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Invariant curve theorem for quasiperiodic twist mappings and

stability of motion in Fermi-Ulam problem

Vadim Zharnitsky
Division of Applied Mathematics
Brown University

Providence, RI 01902

Abstract

In this paper the monotone twist theorem is extended to the quasiperiodic case and applied to
establish boundedness of the velocity in a system of a particle bouncing elastically between two
quasiperiodically moving walls. It is shown that the velocity of the particle is uniformly bounded
in time if the frequencies satisfy a Diophantine inequality. This answers a question recently asked

in [8].

1 Introduction

Quasiperiodic maps arise naturally in one-degree-of-freedom oscillatory Hamiltonian systems depend-
ing quasiperiodically on time. Indeed, if the frequencies are sufficiently incommensurable then the
phase flow induces a quasiperiodic map on a cross-section transversal to the vector field. Although
there are related results for quasiperiodically time-dependent Hamiltonian vector fields, see e.g. [1, 8],
they are not directly applicable to the maps. The latter have to be dealt with in stability problems
for certain systems of billiard type like Fermi-Ulam accelerator. This model, introduced by Fermi
in order to explain the origin of the high-energy cosmic radiation [4], consists of a particle bouncing
elastically between two parallel walls undergoing periodic motions. The Hamiltonian of such system
is not smooth due to the collisions with the walls and one is forced to investigate stability of the
corresponding Poincaré map.

The obtained map, however, is not close to an integrable one and a number of canonical trans-
formations have to be carried out to bring the map to such form. For the “periodic” Fermi-Ulam
accelerator this has been done in [3, 6, 11]. The reduced periodic map satisfies the conditions of

Moser’s twist theorem [10] and therefore possesses invariant curves which prevent unbounded motion.



See also [12] for investigation of stability in the quantum Fermi-Ulam accelerator.

More recently, Levi and Zehnder established boundedness of quasiperiodically forced motions in a
large class of one dimensional potentials with superquadratic growth at infinity [8]. They also asked
if a similar result can be obtained for the Fermi-Ulam system with quasiperiodically moving walls.

In this article, we answer this question positively. We first bring the vector field to a near inegrable
form by applying transformations stopping the walls. Then we integrate the vector field using a proper
Poincaré section so that to obtain a smooth quasiperiodic twist map. Finally we apply a quasiperiodic
version of Moser’s twist theorem, which is proven in the first part of the paper.

The proof of the twist theorem uses a “Lagrangian” approach introduced by Moser in the proof of
an analogue theorem for elliptic partial differential equations [9] and used in [7] to present a simpler
proof of the twist theorem. In contrast to the “Hamiltonian” approach, where one looks for the
invariant curves in the phase space, the “Lagrangian” approach is based on the search for the solution
of a second order difference equation in the configuration space.

In the subsequent sections, we will derive and solve the second order difference equation. Our proof
is different from the one in [7] only in section 2, where the difference equation is introduced. The proof

of the boundedness of motion in quasiperiodic Fermi-Ulam problem is presented in the Appendix.

2 Notation and Definitions

2.1 The space of real analytic quasiperiodic functions

We define the space of real analytic quasiperiodic functions Q(w) as in [13]

Definition 2.1 A function f : R' — R is real analytic quasiperiodic f € Q(w) if it can be repre-

sented by Fourier series with exponentially decaying coefficients

f@) =Y fre'®eim,
k
where k = (k1, ko, ..., kn), w = (w1, wa, ...,wyp), (k,w) = kw1 + ... + kpw, #0 if k # 0.

Generally speaking, an integral of a mean-zero function f € QQ(w) may be an unbounded function, see
[13] for an example. This might happen because of the small denominators (k,w) which appear after

integrating Fourier series. However, if the frequencies satisfy the following Diophantine inequality:



there exist K > 0 and o > 0 such that for all £ # 0

K
|W1k1 + woko + ... + wnkn| > W? (1)

where k = (k1, ..., k) and |k| = |k1| + ... + |kn|, then for any mean-zero f € Q(w) its integral is also

in Q(w).

To each f € Q(w) there corresponds a multiply periodic analytic function in n variables

F(0) =" fre®?,
k

where 6 = (01,0, ...,0,), 2r— periodic in each variable and bounded in a complex neighborhood of

R" : [Imfy| < r for some r > 0.

Definition 2.2 Let Q,(w) C Q(w) be the set of real analytic functions bounded on the subset

I, = {04,...,0, : Imby| < r}, with the supremum norm
|[flr = sup |f(0)].
o€ll,

2.2 Generating functions

In the proof of the invariant curve theorem we will use the generating function of the quasiperiodic
twist map. Here, we describe its properties.
Consider an area preserving quasiperiodic monotone twist map defined in a horizontal strip R x I C R?

as follows

To =1+ T,
biRxI—R: 2 =21+ ¢1(21, 1) @)
Y2 = ¢2(z1,41),

where ¢1(21,y1), P2(21,y1) € Q(w) as functions of 1. Using the monotone twist condition g;zi (z1,y1) >0,

we invert the first equation and substitute it in the second equation

y1 = Y1(ze — z1,21)

Yo = Pa(w2 — w1, 21),
where 11 is the inverse of ¢y and 1y = Po(z1, 11 (x2 — x1,21)). It is easy to check that

%+%:1_<3¢13¢2 3¢13¢2>:0

dzy ' Ow dx1 01y Oz D1



using area preservation property of the map. Therefore, there exists a generating function h(zq,z2)

defining the map implicitly

Y1 = —hg, (71, 72)
Y2 = th(fIIl,.’,UQ)

with hio < 0, defined in
Q= {($1,$2) ceR?:a(zx)) <y < b(xl)}

corresponding to the domain of definition of the map. It is true conversely that the generating function
h(z1,z9) satisfying the condition hiy < 0 defines an area preserving monotone twist map.
Integrating the vector field (v1,12) along a path from some point (g1, Zg2) € Q to (z1,22) € Q

and using Diophantine inequality (1), we obtain the generating function in the form
h(z1,z2) = axy + H(x2 — 1, 21), (5)

where H is quasiperiodic in the second variable. In many applications, not only is this map area-

preserving but it also satisfies the exactness condition

Definition 2.3 The above map ¢ is exact if for any f(x) € Q(w) its average value (f) does not change

under the mapping

1 X 1 X
lim Y/o f(:z:)d:z::Xli_r)nooy/U ¢o f(z)dz.

X—o0

Intuitively, non exactness corresponds to the drift in vertical direction and « is the rate of the drift.

We now prove
Lemma 2.1 The map ¢ is exact iff the function h(zy +t,x9 + t) is quasiperiodic in t.

Proof: Consider the derivative

d
%h(m +t,xo+1t) = —i(x1 + b,z +t) + oz + 20+ 1) (6)

which is a quasiperiodic function. On the other hand using (5) we have

h(z1 +t, 29 +t) = at + Ha(z2 — 21,21 + 1), (7)



where f(t) = Ha(zo — 1,71 +t) € Q(w) as a function of ¢. Integrating (6) from 0 to T, using (7),
dividing by T" and taking the limit 7" — oo we obtain the direct relation between exactness of the map

and quasiperiodicity of the generating function

1 (T 1 [T
— lim — — lim — —
a T;n;oT/() o1 + t, 20 + t)dt ngoT/g P1(x1 +t, 20 + t)dt

X X
lim %/0 ¢o f(x)de — lim %/0 f(z)dz = 0.

X—00 X =00

QED.

From now on, we assume that the generating function h(zy + ¢, z2 + t) is quasiperiodic in ¢. Then

we will show that there exists an invariant curve parametrically defined w(t) = (u(t),v(¢)) so that
u(t) — t and v(t) are quasiperiodic. The map restricted to this curve will be a rigid translation

d(w(t)) = w(t + p), with a prescribed rotation number px.

Lemma 2.2 The curve w(t) = (u(t),v(t)) satisfies the invariance condition ¢p(w(t)) = w(t + p) iff

u(t) satisfies the second order difference equation
E(u)(t) = ha(u(t), u(t + p)) + ho(u(t — p),u(t)) = 0.

Proof: The second order difference equation is obtained by shifting ¢ by —u in the second equation

in (4) and adding the two equations. QED.

Lemma 2.3 The product u,E(u) is in Q(w) and its mean value is zero

1 rT
lim —/ u E(u)dt = 0.
0

T—oo T

Proof: First we show that usF(u) is quasiperiodic. Quasiperiodicity of u; follows from the definition of
u(t) (u(t)—t € Q(w)). To show quasiperiodicity of E(u) it suffices to establish that of h;(u(t), u(t+u)).

The latter can be represented by

halu(t), u(t + 1)) = Glu(t + p) — ult), u(t))

according to (5), where G is quasiperiodic in the second variable. Therefore, it remains to show that
the function G(f(t),t+g(t)) is in Q(w) if f,g € Q(w). This follows from representation of quasiperiodic

functions by multiply periodic ones, see [13].



To show that (u.E(u)) = 0 we use the identity

u B (u) = %h(U(t)a u(t + ) — AF[ho(u(t — ), u(t))ue(t)],

where AT f(t) = f(t + pu) — f(t). The right hand-side is a difference of two mean-zero quasiperiodic
functions for one of them is a derivative and the other one is a finite difference of a quasiperiodic

function.

QED.

3 Main theorem

The generating function h(zi,z2) obtained in the last section is defined up to multiplication by a
constant. Indeed, it simply corresponds to scaling y-variable, see (4), and it does not change the
second order difference equation. Therefore, for convenience we introduce the normalized generating

function
hm« = h/ inf|h12|.
Q
Below we will denote the normalized generating function by h.

Theorem 3.1 Assume that wi,ws, ...,wy, i satisfy a Diophantine inequality: there exist K > 0 and

o > n such that for all k # 0

_ K
|W1k1 + woko + ... +wrky + 1Ifn—|—1| > Wa (8)

where k = (ki, ..., k) and |k| = |k1| + ... + |kn| + |knt1|. Assume that h is real analytic in
Qo = {(x1,22) € C%: (Rexy,Rexy) € Q, [Imzy|, |Tmas| < a},

has bounded derivatives up to the second order in Q. a > 0, and satisfies the normalized monotone
twist condition

inf =—1.
1?2 hio
Then for any e, M, K > 0,0 > n € N there exists d,r > 0, such that if there exists ug(t) with
1. ug(t) —t € Qp(w)

2. |uotlr, |(uor) ™ty < M



3. OE(UU(t),’LL()(t + M)) e Q
4. |E(ug)|r <6
then there exists a unique solution u of E(u) =0 with u(t) —t € Q,/2(w), (u(t),u(t +pn)) € Q and it

18 unique up to the translation t — t + constant.

Remark 3.1 It easy to show, using simple measure theoretical argument [13] (pg. 191), that the
subset of w,p which do not satisfy the above Diophantine condition for any K > 0,0 > n has zero
Lebesgue measure. It can be also shown that for a given w = (w1, ws, ...,wy) satisfying the Diophantine

condition

K
|w1k'1 + wokg + ... + wnkn| > W (9)

with sufficiently small K and o > o¢ > n there can be found p on a given interval satisfying (8) with

the same K and o. Besides that the relative measure of p violating (8) decays to zero with K.

Remark 3.2 The condition 4 can be satisfied, in particular, if the map is a sufficiently small pertur-

bation of the integrable map

2o =121 +y1 + O(e)

y2 = y1 + O(e)

by choosing ug(t) =t and decreasing € — 0.

4 The homological equation

4.1 The second order homological equation

Following [7], we solve the equation E(u) = 0 using modification of Newton’s method. Starting with

ug such that E(ug) is sufficiently small, we seek an improvement ug + v so that
E(u+v) = E(u) + E'(u)v + ...

become quadratically small compared to F(u). The first idea would be to kill linear order terms by

solving the linear equation

E(u) + E'(u)v =0 (10)



as in Newton’s method. This equation is, however, difficult to solve because E'(u) is not easy to invert.
The way around this difficulty is to modify (10) so that v can be easily found and E(u + v) would
be quadratically small. Multiplying (10) by u; and subtracting the quadratically small term v9; E(u)

from the left hand-side we obtain the new equation
w B (u)v — vE (w)uy + w E(u) = 0. (11)

Although it is no longer equivalent to (10), nevertheless it still produces v, which makes E(u + v)
quadratically small, as we will show later.

Evaluating the terms with E'(u)
hiy(upot — uf o) + b (wv™ —upv) +ugE(u) =0

and choosing the new variable v = u;w we obtain the equation equivalent to (11)

hiyuu (wh — w) — hpuuy (w —w™) + uE(u) = 0.

Introducing finite difference operators Atu(t) = u(t + p) — u(t) and A~ u(t) = u(t) — u(t — p) we
transform the equation to the second order difference equation

A~ (hupu ATw) + uE(u) = 0.

4.2 Lemma on the first order homological equation

The second order difference equation obtained at the end of the last section is equivalent to the system
of two first order difference equations

A7y =g

p71A+w = 1/) + z/)Oa

1

where g = —u;E(u) and p~! = h,uu;". The solution of each equation is provided by

Lemma 4.1 Consider the first order difference equation
A =g,

where g € Qr(w), (g) =0, and w satisfies the above Diophantine condition. Then there exists a unique

solution 1 € Q(w) with () = 0 satisfying the estimate

gl
’ - .
|, < C(K, o) o



Proof: We will solve the equation

Pt +p) —2p(t) = g(t)

using Fourier series representation g(t) = 3, gre®®t  op(t) = 3, hpe’ Bt After straightforward

calculations we obtain the relation between Fourier coefficients

o gk
Yk = eilk,wyp _ 17

Using the Diophantine condition (8) we estimate the small denominators

|6i<k7w> — ]_| > M
I L
Since g € Q,(w) then |gi| < |g|,e~'*I" and we obtain the estimate on the Fourier coefficients of 1)

[ < CHK, 0) lgly K7™ = CTHE, o) |gly [k|7e Mg M),

Using the inequality z7¢™* < ¢(o) we obtain

6—‘]€|S

(r—s)7

|1/)k| < C(K7 U) |g|r

Now, we estimate

/ e / K r o /
[l < D Ile™ <D e(n)m™ eyl < % domt e e <
r—s
k m=0 m=0

C(K7 Uan)|g|’!‘ io: mn,I *m(S*S,)e*m(slf’r").

e
(’)” B S)U m=0

Using z7¢ % < ¢(0) and comparing with power series we obtain

C(K7 g, n) |g|7‘
(r—5)7(s — )P L1 —e )

C(K,0,n)lglr
(7" _ S)‘T(s _ Sl)n—l(sl _ 7“’)'

|l <

<

Fixing s, : r — s = s — s’ = s’ — r’ we obtain the result.
QED.
Now, we apply this lemma to find and estimate the solution of the second order difference equation

(12):

Lemma 4.2 Let r > 0 and M' > 0 and assume that |E(u)|, < 0o, u(t) —t € Q,(w) and

[ |ry | (we) "y [P12lr, |(R12) 7Y < M, then the second order difference equation (12) has a unique



solution w € Q,(w) with (w) = 0 for any p : 0 < p < r, so that the correction v = ww satisfies

the estimates

C(Ka a,n, M,)
(’f’ _ p)20+2n

C(K’ 0—’ n’ M’)

|v]p < (r — p)2o+2nt1

|E(u)lr, [vilp < |E(u)],.

Proof: The first equation can be immediately solved since Lemma 4.1 directly applies. The solution

satisfies the estimate
|d)|7" < C(Ka Uan) r
To find w we first specify 1y so that the equation

Atw = p(h + o)

can be solved. This requires the right hand-side to be mean-zero

(P + 1)) =0 & hy = _%

for the left hand-side is automatically mean-zero.

Applying Lemma 4.1 again we obtain the solution

wl, < C(K, o,n) L EN e oy 91

(’)”I _ p)0'+n (’I“’ _ p)a+n(r _ ,rl)(f+n :
Taking v’ = H'Tp and recalling that ¢ = —uyE(u) we obtain the first estimate. Using the Cauchy
estimate |v;], < (Jﬂ;) we obtain the second inequality. QED.

Corollary 4.1 Under the conditions of the Lemma we have

(e +vi)|p < M+ v,
MI

|(U’t +Ut) |p — 1 _ M’|'Ut|p,

provided |vg|,M' < 1.

10



5 Quadratic decay of error

We now estimate the mismatch for the iteration
|E(u+ )|, = |E(u) + E'(u)v + Ql, < |E(u) + E'(u)v], + |Q|,-

To estimate the first term on the right hand-side, we use (11)

w)l, w)l, u)|?
B + B ol < Wog B, < 0 Pl 10l _ o B

where we have used the Cauchy estimate |%E(u)|p < c%.
Now, we estimate the reminder, using Taylor’s formula
2

where A € (0,1), and using estimates on v and h we obtain

B (u)]?

2
@l < elvl, < O o

Therefore the mismatch is indeed quadratically small as in Newton’s method

| E(u)]?

Blutv)ly < O v

6 The limiting process

We first choose the sequence of the analyticity domains: r = rg > r1 > ... with r,, = rs, according
t0 T = Too + 27" (r9 — T'oo). Using Lemma 4.2 we will construct a sequence ug, u1, ..., Uy, ... analytic
in the corresponding domains @Q,, (w) with the corrections satisfying the inequalities

C
<————|F
|Um|rm+1 = lrm — 7’m+1)27| (Um)lrm

d C
|%”m|rm+1 < (

E
=ty e

where 7 = 0 + n. The mismatches €, := |E(um,)|r,, satisfy the estimate
2

€
m m_2
= Ca €
m>s
(Irm _ rm+1)47'+1

€Em+1 < C

where a = 247*1. Rescaling the sequence 71, = ca™* e, we obtain 7,1 < n2,. This sequence decays

to zero if g = caep < 1. In this case the original sequence decays faster than exponentially

(caeg)?"

€
m =" cqm+l

11



and so does the sequence |vp, |, — 0.

Therefore, there exists a limit

o0
oo = fig tm = tho + 2, 0 (13)

which is an analytic function in @), . Now, we can pass to the limit in the main equation to obtain

E(ux) = lim E(up) =0.

m— 00

Therefore, uq, is indeed a solution of E(u) = 0.

In order to finish this construction, we have to justify application of Lemma 4.2 at each step of
the iteration. It suffices to check that | Luy,|,,. and |%ﬁ |r,, stay bounded uniformly in m and ensure
that the iterates u,, do not leave the analyticity domain of h.

We will do this by specifying

M' = My, = 2My = 2max(M, sup |hial,|h 55 |)
(z1,22)€Qa
in Lemma 4.2 and showing that | L1y, and |4 t |r,, stay below M. Using Corollary 4.1, we obtain

inequalities on the iterates of the bounds My, My, ...

M,
Mm+1 S max <Mm + camem, m) .

We will consider the iterations while M,, < M., and show that by decreasing ¢y we will achieve

1

M, < My, for all m. Since ca™e,, < C(caeg)?" then we can decrease €q further so that ca™e,, < IV

and we can rewrite the ratio in the brackets

M,

m S Mm(]. + QCameMm) S Mm + C(CGGU)Qm2Mgo.
- miim

Thus, we obtain the estimate
oo
M, < My +C Z (caeg)?
m=1

and by decreasing €, we obtain the desired inequality M,, < M.

Finally, using (13) and estimates on |v,| we obtain that |u,, — ug|,,, can be made as small as
we like (uniformly in m) by further decreasing €y. Therefore wuy, (t), um (t + p) will not leave Q, the
domain of analyticity of h, provided Oc(ug(t),uo(t + p)) € Q. This follows from the condition of the

theorem and from the proper choice of r: rM < a —e.

12



Appendix

A Small twist

In many applications the monotone twist decays to zero with the perturbation. Therefore, certain
estimates which we used in the proof are not uniformly bounded, e.g. his. This situation arises, for
example, in the stability problem of elliptic fixed points of an area-preserving mapping and in the
stability problem for Fermi-Ulam system, which is considered in the next section. In this section we
show how the above approach applies to the small twist problem.

Consider an area-preserving analytic map ¢ given by

zo = z1 +yy1 + f(1,91,7) (14)

Y2 =1 + g(x17y177)7
where v € (0,70), f,g9 = o(7y) are real analytic in z1,y; and quasiperiodic in z;. The generating
function for this mapping in the lowest order takes the form

(z2 —x1)°

ho(z1,x2,7y) = 2y

and the corresponding term of the second difference equation is given by

2(w)  w —2u u(t —
Eo(u(t)):AqE): (t+p) 27(t)+ (t—p)

Since the twist is of order v we will keep the rotational number on the same scale ¢y < pu < Cy, using

a modified Diophantine inequality. Therefore, the mismatch in the above equation will be of order

A%(u)
v

e
Thus, it is natural to consider a rescaled difference equation E,(u) = vy 1E(u) = 0, so that if
E,(u) ~ & then E,(u + v) ~ 0, where v is a correction found by Newton’s method satisfying the
estimates uniformly in ~.
Below we show that with this modification the above approach provides the existence of invariant
curves in the small twist case. Since the interval, where p has to be chosen shrinks to zero we use a

modified Diophantine condition

B K
|(w1ky + weko + ... + wpky)y + 1 l'ykn+1| > #, (15)

13



where as before for given w satisfying (9) with sufficiently small K one can find p € (¢y, C7y) satisfying
(15) and the relative measure of y violating (15) tends to zero with K.
Estimating small denominators

K~y

ei<k7w>“ — 1 > —
| | — |k|0— ?
we can estimate the solution of the first order homological equation (12). Dividing the first equation

by v we obtain
A’Yl/) = _utE’Y(u)a

where A, = v LA. Proceeding as in the proof of lemma 4.1 and using that v in Diophantine condition
is cancelled by v in A, we obtain the same estimate as in Lemma 4.2. The second equation divided

by v takes the form

+... ¢+1/)0
A”Yw_ 15wt
Y 12Uty

and as before  in Diophantine condition is cancelled by v in A,. A uniform estimate is also obtained
for y~'hip. Therefore we obtain estimates on v which are uniform in . The rest of the proof:

quadratic decay of errors and the limiting process is straightforward. As a result we can state

Theorem A.1 Let i satisfy the Diophantine inequality (15). Then for any K > 0,0 > n,e > 0,M > 0,
there exist r > 0, § > 0 such that if for some ug (up(t) —t € Q(w)), Oc(ug(t)ug(t+p)) is in the analyt-
icity domain of h with |E(ug)| < 0 then there exists a solution u(t) of E(u) = 0 with (u(t)—t € Q(w)).

The solution is unique up to the translation t — t + constant.

B Boundedness of motion in “quasiperiodic” Fermi-Ulam problem

We consider a classical particle moving between two parallel walls undergoing quasiperiodic motions
in the presence of a potential field which is also assumed to be quasiperiodic in time. The motion
between the walls is described by

i+ V'(z,t) =0,

while the motion of the left and right walls is given by x = b(t) and = = a(t), respectively. We will

assume that all functions are smooth in z,¢ and analytic quasiperiodic in ¢, i. e. V'(z,t),7(t),l(t) €
Qr(w).

14



First, we apply two transformations to stop the walls. The left wall is stopped by the change of

variable z = y + a(t) so that now the particle moves between the walls according to
i+ V'(y +alt),t) —a(t) =0,

while the left wall is at rest and the right wall’s position is given by y = b(t) — a(t).

We now invoke another transformation, which originated in the theory of heat equation with
moving boundary and was later used in quantum version of Fermi-Ulam problem [12]. It is also known
as Liouville transformation [2]. We let y = [b(t) — a(t)]q so that the right wall will be also at rest

(¢ = 1). The motion between the walls is given by
E(t)g +2¢(t)g + c(t)d + Vi(e(t)g + a(t), 1) =0,

where ¢(t) = b(t) — a(t). In order to get rid of the ¢ term we choose the new time 7 = f(¢) so that the

equation takes the form
éq+2¢fq +pfd + 74"+ Vile(t)g + a(t), 1) =0,
where F' = %F. Requiring that 2c'f + cf =0& c2f = 1 we obtain

F24" + ég+ Vi(e(t)g + a(t),1) = 0 & " + Et)e(t)’q + ¢t (8)Vi(e(t)g + a(t),t) =0

with 7':]”(15):/0lt CZd(i)

The equation takes the form
q” + Wl (qa T) = 03

where Wi(q,7) € Q(aw) in 7. This follows from the following properties of quasiperiodic functions,

see [13].

1. Let h(t) € Q(w) and 7 = ot + h(t) (with a + & > 0) then the inverse relation is given by

t=a "+ H(t) and H(t) € Q(ow).

2. Let g(t), f(t) € Q(w) then g(t + (1)) € Q).

Indeed, using the first property, for any F(t) € Q(w) we have F(t(7)) = F(a ‘7 + H(7)), where
H(7) € Q(w). Introducing G(t) = F(a~'t), which is clearly in Q(aw), we have F(t(r)) = F(a~'r +
H(1)) = G(t+ aH(1)) € Q(aw) by the second property.

15



Since both walls are at rest we can include collisions in the description of the system using the
reflection principle. In the equivalent system the particle moves on the circle ¢ € (—1,1) in the

potential field W (]g|, 7). The Hamiltonian of this system is given by

2
=2 4w (g,
This system becomes near integrable for large velocities, as we will show by proper rescaling and
reduction to the twist map. Let p = ¢ 'P,t = ¢ 'T, H = ¢2F,q = (), then the new Hamiltonian takes

the form

P2
F = +EW(Ql, D).

The rescaled Hamiltonian is formally in near integrable form, however, non smoothness in () variable
makes it necessary to integrate the vector field in @ so that to obtain a smooth map, which can
be analyzed for stability. As was recently observed in [5] this can be done by using transformation
exchanging time and energy with position and momentum, so that () become a new time variable,
and integrating the obtained equations of motion.

Using invariance of the 1-form: PdQ — FdT = —(Fd(eT) — ePdQ) we choose H = €P as a new

Hamiltonian, ¢ = ) as a new time, 7 = €I as a new position, and h = F' as a new momentum
H = eV2h + EHy(h, T, |t]).

The equations of motion are given by

O = e + S5 (AT |t])
& =~ % (h, 7, t).

Integrating these equations on ¢ € (—1,1) we obtain the monotone twist map

T =T+ eﬁ + O(€?) (16)
hi = hy + O(e?®).

This mapping is analytic in both variables (since H; is continuous in ¢ on (—1,0) and (0,1)) and

quasiperiodic in 7. Now, we will verify the exactness condition. Consider a subset V in the extended

phase space (7,h,t) bounded by by four vertical planes 7 = 0,7 = 7,t = —1,£ = 1 and by two

2-dimensional surfaces: one hs(t,7) given by the solution generated by the curve of initial conditions

h = f(r) (with f € Q(w)), the other hy(7,t) given by H = 0.
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By the Stokes theorem the integral of the symplectic form dw' = dh A dr + dH A dt over a closed

two dimensional surface vanishes. Therefore we have

- o+
dw! :/ he(1,7)dr —/ hy(=1,7)dT +
v 0 0

/1 [hy(t,7 = 0) — hy(t,7 = 0)]dt — /1 hy(t,7%) — hyg(t,wH)dt+ [ dhadr = 0.
1 -1 H=0

Dividing by 7+ and taking the limit 7 — oo we obtain

S Al I 1
lim —/ hy(l,7)dr — — hy(=1,7)dr = — lim —/ dh A dr,
T H=0

0 200 T

but

1 prt =
/ dh A dr = —/ / Oy dtdr = —/ 5 / Wo(Ql, T)dQdT = 0
H=0 —-1J0 0 -1

since W is periodic in (. Thus, we have verified the exactness condition.

Therefore the mapping (16) satisfies the conditions of the monotone small twist theorem for suf-

ficiently small e, which corresponds to large energy solutions. Thus, we obtain invariant manifolds
carrying quasiperiodic motions and separating the extended phase space into invariant layers. As
€ — 0 (energy grows to infinity) the relative measure of the subset free of the above invariant mani-
folds decays to zero.
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