0873 sin(t), u3(t)=u5(t)= u6(t)=0, u4(t)= 0.0873 
sin(t+ ). Efficiency coefficients of ailerons: c1=1, c2=0.6. 
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Figure 24: Probability that either no failure or a failure of aileron 1 or 
2 has occurred. The failure is instantly detected and isolated. 
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On the sensor side detection and isolation of (hard) failures is easier since a failed sensor has a 

direct influence on the residuals of the Kalman filters. 

Figure 25 shows a scenario of a hard failure of the first roll rate sensor. After 4.5 s the subject 

sensor delivers zero mean white noise. According to Figure 26, the failure is immediately 

detected and isolated. 
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Figure 25: Aileron input signal and roll rate. Hard failure of roll rate 
sensor 1 at 4.5 s. Inputs: u1(t)=u2(t)=0.0873 sin(t), u3(t)= u6(t)=0, u4(t)= 
u5(t)=0.0873 sin(t+ ). Efficiency coefficients of ailerons: c1=1, c2=0.6. 
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However, if we assume that either on the actuator or on the sensor side lock-in-place failures 

may occur, i.e., the residuals of the Kalman filters are biased, the MMAE method reaches its 

limit. We know from Kalman filter theory that we have to make allowance for all systematic 

errors, however, as lock-in-place failures cannot be predicted they may have detrimental 

effects on the filter performance. Figure 27 and 28 show the possible outcome of the MMAE 

failure detection in case of a lock-in-place failure. Due to the biased residual, the Kalman 

filter gives a wrong estimation of the state variables, which leads to severe problems with the 

probability calculation. Figure 28 shows that a failure of aileron 1 instead of aileron 2 is 

detected, and that even a failure of rudder 1 is computed for a short time, and that the 

calculations switch between “failure” and “no failure”. Therefore, neither the failure detection 

nor the failure isolation works properly. 

In the next chapter an extended MMAE method is presented which can cope with lock-in-

place failures. 
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Figure 26: Probability that either no failure or a failure of roll rate 
sensor 1 or 2 has occurred. The dots indicate the time of the failure. 



Multiple Model Adaptive Estimation  
  

Rupp Daniel Fault-Tolerant Control and Fault Detection for UAVs 
 

2005 

 

43 

 

 

0 5 10 15
-0.2

-0.1

0

0.1

0.2

A
ng

le
 [

ra
d]

Aileron 1
Aileron 2

0 5 10 15
-0.2

-0.1

0

0.1

0.2

R
ol

l R
at

e 
[r

ad
/s

]

Time [s]

Measured
Estimated

Figure 27: Aileron input signal and roll rate. Lock-in-place failure of 
aileron 2 at 4.5 s. The estimation is not satisfactory due to the biased 
input. Inputs: u 1(t)=u2(t)=0.0873 sin(t), u3(t)=u6(t)=0, u4(t)=u5(t)= 
0.0873sin(t+ ). Efficiency coefficients of ailerons: c1=1, c2=0.6. 
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Figure 28: Probability that either no failure or a failure of aileron 1 or 
rudder 1 has occurred. The dots indicate the time of the failure. The 
lock-in-place failure leads to ambiguous probability calculations. 
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3.6 Multiple Failures 

If we assume that two failures may happen during operation the MMAE method needs to be 

extended with new sets of Kalman filters incorporating dual failures. To reduce the number of 

filters required on line, a hierarchical approach, as shown in Figure 29, is employed. To begin 

with, only the K single-failure hypothesis filters are on line. Upon declaration of a failure, a 

new bank of filters is brought on line from memory storage. This bank contains filters 

designed for the declared failure, all dual failure combinations which include that failure (the 

doubly subscripted hypotheses in “Level 1” of Figure 29), and the no-failure hypothesis (to 

“back out” of the decision tree if necessary) [EID-96]. In this work no simulations were made 

with dual failures. 

 
Figure 29: Hierarchical structure of Kalman 
filter b ank. If a level 0 failure is confirmed, the 
respective level 1 bank becomes active. 
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4 Extended Multiple Model Adaptive Estimation 

In this chapter the MMAE algorithm is extended in order to make it accessible to lock-in-

place failures and even to the more general class of varying failures (as long as the varying 

part is not too fast). The MMAE algorithm was found to be very powerful (only) for fully 

known (obviously except the point of time) failures; in the following the MMAE concept is 

combined with extended Kalman filters (EKF) which are able to estimate some (unknown) 

failure parameters. The resulting method is in this context called “extended multiple model 

adaptive estimation” (EMMAE). 

Consider again the control system with actuator failures described in Section 2.1 (depicted 

again in Figure 30). The actuator failures are modeled as 

 ( ) ( ) ( ( ) ( ))f Au t u t u t u tσ= + −  (4.1) 

where ( )u t  is the desired plant input and  

 { }1 2 1 2( ) ( ), ( ),..., ( ) , , ,...,
T

m A A A Amu t u t u t u t diagσ σ σ σ = =   (4.2) 

with 

 
th1 if the j  actuator fails

0 otherwise
Ajσ


= 
 (4.3) 

For the following investigation we assume that only one failure happens during the entire 

simulation period. We assume further that for every pair of ,i iu σ  a separate EKF was 

designed and used in a MMAE structure instead of the ordinary Kalman filters. The MMAE 

part of the EMMAE algorithm (see Figure 31) is now used to detect the switch of jσ  from 

zero to one and the EKF part is used to estimate the unknown actuator position ju  (assuming 

1( )u t

( )mu t

 
Figure 30: Control system with actuator failures 
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that j is not known a priori). With this additional degree of freedom the EMMAE method can 

be used for all actuator failures which can be described by the combination of a hard failure 

and a (slowly) varying parameter. 

Note that the same concept can be similarly applied on the sensor side of the plant. Consider 

the control system with actuator and sensor failures shown in Figure 32. The sensor failures 

can be modeled as 

 ( ) ( ) ( ( ) ( ))Sy t t y t tψ σ ψ= + −  (4.4) 

where ( )tψ  is the actual plant output and  

ɵ
nfx

ɵx

ɵ
fKx

ɵ
1fx

Ku

1u

 
Figure 31: Scheme of the EMMAE method. The ordinary Kalman 
filters are replaced by EKF designed for state variable and 
actuator bias estimation. 

1( )u t

( )mu t ( )py t

1( )y t

1ψ

pψ

 
Figure 32: Control system with actuator and sensor failures 
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 { }1 21 2( ) ( ), ( ),..., ( ) , , ,...,
T

S S S Sppy t y t y t y t diagσ σ σ σ = =   (4.5) 

with 

 
1  if the jth sensor fails

0 otherwiseSjσ 
=   (4.6) 

The next section provides a short introduction into the theory of parameter estimation with an 

EKF. 
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4.1 Parameter Estimation with an Extended Kalman Filter 

Consider the nonlinear discrete system: 

 

( 1) ( ( ), ( ), ( )) ( ) ( )

(0)

( ) ( ( ), ( ), ( )) ( )

vx t f x t u t t G v t

x

y t h x t u t t r t

θ θ
ξ

θ

+ = +
=
= +

 (4.7) 

where ( )v t  and ( )r t  are the system and measurement noises, and where their covariance 

matrices are 

 

{ }
{ }
{ }

t

t

t

[ ( )][ ( )] ( )     with ( , ) ( ) 0   for t, 0

[ ( )][ ( )] ( )     with ( , ) ( ) 0   for t, 0

[ ( )][ ( )] ( )

T T
v v v

T T
r r r

T
vr

E v t v R R t R

E r t r R R t R

E v t r R

τ

τ

τ

τ θ δ θ θ τ

τ θ δ θ θ τ

τ θ δ

= = ≥ ≥

= = > ≥

=

 (4.8) 

In order to use a Kalman filter to predict the state variables of the system as well as to 

estimate its parameters, we augment the state vector with the parameters to be estimated 

[GOO-84]: 

 

x
z

θ
 

=     (4.9) 

The augmented state vector leads to the following nonlinear state space equations 

 
( 1) ( ( ), ( )) ( ) ( )

( ) ( ( ), ( )) ( )
z vz t f z t u t G t v t

y t h z t u t r t

+ = +
= +

 (4.10) 

with 

 
 ( ( ), ( ))

( ( ), ( ))
( )z

f z t u t
f z t u t

tθ
 

=     (4.11) 

and 

 ( )
0

v
v

G
G t

 
=     (4.12) 

which implies that the system noise is not acting on the parameters. 
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To apply the Kalman filter equations to the nonlinear system above, the system has to be 

linearized continuously around its current working point. Since the current working point is 

not known at present, we use the prediction based on the data of the preceding time step. 

Hence the linear system matrices at time t are 

 
ˆ( ) ( 1)

ˆ ˆˆ ˆ( ( ), ( ), ( )) ( ( ), ( ), ( ))
( ) ( ( ), ( ))

0
z z

z t z t t

F t x t u t M t x t u t
F t f z t u t

z I

θ θ
= −

 ∂= =  ∂  
 (4.13) 

where 

 [ ]
ˆ( ) ( 1)

ˆ ˆ( ( ), ( ), ( )) ( ( ), ( ), ( )) ( )
z t z t t

F t x t u t f x t u t t F t
x

θ θ
= −

∂=
∂

≜  (4.14) 

and 

 [ ]
ˆ( ) ( 1)

ˆ ˆ( ( ), ( ), ( )) ( ( ), ( ), ( )) ( )
z t z t t

M t x t u t f x t u t t M tθ θ
θ = −

∂=
∂

≜  (4.15) 

The lower-right unity matrix of (4.13) implies that ( 1) ( )t tθ θ+ = . The linearized 

measurement matrix reads 

 

ˆ( ) ( 1)

ˆ( ) ( 1)

ˆ( ) ( 1)

( ) ( ( ), ( )) [ ( ) ( )]

:

( ) ( ( ), ( ))

( ) ( ( ), ( ))

z x
z t z t t

x
z t z t t

z t z t t

H t h z t u t C t C t
z

where

C t h z t u t
x

C t h z t u t

θ

θ θ

= −

= −

= −

∂= =
∂

∂=
∂

∂=
∂

 (4.16) 
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Now the Kalman predictor can be applied 

Data Update: 

 
ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( ( 1), ( ))]

ˆ(0 1)

z

z

z t t z t t L t y t h z t t u t

z ξ

= − + − −

− =
 (4.17) 

 
,0

( ) [ ( ) ( )] ( 1)[ ( ) ( )] ( ) ( ) ( )

(0 1)

T T
z z z z z z z r z

z z

t t I L t H t t t I L t H t L t R t L tΣ = − Σ − − +

Σ − = Σ
 (4.18) 

 1( ) ( 1) ( ) ( )T
z z z zL t t t H t Q t−= Σ −  (4.19) 

 ( ) ( ) ( 1) ( ) ( )T
z z z z rQ t H t t t H t R t= Σ − +  (4.20) 

Prediction: 

 1ˆ ˆ ˆ( 1 ) ( ( 1), ( )) ( ) ( ) ( )[ ( ) ( ( ))]z v vr zz t t f z t t u t G t R t Q t y t h z t t−+ = − + −  (4.21) 

 
1

( 1 ) ( ) ( ) ( ) ( ) ( ) ( )

                  - ( ) ( ) ( ) ( ) ( )

                  - ( ) ( ) ( ) ( )

                  - ( ) ( ) ( ) ( )

T T
z z z z v v v

T T
v vr z vr v

T
z z vr v

T T
v vr z z

t t F t t t F t G t R t G t

G t R t Q t R t G t

F t L t R t G t

G t R t L t F t

−

Σ + = Σ +

 (4.22) 

Next ( , )L t θ and ( )t tΣ in equations (4.18) and (4.19) are partitioned according to the 

dimensions of ( )x t and ( )tθ  

 
( )

( )
( )

x
z

L t
L t

L tθ

 
=     (4.23) 

 1 2

2 3

( ) ( )
( )

( ) ( )z T

t t t t
t t

t t t t

Σ Σ 
Σ =  Σ Σ 

 (4.24) 
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The decomposed filter equations now read 

Data Update: 

ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( ( 1), ( ))]

ˆ ˆ ˆ( ) ( 1) ( )[ ( ) ( ( 1), ( ))]

ˆ(0 1)

x

z

x t t x t t L t y t h z t t u t

t t t t L t y t h z t t u t

z

θθ θ

ξ

= − + − −

= − + − −

− =

 (4.25) 

1 2 2

3

( ) ( ) ( 1) ( ) ( ) ( 1) ( ) ( ) ( 1) ( )

           ( ) ( 1) ( ) (t) 

T T T T
x x x x

T
r

Q t C t t t C t C t t t C t C t t t C t

C t t t C t R

θ θ

θ θ

= Σ − + Σ − + Σ −

+ Σ − +
 (4.26) 

1
1 2

1
2 3

( ) [ ( 1) ( ) ( 1) ( )] ( )

( ) [ ( 1) ( ) ( 1) ( )] ( )

T T
x x

T T T
x

L t t t C t t t C t Q t

L t t t C t t t C t Q t

θ

θ θ

−

−

= Σ − + Σ −

= Σ − + Σ −
 (4.27) 

1 1 3

2

2

( ) [ ( ) ( )] ( 1)[ ( ) ( )] ( ) ( ) ( 1) ( ) ( )

               ( ) ( ) ( 1)[ ( ) ( )]

               [ ( ) ( ) ( 1)[ ( ) ( )] ] ( ) ( ) ( )

T T T
x x x x x x

T T
x x x

T T T T
x x x x r x

t t I L t C t t t I L t C t L t C t t t C t L t

L t C t t t I L t C t

L t C t t t I L t C t L t R t L t

θ θ

θ

θ

Σ = − Σ − − + Σ −

− Σ − −

− Σ − − +

 (4.28) 

2 1 2

2 3

( ) [[ ( ) ( )] ( 1) ( ) ( ) ( 1)] ( ) ( )

               [[ ( ) ( )] ( 1) ( ) ( ) ( 1)][ ( ) ( )]

                ( ) ( ) ( )

T T T
x x x x

T
x x x

T
x r

t t I L t C t t t L t C t t t C t L t

I L t C t t t L t C t t t I L t C t

L t R t L t

θ θ

θ θ θ

θ

Σ = − − Σ − − Σ −

+ − Σ − − Σ − −

+

     (4.29) 

[ ] [ ]3 1 3

2

2

( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( ) ( 1) ( ) ( )

               ( ) ( ) ( 1)[ ( ) ( )]

               [ ( ) ( ) ( 1)[ ( ) ( )] ]

                L ( ) ( )

TT T
x x

T
x

T T
x

r

t t L t C t t t C t L t I L t C t t t I L t C t

L t C t t t I L t C t

L t C t t t I L t C t

t R t L

θ θ θ θ θ θ

θ θ θ

θ θ θ

θ

Σ = Σ − + − Σ − −

− Σ − −

− Σ − −

+ ( )T tθ

 (4.30) 

0(0 1)Σ − = Σ      (4.31) 

Prediction: 

1ˆ ˆ ˆ( 1 ) ( ( 1), ( )) ( ) ( ) ( )[ ( ) ( ( 1), ( ))]

ˆ ˆ( 1 ) ( )

v vrx t t f x t t u t G t R t Q t y t h z t t u t

t t t tθ θ

−+ = − + − −

+ =
 (4.32) 

1 1 2 2

3

( 1 ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

                    ( ) ( ) ( ) ( ) ( ) ( )

T T T T

T T
v v v

t t F t t t F t F t t t M t M t t t F t

M t t t M t G t R t G t

Σ + = Σ + Σ + Σ

+ Σ +
 

  (4.33) 

2 2 3( 1 ) ( ) ( ) ( ) ( )t t F t t t M t t tΣ + = Σ + Σ   (4.34) 

3 3( 1 ) ( )t t t tΣ + = Σ   (4.35) 
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4.2 Failure-Parameter Estimation 

In the following sections the actual EKF equations are derived for the case of failures of 

actuators or sensors. For the following sections we assume that the healthy plant (without 

failure parameters) can be described by the linear discrete-time system 

 

( 1) ( ) ( ) ( )

(0)

( ) ( ) ( )

u vx t Fx t G u t G v t

x

y t Hx t r t

ξ
+ = + +

=
= +

 (4.36) 

This plant, together with the failure structure in Figure 32, can be described by the “failure” 

parameters Aσ  and u  from (4.2) for the actuator failures and Sσ  and y  from (4.5) for the 

sensor failures as follows 

 
( 1) ( ( ), ( ), ( ), ( )) ( )

( ) ( ( ), ( ), ( )) ( )
A v

S

x t f x t u t t u t G v t

y t h x t t y t r t

σ
σ

+ = +
= +

 (4.37) 

 

4.2.1 Actuator Failures 

If we only look at actuator failures, we omit the sensor parameters Sσ  and y ; hence with the 

system (4.36) the term ( ( ), ( ), ( ), ( ))Af x t u t t u tσ  can be written as 

 [ ]( ( ), ( ), ( ), ( ))  ( ) ( ) ( ) ( ) ( )A u m A u Af x t u t t u t Fx t G I t u t G t u tσ σ σ= + − +  (4.38) 

For the derivation of an EKF for a failure hypothesis of the ith actuator we define 1Aiσ =  and 

0, 0,   Aj ju j iσ = = ≠ . In order to apply an EKF, the state vector is augmented by the ith bias 

parameter. 

 
i

x
z

u

 
=     (4.39) 

The augmented state vector leads to the following nonlinear state space equations 

 
( 1) ( ( ), ( )) ( ) ( )

( ) ( ( ), ( )) ( )
z vz t f z t u t G t v t

y t h z t u t r t

+ = +
= +

 (4.40) 

with 
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 ( ( ), ( ))

( ( ), ( ))
( )z

i

f z t u t
f z t u t

u t

 
=     (4.41) 

and 

 ( )
0

v
v

G
G t

 
=     (4.42) 

Now the linearization of the dynamic matrix yields 

 ˆ( ) ( 1)

ˆ ˆ( ( ), ( ), ( ))
( ) ( ( ), ( ))

0 1
i

z z
z t z t t

F M u t x t u t
F t f z t u t

z = −

 ∂= =  ∂    (4.43) 

where 

 
[ ]

ˆ( ) ( 1)

( )

ˆ ˆ( ( ), ( ), ( ))  ( ( ), ( ))

                              

i
i z t z t t

i
u

M u t x t u t f z t u t
u

G

= −

∂=
∂

=

 (4.44) 

with ( )i
uG  representing the ith column of uG . The input matrix becomes 

 
(0, )

ˆ( ) ( 1)

( ) ( ( ), ( ))
0

i
u

z z
z t z t t

G
G t f z t u t

u = −

 ∂= =  ∂  
 (4.45) 

 

with (0, )i
uG  representing the matrix uG  with the ith column set to zero. The linearization of the 

measurement matrix is 

 

ˆ( ) ( 1)

ˆ( ) ( 1)

ˆ( ) ( 1)

( ) ( ( ), ( )) [ ( ) ( )]

:

( ) ( ( ), ( ))

( ) ( ( ), ( )) 0

z x
z t z t t

x
z t z t t

i z t z t t

H t h z t u t C t C t
z

where

C t h z t u t H
x

C t h z t u t
u

θ

θ

= −

= −

= −

∂= =
∂

∂= =
∂

∂= =
∂

 (4.46) 
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Now the linearized system can be written as 

 

( )
( )

( )
( ) ( )

( ) ( )
( )

( ) (0, )1

1 0 1 0

[ 0]

i i
u u

i i

i

x t x tF G G
u t

u t u t

x t
y t H

u t

   +    
= +      +       
 

=   

 (4.47) 

4.2.2 Sensor Failures 

In case of sensor failures we omit the actuator parameters ( )A tσ  and ( )u t . The output 

equation is 

 ( ( ), ( ), ( )) ( ) ( ) ( ) ( )S p S Sh x t t y t I t Hx t t Hy tσ σ σ = − +   (4.48) 

and hence the output may be written as 

 ( ) ( ) ( ) ( ) ( ) ( )p S Sy t I t Hx t t Hy t r tσ σ = − + +   (4.49) 

For the derivation of an EKF for a failure hypothesis of the ith sensor we define 1S iσ =  and 

0, 0,   Sj jy j iσ = = ≠ . In order to apply an EKF, the state vector is augmented by the ith bias 

parameter. 

 
i

x
z

y

 
=     (4.50) 

The augmented state vector leads to the following nonlinear state space equations 

 
( 1) ( ( ), ( )) ( ) ( )

( ) ( ( ), ( )) ( )
z vz t f z t u t G t v t

y t h z t u t r t

+ = +
= +

 (4.51) 

with 

 
 ( ( ), ( ))

( ( ), ( ))
( )z

i

f z t u t
f z t u t

y t

 
=     (4.52) 

and 
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 ( )
0

v
v

G
G t

 
=     (4.53) 

Now the linearization of the dynamic matrix yields 

 ˆ( ) ( 1)

ˆ ˆ( ( ), ( ), ( ))
( ) ( ( ), ( ))

0
i

z z
z t z t t

F M y t x t u t
F t f z t u t

z I= −

 ∂= =  ∂    (4.54) 

where 

 
[ ]

ˆ( ) ( 1)

ˆ ˆ( ( ), ( ), ( ))  ( ( ), ( ))

                              0

i
i z t z t t

M y t x t u t f z t u t
y

= −

∂=
∂

=

 (4.55) 

The input matrix becomes 

 
ˆ( ) ( 1)

( ) ( ( ), ( ))
0

u
z z

z t z t t

G
G t f z t u t

u = −

 ∂= =  ∂    (4.56) 

The linearization of the measurement Matrix is 

 

�

ˆ( ) ( 1)

( ,0)

ˆ( ) ( 1)

ˆ( ) ( 1)

( ) ( ( ), ( )) [ ( ) ( )]

:

( ) ( ( ), ( ))

( ) ( ( ), ( )) [0 ... 0 1 0 ... 0]
th

z x
z t z t t

i
x

z t z t t

T

i i entryz t z t t

H t h z t u t C t C t
z

where

C t h z t u t H
x

C t h z t u t
y

θ

θ

= −

= −

= −

∂= =
∂

∂= =
∂

∂= =
∂

 (4.57) 

with ( ,0)i H  representing the matrix H  with the ith row set to zero. Now the linearized system 

can be written as 

 

( )
( )

( )
( ) ( )

( )
�

( )
( )

( ,0)

1 0

1 0 1 0

[ ¦ [0 ... 0 1 0 ... 0] ]
th

u

i i

Ti

ii entry

x t x tF G
u t

y t y t

x t
y t H

y t

   +    
= +      +       

 
=   

 (4.58) 
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4.2.3 Performance Improvement of Parameter Estimation 

Equations (4.11) and (4.12) show that there is no noise acting directly on the parameter part of 

the augmented state vector. Thus the covariance matrix of the parameter error 3Σ  converges 

to a small value (norm) with increasing time. However, if a failure occurs the small value of 

3Σ  prevents the parameter estimation from converging quickly to its new value. The 

parameter convergence rate can be improved by modeling the parameter as a pseudo-noise 

process: ( 1) ( ) ( )pt t v tθ θ+ = + [HIB-91], where ( )pv t  is a zero mean white noise process with 

mean square intensity pQ ; hence equation (4.10) can be rewritten as 

 
0

( 1) ( ( ), ( )) ( ) ( )
( )z v

p

z t f z t u t G t v t
v t

 
+ = + +   

 (4.59) 

In order to include this pseudo-noise in the EKF equations, only the update step of the 

parameter error covariance matrix (4.30) needs to be modified as following 

 

[ ] [ ]3 1 3

2

2

( ) ( ) ( ) ( 1) ( ) ( ) ( ) ( ) ( 1) ( ) ( )

               ( ) ( ) ( 1)[ ( ) ( )]

               [ ( ) ( ) ( 1)[ ( ) ( )] ]

                L ( ) ( )

TT T
x x

T
x

T T
x

r

t t L t C t t t C t L t I L t C t t t I L t C t

L t C t t t I L t C t

L t C t t t I L t C t

t R t L

θ θ θ θ θ θ

θ θ θ

θ θ θ

θ

Σ = Σ − + − Σ − −

− Σ − −

− Σ − −

+ ( )T
pQtθ +

(4.60) 

Now with the magnitude of pQ  the “liveliness” of the parameter estimation can be influenced 

in that a “large” value of pQ  leads to a lively, but somewhat inaccurate estimation, whereas a 

“small” value of pQ  reduces the parameter convergence rate. 
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4.3 Simulation Results 

The failure detection with the EMMAE method was tested on the same nonlinear model as the 

MMAE method described in Section 3.5. Three actuators and one sensor were “equipped” 

with an EKF (ailerons 1, 2, rudder 1, and roll rate sensor 1). The parameters for the (extended) 

Kalman filters are chosen as 

 10 301 ,  0.1,  0.001 ,  1 ,  0.001n v m r p pI R I R I QΣ = Σ = = = =  (4.61) 

In a first experiment a lock-in-place failure of the second aileron at 4.5 s is investigated. 

Figure 33 shows that the second aileron is stuck at the peak of the input amplitude. The 

actuator bias is estimated by the EKF. Figure 34 shows that the detection of the failure is 

delayed by about 1 s. In a further simulation we investigate the same scenario, but this time 

the actuator is not just stuck in place but “jumps” to another position (see Figure 35). Figure 

36 shows that this time the failure is detected immediately. However, during the first two 

seconds after the failure there is an ambiguity with the failure hypothesis of aileron 1. The 

immediate detection may be due to the excitation from the jump of the actuator position. 
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Figure 33: Aileron input signal and roll rate. Lock-in-place failure of 
aileron 2 at 4.5 s. The aileron bias is estimated by the EKF. Inputs: 
u1(t)=u2(t)=0.2618 sin(t), u3(t)=u6(t)=0, u4(t)=u5(t)= 0.2618sin(t+ ). 
Efficiency coefficients of ailerons: c1=1, c2=0.6. 
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Figure 34: Probability that either no failure or a failure of aileron 1 or 
2 has occurred. The dots indicate the time of the failure. With a delay 
of about  1 s the failure is detected and isolated. 
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Figure 35: Aileron input signal and roll rate. Excursive lock-in-place 
failure of aileron 2 at 4.5 s. The. Inputs: u1(t)=u2(t)=0.2618 sin(t), 
u3(t)=u6(t)=0, u4(t)=u5(t)= 0.2618sin(t+ ). Efficiency coefficients of 
ailerons: c1=1, c2=0.6. 
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Figure 36: Probability that either no failure or a failure of aileron 1 or 
2 has occurred. The dots indicate the time of the failure. The jump in 
the angle of aileron leads to an immediate failure detection, however, 
the isolation is delayed due to confusion with aileron 1.  
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As mentioned above the EMMAE algorithm can also cope with varying failures. In the 

following simulation we assume that the second aileron fails after 5 s but then still moves in 

the manner of a square. Figure 37 shows that the roll rate is estimated quite well despite the 

varying failure. In order to accelerate the estimation of the bias parameter, the mean square 

intensity pQ  of the pseudo-noise is increased to 0.0005pQ = . Figure 38 shows that the failure 

is detected immediately, however, during the first 4.5 s after the failure there is an ambiguity 

with the failure hypothesis of the first aileron. The reason for this may (again) be the larger 

coefficient of efficiency of aileron 1. 

In the last simulations of this chapter a varying sensor failure scenario is assumed. After 4.5 s 

the first roll rate sensor emits a sine signal that is not correlated to the actual measurement 

(Figure 39). The sine function was chosen as ( ) 0.5sin(2 ) 0.5fh t t= +  and in order to get an 

accurate estimation of the failure signal the square intensity pQ  of the pseudo-noise is 

increased to 0.01pQ = . Figure 40 shows an immediate detection and isolation of the sensor 

failure. 
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Figure 37: Aileron input signal and roll rate. Varying lock-in-place 
failure of aileron 1 starting at 5 s. The inputs: u1(t)=u2(t)=0.2618 sin(t), 
u3(t)=u6(t)=0, u4(t)=u5(t)=0.2618sin(t+ ). Efficiency coefficients of 
ailerons: c1=1, c2=0.6. The mean square intensity of the pseudo noise is 
0.0005. 
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Figure 38: Probability that either no failure or a failure of aileron 1 or 
2 has occurred. The dots indicate the time of the failure. The failure is 
detected immediately, but isolated only after about 4.5 s.  
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Figure 39: Aileron input signal and roll rate. Varying lock-in-place 
failure of roll rate sensor 1 starting at 4.5 s; Sensor failure signal: 
hf(t)=0.5+0.5sin(2t). The inputs: u1(t)=u2(t)=0.2618 sin(t), u3(t)=u6(t)=0, 
u4(t)=u5(t)= 0.2618sin(t+ ). Efficiency coefficients of ailerons: c1=1, 
c2=0.6. The mean square intensity of the pseudo noise is 0.01. 
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Figure 40: Probability that either no failure or a failure of roll rate 
sensor 1 or 2 has occurred. The dots indicate the time of the failure. 
The failure is detected and isolated immediately.  
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5 Nonlinear Aircraft Model 

In this chapter a nonlinear dynamic model of a model aircraft is presented. However, the 

resulting model is only needed for benchmark purposes and therefore the modeling process 

itself is presented rather briefly. Furthermore, the parameters used for the simulation have not 

been identified with data from a real aircraft, but represent reasonable guesses only. For 

simulation purposes the model is implemented as an S-function in MATLAB/Simulink. 

5.1 Modeling of the Aircraft 

The resulting tenth-order model has the following state variables 

 ( )

[ ]
[ ]

1

2

3

4 0

5 1

6 2

7 3

8

9

10

x ( ) roll rate rad/sp( )

x ( ) nick rate rad/s( )

x ( ) yaw ra( )

x ( ) ( )

x ( ) ( )
 

x ( ) ( )

x ( ) ( )

x ( ) ( )

x ( ) ( )

x ( ) ( )

t t

t q t

t r t

t q t

t q t
x t

t q t

t q t

t u t

t v t

t w t

                     
=                           

≜

[ ]
[ ]

[ ]
[ ]
[ ]

te rad/s   

Euler parameter -  

        "

        "

        "

longitudinal velocity m/s

lateral velocity m/s

normal velocity m/s  

 (5.1) 

The inputs are 

 

1

2

3

4

( )( ) aileron angle [rad]

( )( ) elevator angle [rad]
( )   

( )( ) rudder angle [rad]

( )( ) throttle angle [rad]th

tu t

tu t
u t

tu t

tu t

ξ
η
ζ

α

        =         
≜  (5.2) 

The outputs are given by the (linear) output equations 

 ( )

[ ]
[ ]
[ ]

[ ]
[ ]

1

2

3

4

5

6

( ) roll rate rad/s( )

( ) nick rate rad/s( )

( ) yaw rate rad/s( )
 

( ) longitudinal velocity m/s( )

( ) lateral velocity m/s( )

( ) normal velocit( )

y t p t

y t q t

y t r t
y t

y t u t

y t v t

y t w t

            
=                 

≜

[ ]y m/s

 (5.3) 
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In practice, the velocities in the body frame cannot be measured directly. However, for our 

theoretical investigations the velocities are assumed to be measurable in order to get an 

observable system. 

The aerodynamic forces acting on the aircraft are specified in the wind tunnel coordinate 

system 

 

2

2

2

( ) 1/ 2 ( , )

( ) ( ) 1/ 2 ( , )

( ) 1/ 2 ( )

x

wt y

zwt

X t V SC

F t Y t V SC

Z t V SC

ρ α β
ρ α β
ρ α

     = =         
 (5.4) 

with 

z

y

2 2 2

2

X : drag force [N] C : lift coefficient [-]

Y : lateral force [N] C : lateral coefficient [-]

Z  : lift force [N] V = u +v +w  : wind velocity [m/s]

S  : projected surface [m ]α = arctan(w/u)     : incidence
3

x

 angle [rad]

ρ  : air density [kg/m ] β = arcsin(v/V)      : sideslip angle [rad]

C : drag coefficient [-]

 

The weight force of the plane in the navigation frame is 

 

0

( ) 0n wF t

mg

  =    
 (5.5) 

where m is the overall aircraft mass. The thrust force in the body frame is 

 ( ) 0

0

th

b t

C

F t
αα  =    

 (5.6) 

where Cα  is a thrust factor. The equations of motion require all forces to be transformed into 

a body frame description 

 ( ) ( ) ( ) 0 1 2 3, ( ) ( , , , ) ( )b bw wt b t bn n wF t C F t F t C q q q q F tα β= + +  (5.7) 
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where ( ),bwC α β  is the transformation matrix from the wind tunnel to the body frame and 

0 1 2 3( , , , )bnC q q q q  is the transformation matrix from the navigation to the body frame. 

The moments acting on the aircraft specified in body coordinates are 

 

2

2

2

( ) 1/ 2 ( , , , )

( ) ( ) 1/ 2 ( , , )

( ) 1/ 2 ( , , )

L

b M

Nb

L t V SbC p r

M t M t V Sl C q

N t V SbC r
µ

ρ β ξ
ρ α η
ρ β ζ

     = =         
 (5.8) 

with 

x

y

z

µ

L  : roll moment [Nm] C : rolling moment coefficient [-]

M : pitch moment [Nm] C : pitching moment coefficient [-]

N : yaw moment [Nm] C : yawing moment coefficient [-]

l  : aerodynamic mean chord [m]   : wb ingspan [m]

 

With these preliminaries the equations of motion can be derived. The equations of forces are 

 

( )
1

( ) ( ) ( ) ( )

( )
b b b

u t

v t F t F t t
m

w t

ω
   = + ×   

ɺ

ɺ

ɺ

 (5.9) 

with 

 

( )

( ) ( )

( )
b

p t

t q t

r t

ω
  =    

 (5.10) 

The equations of moments are 

 ( )( )1( ) ( ) ( ) ( )b b b bt I M t t I tω ω ω−= − ×ɺ  (5.11) 

with I being the inertial tensor. The differential equation for the Euler parameters can be 

calculated according to the theory of quaternions [HIL-03] 

 
1

( ) ( ) ( )
2n bQ t Q t tω=ɺ  (5.12) 

where the quaternion Q can be written as 
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0

1

2

3

( )

( )

( )

( )

q t

q t
Q

q t

q t

   =    
 (5.13) 

The Euler parameters are normalized such that the norm of the quaternion 2
0( )N Q q q q= + ⋅  

equals one. Note that ( )tω  can be seen as a quaternion with a real part of zero. Hence 

according to the multiplication rule of quaternions we obtain the differential equation in 

matrix form 

 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1
( )

( ) ( ) ( ) ( )2

( ) ( ) ( ) ( )

b

n

q t q t q t q t

q t q t q t q t
t

q t q t q t q t

q t q t q t q t

ω

− − −      −   =   −   −   

ɺ

ɺ

ɺ

ɺ

 (5.14) 

5.2 Addition of Redundancies 

In order to control a system susceptible to sensor and actuator faults, appropriate redundancies 

need to be added. In general, the plant has to be so constructed that in case of any possible 

actuator or sensor failures the controller can still achieve a desired control objective. In the 

case of our nonlinear model the redundancies are added by “cloning” the required components. 

For the actuators in the nonlinear model this is done by substituting a given control signal by a 

sum of (redundant) control signals. For instance, if we want to implement redundant ailerons, 

the equation for the roll moments acting on the plane (5.8) needs to be modified as follows: 

 2( ) 1/ 2 ( , , , )L redL t V SbC p rρ β ξ=  (5.15) 

where redξ  represents a group of m ailerons 

 1 2 ...red mc c cξ ξ ξ ξ= + + +  (5.16) 

with the coefficient ic  indicating different efficiencies. 

In the case of sensors, redundancies can be added by appending the desired measurement 

equation. In our case where the measurement equations are linear, a sensor can be “cloned” by 

inserting a new row into the measurement matrix. 
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5.3 SISO Model of Vertical Dynamics 

In order to investigate the SISO MRAC algorithm, the nonlinear model above is reduced to 

the vertical dynamics. The state variables are 

 ( )

[ ]
[ ]

[ ]
[ ]

1

2

3

4

pitch attitude radx ( ) ( )

pitch rate rad/sx ( ) ( )
  

longitudinal velocity m/sx ( ) ( )

normal velocity m/sx ( ) ( )

t t

t q t
x t

t u t

t w t

θ         =         
≜  (5.17) 

The input is the elevator angle 

 ( ) ( )u t tη≜  (5.18) 

and the output is the pitch attitude 

 ( ) ( )y t tθ≜  (5.19) 

The aerodynamic forces acting on the aircraft are specified in the wind tunnel coordinate 

system 

 

2

2

( ) 1/ 2 ( )

( ) ( ) 0

( ) 1/ 2 ( )

x

wt

zwt

X t V SC

F t Y t

Z t V SC

ρ α

ρ α

     = =         
 (5.20) 

Note that all lateral forces are of no interest because we are only interested in the vertical 

dynamics. Since the pitch attitude is known, the weight force (5.5) of the plane can be easily 

transformed into body frame 

 

-mgsin( )

( ) 0

mgcos( )
b wF t

θ

θ

  =    
 (5.21) 

The side-slip angle β is always zero. Hence the transformation of the aerodynamic forces 

from wind tunnel to navigation frame is 
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-Xcos( )+Zsin( )

( ) 0

-Xsin( )-Zcos( )
b F t

α α

α α

  =    
 (5.22) 

For the thrust force we assume a constant value 

 ( ) 0

0

t

b t

F

F t

  =    
 (5.23) 

The total force acting on the airplane can thus be written as 

 ( ) ( ) ( ) ( )b b b t b wF t F t F t F t= + +  (5.24) 

Since only the vertical dynamics are considered, the moments acting on the aircraft can be 

reduced to the pitching moment 

 2

( ) 0

( ) ( ) 1/ 2 ( , , )

( ) 0
b M

b

L t

M t M t V Sl C q

N t
µρ α η

      = =         
 (5.25) 

Based on the definitions above, the equations of motion can be derived as in the previous 

section. 
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6 Conclusions 

The MRAC method is a thorough technique for the design of a control strategy for systems 

with actuator failures. As soon as the conditions for the existence of a stable MRAC controller 

are met, the designer is given a versatile tool to develop a control system which has the 

desired properties. The simulations with the nonlinear model show some promising results. 

As long as the design is based on a carefully chosen model and as long as the number of 

parameters to be adapted is kept sufficiently small, the design process is straightforward. 

However, the conditions mentioned above may sometimes be quite restrictive. The necessity 

of a minimum-phase system can be cumbersome since a nonlinear system is often not 

minimum-phase, at least not over the whole operation area. In the literature on adaptive 

control systems nonminimum-phase systems are usually treated with a different control 

design method known as adaptive pole placement. In this work only SISO (redundant) 

systems are treated. The extension to a practicable MIMO theory is far from trivial and is a 

topic of current research. 

The primary needs for a failure detection mechanism, more than a complete control design 

solution, drive the focus of the second part of this work. With the MMAE method, a 

practicable and powerful method for the detection of actuator as well as sensor failures is 

presented. The MMAE method is a good choice as long as the expected failures can be 

hypothesized by a reasonable number of Kalman filters. The simulations with a full-degree-

of-freedom nonlinear model give auspicious results; however the results obtained here show 

that the kind of addressable failures is rather restricted. In order to release this restriction, the 

MMAE algorithm is combined with the parameter-estimating ability of an EKF. The reliable 

ability of the MMAE method to detect failures based on a predefined hypothesis and the fact 

that each EKF only has to estimate one single (failure-)parameter lead to a formation of a very 

fruitful synergy. The simulation results show the capability of the EMMAE method to detect 

failures of various kinds. However, both, the MMAE and the EMMAE method require further 

investigations, including ways to reduce the computational burden, control strategies and 

analysis of the in-the-loop behavior, as well as the treatment of multiple failures. 
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Appendix 

Appendix A.1  

Existence of a Solution of the Model-Matching Equation 

In order to show the existence of a solution for the expression  

 ( ) ( )* * *
1 2 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T

p a a ms a s P s a s s k Z s s Z s P sθ θ θΛ − − + Λ = Λ  (A.1) 

we introduce the Bezout Identity given in the following Lemma (without proof) 

Lemma 2: 

Let A(s) and B(s) be monic polynomials of degrees n and 1m n≤ − , respectively, which are 

relatively prime (no mutual zeros). Then, the polynomial Q(s) and the monic polynomial R(s) 

of degree n-1 exist such that 

 ( ) ( ) ( ) ( ) ( )A s R s B s Q s C s+ =  (A.2) 

where C(s) is an arbitrary polynomial of degree 2n-1. 

Now with 

 

( )
*
1

* *
2 0

( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

a

T

T
p

A s P s

B s Z s

R s s a s

Q s k a s s

θ

θ θ

=
=

= Λ −

= − + Λ

 (A.3) 

the (arbitrary) polynomial ( ) ( ) ( ) ( )a mC s s Z s P s= Λ  can be constructed if the polynomials R(s) 

and Q(s) can be chosen arbitrarily. With the definition of a(s) and ( )sΛ  in Section 2.2.1, they 

can be written as 

 
( ) ( ) ( )

( ) ( ) ( )

1 * 2 * 1 *
2 1, 2 1 1,1 0 1,0

* 1 * * 2 * * 1 * *
0 0 2 2, 2 0 1 2,1 0 0 2,0

( ) ...

( ) ...

n n
n n

n n
p n n

R s s s s

Q s k s s s

λ θ λ θ λ θ

θ θ λ θ θ λ θ θ λ θ

− −
− −

− −
− −

= + − + + − + −

 = − + + + + + + + 
 (A.4) 

and hence all desired polynomials can be constructed with the appropriate choice of the 

parameter vectors * * *
0 1 2, ,θ θ θ . 
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Appendix A.2  

Model Parameters 

The physical parameters are 

 

2

m     =       28                                  [kg]      Weight of the aircraft

2.24 0 0.5

I       =    0 6.37 0         [kgm ]   Inertial tensor

0.5 0 6.37

l       =       0.9                      µ

     

2

2

           [m]        Aerodynamic mean chord

S       =       2.5                                 [m ]       Projected surface

mg        =       9.81                              [ ]    Acceleration of 
s

3

gravity

kg       =       1.167                            [ ] Air density
m

ρ

 (A.5) 
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The aerodynamical coefficients are 

 

-1x

y -1

0

z

dC
  =       0.1                                 [rad ]

dC
  =       -1.0                                [rad ]

     =        0                                   [-]

dC
  =        4.5         

z

d

d

C

d

β

β

α
-1

-1L

L

L

                        [rad ]

dC
  =      -0.1                                 [s rad ]

dC
  =      -0.1                                   [-]

dC
  =       0.02                                 [

d

dp

dr

β

-1

L

0

-1M

M

s rad ]

dC
  =       0.1                                   [-]

   =        0                                     [-]

dC
  =      -0.1                                  [rad ]

dC
  =      -0.1   

M

d

C

d

dq

ξ

α
-1

M

-1N

N

                               [s rad ]

dC
  =       0.162                               [-]

dC
  =        0.1                                  [rad ]

dC
  =       -0.1                           

d

d

dr

η

β
-1

N

       [s rad ]

dC
  =        0.1                                  [-]

dζ

 (A.6) 
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Appendix A.3  

Linearized System 

With the parameters from Appendix A.2 the system matrices of Section 3.5 are 

 

88.0302 0 24.5158 0 0 0 0 0 2.47149 0

0 30.4133 0 0 0 0 0 0.0223235 0 0.791409

6.90975 0 32.3376 0 0 0 0 0 0.985719 0

0 0 0 0 0 0 0 0 0 0

0.5 0 0 0 0 0 0 0 0 0

0 0.5 0 0 0 0 0 0 0 0

0 0 0.5 0 0 0 0 0 0 0

0 1.08312 0 0 0 19.62 0 0.0933396 0 0.0117212

1.08312 0 38.3988 0 19.

A

− −

− −

−

− − −

−

=

62 0 0 0 2.05497 0

0 38.3988 0 0 0 0 0 0.255015 0 9.07353

88.0302 52.8181 0 6.90975 4.14585 0

0 0 49.2696 0 0 0

6.90975 4.14585 0 30.9557 18.5734 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0.03571

0 0 0 0 0 0

0 0 0 0 0

B

−

− −

− −

− −

=

               

0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

C

                

      =        
 (A.7) 
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The dynamic matrix shows that the fourth and the seventh state variable have no influence on 

the input/output behavior. Therefore, for our purpose they may be dropped, leading to the new 

system matrices 

 

88.0302 0 24.5158 0 0 0 2.47149 0

0 30.4133 0 0 0 0.0223235 0 0.791409

6.90975 0 32.3376 0 0 0 0.985719 0

0.5 0 0 0 0 0 0 0

0 0.5 0 0 0 0 0 0

0 1.08312 0 0 19.62 0.0933396 0 0.0117212

1.08312 0 38.3988 19.62 0 0 2.05497 0

0 38.3988 0 0 0 0.255015 0

A

− −

− −

−

=

− − −

− −

− −9.07353

88.0302 52.8181 0 6.90975 4.14585 0

0 0 49.2696 0 0 0

6.90975 4.14585 0 30.9557 18.5734 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0.03571

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0

B

C =

− −

− −

=

            

            

0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

            

 (A.8) 
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The normalization matrices have been chosen as 

 

0.1 0 0 0 0 0 0 0

0 0.1 0 0 0 0 0 0

0 0 0.1 0 0 0 0 0

0 0 0 0.02 0 0 0 0

0 0 0 0 0.03 0 0 0

0 0 0 0 0 5 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 1

0.1 0 0 0 0 0

0 0.1 0 0 0 0

0 0 0.1 0 0 0

0 0 0 0.1 0 0

0 0 0 0 0.1 0

0 0 0 0 0 1

0.1 0 0 0 0 0 0 0

0 0.1 0 0 0 0 0 0

0 0 0.1 0 0

x

u

y

T

T

T =

=

=

            

         

0 0 0

0 0 0 0.1 0 0 0 0

0 0 0 0 0.1 0 0 0

0 0 0 0 0 5 0 0

0 0 0 0 0 0 2 0

0 0 0 0 0 0 0 1

            

 (A.9) 
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Appendix A.4  

Equation for Forces and Moments of the Nonlinear Model 

The forces in the wind tunnel coordinate system are modeled as 

 

2 4 3 2

2

2
0

1
43.6 8.47 1.33 0.1887 0.0206 ;

2

1
 

2

1
   

2

x

y

z
z

dC
X V s

d

dC
Y V s

d

dC
Z V s C

d

ρ α α α α β
β

ρ β
β

ρ α
α

 
= − + + + +  

 
=   

 = +  

 (A.10) 

and the moments in body frame: 

 

2

2
0

2

1
  

2

1
  

2

1
  

2

L L L L

M M M
M

N N N

dC dC dC dC
L V sb p r

d dp dr d

dC dC dC
M V sl dC q

d dq d

dC dC dC
N V sb r

d dr d

µ

ρ β ξ
β ξ

ρ α η
α η

ρ β ζ
β ζ

 
= + + +  

 
= + + +  

 
= + +  

 (A.11) 

with aircraft velocity V. 
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Appendix A.5  

Symbols and Abbreviations 

Symbols – Chapter 2 

Symbol 

 

Description 

A,B,C State space system matrices 

u(t) Input vector 

x(t) State vector 

y(t) Ouput vector 

( )u t  Input bias 

( )v t  Controller output 

σ  Failure variable 

( )jZ s  Numerator polynomial of jth transfer function 

( )P s  Denominator polynomial of transfer function 

pjk  High-frequency gain of jth transfer function 

( )G s  Transfer function 

( )mG s  Reference transfer function 

( )mP s  Reference denominator polynomial 

( )my t  Reference output 

mk  Reference high-frequency gain 

*n  Relative degree of transfer function 

mZ  Reference numerator polynomial without prefilter 

mP  Reference denominator polynomial without prefilter 

( )r t  Unfiltered reference signal 

( )r t  Filtered reference signal 

0( )v t  Common controller ouput 

1 2 0 4, , , ,kθ θ θ θ  Control parameters 

* * * * *
1 2 0 4, , , ,kθ θ θ θ  Matching control parameters 

1 2( ), ( )t tω ω  Auxiliary signals 
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Symbol 

 

Description 

( )a s  Numerator vector of auxiliary signal transfer function 

( )sΛ  Denominator of auxiliary signal transfer function 

( )y t  Output due to failure 

( )tφ  Parameter error 

( )tω  Control signal vector 

( )tθ  Control parameter vector 

( )e t  Matching error 

( )tε  Extended matching error 

( )tυ  Additional error signal 

( )L s  Auxiliary transfer function 

1( )k t  Estimated high-frequency gain 

( )tρ  Estimation error of high-frequency gain 

,nom nomu x  Nominal values 

redu  Redundant input vector 

,c oW W  Joint grammians 

,γΓ  Adaptation gains 

is  Ith pole of transfer function 

Symbols – Chapter 3 

Symbol 

 

Description 

ˆnfx  State vector estimation of Kalman filter based on no failure 

nfr  Residual of Kalman filter based on no failure 

nfp  Probability of no-failure hypothesis 

ˆifx  State vector estimation of Kalman filter based on ith failure 

ifr  Residual of Kalman filter based on ith failure 

ifp  Probability of ith failure hypothesis 

θ  Failure parameter 
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Symbol 

 

Description 

( )F θ  Discrete dynamic matrix 

( )uG θ  Discrete input matrix 

( )vG θ  Input-noise gain matrix 

( )H θ  Discrete measurement matrix 

( )v t  System noise 

( )r t  Measurement noise 

ξ  Initial values of state vector 

ξ  Expectation of initial value of state vector 

K  Kalman gain  

( )vR θ  Covariance matrix of system noise 

( )rR θ  Covariance matrix of measurement noise 

( )vrR θ  Cross-covariance matrix of system and measurement noise 

( )Q θ  Residual covariance matrix 

( )L t  Kalman update gain 

0( )tΣ  Initial covariance matrix of state prediction error 

( )tΣ  Covariance matrix of state prediction error 

( )subopt tΣ  Suboptimal covariance matrix of state prediction error 

( )e t  Estimation error 

st  Sample time 

nI  Unity matrix with size nxn 
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Symbols – Chapter 4 

Symbol 

 

Description 

fiu  “Failed” input signal of actuator i 

Aσ  Failure parameter for actuator side 

u  Actuator bias 

( )tψ  Plant output 

y  Sensor bias 

Sσ  Failure parameter for sensor side 

( )y t  Sensor output 

z  Augmented state 

( , , )zf z u v  Augmented system equations 

( )vG t  Augmented noise input gain matrix 

( )zF t  Linearized system matrix of nonlinear model function 

( )zH θ  Linearized observation matrix of nonlinear model function 

( )xC t  Linearized observation matrix of nonaugmented state space  

( )C tθ  Linearized observation matrix of parameter part of state space  

( ), ( ), ( )v r vrR t R t R t  Covariance matrices of augmented state space 

( )zQ θ  Residual covariance matrix 

( )zL t  Augmented Kalman update gain 

pQ  Pseudo-noise mean-square intensity 
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Abbreviations 

UAV Unmanned Aerial Vehicle 

MRAC Model Reference Adaptive Control 

ASG Auxiliary Signal Generator 

SISO Single Input Single Output 

MIMO Multi-Input Multi-Output 

HFG High-Frequency Gain 

MMAE Multiple Model Adaptive Estimation 

EMMAE Extended Multiple Model Adaptive Estimation 

EKF Extended Kalman Filter 

E{} Expectation 

( 1 )x t t+  x at time t+1 based on data at time t 

x̂  Estimation of x 

( )iA  Ith column of A 

(0, )i A Matrix A with ith column set to zero 

( ,0)i A Matrix A with ith row set to zero 
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