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Abstract

When no expert knowledge is available, fuzzy if-then rules may be extracted from
examples of performance of a system. For this, an a priori decision on the number of
linguistic terms of the linguistic variables may be required. This may induce a “rigid
granularity“, usually finer than that actually required by the system. Fuzzy Decision
Diagrams are introduced as an efficient data structure to represent fuzzy rule bases and to
systematically check their completeness and consistency. Moreover if the hypothesis of
rigid granularity holds, reordering of the variables of a Fuzzy Decision Diagram may lead
to a compacter and more precise rule base. The concept of reconvergent subgraphs is
introduced to support the search for effective reorderings.

1. Introduction

BDDs are efficient data structures for the representation of switching functions [Lee 59], [Bry

86], [SaF 96]. The ordering of the variables affect however the size of a BDD, but the problem of

obtaining the optimal ordering is NP-complete [THY 93]. DDs with interval labelled edges have been

introduced for the efficient representation of multi-valued functions in the area of symbolic formal

verification in [StT 98], [StT 99]. A spectral interpretation of DDs has been developed [SSM 96], [Sta

98], and BDDs have made possible the computation of the Walsh transform of functions with many

variables [CMZ 93]. The name "Fuzzy Decision Diagrams" seems to have been used for the first time

in [HTHY 95]; however these diagrams are really especial ternary DDs, where two of the three values

of their variables are crisp intervals. The concept of Fuzzy Decision Diagrams (FuDDs) used in this

work is quite different, as will be seen below. The involved variables are linguistic ones and their

values are linguistic terms specified by fuzzy sets. Moreover these variables are not required to have

the same number of values. A FuDD is introduced as a graph(ical) representation of a fuzzy if-then

rule base.

The paper is organized as follows. In section 2, fuzzy decision diagrams are defined and

explained. An analysis on the applications of FuDDs based on examples is presented in section 3,

where the hypothesis of rigid granularity is introduced. A short section with conclusions completes

the paper.

2. Fuzzy Decision Diagrams

Definition 1: A fuzzy set is a collection of different elements (from a given universe), each of which

has a possibly different degree of membership to the set. If the same symbol is used for a fuzzy set

and its characteristic function, then given a universe U, a fuzzy set S is characterized by the mapping:

S: U → [0,1] (1)
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For any u ∈  U, S(u) gives its degree of membership to the fuzzy set S.

A singleton is a fuzzy set with only one element having a degree of membership 1, while all

others have a degree of membership 0. If S is a singleton and s is its defining element, then the

following holds:

S(s) = 1 and ∀ u ∈  U such that u≠s, S(u) = 0 (2)

Linguistic variables were introduced in [Zad 75] as a formal way of working with concepts

associated to real-world variables.

Given a physical variable with a numerical domain, it is possible to define another view of

this variable as a linguistic one, with a linguistic domain consisting of a set of fuzzy sets called

linguistic terms and having own names. The fuzzy sets formally give the interpretation of the concepts

expressed by the names of the linguistic terms upon the numerical domain.

Linguistic variables considered in this paper satisfy the conditions stated below.

If v is a variable with a numerical domain Dn and a linguistic domain Dl = {T1, ..., Tm}, where

Tj, 1 < j < m, are the fuzzy sets of the corresponding linguistic terms, then:

i) ∑ =∈∀
j

j 1(x)T       x nD

ii) 1(x)T:x   mj1 j =∈∃≤≤∀ nD

A Fuzzy Decision Diagram FuDD is a decision diagram for the efficient representation and

manipulation of fuzzy rule bases, where the variables are linguistic (or fuzzy set valued) variables and

the edges are labelled by the corresponding linguistic terms. In this sense, a FuDD is a generalization

of a multiterminal decision diagram MTDD [SSMS 94], [StS 98] as well as of an interval decision

diagram (IDD) [StT 98], [StT 99] except that the labels (fuzzy sets) of neighbour edges are not totally

disjoint as for IDDs. The structure of a FuDD is the basis for its interpretation (see below).

Let vi, 1 ≤ i ≤ N, be a linguistic variable with ni linguistic terms Tij. Hence, vi has the linguistic

domain Di = { Ti1, Ti2, Ti3, ..., Tini
 }. FuDDs are represented by function graphs, similar to those of

[Bry 86].

Definition 2: A function graph G is a rooted, directed acyclic graph with an edge set E and a node set

V which contains two types of nodes. A non-terminal node ν ∈  V has as attributes an argument index

i = index(ν), i < N, which corresponds to the index of the linguistic variable vi, and ni children

childj(ν) ∈  V, 1 ≤ j ≤ ni. The linguistic terms Tij ∈  Di of the linguistic variable vi are assigned to the
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corresponding graph edges (ν, childj(ν)) ∈  E. V contains nN terminal nodes with index N and labelled

with the linguistic terms TNj of vN. Hence, a terminal node ν has as attribute a fuzzy set

value(ν) ∈  DN.

A fuzzy if-then rule has basically the structure "if <condition> then <conclusion>", where

<condition> and <conclusion> are fuzzy sets, not necessarily in the same universe. In order to use

such a rule, the following generalized modus ponens [MaS 75] is considered:

A    → B
A'________

B' (3)

where A' is a fuzzy set not precisely equal but similar to A. The expected conclusion B' will be a

fuzzy set not necessarily equal but similar to B. This process has been formalized by means of the

Compositional Rule of Inference [Zad 73]. A generalized (pointwise) expression for the

Compositional Rule of Inference is the following:

∀ w in the universe of B and u in the universe of A

B‘(w) = σu {τ(A‘(u), I(A(u),B(w)))} (4)

where τ denotes a t-norm [Men 42], [ScS 83], [Web 83], σ a t-conorm, σu a σ-based supremum in the

universe of A and I(A(u),B(w)) denotes an implication operation [TrV 85].

If A‘ is a singleton such that A‘(u0)=1 and A‘(u)=0 for all u≠u0 then ∀ w in the universe of B

the following holds:

B‘(w) = σu≠u0 {τ(0, I(A(u),B(w))} or τ(1,I(A(u0),B(w))))

B‘(w) = I(A(u0), B(w)) (5)

If the “A → B” rule of eq. (3) were to be applied to linguistic variables it would turn into “T1g

→ TNk”, where from the indices it is clear, that from the g-th linguistic term of v1 as condition follows

the k-th linguistic term of vN as conclusion. Since however in practice the linguistic terms will not be

identified with abstract symbols with indices, but with conceptual labels, then the rules will be written

with explicit mention of the corresponding variables. This leads to the following structure for the

above rule:

R: if v1 is T1g then vN is TNk (6)
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Example 1:

Consider the linguistic variable external temperature with the linguistic terms {freezing, cold,

normal} and the linguistic variable heating with the linguistic terms {low, middle, high}. A possible

set of rules to control the room temperature could be:

R1: if the external temperature is freezing then the heating is –(should be set to)– high

R2: if the external temperature is cold then the heating is –(should be set to)–

middle

R3: if the external temperature is normal then the heating is –(should be set to)– low

How reasonable these rules are, will of course depend on the definitions of freezing, cold, normal as

well as of low, middle and high. Furthermore, it becomes apparent that the rule base may be seen as a

(fuzzy) case statement.

An especial feature of a fuzzy rule base (compared to other types of rule bases) is that for a

given crisp input (i.e. for a given numerical value of the linguistic variable), more than one rule may

be activated and these rules must be aggregated to obtain the final decision. (See figure 1 where this

is illustrated for the case where the product is selected as implication, minimum as intersection, and

the aggregation is realized by computing (pointwise) the maximum, a selection of operations that is

frequently chosen for applications in fuzzy control.)

A fuzzy decision diagram representing this extremly simple example is shown in  Figure 2.

The <condition> of a rule may be an expression of a conjunction of (simpler) conditions

(textually expressed by the word and). Such rules exhibit the following structure:

R: if v1 is T1g and   ...  and  vN-1 is T(N-1)q then vN is TNk

The conjunction of conditions is expressed by the hierarchy of nodes of a FuDD. A rule  base

is evaluated by traversing the FuDD from the leaves to the root. Along a path from a leaf to the root,

the conclusion of a rule will be calculated. For this, the degree of satisfaction (i.e. the conjunction of

the membership degrees of the actual numerical values of the variables to the corresponding linguistic

terms) will be computed and considered together with the fuzzy set that labels the leaf to evaluate the

output implication. Finally an aggregation should combine all activated rules.
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3. Analysis of Applications

Example 2:

Let a first linguistic variable have the domain {T11, T12, T13}, a second, the domain  {T21, T22}

and a third, the domain {T31, T32, T33, T34}. It becomes apparent that Tij denotes the j-th linguistic term

of the i-th linguistic variable. Consider the following rule base on these variables, with the inputs x1

and x2, and the conclusion x3.

R1: if x1 is T11 and x2 is T21 then x3 is T31

R2: if x1 is T11 and x2 is T22 then x3 is T34

R3: if x1 is T12 and x2 is T21 then x3 is T31

R4: if x1 is T12 and x2 is T22 then x3 is T32

R5: if x1 is T13 and x2 is T21 then x3 is T33

R6: if x1 is T13 and x2 is T22 then x3 is T34

A FuDD representing this rule base is shown in Figure 3. This FuDD belongs to the class of

ordered DDs [Bry 86], characterized by the fact that all nodes at a given layer are associated to the

same variable and no repetition of variables appears along any path from a leaf to the root. The order

of the linguistic variables in the FuDD corresponds to the order of appearence of the elementary

conditions in the rules. If t-norms  are used to realize the conjunctions, then a reordering of the

variables giving an equivalent FuDD may lead to a more compact rule base. This is possible due to

the fact that t-norms are commutative and associative. Finding the optimal ordering of the variables

for a DD is however NP-hard [BoW 96], and several heuristics have been suggested to find possibly

sub-optimal orderings, but within a reasonable amount of computing time (see e.g. [FrS 87], [ISY 91],

[FOH 93], [Rud 93], [THY 93], [DrB 98], [RSM 99]). If non-commutative conjunctions [Pra 99] are

used, no optimization of the FuDD (in the former sense) is possible.

           It becomes apparent that a FuDD allows checking completeness and consistency of a rule

base. All nodes at the same level must have as many leaving edges as the corresponding linguistic

variable has linguistic terms (completeness), and no two of these edges may have the same label

(consistency). It is simple to see that this kind of check does not actually require the FuDD to be

ordered. In a rule base with a few rules (as in  example 2) this kind of control may be done by simply

inspecting the list of rules; however in the case of a rule base with a large number of rules or with

rules with a large conjunction of conditions this is cumbersome if at all possible; meanwhile the

FuDD representation supports a systematic test for a large dimension of the rule base.
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If no expert knowledge is available to state the rules for a given problem, it is possible to

learn the rules with the help of examples (see e.g. [Jan 92], [TSK 92], [WaM92], [THM 99]).

Depending on the system being used, it may be the case that rules with too small granularity may be

obtained. This is the typical case of a rule generation process, where an a priori decision on a fixed

number of linguistic terms for each linguistic variable is taken and the conjunction of premisses is

based on t-norms. This is illustrated in figure 4. There, a problem space which exhibits five blocks

and accordingly could be partitioned by using five rules, leads to nine rules if a rule generation

process as mentioned above is used. It is easy to see that the optimal partition could be obtained if at

every surrounding block, some neighbour linguistic terms were replaced by their convex hull and

given a proper interpretation. Since linguistic variables are structured as an ordered set of linguistic

terms, then the predicates “larger than or equal“ as well as ”smaller than or equal“ would provide

an adequate interpretation for the convex hulls covering the corresponding linguistic terms. Please

notice that the new rule base is not semantically equivalent to the former one, but covers it and under

the above “hypothesis of rigid granularity”, it has an improved accuracy –(lower mean square error)–

since it supresses really non-existing “valleys” artificially produced between neighbour fuzzy blocks

with the same label. It should be pointed out that this criterion has been applied (by other authors) in

the past, to situations where in the matrix representation of a rule base, neighbour cells have the same

label, implicitly assuming that this situation is due to the above discussed hypothesis of rigid

granularity (see e.g. [Gut 93], [GuS 97]).

Example 3 below shows how a FuDD points out this problem and suggests ways of

optimizing the rules, i.e. a rule base with less, more accurate and possibly more compact rules may be

obtained. To simplify the FuDD representations, it will be agreed that edges leaving a node will be

labelled (from left to right) in the same order as the linguistic terms of the corresponding linguistic

variable.

Example 3:

Consider a rule base with two conjuncted conditions, having three and four linguistic terms

respectively, and a conclusion with five linguistic terms. Assume that the prevailing rule base is the

following:

R1 : if x1 is T11 and x2  is T21 then x3 is T31

R2 : if x1 is T11 and x2  is T22 then x3 is T33
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R3 : if x1 is T11 and x2  is T23 then x3 is T33

R4 : if x1 is T11 and x2  is T24 then x3 is T33

R5 : if x1 is T12 and x2  is T21 then x3 is T31

R6 : if x1 is T12 and x2  is T22 then x3 is T32

R7 : if x1 is T12 and x2  is T23 then x3 is T34

R8 : if x1 is T12 and x2  is T24 then x3 is T34

R9 : if x1 is T13 and x2  is T21 then x3 is T35

R10 : if x1 is T13 and x2  is T22 then x3 is T35

R11 : if x1 is T13 and x2  is T23 then x3 is T34

R12 : if x1 is T13 and x2  is T24 then x3 is T34

The FuDD is shown in figure 5. It becomes quite apparent, that a simplification (i.e.

optimization) of the rule base is possible. The following new rules may be extracted from the FuDD:

R13: if x1 is T11 and x2 is larger than or equal to T22 then  x3 is T33

R14: if x1 is T12 and x2 is larger than or equal to T23 then  x3 is T34

R15: if x1 is T13 and x2 is larger than or equal to T23 then  x3 is T34

R16: if x1 is T13 and x2 is smaller than or equal to T22 then  x3 is T35

R13 summarizes R2, R3 and R4; R14 reduces R7 and R8; R15 comprises R11 and R12, and

finally R16 represents R9 and R10.

Further optimization is still possible if the FuDD exhibits a reconvergent subgraph. A

subgraph will be called reconvergent  if it consists of different paths from a reference node to a given

leaf or set of leaves. These paths satisfy two conditions:

i) they traverse only neighbour children-nodes of the reference node.

ii) starting at the level below the reference node, all graphs connecting the selected

children of the reference node with the predefined set of leaves are isomorphic.

Notice that if starting at the level below the reference node the reconvergent paths

include all edges, then the FuDD may be reduced [Bry 86].

If a FuDD has a reconvergent subgraph, a proper reordering of the variables leads to an

equivalent FuDD with an explicit suggestion for the optimization of rules. See figure 6 that illustrates

the reconvergent subgraphs of the FuDD in figure 5, and figure 7, for an equivalent FuDD with a

reordering of the variables. The new reconvergent subgraphs are illustrated in figure 8 and the

reduced FuDD is presented in figure 9.
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Now it is possible to obtain two new (optimized) rules:

R17: if x2 is T21  and  x1 is smaller than or equal to T12 then  x3 is T31

R18: if x2 is larger than or equal to T23

and x1 is larger than or equal to T12 then  x3 is T34

R17 combines R1 and R5, meanwhile R18 is the result of R14 and R15. It should be noticed

that R18 is obtained directly from the reduced FuDD.

Up to now, ordered FuDDs have been considered. If all paths from the root to the leaves of a

FuDD are independently reordered, the result will be a free FuDD [BGMS 94]. The use of free

FuDDs to optimize a rule base will be illustrated in the next example.

Example 4:

Assume that the following rule base is available. (To simplify the example, but without loss

of generality, linguistic variables with only two linguistic terms are considered).

R1: if x1 is T11  and x2 is T21 and x3 is T31 and x4 is T41 then x5 is T51

R2: if x1 is T11  and x2 is T21 and x3 is T31 and x4 is T42 then x5 is T52

R3: if x1 is T11  and x2 is T21 and x3 is T32 and x4 is T41 then x5 is T52

R4: if x1 is T11  and x2 is T21 and x3 is T32 and x4 is T42 then x5 is T54

R5: if x1 is T11  and x2 is T22 and x3 is T31 and x4 is T41 then x5 is T51

R6: if x1 is T11  and x2 is T22 and x3 is T31 and x4 is T42 then x5 is T53

R7: if x1 is T11  and x2 is T22 and x3 is T32 and x4 is T41 then x5 is T53

R8: if x1 is T11 and x2 is T22 and x3 is T32 and x4 is T42 then x5 is T55

R9: if x1 is T12 and x2 is T21 and x3 is T31 and x4 is T41 then x5 is T51

R10: if x1 is T12 and x2 is T21 and x3 is T31 and x4 is T42 then x5 is T53

R11: if x1 is T12  and x2 is T21 and x3 is T32 and x4 is T41 then x5 is T52

R12: if x1 is T12  and x2 is T21 and x3 is T32 and x4 is T42 then x5 is T55

R13: if x1 is T12  and x2 is T22 and x3 is T31 and x4 is T41 then x5 is T51

R14: if x1 is T12  and x2 is T22 and x3 is T31 and x4 is T42 then x5 is T53

R15: if x1 is T12  and x2 is T22 and x3 is T32 and x4 is T41 then x5 is T54

R16: if x1 is T12  and x2 is T22 and x3 is T32 and x4 is T42 then x5 is T55
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If the lexicographic order used to write the conditions of the rules (i.e. x1, x2, x3, x4) is used to

generate the corresponding FuDD, the result would be as shown in figure 10. A reconvergent

subgraph may be recognized, which suggests a reordering of the variables. Figure 11 shows the

reordered FuDD, where the variables are ordered as x3, x4, x1 and x2. A new reconvergent subgraph

rooted at x1 in the middle of the FuDD may be recognized. Local reordering leads to the reduced free

FuDD shown in figure 12. It becomes apparent that this FuDD has only 9 internal nodes meanwhile

the former had 10 and the original FuDD 15.

The rules extracted from the reduced free FuDD are:

R1‘: if x3 is T31 and x4 is T41 then x5 is T51

R2‘: if x3 is T31 and x4 is T42 and  x1 is T11  and x2 is T21 then x5 is T52

R3‘: if x3 is T31 and x4 is T42 and  x1 is T11  and x2 is T22 then x5 is T53

R4‘: if x3 is T31 and x4 is T42 and  x1 is T12 then x5 is T53

R5‘: if x3 is T32 and x4 is T41 and  x2 is T21 then x5 is T52

R6‘: if x3 is T32 and x4 is T41 and  x2 is T22  and x1 is T11 then x5 is T53

R7‘: if x3 is T32 and x4 is T41 and  x2 is T22  and x1 is T12 then x5 is T54

R8‘: if x3 is T32 and x4 is T42 and  x1 is T11  and x2 is T21 then x5 is T54

R9‘: if x3 is T32 and x4 is T42 and  x1 is T11  and x2 is T22 then x5 is T55

R10‘: if x3 is T32 and x4 is T42 and  x1 is T12 then x5 is T55

It becomes apparent that the new rule base is shorter and some of the rules are simpler than in

the original rule base.

Definition 4:

A partially ordered FuDD is a free decision diagram that is strictly ordered from the root

down to a certain intermediate level. (If the FuDD is reduced, all reduced redundant nodes are

considered to be correctly ordered).

It is easy to see that the FuDD of figure 12 is partially ordered.

Up to now, neither the type of conjunction operation (except, perhaps, for the requirements on

associativity and commutativity) nor the type of implication operation has been explicitly considered.
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The FuDD representation is a general one. If in an ordered FuDD the rule base were of Mamdani type

[MaA 75] (i.e. the implication of a rule and the conjunction used to combine the conditions are

realized with the minimum operation, meanwhile the aggregation is done with the maximum

operation), and the signals at the leaves were the result of other rule bases (also of Mamdani type),

then the leaves would turn into roots of new FuDDs leading to a chaining of (partial) rules resulting in

global rules with a (much) larger number of conjuncted conditions. The resulting FuDD would be

ordered or partially ordered. The reverse situation is however more interesting. Given a Mamdani rule

base leading to an ordered (or partially ordered) FuDD with a large depth, it is possible to extract a

hierarchically ordered rule base by dividing the FuDD into two parts. A level will be selected at

which the nodes will turn into leaves and a following part representing new rule bases feeding the

new generated leaves. This idea is related to work on matrix-valued DDs [Sta 99]. For the time being,

this is constrained to Mamdani systems since the distributivity between maximum and minimum is

essential for this kind of decomposition: The leaves FuDDs would provide maximum-aggregated

partial rules that must be conjuncted with the conditions along a path leading to the root. This will

only then represent a new rule (set) if the result is equivalent to the maximum-aggregation of the

conjunction of degrees of satisfaction of all conditions along the new compound paths. This is the

reason why 1) the implication operation had to be chosen as a conjunction, so that the chaining of two

rules can produce a new rule (of the same kind) and 2) the t-norm used for conjuntion and the t-

conorm used for aggregation had to be minimum and maximum, respectively, since this is the only

pair of t-norm and t-conorm that is distributive [Web 83]. Finally, this is the characteristic of a

Mamdani system.

Example 4: (Continuation)

The FuDD shown in figure 12 represents a reduced partially ordered one. If the rule base were

of Mamdani type, the following decomposition would be possible:

i) Leaf rules

R1.1: if x1 is T11 and x2 is T21 then yleft is T52

R1.2: if x1 is T11 and x2 is T22 then yleft is T53

R1.3: if x1 is T12 then yleft is T53

R2.1: if x2 is T21 then ymiddle is T52

R2.2: if x2 is T22 and x1 is T11 then ymiddle is T53

R2.3: if x2 is T22 and x1 is T12 then ymiddle is T54
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R3.1: if x1 is T11 and x2 is T21 then yright is T54

R3.2: if x1 is T11 and x2 is T22 then yright is T55

R3.3: if x1 is T12 then yright is T55

ii) Root rules

R0.1: if x3 is T31 and x4 is T41 then x5 is T51

R0.2: if x3 is T31 and x4 is T42 then x5 is yleft

R0.3: if x3 is T32 and x4 is T41 then x5 is ymiddle

R0.4: if x3 is T32 and x4 is T42 then x5 is yright

The new rule base has 13 rules, but none of them has more than 2 conditions. Theses rules

might be easier to interpret than the former ones.

4. Conclusions

Fuzzy Decision Diagrams provide an efficient data structure for adequate representation,

analysis and optimization of if-then rule bases, independently of the operations used to evaluate the

rules, under the hypothesis of rigid granularity. Moreover, FuDDs allow checking for completeness

and consistency of the rule base. If the rule bases were obtained by predefining the number of

linguistic terms of the linguistic variables and by using t-norms to realize the conjunction of

premisses,  then an optimization may be done by using techniques to minimize the corresponding

FuDD. Both ordered FuDDs with reordering of variables and  free FuDDs support the optimization.

Efficient algorithms to do this are however still looked for. In the case of Mamdani rule bases, FuDDs

allow additionally a simple decomposition of the rule base. This implies a chaining of rules [LTT 97],

but the new rules use a reduced number of conditions, which may improve their interpretability.
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Fig. 2: FuDD for example 1
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Fig. 4: A proper and a grid-like partition of a five-blocks space
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Fig. 6: Reconvergent subgraphs in the FuDD of figure 5
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Fig. 7: Equivalent FuDD with reordered variables

Fig. 8: Reconvergent subgraphs of the FuDD of figure 7
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Fig. 9: Reduced FuDD with reordered variables for example 3
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Fig. 10: FuDD for example 4 showing a reconvergent subgraph
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Fig. 11: FuDD of figure 10 after reordering.
A new reconvergent subgraph within a single

subgraph
may be recognized.
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Fig. 12: Reduced free FuDD for example 4.
“Leaf-rules“ for decomposition are indicated. (see text)
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