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Invariant curve theorem for quasiperiodic twist mappings and

stability of motion in Fermi�Ulam problem

Vadim Zharnitsky

Division of Applied Mathematics

Brown University

Providence� RI �����

Abstract

In this paper the monotone twist theorem is extended to the quasiperiodic case and applied to

establish boundedness of the velocity in a system of a particle bouncing elastically between two

quasiperiodically moving walls� It is shown that the velocity of the particle is uniformly bounded

in time if the frequencies satisfy a Diophantine inequality� This answers a question recently asked

in ����

� Introduction

Quasiperiodic maps arise naturally in one�degree�of�freedom oscillatory Hamiltonian systems depend�

ing quasiperiodically on time� Indeed� if the frequencies are su�ciently incommensurable then the

phase �ow induces a quasiperiodic map on a cross�section transversal to the vector �eld� Although

there are related results for quasiperiodically time�dependent Hamiltonian vector �elds� see e�g� ��� 	
�

they are not directly applicable to the maps� The latter have to be dealt with in stability problems

for certain systems of billiard type like Fermi�Ulam accelerator� This model� introduced by Fermi

in order to explain the origin of the high�energy cosmic radiation ��
� consists of a particle bouncing

elastically between two parallel walls undergoing periodic motions� The Hamiltonian of such system

is not smooth due to the collisions with the walls and one is forced to investigate stability of the

corresponding Poincar�e map�

The obtained map� however� is not close to an integrable one and a number of canonical trans�

formations have to be carried out to bring the map to such form� For the periodic� Fermi�Ulam

accelerator this has been done in ��� �� ��
� The reduced periodic map satis�es the conditions of

Moser�s twist theorem ���
 and therefore possesses invariant curves which prevent unbounded motion�

�



See also ���
 for investigation of stability in the quantum Fermi�Ulam accelerator�

More recently� Levi and Zehnder established boundedness of quasiperiodically forced motions in a

large class of one dimensional potentials with superquadratic growth at in�nity �	
� They also asked

if a similar result can be obtained for the Fermi�Ulam system with quasiperiodically moving walls�

In this article� we answer this question positively� We �rst bring the vector �eld to a near inegrable

form by applying transformations stopping the walls� Then we integrate the vector �eld using a proper

Poincar�e section so that to obtain a smooth quasiperiodic twist map� Finally we apply a quasiperiodic

version of Moser�s twist theorem� which is proven in the �rst part of the paper�

The proof of the twist theorem uses a Lagrangian� approach introduced by Moser in the proof of

an analogue theorem for elliptic partial di�erential equations ��
 and used in ��
 to present a simpler

proof of the twist theorem� In contrast to the Hamiltonian� approach� where one looks for the

invariant curves in the phase space� the Lagrangian� approach is based on the search for the solution

of a second order di�erence equation in the con�guration space�

In the subsequent sections� we will derive and solve the second order di�erence equation� Our proof

is di�erent from the one in ��
 only in section �� where the di�erence equation is introduced� The proof

of the boundedness of motion in quasiperiodic Fermi�Ulam problem is presented in the Appendix�

� Notation and De�nitions

��� The space of real analytic quasiperiodic functions

We de�ne the space of real analytic quasiperiodic functions Q��� as in ���


De�nition ��� A function f � R� � R� is real analytic quasiperiodic f � Q��� if it can be repre�

sented by Fourier series with exponentially decaying coe�cients

f�x� �
X
k

fke
ihk��ix�

where k � �k�� k�� ���� kn�� � � ���� ��� ���� �n�� hk� �i � k��� � ���� kn�n �� � if k �� ��

Generally speaking� an integral of a mean�zero function f � Q��� may be an unbounded function� see

���
 for an example� This might happen because of the small denominators hk� �i which appear after

integrating Fourier series� However� if the frequencies satisfy the following Diophantine inequality�

�



there exist K � � and � � � such that for all k �� �

j��k� � ��k� � ���� �nknj � K

jkj� � ���

where k � �k�� ���� kn� and jkj � jk�j � ��� � jknj� then for any mean�zero f � Q��� its integral is also

in Q����

To each f � Q��� there corresponds a multiply periodic analytic function in n variables

F ��� �
X
k

fke
ihk��i�

where � � ���� ��� ���� �n�� ��� periodic in each variable and bounded in a complex neighborhood of

Rn � jIm�kj � r for some r � ��

De�nition ��� Let Qr��� � Q��� be the set of real analytic functions bounded on the subset

�r � f��� ���� �n � jIm�kj � rg� with the supremum norm

jf jr � sup
���r

jf���j�

��� Generating functions

In the proof of the invariant curve theorem we will use the generating function of the quasiperiodic

twist map� Here� we describe its properties�

Consider an area preserving quasiperiodicmonotone twist map de�ned in a horizontal stripR� I � R�

as follows

� � R� I � R� �
x� � x� � ���x�� y��

y� � ���x�� y���
���

where ���x�� y��� ���x�� y�� � Q��� as functions of x�� Using the monotone twist condition ���
�y�

�x�� y�� � ��

we invert the �rst equation and substitute it in the second equation

y� � 	��x� � x�� x��

y� � 	��x� � x�� x���
���

where 	� is the inverse of �� and 	� � ���x�� 	��x� � x�� x���� It is easy to check that
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using area preservation property of the map� Therefore� there exists a generating function h�x�� x��

de�ning the map implicitly

y� � �hx��x�� x��
y� � hx��x�� x��

���

with h�� � �� de�ned in

� �
n
�x�� x�� � R� � a�x�� � x� � b�x��

o

corresponding to the domain of de�nition of the map� It is true conversely that the generating function

h�x�� x�� satisfying the condition h�� � � de�nes an area preserving monotone twist map�

Integrating the vector �eld �	�� 	�� along a path from some point �x��� x��� � � to �x�� x�� � �

and using Diophantine inequality ���� we obtain the generating function in the form

h�x�� x�� � �x� �H�x� � x�� x��� ���

where H is quasiperiodic in the second variable� In many applications� not only is this map area�

preserving but it also satis�es the exactness condition

De�nition ��� The above map � is exact if for any f�x� � Q��� its average value hfi does not change
under the mapping

lim
X��

�

X

Z X

�
f�x�dx � lim

X��
�

X

Z X

�
� 	 f�x�dx�

Intuitively� non exactness corresponds to the drift in vertical direction and � is the rate of the drift�

We now prove

Lemma ��� The map � is exact i	 the function h�x� � t� x� � t� is quasiperiodic in t�

Proof� Consider the derivative

d

dt
h�x� � t� x� � t� � �	��x� � t� x� � t� � 	��x� � t� x� � t� ���

which is a quasiperiodic function� On the other hand using ��� we have

h�x� � t� x� � t� � �t�H��x� � x�� x� � t�� ���

�



where f�t� � H��x� � x�� x� � t� � Q��� as a function of t� Integrating ��� from � to T � using ����

dividing by T and taking the limit T �
 we obtain the direct relation between exactness of the map

and quasiperiodicity of the generating function

� � lim
T��

�

T

Z T

�
	��x� � t� x� � t�dt � lim

T��
�

T

Z T

�
	��x� � t� x� � t�dt �

lim
X��

�

X

Z X

�
� 	 f�x�dx � lim

X��
�

X

Z X

�
f�x�dx � ��

QED�

From now on� we assume that the generating function h�x� � t� x� � t� is quasiperiodic in t� Then

we will show that there exists an invariant curve parametrically de�ned w�t� � �u�t�� v�t�� so that

u�t� � t and v�t� are quasiperiodic� The map restricted to this curve will be a rigid translation

��w�t�� � w�t� �� with a prescribed rotation number �

Lemma ��� The curve w�t� � �u�t�� v�t�� satis
es the invariance condition ��w�t�� � w�t � � i	

u�t� satis
es the second order di	erence equation

E�u��t� � h��u�t�� u�t � �� � h��u�t� �� u�t�� � ��

Proof� The second order di�erence equation is obtained by shifting t by � in the second equation

in ��� and adding the two equations� QED�

Lemma ��� The product utE�u� is in Q��� and its mean value is zero

lim
T��

�

T

Z T

�
utE�u�dt � ��

Proof� First we show that utE�u� is quasiperiodic� Quasiperiodicity of ut follows from the de�nition of

u�t� �u�t��t � Q����� To show quasiperiodicity of E�u� it su�ces to establish that of hi�u�t�� u�t����

The latter can be represented by

hi�u�t�� u�t � �� � G�u�t� �� u�t�� u�t��

according to ���� where G is quasiperiodic in the second variable� Therefore� it remains to show that

the functionG�f�t�� t�g�t�� is inQ��� if f� g � Q���� This follows from representation of quasiperiodic

functions by multiply periodic ones� see ���
�

�



To show that hutE�u�i � � we use the identity

utE�u� �
d

dt
h�u�t�� u�t � ������h��u�t� �� u�t��ut�t�
�

where ��f�t� � f�t � � � f�t�� The right hand�side is a di�erence of two mean�zero quasiperiodic

functions for one of them is a derivative and the other one is a �nite di�erence of a quasiperiodic

function�

QED�

� Main theorem

The generating function h�x�� x�� obtained in the last section is de�ned up to multiplication by a

constant� Indeed� it simply corresponds to scaling y�variable� see ���� and it does not change the

second order di�erence equation� Therefore� for convenience we introduce the normalized generating

function

hnr � h� inf
�
jh��j�

Below we will denote the normalized generating function by h�

Theorem ��� Assume that ��� ��� ���� �n�  satisfy a Diophantine inequality� there exist K � � and

� � n such that for all k �� �

j��k� � ��k� � ���� �nkn � ��kn��j � K

jkj� � �	�

where k � �k�� ���� kn� and jkj � jk�j� ���� jknj� jkn��j� Assume that h is real analytic in

�� � f�x�� x�� � C� � �Rex��Rex�� � �� jImx�j� jImx�j � �g�

has bounded derivatives up to the second order in �� � � �� and satis
es the normalized monotone

twist condition

inf
�
h�� � ���

Then for any ��M�K � �� � � n � N there exists �� r � �� such that if there exists u��t� with

�� u��t�� t � Qr���

�� ju�tjr� j�u�t���jr � M

�



�� O��u��t�� u��t� �� � �

� jE�u��jr � �

then there exists a unique solution u of E�u� � � with u�t� � t � Qr	����� �u�t�� u�t � �� � � and it

is unique up to the translation t� t� constant�

Remark ��� It easy to show� using simple measure theoretical argument ���� �pg� ����� that the

subset of ��  which do not satisfy the above Diophantine condition for any K � �� � � n has zero

Lebesgue measure� It can be also shown that for a given � � ���� ��� ���� �n� satisfying the Diophantine

condition

j��k� � ��k� � ���� �nknj � K

jkj� ���

with su�ciently small K and � � �� � n there can be found  on a given interval satisfying ��� with

the same K and �� Besides that the relative measure of  violating ��� decays to zero with K�

Remark ��� The condition � can be satis
ed� in particular� if the map is a su�ciently small pertur�

bation of the integrable map

x� � x� � y� �O���

y� � y� �O���

by choosing u��t� � t and decreasing �� ��

� The homological equation

��� The second order homological equation

Following ��
� we solve the equation E�u� � � using modi�cation of Newton�s method� Starting with

u� such that E�u�� is su�ciently small� we seek an improvement u� � v so that

E�u� v� � E�u� �E��u�v � ���

become quadratically small compared to E�u�� The �rst idea would be to kill linear order terms by

solving the linear equation

E�u� �E��u�v � � ����

�



as in Newton�s method� This equation is� however� di�cult to solve because E��u� is not easy to invert�

The way around this di�culty is to modify ���� so that v can be easily found and E�u � v� would

be quadratically small� Multiplying ���� by ut and subtracting the quadratically small term v
tE�u�

from the left hand�side we obtain the new equation

utE
��u�v � vE��u�ut � utE�u� � �� ����

Although it is no longer equivalent to ����� nevertheless it still produces v� which makes E�u � v�

quadratically small� as we will show later�

Evaluating the terms with E��u�

h����utv
� � u�t v� � h����utv

� � u�t v� � utE�u� � �

and choosing the new variable v � utw we obtain the equation equivalent to ����

h���utu
�
t �w

� � w�� h���utu
�
t �w �w�� � utE�u� � ��

Introducing �nite di�erence operators ��u�t� � u�t � � � u�t� and ��u�t� � u�t� � u�t � � we

transform the equation to the second order di�erence equation

���h���utu
�
t �

�w� � utE�u� � ��

��� Lemma on the �rst order homological equation

The second order di�erence equation obtained at the end of the last section is equivalent to the system

of two �rst order di�erence equations���
��

��	 � g

p����w � 	 � 	��
����

where g � �utE�u� and p�� � h���utu
�
t � The solution of each equation is provided by

Lemma ��� Consider the 
rst order di	erence equation

�	 � g�

where g � Qr���� hgi � �� and � satis
es the above Diophantine condition� Then there exists a unique

solution 	 � Qr���� with h	i � � satisfying the estimate

j	jr� � C�K���
jgjr

�r � r����n
�

	



Proof� We will solve the equation

	�t� �� 	�t� � g�t�

using Fourier series representation g�t� �
P

k gke
ihk��it 	�t� �

P
k 	ke

ihk��it� After straightforward

calculations we obtain the relation between Fourier coe�cients

	k �
gk

eihk��i
 � �
�

Using the Diophantine condition �	� we estimate the small denominators

jeihk��i � �j � C�K���

jkj� �

Since g � Qr��� then jgkj � jgjre�jkjr and we obtain the estimate on the Fourier coe�cients of 	

j	kj � C���K��� jgjr jkj�e�jkjr � C���K��� jgjr jkj�e�jkjse�jkj�r�s��

Using the inequality x�e�x � c��� we obtain

j	kj � C�K��� jgjr e�jkjs

�r � s��
�

Now� we estimate

j	jr� �
X
k

j	kjejkjr� �
�X

m	�

c�n�mn��j	mjemr� � C�K��� n�jgjr
�r � s��

�X
m	�

mn��e�m�s�r
�� �

C�K��� n�jgjr
�r � s��

�X
m	�

mn��e�m�s�s
��e�m�s

��r���

Using x�e�x � c��� and comparing with power series we obtain

j	j�r �
C�K��� n�jgjr

�r � s���s� s��n����� e��s��r���
� C�K��� n�jgjr

�r � s���s� s��n���s� � r��
�

Fixing s� s� � r � s � s� s� � s� � r� we obtain the result�

QED�

Now� we apply this lemma to �nd and estimate the solution of the second order di�erence equation

�����

Lemma ��� Let r � � and M � � � and assume that jE�u�jr �
� u�t�� t � Qr��� and

jutjr� j�ut���jr� jh��jr� j�h�����jr � M �� then the second order di	erence equation ���� has a unique

�



solution w � Q���� with hwi � � for any � � � � � � r� so that the correction v � utw satis
es

the estimates

jvj� � C�K��� n�M ��
�r � ������n

jE�u�jr� jvtj� � C�K��� n�M ��
�r � ������n��

jE�u�jr�

Proof� The �rst equation can be immediately solved since Lemma ��� directly applies� The solution

satis�es the estimate

j	jr� � C�K��� n�
jgjr

�r � r����n
�

To �nd w we �rst specify 	� so that the equation

��w � p�	 � 	��

can be solved� This requires the right hand�side to be mean�zero

hp�	 � 	��i � �� 	� � �h	pihpi

for the left hand�side is automatically mean�zero�

Applying Lemma ��� again we obtain the solution

jwj� � C�K��� n�
jp�	 � 	��jr�
�r� � ����n

� C�K��� n�M ��
jgjr

�r� � ����n�r � r����n
�

Taking r� � r��
� and recalling that g � �utE�u� we obtain the �rst estimate� Using the Cauchy

estimate jvtj� � jvjr
�r��� we obtain the second inequality� QED�

Corollary ��� Under the conditions of the Lemma we have

j�ut � vt�j� �M � � jvtj�
j�ut � vt�

��j� � M �

��M �jvtj� �

provided jvtj�M � � ��

��



� Quadratic decay of error

We now estimate the mismatch for the iteration

jE�u� v�j� � jE�u� �E��u�v �Qj� � jE�u� �E��u�vj� � jQj��

To estimate the �rst term on the right hand�side� we use ����

jE�u� �E��u�vj� � jw d

dt
E�u�j� � C

jE�u�jr
�r � ������n

jE�u�jr
�r � ��

� C
jE�u�j�r

�r � ������n��
�

where we have used the Cauchy estimate j ddtE�u�j� � c jE�u�jrr�� �

Now� we estimate the reminder� using Taylor�s formula

Q �
�

�

d�

d��
E�u� �v��

where � � ��� ��� and using estimates on v and h we obtain

jQj� � cjvj�� � C
jE�u�j�r

�r � ��
��
n
�

Therefore the mismatch is indeed quadratically small as in Newton�s method

jE�u� v�j� � C
jE�u�j�r

�r � ��
��
n��
�

� The limiting process

We �rst choose the sequence of the analyticity domains� r � r� � r� � ��� with rm � r�� according

to rm � r� � ��m�r� � r��� Using Lemma ��� we will construct a sequence u�� u�� ���� um� ��� analytic

in the corresponding domains Qrm��� with the corrections satisfying the inequalities

jvmjrm��
� C

�rm � rm�����
jE�um�jrm

j d
dt
vmjrm��

� C

�rm � rm�������
jE�um�jrm

where � � � � n� The mismatches �m �� jE�um�jrm satisfy the estimate

�m�� � c
��m

�rm � rm���
���
� cam��m�

where a � �
���� Rescaling the sequence �m � cam���m we obtain �m�� � ��m� This sequence decays

to zero if �� � ca�� � �� In this case the original sequence decays faster than exponentially

�m � �ca���
�m

cam��

��



and so does the sequence jvmjr� � ��

Therefore� there exists a limit

u� � lim
m��um � u� �

�X
k	�

vk� ����

which is an analytic function in Qr� � Now� we can pass to the limit in the main equation to obtain

E�u�� � lim
m��E�um� � ��

Therefore� u� is indeed a solution of E�u� � ��

In order to �nish this construction� we have to justify application of Lemma ��� at each step of

the iteration� It su�ces to check that j ddtumjrm and j ddt �
um
jrm stay bounded uniformly in m and ensure

that the iterates um do not leave the analyticity domain of h�

We will do this by specifying

M � � M� � �M� � �max�M� sup
�x��x�����

jh��j� jh���� j�

in Lemma ��� and showing that j ddtumjrm and j ddt �
um
jrm stay belowM�� Using Corollary ���� we obtain

inequalities on the iterates of the bounds M��M�� ���

Mm�� � max

�
Mm � cam�m�

Mm

�� cam�mMm

�
�

We will consider the iterations while Mm � M� and show that by decreasing �� we will achieve

Mm �M� for all m� Since cam�m � C�ca���
�m then we can decrease �� further so that cam�m � �

�M�

and we can rewrite the ratio in the brackets

Mm

�� cam�mMm
�Mm�� � �cam�mMm� �Mm � C�ca���

�m�M�
��

Thus� we obtain the estimate

Mm �M� �C
�X

m	�

�ca���
�m

and by decreasing �� we obtain the desired inequality Mm �M��

Finally� using ���� and estimates on jvmj we obtain that jum � u�jrm can be made as small as

we like �uniformly in m� by further decreasing ��� Therefore um�t�� um�t � � will not leave �� the

domain of analyticity of h� provided O��u��t�� u��t� �� � ��� This follows from the condition of the

theorem and from the proper choice of r� rM � �� ��

��



Appendix

A Small twist

In many applications the monotone twist decays to zero with the perturbation� Therefore� certain

estimates which we used in the proof are not uniformly bounded� e�g� h��� This situation arises� for

example� in the stability problem of elliptic �xed points of an area�preserving mapping and in the

stability problem for Fermi�Ulam system� which is considered in the next section� In this section we

show how the above approach applies to the small twist problem�

Consider an area�preserving analytic map � given by

x� � x� � �y� � f�x�� y�� ��

y� � y� � g�x�� y�� ���
����

where � � ��� ���� f� g � o��� are real analytic in x�� y� and quasiperiodic in x�� The generating

function for this mapping in the lowest order takes the form

h��x�� x�� �� �
�x� � x��

�

��

and the corresponding term of the second di�erence equation is given by

E��u�t�� �
���u�

�
�

u�t� �� �u�t� � u�t� �

�
�

Since the twist is of order � we will keep the rotational number on the same scale c� �  � C�� using

a modi�ed Diophantine inequality� Therefore� the mismatch in the above equation will be of order

���u�
 � �

 � ��

Thus� it is natural to consider a rescaled di�erence equation E�u� � ���E�u� � �� so that if

E�u� � � then E�u � v� � ��� where v is a correction found by Newton�s method satisfying the

estimates uniformly in ��

Below we show that with this modi�cation the above approach provides the existence of invariant

curves in the small twist case� Since the interval� where  has to be chosen shrinks to zero we use a

modi�ed Diophantine condition

j���k� � ��k� � ���� �nkn�� � ���kn��j � K�

jkj� � ����

��



where as before for given � satisfying ��� with su�ciently small K one can �nd  � �c�� C�� satisfying

���� and the relative measure of  violating ���� tends to zero with K�

Estimating small denominators

jeihk��i
 � �j � K�

jkj� �

we can estimate the solution of the �rst order homological equation ����� Dividing the �rst equation

by � we obtain

�	 � �utE�u��

where � � ����� Proceeding as in the proof of lemma ��� and using that � in Diophantine condition

is cancelled by � in � we obtain the same estimate as in Lemma ���� The second equation divided

by � takes the form

��
 w �

	 � 	�

���h���utu
�
t

and as before � in Diophantine condition is cancelled by � in � � A uniform estimate is also obtained

for ���h��� Therefore we obtain estimates on v which are uniform in �� The rest of the proof�

quadratic decay of errors and the limiting process is straightforward� As a result we can state

Theorem A�� Let  satisfy the Diophantine inequality ����� Then for any K � �� � � n� � � ��M � ��

there exist r � �� � � � such that if for some u� �u��t�� t � Q����� O��u��t�u��t��� is in the analyt�

icity domain of h with jE�u��j � � then there exists a solution u�t� of E�u� � � with �u�t��t � Q�����

The solution is unique up to the translation t� t� constant�

B Boundedness of motion in 	quasiperiodic
 Fermi�Ulam problem

We consider a classical particle moving between two parallel walls undergoing quasiperiodic motions

in the presence of a potential �eld which is also assumed to be quasiperiodic in time� The motion

between the walls is described by

 x� V ��x� t� � ��

while the motion of the left and right walls is given by x � b�t� and x � a�t�� respectively� We will

assume that all functions are smooth in x� t and analytic quasiperiodic in t� i� e� V ��x� t�� r�t�� l�t� �
Qr����

��



First� we apply two transformations to stop the walls� The left wall is stopped by the change of

variable x � y � a�t� so that now the particle moves between the walls according to

 y � V ��y � a�t�� t� �  a�t� � ��

while the left wall is at rest and the right wall�s position is given by y � b�t�� a�t��

We now invoke another transformation� which originated in the theory of heat equation with

moving boundary and was later used in quantum version of Fermi�Ulam problem ���
� It is also known

as Liouville transformation ��
� We let y � �b�t� � a�t�
q so that the right wall will be also at rest

�q � ��� The motion between the walls is given by

 c�t�q � �!c�t� !q � c�t� q � V��c�t�q � a�t�� t� � ��

where c�t� � b�t�� a�t�� In order to get rid of the !q term we choose the new time � � f�t� so that the

equation takes the form

 cq � �!c !fq� � p  fq� � !f�q�� � V��c�t�q � a�t�� t� � ��

where F � � d
d� F � Requiring that � !c !f � c  f � �� c� !f � � we obtain

!f�q�� �  cq � V��c�t�q � a�t�� t� � �� q�� �  c�t�c�t��q � c
�t�V��c�t�q � a�t�� t� � �

with � � f�t� �

Z t

�

ds

c��s�
�

The equation takes the form

q�� �W��q� �� � ��

where W��q� �� � Q���� in � � This follows from the following properties of quasiperiodic functions�

see ���
�

�� Let h�t� � Q��� and � � �t � h�t� �with � � !h � �� then the inverse relation is given by

t � ���t�H�t� and H�t� � Q�����

�� Let g�t�� f�t� � Q��� then g�t� f�t�� � Q����

Indeed� using the �rst property� for any F �t� � Q��� we have F �t���� � F ����� � H����� where

H��� � Q���� Introducing G�t� � F ����t�� which is clearly in Q����� we have F �t���� � F ����� �

H���� � G�� � �H���� � Q���� by the second property�

��



Since both walls are at rest we can include collisions in the description of the system using the

re�ection principle� In the equivalent system the particle moves on the circle q � ���� �� in the

potential �eld W �jqj� ��� The Hamiltonian of this system is given by

H �
p�

�
�W �jqj� ���

This system becomes near integrable for large velocities� as we will show by proper rescaling and

reduction to the twist map� Let p � ���P� t � ���T�H � ��F� q � Q� then the new Hamiltonian takes

the form

F �
P �

�
� ��W �jQj� �T ��

The rescaled Hamiltonian is formally in near integrable form� however� non smoothness in Q variable

makes it necessary to integrate the vector �eld in Q so that to obtain a smooth map� which can

be analyzed for stability� As was recently observed in ��
 this can be done by using transformation

exchanging time and energy with position and momentum� so that Q become a new time variable�

and integrating the obtained equations of motion�

Using invariance of the ��form� PdQ � FdT � ��Fd��T � � �PdQ� we choose H � �P as a new

Hamiltonian� t � Q as a new time� � � �T as a new position� and h � F as a new momentum

H � �
p
�h� ��H��h� �� jtj��

The equations of motion are given by
���
��

d�
dt � � �p

�h
� �� �H�

�h �h� �� jtj�
dh
dt � ��� �H�

�� �h� �� jtj��

Integrating these equations on t � ���� �� we obtain the monotone twist map

���
��

�� � �� � � �p
h�

�O����

h� � h� �O�����
����

This mapping is analytic in both variables �since H� is continuous in t on ���� �� and ��� ��� and

quasiperiodic in � � Now� we will verify the exactness condition� Consider a subset V in the extended

phase space ��� h� t� bounded by by four vertical planes � � �� � � ��� t � ��� t � � and by two

��dimensional surfaces� one hf �t� �� given by the solution generated by the curve of initial conditions

h � f��� �with f � Q����� the other hH��� t� given by H � ��

��



By the Stokes theorem the integral of the symplectic form d�� � dh  d� � dH  dt over a closed

two dimensional surface vanishes� Therefore we have

Z
�V

d�� �

Z ��

�
hf ��� ��d� �

Z ��

�
hf ���� ��d� �

Z �

��
�hf �t� � � ��� hH�t� � � ��
dt�

Z �

��
�hf �t� �

��� hH�t� ���
dt�

Z
H	�

dh  d� � ��

Dividing by �� and taking the limit �� �
 we obtain

lim
����

�

��

Z ��

�
hf ��� ��d� � �

��

Z ��

�
hf ���� ��d� � � lim

����
�

��

Z
H	�

dh  d��

but

Z
H	�

dh  d� � �
Z �

��

Z ��

�

thHdtd� � �

Z �
�

�

�

Z �

��
WQ�jQj� T �dQdT � �

since W is periodic in Q� Thus� we have veri�ed the exactness condition�

Therefore the mapping ���� satis�es the conditions of the monotone small twist theorem for suf�

�ciently small �� which corresponds to large energy solutions� Thus� we obtain invariant manifolds

carrying quasiperiodic motions and separating the extended phase space into invariant layers� As

� � � �energy grows to in�nity� the relative measure of the subset free of the above invariant mani�

folds decays to zero�
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